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Abstract: Nowcasting and early warning systems for landslide hazards have been implemented
mostly at the slope or catchment scale. These systems are often difficult to implement at regional scale
or in remote areas. Machine Learning and satellite remote sensing products offer new opportunities
for both local and regional monitoring of deep-seated landslide deformation and associated processes.
Here, we list the key variables of the landslide process and the associated satellite remote sensing
products, as well as the available machine learning algorithms and their current use in the field.
Furthermore, we discuss both the challenges for the integration in an early warning system, and the
risks and opportunities arising from the limited physical constraints in machine learning. This review
shows that data products and algorithms are available, and that the technology is ready to be tested
for regional applications.

Keywords: deep-seated landslide; machine learning; remote sensing; early warning systems;
hazard assessment

1. Introduction

Landslides are a major hazard to human life and society, killing over 55,000 people over the period
of 2004–2016 [1], and causing an estimated average economic loss of AC 4.7 billion per year in Europe
alone [2]. To protect the public, landslides have been a major research topic for the last few decades,
strengthened by recent commitments such as the Sendai agreement for disaster risk reduction and the
‘Kyoto 2020 commitment’ to reduce landslide disaster risk [3,4].

New data and data integration methods offer new possibilities for landslide forecasting,
especially for slow-moving, deep-seated landslides. Here, we provide a perspective on the possibilities,
applications, and challenges of both local and regional deformation nowcasting and its inclusion
in early warning systems. A nowcast describes the current, estimated system state, and provides
an outlook on the coming days.

We focus on slow moving, deep-seated landslides on natural slopes, for which deformation
is controlled by hydro-meteorological conditions. These landslides are characterized by gradual,
non-catastrophic deformations of millimeters to decimeters per year and can be monitored and
modeled over at least multiple years. They are considered to be in a state of so-called limit-equilibrium
undergoing continuous deformation, but may accelerate or stabilize when conditions change [5].

Landslide geologists have compiled local, spatial landslide susceptibility maps since the
1970s [6–8]. Such maps delineate landslide-prone areas based on historic landslides and expert
analysis of landscape properties. However, susceptibility maps only indicate where a landslide may
occur without a specific time frame [9]. Advances in geospatial data acquisition and processing in the
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last 50 years have greatly influenced the field. Current, quantitative, regional [10,11] and global [12,13]
susceptibility maps are based on statistics rather than expert judgement alone and use historical
landslide events for calibration/training.

Extensive reviews have been written on the state-of-the-art in susceptibility mapping,
either summarising the methods available or making quantitative analyses of the classification
process [14–22]. However, whereas static susceptibility maps have proven their value for spatial
planning, when monitoring landslide stability, both for single landslides as well as on a regional scale,
time dependency cannot be neglected [23].

In practice, most shallow landslides are triggered by extreme precipitation events [24],
or by a combination of hydro-meteorological events. However, failure modes for fast-moving
landslides are not applicable to deep-seated landslides and statistical relationships—for example,
the intensity-duration thresholds for precipitation do not offer sufficient predictive power [25].
Although seismic events can not be neglected as a trigger, earthquakes are a different triggering
mechanism that is explicitly not considered here. Moreover, earthquakes with a magnitude lower than
4.0–5.5 are less likely to trigger a landslide [26,27].

Sliding behaviour is governed by the balance of forces within the landslide, that is, the relation of
the shear strength of the soil to the shear (sliding) force applied by the gravitational forces acting on the
landmass. Changes in hydrology change the balance between these forces [28]. Therefore, infiltration
of rain, or delayed infiltration from snow melt, and the subsequent rise of the pore water pressure shift
the balance of forces as the increased pore pressure weakens the soil.

As a major result of the landslide process, displacement is a key parameter to capture the
interaction between landslide deformation and hydro-meteorological conditions—the relation between
soil moisture and increased deformation has been observed in the field [29,30]. Studies focused
on the progressive deformation of individual landslides have appeared in recent years, connecting
deformation to the conditions on the slope (e.g., [31], Table 4). These studies claim good results in
predicting landslide deformation based on hydro-meteorological conditions using machine learning
algorithms and limited geomechanical modelling.

Machine learning offers new possibilities to bypass the microscale physics of the landslide,
estimating the behaviour based on large data sets of previous responses to hydro-meteorological
conditions as an intermediate step between passive monitoring and extensive (numerical) modelling
of the landslide. This is done either by incorporating physics, such as the groundwater level, in the
statistical model [32,33] or by estimating the deformation rate of the landslide directly based on
the hydro-meteorological time series. Although there is no strict link between data availability and
predictive capacity [34], such an approach has been proven to work at the landslide scale, such as by
the examples discussed in Section 3.

At the advent of both local and regional landslide nowcasting, data availability is more
important than ever, especially data that can be used for training of new machine learning algorithms.
Their spatial properties and significance in the landslide process, as well as their temporal availability
and suitability for automated data integration should be taken into account.

In this paper, we highlight the opportunities of machine learning using static and
dynamic remotely sensed data sources for monitoring and nowcasting of deep-seated landslides.
The overarching aim is to arrive at a near real-time, machine learning-based, local and regional
early warning system for precipitation-initiated acceleration of slowly deforming slopes. Hereto, we
will discuss conditional data sources, and dynamic causal and triggering factors. Then, we will discuss
various machine learning algorithms from landslide literature. The paper finally discusses the current
limitations and challenges, as well as the potential of combining local near real-time ground sensed
data with the remotely sensed data.
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2. Monitoring Opportunities for Slow-Moving Deep-Seated Landslides

Landslides are “the movement of a mass of rock, debris, or earth (soil) down a slope” [9].
Pre-disposing factors are essential for a landslide to form and have been integrated in susceptibility
maps in the past. However, the landscape is stable most of the time. Leading up to a landslide
are causal and triggering factors—these first allow the landslide to happen, making it sensitive to
triggering factors that initiate the movement.

The deformation of the landslide is an indicator of stress at the sliding plane, which is often
impossible to measure directly. For landslides in limit-equilibrium, the balance of forces can be
approximated by the Mohr–Coulomb failure criterion [35] under the assumption of a single sliding
plane. Moreover, past landslide events are indicative of future behaviour, and similar landslides
will exert similar behaviour in similar situations [9,36]. Furthermore, the behaviour of continuous,
slow-moving, non-catastrophic landslides can be followed over longer periods of time [14].

Working from the various reviews of susceptibility maps [15,17], a list of key variables that can
be acquired from satellite observations is shown in Table 1. Slope, and related properties of aspect and
curvature, are typically identified as primary conditioning factors for landslides: no slope, no landslide.
In most susceptibility analyses, dynamic triggering factors like precipitation or snow melt are not
included, but should be included in a landslide nowcasting solution. Toe erosion—either gradual
by water or sudden by building activity—is often captured in land use. However, local situations
may require extra variables to be added, such as reservoir water level [37], or ground temperature for
freeze–thaw effects.

Table 1. Key variables in the landslide process that can be acquired from satellite observations.

Variable Role

Slope Pre-disposing Static
Geology Pre-disposing Static
Soil moisture Causal Dynamic
Precipitation Trigger Dynamic
Snow (melt) Trigger Dynamic
Land use Causal Dynamic
Deformation Result Dynamic

The systematic, often global, availability of satellite remote sensing data sources is a valuable
addition to local (field) surveys and monitoring, where data availability is dependent on commissioning
by local authorities. Furthermore, it allows for measurements in harsh environments that are not easily
accessible. Here, we list potential information sources for each variable identified in Table 1.

2.1. Regional Topography

As gravity is the driving force behind any landslide, a slope is a requirement for landslide
deformation. Local slope, aspect, and curvature are derived from globally available satellite
digital elevation models, such as SRTM [38]; ALOS [39,40]; TanDEM-X DEM [41] or ASTER-GDEM [42].
Typically, the resolution of such products is 30–90 m. Regional products, mostly acquired from airborne
platforms, often have a resolution of 0.5–10 m. A coarse resolution may hide small terrain features and
will typically attenuate slope estimates [43–45], where on the contrary, a coarse elevation discretization
may introduce false, sharp gradients [46].

The best elevation model for landslide characterisation is not necessarily the most accurate
in the traditional sense. Errors in referenced specification documents are often listed as absolute
errors, while the local error, relative to the direct vicinity, is much more relevant for the calculation
of derivatives, such as slope. The quality of elevation models is debated in literature, often by
intercomparison of different products [47–52] or comparison to a different measurement, such as
GPS [53] or levelling [50]. Slopes, which are dominant in mountainous terrains, particularly have
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an effect on the accuracy of the elevation model [54]. Although acquisition dates vary, if topography is
assumed to be stable, different sources can be combined. For example, MERIT [55], NASADEM [56],
EarthEnv-DEM90 [57], and VFP [58] elevation models are fusion products, combining data from
multiple elevation data products.

2.2. Regional Geology and Lithology

In the context of deep-seated landslide nowcasting, the geology can be considered static. However,
not all lithologic types are equally susceptible to landslides. The OneGeology project serves as an
integrator between various local maps and provides interfaces for public use to access these maps at
a global scale. Global maps, such as the FAO-UNESCO “Digital Soil Map of the World” [59] or “ISLSCP
II Global Gridded Soil Characteristics” [60], or dedicated maps, such as the lithological layer of the
“International Hydrogeological Map of Europe” (IHME) [61], provide information on the uppermost
water-bearing layer and matches the hydrological focus of landslide research. Resolutions are up to
100 m, which therefore covers mainly large-scale geologic features.

2.3. Hydro-Meteorology

Complete reviews of satellite precipitation data sets were given by Satgé et al. [62]
and Beck et al. [63,64], each reviewing over 20 precipitation data sets of which half publish data
within days. Both reviews conclude the best-performing data product is MSWEP, followed by IMERG.
In the context of landslide nowcasting, only products with short availability are interesting: the product
has to be available hours, or at maximum, a few days after the measurement, and should be open
for integration. Products reported to have these properties are listed in Table 2. The average spatial
resolution is approximately 12 km.

Table 2. Overview of precipitation data products. Adapted from Satgé et al. [62] and Beck et al. [63,64],
showing only data sources with at least Near Real Time (NRT) coverage. A spatial resolution of 0.1◦

is approximately equal to 11 × 11 km at the equator, or 8 × 11 km at 45◦ N/S (e.g., Alps). Lag is the
relative age of the latest available product.

Name Spatial Temporal Lag NoteResolution Coverage Resolution Coverage

CMORPH v1.0 0.07◦ <60◦ 30 min 1998-NRT 1 day
GDAS ∼0.25◦ global 3 hourly 2015-NRT 6 days
GSMaP-MVK 0.1◦ <60◦ hourly 2000-NRT 3 days
GSMaP-NRT 0.1◦ <60◦ hourly 2008-NRT 4 h
GSMaP-NOW 0.1◦ <60◦ 30 min 2019-NRT 30 min
GSMaP-RNC 0.1◦ <60◦ hourly NRT only −6 h
IMERG v5/6 0.1◦ <60◦ 30 min 2014-NRT 4 h
MSWEP v2.2 0.1◦ global 3 hourly 1979-NRT Request only
PERSIANN 0.25◦ <60◦ hourly 2000-NRT 2 days
PERSIANN-CCS 0.04◦ <60◦ hourly 2003-NRT 1 h
TMPA 3B42RT v7 0.25◦ <50◦ 3 hourly 2000-NRT 8 h Obsolete
CPC Unified 0.5◦ land daily 1979-NRT 2 days
ERA5T 0.25◦ global hourly 1979-NRT 5 days

Antecedent water content, soil saturation, and pore pressure play key roles in landslide
instability [25,28,65], and local soil moisture content can be a precursor of landslide instability [66,67].
Even though soil moisture measurements from space are still limited in resolution and depth,
satellite soil moisture information may help constrain the nowcast [68].

A bucket or tank model can be used to estimate the ground water level from indirect measurements,
such as precipitation, transpiration estimates, and run-off measurements [69–72]. Run-off of small
streams cannot be measured by satellites, and requires in situ or close-range measurements, while
the other parameters can be estimated [73]. This approximation is never perfect, but allows for an
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indirect estimate of groundwater from surface processes. The groundwater level is then used to estimate
the pore pressure, which is related to the stability of the landslide [69,74]. Furthermore, it filters the
high-frequency precipitation signal to low-frequency changes in groundwater.

2.4. Land Use

Land use has an influence on the infiltration of precipitation and the evapotranspiration loss
of water, and therefore, is of influence to the hydrological cycle. Furthermore, artificial slopes are
an alteration of the natural balance and are more susceptible to landslides [75]. Therefore, a combination
of vegetation and topographic maps is required to assess the influence on the hydrological cycle.

OpenStreetMap provides a global coverage of the human presence in a unified way in large parts
of the world on the scale of individual roads [76]. The large-scale CORINE Land Cover (CLC) map
provides information on both anthropogenic settlements as well as crude vegetation information at
100 m resolution [77]. The JAXA ALOS forest map [78], as well as the ‘Global Forest Change’ product
by Hansen et al. [79] focuses on forest cover only. Even larger-scale information on unmapped human
settlements can be obtained from satellite observations of night light [80,81].

Unfortunately, land use information extracted from maps is limited by the update frequency.
CORINE, for example, is updated every six years. Information extracted directly from satellite imagery
is less prone to such delay, and enables the detection of land use changes and associated changes in
the water balance. Satellite imagery can be used directly to monitor for extreme changes, such as forest
fires or building activity, on a more frequent basis.

2.5. Displacement

Sources of deformation measurements are numerous, but often local. Inclinometers, total station
measurements, and GNSS surveys provide on-site information on the progressive deformation of
the landslide. The aforementioned solutions require access to the landslide to mount the sensors or
benchmarks. Alternative solutions include ground-based InSAR (GB-InSAR) [82–84] and LiDAR
surveys ([85–87], reviewed by [88]), that require no access to the landslide itself, but can be
operated from anywhere with direct visibility on the landslide. Therefore, the system can be used
as emergency intervention too [89]. However, especially continuous surveys require installation
on-site. Measurements can only begin after installation, after sliding behaviour has been detected.
Campaign-based measurements provide a limited temporal resolution, but may be operated without
a fixed set-up on site [87].

Satellites are the ideal means for regional repeat surveys without access to the landslide or its
vicinity. The importance of satellite-based Interferometric Synthetic Aperature Radar (InSAR) for
both local and regional landslide deformation assessments is widely recognized [90,91], and Intrieri
et al. [5] claim: “if InSAR monitoring had been active over this region, an early warning of imminent
failure could have been given”. Especially for slow-moving landslides, the accurate tracking of
‘persistent scatterers’ (PS-InSAR), and often buildings or rock faces, provides opportunities for
long-term deformation monitoring. Furthermore, the power of retrospective studies on previously
acquired data is a big advantage over local monitoring solutions. However, constant features, such
as clear rock faces or buildings should be present on the landslide. Moreover, the direction of sliding
should not be parallel to the direction of flight of the satellite, typically north–south. Deformation in
this direction will not be visible in the line of sight of the radar sensor, perpendicular to the direction of
flight. Nevertheless, even with limited presence of such features, a combination with campaign-based
surveys will still densify the deformation time-series [92–94].

3. Machine Learning and Data Assimilation

The integration methods discussed here combine different quantities from different measurements
into a single, different quantity—deformation rate. A clear distinction can be made between either
physical or statistical algorithms and qualitative or quantitative assessments. Physical modelling relies
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on expert knowledge of the processes in the landslide and is built on the evaluation of predefined sets
of rules [18]. Statistical methods are based on the assumption that landslides are more likely to occur
in circumstances that led to landslides earlier [36].

The assessment is either qualitative—such as low, moderate, or high hazard—or a quantitative
output, such as deformation rate. The different assessment methods have been highlighted and
illustrated in Table 3. The desired output for our approach is a deformation rate nowcast, estimated
based on conditioning and triggering factors, as mentioned in Table 1. However, the existing,
successful implementation of qualitative hazard nowcasting is a starting point for quantitative
analysis. From there, we explore the possibilities of various quantitative algorithms with increasing
computational complexity.

Table 3. The methods of landslide susceptibility or hazard assessment discussed, and their properties
in time and type of analysis. (Map icon derived from [10]).

Method Time Dependency Outcome

Susceptibility mapping None, static Qualitative

Hazard nowcasting Dynamic Qualitative

Deformation nowcasting Dynamic Quantitative

3.1. Hazard Nowcasting

Kirschbaum and Stanley [95] set an example for large-scale hazard nowcasting, and showed that
simple rules can provide a qualitative landslide hazard nowcast. Their nowcast has global coverage
and is updated every 30 minutes at a kilometer resolution based on satellite data. Their approach is to
estimate susceptibility first, signaling a landslide hazard when thresholds on antecedent precipitation
are exceeded in areas of high susceptibility. A similar method is used by Posner and Georgakakos [96],
based on soil moisture instead of precipitation. These systems do not estimate the system state, and
there is no nowcasting of deformation, as they are a nowcast of susceptibility instead.

Landslide hazard nowcasting and early warning systems are typically trained and tested on
inventories of the time and place of historic, catastrophic landslides. These landslide inventories are
often event inventories, listing collapse events rather than landslides experiencing continuous and
slow deformation. Examples of inventories are the ‘Global Landslide Catalog’ [97], ‘ELS-DAT’ [2], and
the ‘Global Fatal Landslide Database’ [1,98]. A system focused on continuous deformation patterns
cannot be trained on the events in such inventories. Although shallow landslides are the primary focus
of most large-scale inventories, some local inventories of deep-seated landslides exist [99,100], or can
be deduced from deformation patterns [101–103]. Local inventories are still valuable to selectively
activate nowcasting systems in areas with active landslides. While historic information could provide
insight in the conditions leading up to the event, a catastrophic event will change the dynamics of the
slope and previous dynamics may no longer be valid [36].

3.2. Deformation Nowcasting

A more complex approach is to estimate the system state, including the deformation rate, either by
geomechanical modelling or based on statistics of historical deformation. This last approach of
estimating the system state will be the focus of the methods mentioned here. Typically, solutions strive
for the simplest model with the smallest possible error in the prediction of cumulative deformation or
deformation rate. While more complex models are more likely to fit the data, they introduce the risk of
overfitting the model to the data, thereby reducing the predictive power.
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Table 4. Examples of different integration methods, linking hydro-meteorological conditions to deformation time series, and associated case studies. Where applicable,
the reference methods used in the paper are listed in brackets. Relevant abbreviations are expanded in the text.

Case Study Observed Driving Forces Deform. meas. Method (Reference Methods)
Xie et al. [104] Laowuji, China Rainfall, toe excavation Total Station LSTM
Bossi and Marcato [105] Passo della Morte, Italy Rainfall, groundwater Inclinometer Linear regression
Yang et al. [106] Baishuihe & Bazimen, China Rainfall, reservoir level GNSS LSTM
Miao et al. [107] Baishuihe, China Rainfall, reservoir level GNSS, inclinometer GA-SVR, GS-SVR, PSO-SVR
Li et al. [37] Baishuihe, China Rainfall, reservoir level GNSS LASSO-ELM, Copula (ELM, SVM, RF, kNN)
Logar et al. [108] Ventor, United Kingdom Rainfall Crackmeter ANN
Krkač et al. [33] Kostanjek, Croatia Groundwater (change), season GNSS RF
Zhou et al. [109] Bazimen, China Rainfall, reservoir level GNSS PSO-SVM (GA-SVM, GS-SVM, BPNN)
Cao et al. [110] Baijiabao, China Rainfall, groundwater, reservoir level GNSS ELM (SVM)
Lian et al. [111] Baishuihe & Bazimen, China Rainfall, reservoir level GNSS LSSVM, ELM, combination
Chen and Zeng [112] Baishuihe, China None GNSS BPNN
Du et al. [31] Baishuihe & Bazimen, China Rainfall, reservoir level GNSS, inclinometer BPNN
Lian et al. [113] Buishuihe, China None GNSS EEMD-ELM, M-EEMD-ELM (ANN, BPNN,

RBFNN, SVR, ELM)
Corominas et al. [114] Vallcebre, Spain Groundwater Extensometers Physics
Neaupane and Achet [115] Okharpauwa, Nepal Rainfall, groundwater Autoextensometer BPNN
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After model selection, as discussed in the following subsections, the process is typically
subdivided into three steps: data preprocessing; training or optimisation, and application. During
preprocessing, all variables are brought to the same reference frame. Furthermore, preprocessing of
the input variables can be used to enhance the information content of the input, such as by dissecting
the signal into various sub-signals first [113]. The training or optimisation phase is a computationally
intensive phase, where the model parameters are optimised such that the model approaches the
deformation process best. Many combinations of model and preprocessing and training methods are
possible, and final selection may require multiple models to be tested [107]. Finally, during application,
the tuned model is run over incoming data to predict the deformation of the landslide.

Intrieri et al. [14] reviewed a large number of data integration methods, and concluded that
no ‘best’ model could be identified due to the lack of comparable case studies between models.
The Baishuihe landslide, at the shores of the Three Georges Reservoir, China, offers some possibilities
for comparison, as multiple methods have been tested on this landslide by various authors (see Table 4).
However, the influence of the reservoir water level on the landslide stability, not commonly present
elsewhere, cannot be neglected and conclusions are therefore not easily transferable to other landslides.

3.2.1. Direct Relation Precipitation–Deformation

Traditional models, summarised by Bernardie et al. [116], rely on a direct relation between
precipitation and deformation. Various models exist for this relation, where the parameters such as
time lag are determined by optimisation on historical records. However, separate modelling of the
hydro-meteorological conditions is required, as only effective precipitation can be used in the model.
Support Vector Regression (SVR) is a data-driven equivalent of a direct relation, while Bossi and
Marcato [105] found a direct relation with river discharge. However, a model with a direct relation
between precipitation and displacement does not account for changing soil conditions and associated
infiltration dynamics.

3.2.2. Division of the Variable Space

Models such as Support Vector Machines (SVM), either with linear or non-linear models,
subdivide the variable space in different combinations of conditioning factors. To find the optimal
parameters for the model, an optimisation method is applied, such as Particle Swarm Optimization
(PSO), Grid Search (GS) or Genetic Algorithm (GA), all applied by Miao et al. [107]. All optimisation
parameters strive to use the change in output of each consecutive model state to further reduce the
errors in the least possible iterations. Decision trees and Random Forest (RF) classifiers provide
a similar (non-linear) subdivision of the input variables. All these models are insensitive to time series,
although additional copies of input variables with a time lag may be added.

With slow-moving landslides, the deformation signal is small. Therefore, the absolute error of
any deformation rate nowcast is likely to be small as well, and consequently difficult to compare to
deformation rates modelled using physically-based models. Furthermore, when training (optimising)
such models on a regional scale, there is a risk of introducing a bias towards the abundant stable,
non-landslide cases. Thus, one has to provide both a balanced training sample, as well as an error
metric (loss function) suitable for such small differences.

3.2.3. Artificial Neural Networks

Powerful alternatives are Neural Networks and related technologies, which are not applied to
classify the deformation behaviour, but to transform the input variables to a deformation estimate
using a non-linear transformation. Such systems can be made aware of time and the spatial relationship
between neighbouring areas and are capable of detecting relations unnoticed by experts. In addition,
such systems may estimate other variables in the process, such as a groundwater change [33].

As the optimisation is based on statistics only, most machine learning algorithms are ‘unaware’ of
the relations between system variables in space and time and are therefore unable to accurately asses the
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prediction error [117]. Additional rules may be implemented in the training processes, to validate the
solution against physics or other rules. An example is the solution proposed by Karpatne et al. [118],
the Physics Guided Neural Network (PGNN) that includes a physics-based model, integrating it into
the error function. With the help of this model, state estimates with larger deviations from a realistic
scenario are marked as less favourable.

A time-aware class of the Neural Networks are Recurrent Neural Networks (RNN), which operate
on time series of variables and have some memory of previous states. Thanks to the ‘memory’ of those
systems, previous conditions can be weighted, and when applicable, incorporated into the current
state. An advanced implementation of this is Long Short-Term Memory (LSTM), a network capable of
deciding whether a previous event is still applicable to the current state, retaining the memory—and if
so, clearing it otherwise [119].

4. Discussion

The limited roots in physics of many machine learning algorithms provide new potential for
the nowcasting of deep-seated landslides. With its origin in computer sciences, an understanding
of real-world physics is not the primary focus of most machine learning algorithms and methods.
This poses a challenge for the integration in early warning systems, that are traditionally an extension
of expert judgement rather than an ‘expert’ in itself. Furthermore, future experts will combine the
roles of landslide geologist and data scientist, combining information sources and bridging gaps in
data availability.

4.1. Data Unification

Most machine learning techniques require all data to be in a consistent, monotonically increasing,
spatio-temporal reference frame. Therefore, the resolution selection of the reference frame chosen has
an influence on the outcome. Arnone et al. [120] concluded a 20 m spatial resolution was optimal,
while Shirzadi et al. [121] concluded that a 10 m resolution was optimal. Both cases were higher than
the resolution of the aforementioned satellite data products. Furthermore, re-projection between
coordinate systems, as well as temporal interpolation, may introduce scaling of the original variable
and a false perception of increased resolution.

Unified sampling is often required, with missing measurements blocking the process. Variables
may need interpolation for features with lower spatial or temporal resolution, respecting the
properties of the process underlying the variable, although higher resolutions in space and time
may hide large-scale effects if analysis methods are not scaled appropriately with the increase in
resolution. Moreover, in landslide nowcasting, the algorithm has to cope with missing data and the
addition/update of historical data at a later stage.

Data cubes provide such unification of variables. The desired variables are preprocessed
and spatiotemporally aggregated to a unified reference frame in space and time to facilitate data
processing [122,123]. For such cubes, a multidimensional array of variable, time, x and y can be
sliced in any direction (variable, time, or location) to disclose relations in time, space, or between
variables. The cube can be generated on a project basis, with only the necessary variables [124,125],
or be provided as ‘analysis-ready data’ by others [126,127]. However, for a time-critical application as
nowcasting, these will have to be operational, ‘live’ data cubes.

4.2. Addition of Local Sensors

Local sensors may aid the interpretation of satellite products, and are a source of both calibration
and validation for the satellite data products. For example, they can compensate for underestimated
peak precipitation by satellite precipitation products due to spatial averaging [128] or validation of
InSAR deformation analysis by GNSS sensors on the landslide (e.g., [129]). Local sensor data can be
integrated in the process as well, especially when converted to the same reference frame as the satellite
data products. Integration can be achieved either by mixing with the existing variables to increase local
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spatial or temporal resolution, or by rasterisation, creating a new variable from spatially interpolated
sensor data. Furthermore, local observations allow for monitoring in geometries that are difficult to
describe or observe from air or space, such as vertical walls [130,131].

Regional application of local sensors is not only feasible in the case of mass deployment of
low-cost and low-maintenance sensors. Thomas et al. [66] showed that even a single soil moisture
sensor may be representative of a larger region and better represent the soil moisture conditions than
a satellite soil moisture product.

4.3. Addition of Physics

Physical constraints can be added at multiple stages of the process and bring the solution closer
to the physical process. Simple physics, such as the tank model [69], may be used during variable
pre-processing to amplify the information content of the variables. This integrates expert knowledge
into the empirical system, unintentionally constraining the system to an assumed correlation. Including
the same variable twice, once in a compound variable as well as independently, may over-represent
the variable in the process.

During training of the algorithm, physics may be used to constrain the solutions to what is
physically possible (e.g., landslides moving up-slope). This is implemented by the PGNN by penalizing
solutions that are in conflict with such predefined rules [118]. A major drawback is that both solutions
cannot compensate for errors in either the composite variables or constraints. Wrong assumptions will
lead to sub-optimal training and predictive power.

4.4. Early Warning Systems

The slow deformation behaviour of deep-seated landslides will not often prompt situations of
immediate collapse or those that are life-threatening. However, warnings for strong acceleration,
and associated risk for building and infrastructure damage, could be raised from a monitoring system.
Early warning systems, solely based on (local) deformation measurements, have to detect precursory
acceleration before a warning can be raised. Meanwhile, infrastructure and buildings on the slope are
already undergoing increased stresses.

With satellite deformation tracking only, multiple acquisitions are necessary to trigger an
alarm [5,132]. Current algorithms require at least 4–5 radar observations indicating acceleration to come
to an early warning with a reasonably low false alarm rate [5]. For example, given the 6-day revisiting
time of the ESA Sentinel 1 satellite mission, this is a lead time of 24 days. Therefore, integration
with other, more frequent measurements is necessary to come to an early warning and accelerate the
detection of deformation anomalies. Moreover, a nowcasting system, including both driving and
resulting factors, is less sensitive to the timeliness of the inputs and more suited for incorporation in
an early warning system. However, special attention should be given to verify the performance for
early warning of catastrophic accelerations of deep-seated landslides due to the rarity of such events.

Integration of the different data sources is an ongoing challenge faced by many remote sensing
projects. The methods can be subdivided into traditional, statistical, or signal processing methods
and artificial intelligence. The traditional methods have a mathematically defined behaviour, where
the latter have proven to be very effective in recent applications, but are considered blackboxes.

The nowcasting system has to value known, historical information with respect to the current
state. Traditional methods have limited flexibility in this respect. Possible pitfalls of the flexibility of
machine learning methods are overfitting on previous deformation and unrealistic predictions due to
the lack of physical constraints.

Unfortunately, it is practically impossible to guarantee that the more complex machine learning
algorithms will always yield the desired warning, as it is impossible to simulate all time series and the
non-linear behaviour does not allow for interpolation of the results. Such behaviour is undesirable in
early warning systems, where there is a delicate balance in the perception of false alarms and missed
detections [133]. Furthermore, it poses the question of how to present the new, uncertain results to the
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public—an early warning system is only complete with a communication framework to distribute the
warnings raised [134].

By integrating the nowcast in the early warning system, alarms are now based on the interplay
of variables, contrary to established single-variable intensity-duration thresholds. Furthermore,
ensemble predictions, showing agreement or disagreement between ensemble members, can be used
to warn against uncertain predictions. To increase predictive power, weather forecasts can be used to
detect such problems beforehand [135]. Together, these provide opportunities for the implementation
of an unconventional but trustworthy warning system.

The application of continuous learning—the continuous optimization of the model to the
newly recorded data—allows for the adaption to changing conditions, integrating new situations
not encountered in the initial training phase and learning from previously missed stabilization or
acceleration. However, continuous learning may mask slow changes, falsely updating the ground state.

4.5. Risk Assessment and Reduction

The quantitative hazard estimate from the nowcasting system can be projected onto objects of
socio-economic importance, such as infrastructure and housing. The initial hazard estimate is hereby
upgraded to a risk estimate—listing the potential damage incurred by the nowcasted, accelerated
deformation. Moreover, the processing priority can be guided by the objects at risk, processing
areas of high importance first or more frequently, thus maintaining regional coverage at the reduced
computational cost. Furthermore, the empirical relations derived from the training of the machine
learning algorithm are a valuable resource for the planning of mitigation measures.

5. Conclusions

Instead of describing the exact dynamics of each landslide, machine learning may serve a similar
purpose in local and regional nowcasting and early warning systems. The continuous, wide-area
time series from satellite remote sensing offer a unique opportunity to monitor deformation and
hydro-meteorological conditions of landslides on a local and regional scale. In this paper, we showed
that there are satellite remote sensing products available that capture the major contributors to the
landslide process as well as the continuous, slow deformation of deep-seated landslides themselves.

The limited frequency of deformation updates necessitates the integration of data from other,
more frequent, sources to continuously estimating the current system state. Simple physics and proxy
indicators may compensate for variables that cannot be observed directly from space. The different
machine learning algorithms we listed have been demonstrated to be capable of processing the large
data streams available to a nowcast of deformation on a local scale.

A satellite remote sensing landslide nowcasting system can be applied on demand, and has the
potential to be applied globally, independent of terrain accessibility or local budget, and provides
additional protection to those affected. However, integration in early warning systems on both a local
and regional scale will require further refinement of the algorithms and a new approach to ‘live’,
unified data integration.
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