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Highlights

 This paper presents a database of 287 reinforced concrete slabs failing in shear.
 Artificial neural networks are used to find a matrix-based expression.
 The developed expression can be used for the assessment of slab bridges.
 As mechanical models are lacking, the presented expression can be used to predict the shear 

capacity of slabs.
 The matrix-based expression gives insight in the sensitivity to certain parameters.
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10 Abstract

11 According to the current codes and guidelines, shear assessment of existing reinforced concrete 

12 slab bridges sometimes leads to the conclusion that the bridge under consideration has 

13 insufficient shear capacity. The calculated shear capacity, however, does not consider the 

14 transverse redistribution capacity of slabs, and thus leads to overly conservative values. While 

15 mechanics-based models have attempted to describe the problem of one-way shear in concrete 

16 slabs under concentrated loads, this problem is still not fully understood. Therefore, this paper 

17 proposes an artificial neural network (ANN)-based formula to come up with estimates of the 

18 shear capacity of one-way reinforced concrete slabs under a concentrated load that are as good as 

19 possible based on 287 test results obtained from the literature. The methods used for this purpose 
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20 are: (i) the development of the database with experimental results from the literature, and (ii) the 

21 development of the ANN-based matrix formulation. For the latter purpose, many thousands of 

22 ANN models were generated, based on 475 distinct combinations of fifteen typical ANN 

23 features. The proposed “optimal” model yields maximum and mean relative errors of 0.0% for 

24 the 287 datapoints. Moreover, it was illustrated to clearly outperform (mean Vtest / VANN =1.00) 

25 the Eurocode 2 provisions (mean VE,EC / VR,c =1.59) for that dataset. A step-by-step assessment 

26 scheme for reinforced concrete slab bridges by means of the ANN-based model is also proposed 

27 in this work, which results in an improvement of the current assessment procedures.

28 Keywords: Artificial Neural Networks; Bridges; Design Formula; One-Way Slabs; Reinforced 

29 Concrete; Shear Capacity 

30
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31 1. Introduction

32 As the age of existing infrastructures is increasing, the question if existing structures are safe for 

33 further operation becomes important. To answer this question, an accurate assessment of the 

34 existing infrastructures is necessary. The assessment should not be overly conservative, so that 

35 unnecessary strengthening or replacement actions can be avoided. On the other hand, the 

36 assessment should be as accurate as possible, so that structural safety can be assured. 

37 When reinforced concrete slab bridges are assessed, the estimated one-way shear capacity can be 

38 overly conservative, as transverse redistribution is not considered in the existing codes [1, 2]. In 

39 Europe, the live load model from NEN-EN 1991-2:2003 [3] uses a distributed lane load and 

40 design tandems. These tandems consist of large concentrated loads that are closely spaced, so that 

41 the load combination with the currently prescribed load model in Europe leads to large shear 

42 stresses at the support. As a result, a large number of reinforced concrete slab bridges are found 

43 to be insufficient for shear when assessed according to the currently governing codes [4]. While 

44 the shear provisions fulfil the purpose for design (i.e. ensuring that the designed bridge fails in 

45 flexure before shear), it does not fulfil the purpose for assessment (i.e. separating the bridges that 

46 pose a safety risk and require strengthening from those that are only shear-critical according to 

47 the conservative code formulas but, when analyzed further, fulfil the safety requirements when 

48 additional shear-carrying mechanisms are taken into account).

49 For more than a century [5-7], researchers have been debating the shear capacity of reinforced 

50 concrete members without shear reinforcement [8-10]. In slabs, the additional dimension of the 

51 width makes the problem three-dimensional [11, 12]. A plasticity-based model [13, 14] has been 

52 proposed to estimate the maximum load on a reinforced concrete slab bridge, but this method has 
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53 the disadvantage that the calculation needs to be tailored to the geometry of the bridge under 

54 consideration. Nonlinear finite element models [15] combined with the appropriate safety formats 

55 [16-19] can be used for the assessment of existing reinforced concrete slab bridges, but this 

56 approach is quite time-consuming [20].

57 When a large number of bridges need to be assessed, computationally fast methods are necessary. 

58 To determine the sectional shear stresses and bending moments due to the applied load 

59 combination, automated procedures using linear finite element models can be. Determining the 

60 bending moment capacity can be based on the traditional flexural theory for reinforced concrete 

61 beams. For a more effective estimate of the shear capacity of one-way reinforced concrete slabs 

62 under a concentrated load, this paper proposes the use of artificial neural networks (ANN), a 

63 popular machine learning technique. This approach results in an improvement of the estimation 

64 of the shear capacity of reinforced concrete one-way slabs failing in shear. Moreover, the 

65 proposed ANN-based model can be used for the assessment of one-way reinforced concrete slab 

66 bridges. This paper contains a step-by-step approach for the assessment of such bridges. 

67 Machine learning, one of the six disciplines of Artificial Intelligence (AI) without which the task 

68 of having machines acting humanly could not be accomplished, allows us to ‘teach’ computers 

69 how to perform tasks by providing examples of how they should be done [21]. When there is 

70 abundant data (also called examples or patterns) explaining a certain phenomenon, but its theory 

71 richness is poor, machine learning can be a perfect tool; as such its application to the problem of 

72 shear in one-way slabs is suitable and timely. The Artificial Neural Network (also referred in this 

73 manuscript as ANN or neural net) is the (i) oldest [22] and (ii) most powerful [23] technique of 

74 machine learning. ANNs also lead the number of practical applications, virtually covering any 

75 field of knowledge [24, 25]. In its most general form, an ANN is a mathematical model designed 
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76 to perform a particular task, based in the way the human brain processes information, i.e. with the 

77 help of its processing units (the neurons). ANNs have been employed to perform several types of 

78 real-world basic tasks, and have been successfully applied to civil engineering problems [26-41]. 

79 Some efforts have also been geared towards using ANN-based prediction models for the problem 

80 related to shear in structural concrete, yet these models still have relatively large errors [42-49]. 

81 Concerning functional approximation, ANN-based solutions are frequently more accurate than 

82 those provided by traditional approaches, such as multi-variate nonlinear regression, besides not 

83 requiring a good knowledge of the function shape being modelled [50]. The proposed ANN was 

84 designed based on the 287 experimental results available to date in the literature. 

85 The goal of this study is not to provide a full description of the mechanics underlying the 

86 behavior of one-way reinforced concrete slabs. While research efforts are being geared towards 

87 understanding the mechanics behind the shear capacity of reinforced concrete slabs, the proposed 

88 approach allows us to use the available experimental data in an optimal way, and to address the 

89 current need for the assessment of reinforced concrete slab bridges with computationally efficient 

90 tools. 

91 2. Research significance

92 This work proposes a new way to determine the shear capacity of reinforced concrete one-way 

93 slabs based on artificial neural networks. For this study, a unique database (available in the public 

94 domain) of 287 experimental results is analyzed. The analysis is based on combining different 

95 possible features of artificial neural networks, and finding the best performing matrix-based 

96 expression. This new expression has a practical application as well: it can be used for the design 
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97 and analysis of reinforced concrete slab bridges, as suitable physical models for this problem are 

98 currently not available.

99 3. Data Gathering

100 The dataset used for the development of the ANN simulations consists of 287 experimental 

101 results from (i) tests gathered from the literature reported in [51], consisting of references [52-

102 85], (ii) the TU Delft slab shear tests [86], and (iii) recently reported experiments [87]. The 

103 collected experiments are on slabs and wide beams, under line loads and concentrated loads. The 

104 specimens are either cantilevers, simply supported slabs, continuously supported slabs, or 

105 experiments carried out on slab bridges. Analyzing the test results shows that the minimum value 

106 of b/dl = 0.57, the maximum value is 46.30 and the average is 10.40, showing that the majority of 

107 the experiments would classify as slabs according to the ratio b/dl ≥ 5. Additionally, we 

108 considered that a certain amount of transverse load redistribution also occurs for wide beams 

109 subjected to a load that does not act over its full width.  Eleven variables were adopted as input 

110 (independent) for the ANN-based shear capacity predictions, as described and illustrated in Table 

111 1 and Fig. 1, respectively. Fig. 1 shows the resulting bending moment and shear diagrams when 

112 the slab is considered as a beam model, the supports are considered as point supports, and the 

113 load is considered as a point load.

114 Table 1 also gives the minimum and maximum value for each parameter in the database. As can 

115 be seen in Table 1, the range of parameters covers the geometry of laboratory-sized specimens to 

116 actual bridges tested to collapse in the field. The range of values for the concrete compressive 

117 strength covers from low strength concrete to high strength, which is often found in existing 

118 reinforced concrete slab bridges as the result of ongoing cement hydration. The reinforcement 
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119 ratios in the database also encompass the values encountered in existing slab bridges. The large 

120 range of parameters for the loading conditions aims to reflect the assessment practice, where the 

121 main contribution to the sectional shear comes from the design tandem. 

122
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123 Fig. 1. Input (independent) and output (dependent) variables considered in ANN design.

124 Note that the proposed ANN features just 10 nodes in the first layer, which inputs have to be 

125 obtained as function of those eleven variables, as described in §3.7.1. For all experiments, the 

126 sectional shear and moment were calculated considering all loads, thus including the self-weight. 

127 For the case of a continuous slab shown in Fig. 1, the slight gradient in the shear diagram and the 

128 slight nonlinearity in the bending moment diagram are caused by the self-weight. All values of 

129 the concrete compressive strength are the cylinder compressive strength. This value was either 

130 reported in the original reference, or calculated as 82% of the cube compressive strength [88]. 

131 The corresponding 287-point dataset is publicly available [89], and was constructed by randomly 

132 ordering the collected experimental results.

133 Table 1. Variables adopted in the study, showing minimum and maximum values in the 

134 database.

Input Variables min max Input
b (m) slab width 0.249 11.125 1
h (m) slab height 0.100 1.005 2
dl (m) slab effective depth 0.080 0.916 6

Slab 
geometry

lspan (m) span length 0.600 12.192 9

Material fcm (MPa) average concrete cylinder 
compressive strength 12.4 77.7 3

ρx (-)
longitudinal reinforcement 

ratio 0.003 0.028 4Reinforcement
ρy (-) transverse reinforcement ratio 0 0.015 5

br (m) distance from slab edge to the 
center of the load 0.125 5.563 7

lload (m) dimension of the loading plate 
(wheel print) 0.070 2.519 8Loading 

parameters

ME / VE dl (-)
ratio of sectional moment to

product of sectional shear and 
effective depth

0.14 10.75 10

av/ dl (-)
ratio of clear shear span to 

effective depth 0.00 6.88 11



9

Output Variables Output
VR (kN) shear capacity 35 2444 1

135

136

137 4. Artificial Neural Networks

138 4.1 General approach

139 The general ANN structure consists of several nodes in L vertical interconnected layers (input 

140 layer, hidden layers, and output layer). Between each node (or neuron) in layers 2 to L is a linear 

141 or nonlinear transfer function. All ANNs implemented in this work are feedforward. The neural 

142 network is developed through “learning”: determining the synaptic weight of the connection 

143 between two nodes, and each neuron’s bias. To find the optimal matrix-based expression for the 

144 problem under study, 15 ANN features were varied in this work. Tables 2-4 show the 15 ANN 

145 features that were varied in this study. The code was developed in MATLAB [90] with its neural 

146 network toolbox for using popular learning algorithms (1-3 from F13 in Table 4). Each 

147 parametric sub-analysis (SA) consists of running all feasible combinations of pre-selected 

148 methods for each ANN feature and finding the associated performance results for each designed 

149 net. This approach then allows selection of the “best” neural net for the problem under study. The 

150 best network is the one exhibiting the smallest average relative error for all learning data. The 

151 developed algorithm is validated [91]. The interested reader can find more background on the 

152 development of the algorithm to find the optimal neural network in [92].
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153 Table 2. Implemented ANN features (F) 1-5.

F1 F2 F3 F4 F5FEATURE

METHOD
Qualitative

Var Represent

Dimensional 

Analysis

Input Dimensionality 

Reduction

%

Train-Valid-

Test

Input 

Normalization

1 Boolean Vectors Yes Linear Correlation 80-10-10 Linear Max Abs

2
Eq Spaced in 

]0,1]
No Auto-Encoder 70-15-15 Linear [0, 1]

3 - - - 60-20-20 Linear [-1, 1]

4 - - Ortho Rand Proj 50-25-25 Nonlinear

5 - - Sparse Rand Proj - Lin Mean Std

6 - - No - No

154 Table 3. Implemented ANN features (F) 6-10.

F6 F7 F8 F9 F10FEATURE

METHOD Output 

Transfer

Output 

Normalization

Net 

Architecture

Hidden 

Layers
Connectivity

1 Logistic Lin [a, b] = 0.7[φmin, φmax] MLPN 1 HL Adjacent Layers

2 - Lin [a, b] = 0.6[φmin, φmax] RBFN 2 HL Adj Layers + In-Out

3 Hyperbolic Tang Lin [a, b] = 0.5[φmin, φmax] - 3 HL Fully-Connected

4 - Linear Mean Std - - -

5 Bilinear No - - -

6 Compet - - - -

7 Identity - - - -

155 Abbreviations: MLPN = multi-layer perceptron net, RBFN = radial basis function net

156 Table 4. Implemented ANN features (F) 11-15.

F11 F12 F13 F14 F15
FEATURE

METHOD
Hidden 

Transfer

Parameter 

Initialization

Learning 

Algorithm

Performance 

Improvement

Training 

Mode
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1 Logistic Midpoint (W) + Rands (b) BP NNC Batch

2 Identity-Logistic Rands BPA - Mini-Batch

3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online

4 Bipolar Randnr (W) + Rands (b) ELM - -

5 Bilinear Randsmall mb ELM - -

6 Positive Sat Linear Rand [-Δ, Δ] I-ELM - -

7 Sinusoid SVD CI-ELM - -

8 Thin-Plate Spline MB SVD - - -

9 Gaussian - - - -

10 Multiquadratic - - - -

11 Radbas - - - -

157 Abbreviations: SVD = singular value decomposition, MB SVD = mini batch SVD, BP = back 

158 propagation, BPA = back propagation with adaptive learning rate, LM = Levenberg-Marquardt, 

159 ELM = extreme learning machine, mb-ELM = mini batch ELM, I-ELM = incremental ELM, CI-

160 ELM = convex incremental ELM, NNC = neural network composite. 

161 4.2 Development of matrix-based expression for shear capacity of one-way slabs

162 To reduce the computational time by reducing the number of combos to be analyzed, the 

163 parametric simulation was divided into nine parametric SAs, where in each one, F7 takes a single 

164 value, see Table 5 (the numbers represent the method number as in Tables 2-4). Summing up the 

165 ANN feature combinations for all parametric SAs, a total of 475 combos were ran for this work.  

166 Table 6 shows the corresponding relevant results in terms of error, performance, and 

167 computational time. All results shown in Table 6 are based on target and output datasets 

168 computed in their original format, i.e. free of any transformations due to output normalization 

169 and/or dimensional analysis.  
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170 Table 5. ANN feature (F) methods used in the best combo from each parametric sub-

171 analysis (SA).

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

1 1 2 6 2 5 1 1 1 1 1 3 2 3 1 3

2 1 2 6 2 1 7 1 1 1 1 3 2 5 1 3

3 1 2 1 3 5 1 1 1 1 1 3 2 3 1 3

4 1 2 1 3 5 1 2 1 1 1 3 2 3 1 3

5 1 2 1 4 5 1 3 1 1 1 3 2 3 1 3

6 1 2 1 4 5 7 4 1 1 1 3 2 3 1 3

7 1 2 1 1 5 7 5 1 1 1 3 2 3 1 3

8 1 2 1 1 5 7 5 1 1 1 5 5 3 1 3

9 1 2 1 1 5 7 5 1 2 3 5 5 3 1 3

172 Table 6. Performance results for the best design from each parametric sub-analysis: (a) 

173 ANN, (b) NNC.

ANN

SA Max Error

(%)

Performance

All Data                                   

(%)

Errors > 3%

(%)

Total Hidden 

Nodes

Running Time /

Data Point

(s)

1 0.0 0.0 0.0 44 2.13E-04

2 559.9 34.0 88.2 70 1.46E-04

3 0.0 0.0 0.0 37 2.43E-04

4 0.0 0.0 0.0 37 3.38E-04

5 0.0 0.0 0.0 37 1.77E-04

6 0.0 0.0 0.0 40 2.22E-04

7 171.0 5.8 30.3 29 1.48E-04

8 55.0 4.8 48.8 37 2.27E-04

9 66.7 6.5 62.0 30 1.59E-04

(a)

SA NNC
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Max Error

(%)

Performance

All Data                                   

(%)

Errors > 3%

(%)

Total Hidden 

Nodes

Running Time /

Data Point

(s)

1 - - - - -

2 - - - - -

3 - - - - -

4 - - - - -

5 - - - - -

6 - - - - -

7 9.2 0.3 4.5 29 1.79E-04

8 54.3 4.8 48.4 37 2.40E-04

9 49.7 5.2 53.0 30 1.67E-04

(b)

174 Several SAs yielded approximately null errors, see Table 6. Therefore, the ANN having the least 

175 number of hidden nodes and the lowest running time per data point (SA 5) was selected as the 

176 optimal model. This model is developed with 50% of the data used for training, 25% for 

177 validation, and 25% for testing. To allow implementation of this model by any user, all 

178 variables/equations required for (i) data preprocessing, (ii) ANN simulation, and (iii) data post-

179 processing, are available in the public domain [93]. The W and b arrays of the neural network are 

180 available as a spreadsheet in the public domain, allowing direct implementation of the proposed 

181 matrix-based formula [94]. The proposed model is a single MLPN with 3 layers and a 

182 distribution of nodes/layer of 10-37-1. The network is partially-connected, and the hidden and 

183 output transfer functions are all Hyperbolic Tangent and Logistic, respectively. The network was 

184 trained using the Levenberg-Marquardt algorithm (2565 epochs). The analysis showed that the 

185 column with d as input could be removed, resulting in 10 inputs. Fig. 2 depicts a simplified 

186 scheme of some of the network key features. The obtained ANN solution for every data point can 

187 be found in [89].



14

188

189 Fig. 2 Proposed 10-37-1 partially-connected MLPN – simplified scheme.

190 Finally, the results of the proposed ANN for the 287 datapoints, in terms of performance 

191 variables are presented as: (i) a regression plot (Fig. 3), where network target and output data are 

192 plotted, for each data point, as x- and y- coordinates respectively – a measure of linear correlation 

193 is given by the Pearson Correlation Coefficient (R); (ii) a performance plot, where performance 

194 (average error) values are displayed for several learning datasets, all of which give an error of 

195 0%; and (iii) an error plot, where values concern all data (iii1) maximum error and (iii2) % of 

196 errors greater than 3% (both cases give 0%). All graphical results just mentioned are based on 

197 effective target and output values, i.e. computed in their original format (free of any 

198 transformations due to output normalization).  
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199

200 Fig. 3. Regression plot for the proposed ANN.

201 5. Sensitivity analysis

202 As suggested by [38], a sensitivity analysis can be carried out with the following expression, 

203 which determines the percentage effect of the ith input variable on the output variable: 

204  (1)

1

1

1 1

1

nhidden
ji

ojninputs
j

jl
l
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ninputs nhidden
ji

ojninputs
i j

jl
l
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w
w
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205 The sum of the connection weights between the 10 input neurons and the 37 hidden neurons is:

206  
1

ninputs

jl
l

w
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207 with wjl the connection weight between the input neuron l and the hidden neuron j, and woj is the 

208 connection weight between the hidden neuron j and the output o. 

209 Table 7 shows the results of this sensitivity analysis. The most important parameters are the total 

210 width b and the expression of the shear span to depth ratio based on the bending moment and 

211 shear diagram ME/VEdl. The third most important factor is the concrete compressive strength fcm, 

212 which traditionally is considered as one of the most determining factors for the shear capacity. Of 

213 much less importance are the position of the load with respect to the width br and the total span 

214 length lspan. 

215 Table 7. Sensitivity analysis with Qi the sensitivity of the ith input value.

Input Qi (%)
b 47.05
h 7.01
fcm 9.24
ρx 1.23
ρy 2.40
br 0.12
lload 4.77
lspan 0.51
ME/VEdl 20.38
av/dl 7.29

216 6. ANN-based vs. Existing Models

217 Since the focus of this study is the assessment of reinforced concrete slab bridges in Europe, this 

218 section demonstrates the improved prediction capability of the ANN-based analytical model 

219 proposed in section 4, as compared to the shear capacity of one-way slabs predicted by the 

220 provisions of Eurocode 2 (NEN-EN 1992-1-1:2005 [95]). The reduction of the contribution of 

221 loads close to the support (av ≤ 2dl, see Fig. 1) to the sectional shear force prescribed by the 

222 Eurocode is taken into account, resulting in VE,EC. This reduction corresponds to an increase in 
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223 the shear capacity for loads close to the support as a result of direct load transfer. Since this 

224 mechanism only occurs for loads applied on top of the cross-section and close to the support, the 

225 Eurocode 2 reduces the contribution of externally applied loads close to the support. As such, this 

226 provision allows for finding the sectional shear force for a combination of loads – a situation that 

227 occurs when assessing existing reinforced concrete slab bridges. The corresponding average 

228 shear capacity according to Eurocode 2 is determined as:

229
230   1/3 3/2

, 0.15 100 0.035R c x cm eff l cm eff lV k f b d k f b d 
231 , (2)

232  

2001 2
l

mmk
d

  

233
234 with (i) k the size effect factor, (ii) ρx the longitudinal reinforcement ratio, (iii) fcm the average 

235 concrete cylinder compressive strength in [MPa], (iv) beff the effective width for one-way shear, 

236 determined with a 45o horizontal load spreading from the loading plate back edge to the face of 

237 the support, and (v) dl the effective depth to the longitudinal reinforcement. CR,c = 0.15 is used to 

238 find average values [96]. 

239 In addition to the Eurocode provisions, the shear provisions from ACI 318-14 [97] are also 

240 analyzed. The reader should note that these provisions are for building slabs, and thus not directly 

241 applicable to slab bridges. The design shear capacity according to ACI 318-14 equals:

242  (3), 0.167 'ACI d c wV f b d

243 with fc’ the specified concrete compressive strength in [MPa], bw the web width, and d the 

244 effective depth. For application to slabs and for finding the average shear capacity VACI,m, fc’ is 

245 replaced with fcm, bw with beff, and d with dl. 
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246

247
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248 Fig. 4. Comparison between tested and predicted shear capacities: Eurocode 2 and ACI 

249 318-14 vs. proposed ANN.

250 The average value of the ratio VE,EC / VR,c (with VE,EC the sectional shear force taking into account 

251 the reduction of the contribution of loads close to the support, and VR,c according to Eq. 2) for the 

252 287 experimental results is 1.59, with a standard deviation of 0.79 and a coefficient of variation 

253 of 49%. The reduction for loads close to the support applies to 151 datapoints of the database. 

254 The average value of the ratio Vtest/ VACI,m for the 287 experimental results is 2.36, with a standard 

255 deviation of 1.74 and a coefficient of variation of 74%. The poor performance of the ACI code is 

256 explained by the fact that direct load transfer is not taken into account. This observation was 

257 already made before [86]. For comparison, the average value of Vtest / VANN (with Vtest the 

258 sectional shear force at failure in each experiment, and VANN the ANN-based shear capacity) is 

259 1.00, with a standard deviation of 5 × 10-14 and a coefficient of variation of 0.0%. The major 

260 improvement of the ANN as compared to the Eurocode and ACI code is also shown in Fig. 4, 
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261 where the x-axis shows the predicted shear capacity Vmodel (VANN or VR,c) and the y-axis shows the 

262 experimental result Vexp, which is VE,EC for comparison to the Eurocode shear capacity and Vtest 

263 for comparison to the ANN-predicted shear capacity and ACI code. Fig. 4 shows the results for 

264 the 287 datapoints used in this study.

265 7. Discussion

266 The results in Fig. 4 show the major improvement, for the 287-point dataset used, of the proposed 

267 ANN-based model as compared to currently used Eurocode 2 and ACI 318 expressions for the 

268 shear capacity of reinforced concrete slabs in one-way shear. One critical observation should be 

269 made here: the ANN predictions are only valid within the input variable ranges of the employed 

270 287-point dataset [89]. The number of experiments is rather limited, since slab shear tests are 

271 expensive to carry out. The user should keep this restriction in mind when predicting the shear 

272 capacity with the proposed ANN. The dataset covers a large number of variables that influence 

273 the shear assessment of reinforced concrete, but all tested slabs are rectangular. For skewed slabs, 

274 shear stress concentrations will result in the obtuse angle [98-100], making the skew angle an 

275 important factor for the shear assessment. Besides the Liverpool experiments on skewed slabs 

276 [101], which did not result in shear failures of the slabs, the authors are not aware of experiments 

277 on skewed slabs under concentrated loads failing in one-way shear. To extend this novel ANN-

278 based design approach to new scenarios, experiments on skewed slabs failing in one-way shear 

279 should be carried out, and the skew angle should then be included as input variable for ANN 

280 design.

281 From Fig. 4, we can observe that there are 56 experiments for which Eurocode 2 EN 1992-1-

282 1:2005 leads to unsafe predictions. There are three reasons for this observation. The first reason is 
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283 related to the way in which concentrated loads on slabs are considered. For the calculations 

284 shown in this work, a 45-degree load spreading between the far side of the loading plate and the 

285 face of the support is used. We can observe that this approach seems not to perform equally well 

286 for loads close to the support as for loads further away from the support. The second reason is 

287 that the database contains slabs and wide beams in different loading schemes. Analyzing the 

288 results shows that the Eurocode-based approach tends to be unconservative for cantilever slabs, 

289 yet perform well for simply supported or continuously supported slabs. The third reason is that 

290 the sectional shear in this analysis is calculated based on the sectional shear caused by self-weight 

291 and the sectional shear caused by the load applied in the experiment, based on the principle of 

292 superposition. Analysis of the results show that large members, where the self-weight is 

293 considerable, lead to unsafe predictions. These observations should be considered in the next 

294 round of revisions of EN 1992-1-1:2005, and should lie at the basis of better methods for taking 

295 into account the contribution of concentrated loads in slabs.

296 To use the developed ANN formulation for the assessment of existing reinforced concrete one-

297 way slab bridges, the following procedure is proposed:

298 1. Make a linear finite element model (LFEM) of the bridge under consideration.

299 2. Apply the superimposed dead load and live load model on the LFEM.

300 3. Make the factored load combination according to the governing code.

301 4. Find the governing sectional shear force vu based on a distribution of the peak shear stress 

302 over 4dl [102] and find the governing sectional moment mE (including the effect of the 

303 twisting moments [103]) based on a distribution of the peak sectional moment over 2dl.
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304 5. Determine the shear capacity with the proposed ANN (VANN), taking as input the 

305 characteristic material properties (where possible updated with measured values) and the 

306 value of ME / (VE dl) where this ratio is maximum. Divide VANN by 4dl to find vANN.

307 6. Determine the bending moment capacity mR based on the flexural theory of concrete 

308 elements.

309 7. Determine the Unity Check for shear: UCv = vu/vANN. If UCv ≤ 1, the requirements for 

310 shear are fulfilled. 

311 8. Determine the Unity Check for bending moment: UCm = mE/mR. If UCm ≤ 1, the 

312 requirements for bending moment are fulfilled.

313 9. If UCv > UCm the bridge can be considered as shear-critical: shear failure is expected to 

314 occur before flexural failure.

315 When either UCv or UCm is found to be larger than 1, more refined methods, such as nonlinear 

316 finite element analysis or proof load testing, may be necessary for a sharper assessment of the 

317 bridge under consideration. The proposed method is fast, cheap, and computationally efficient, 

318 and as such it is especially suitable for cases where a large number of bridges need to be assessed.  

319 The sensitivity analysis gives us a unique insight in the most important parameters for the shear 

320 capacity of reinforced concrete slabs failing in one-way shear. Based on these results, we find 

321 that the ratio ME/VEdl
 and the overall width b are the parameters that have the largest impact on 

322 the resulting shear capacity. In general, we can observe in Table 7 that the parameters related to 

323 the geometry of the load and the slab govern the shear behavior. This observation confirms the 

324 hypothesis from [86], which was one of the starting points for the lower-bound plasticity-based 

325 analysis method for one-way slabs failing in shear, the Extended Strip Model [13, 14].
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326 The proposed approach is a tool to use the available experimental data to address a practical 

327 problem where mechanical models have not been able to yield good predictions yet. While it is of 

328 the utmost importance to develop better mechanical models so that we can understand the shear 

329 failure of reinforced concrete slabs, such a development may still require some time. Therefore, 

330 we propose our developed matrix-based formula to address the current need to estimate more 

331 accurately the shear capacity of reinforced concrete slab bridges.

332 The main novelty of this work is that the available experimental results are analyzed and that an 

333 accurate model is presented. Not only can this model be used to predict shear capacities in 

334 experiments; the range of parameters covers the range of practical values for short span 

335 reinforced concrete slab bridges. As such, the proposed model has a direct practical implication. 

336 To the authors’ knowledge, no other ANN-based expression is available for estimating the shear 

337 capacity of reinforced concrete one-way slabs. From this point of view, the proposed method is 

338 the first in its kind. As compared to other ANN-based expressions for structural concrete 

339 applications, the large number of ANN features that we explored in this study are an 

340 improvement as compared to the applications we encountered in the literature, which are based 

341 on the features provided in the standard ANN toolbox of Matlab. The result of this approach is 

342 that our proposed ANN-based expression has lower errors than those reported for other ANN-

343 based expressions for problems related to shear in structural concrete.

344 8. Summary and conclusions

345 This paper shows how artificial neural networks can be used to predict the shear capacity of one-

346 way slabs under concentrated loads. 
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347  For this purpose, a database with 287 experimental results was compiled. From this 

348 dataset, 10 governing parameters were identified as input variables and the sectional shear 

349 force at failure was considered the output variable. 

350  The proposed ANN-based analytical model (with 50% of the data used for training, 25% 

351 for validation and 25% for testing) yielded maximum and mean relative errors of 0.0% 

352 and 0.0% for those 287 points, respectively. Moreover, it was illustrated to clearly 

353 outperform (mean Vtest / VANN =1.00) the Eurocode 2 provisions (mean VE,EC / VR,c =1.59) 

354 and the ACI 318-14 provisions (mean Vtest/ VACI = 2.36) for that dataset. 

355  A sensitivity analysis of the ANN-based model showed that the most important input 

356 parameters are the width of the slab, the effect of the shear span to depth ratio represented 

357 by the ratio of the sectional moment to the product of the sectional shear and effective 

358 depth, and the concrete compressive strength. 

359  Lastly, a step-by-step methodology for the assessment of existing reinforced concrete 

360 one-way slab bridges, based on the use of the developed ANN-based formula, was 

361 proposed.

362 The study carried out has not yet allowed a full description of the mechanics underlying the 

363 behavior of one-way reinforced concrete slabs, but parametric studies by means of ANN-based 

364 models make it possible to evaluate and improve existing mechanical models.

365 Notations

366 a center-to-center distance between load and support

367 av face-to-face distance between load and support

368 b width
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369 beff effective width for concentrated loads on slabs

370 br distance from edge to load in the transverse direction

371 bw web width

372 d effective depth

373 dl effective depth to the longitudinal reinforcement

374 dt effective depth to transverse reinforcement

375 fc’ specified concrete compressive strength 

376 fcm average concrete cylinder compressive strength

377 h height of cross-section

378 k size effect factor

379 lload size of the loading plate, in the y-direction

380 lspan span length

381 mE moment in slab

382 mR moment resistance

383 vANN shear capacity (stress) derived from VANN

384 vu shear in slab

385 wji connection weight between the neuron i and the neuron j

386 wjl connection weight between the input neuron l and the hidden neuron j

387 woj connection weight between the hidden neuron j and the output o

388 Asx area of steel in the longitudinal direction

389 Asy area of steel in the transverse direction

390 ME sectional moment caused by self-weight and loads applied during experiment

391 R pearson correlation coefficient

392 Qi sensitivity of i-th parameter
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393 UCm unity check for bending moment

394 UCv unity check for shear

395 VACI,d design capacity according to ACI 318-14

396 VACI,m average capacity based on design capacity from ACI 318-14

397 VANN shear capacity determined with ANN-based model

398 Vexp experimental shear capacity

399 VE sectional shear caused by self-weight and loads applied during experiment

400 VE,EC governing sectional shear, keeping into consideration the reduction of loads close to the 

401 support prescribed in EN 1992-1-1:2005

402 VE,max sectional shear at governing cross-section, maximum absolute value of VE

403 Vmodel shear capacity predicted with model

404 VR shear resistance

405 VR,c mean shear resistance calculated with EN 1992-1-1:2005

406 Vtest sectional shear force at failure in experiments

407 ρx amount of reinforcement in the longitudinal direction

408 ρy amount of reinforcement in the transverse direction
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