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SUMMARY

Airports are important transportation hubs that reside in the heart of modern civiliza-
tions. They are of major economic and symbolic value for countries but are therefore
also attractive targets for adversaries. Over the years we have observed successful and
unsuccessful terrorist attacks at airports, of which the recent Brussels Airport attack and
Istanbul Atatürk Airport attack are two examples.

A widely-used method to defend airports against these types of events is that of se-
curity risk management. Following this approach, security risks are quantified based on
threats, vulnerabilities, and consequences. These risks are then used as a basis to imple-
ment security measures that can reduce the risks to acceptable levels. Several security
risk management approaches were proposed before, such as attack trees and security
games, but they struggle to include diverse human factors in their analysis. These fac-
tors are inherently present in modern airports, as passengers, employees, and visitors are
all humans. Furthermore, existing methods struggle to take other performance metrics,
such as efficiency, into account.

This thesis addresses these limitations by proposing a novel security risk manage-
ment approach that relies on agent-based models and Monte Carlo simulations. This
approach builds on the existing security risk management framework but exploits the
advantages of the agent-based modelling paradigm. Agent-based models allow for the
inclusion of rich cognitive, social and organizational models that enable the modelling
of human behaviour. Furthermore, agent-based modelling is a suitable paradigm to es-
timate a variety of performance indicators, including airport efficiency.

Two case studies were performed to assess the performance of our agent-based secu-
rity risk management approach. In these case studies we apply our approach to manage
security risks at a regional airport, as well as an international airport.

In the first case study, we focus on the decision-making and performance of secu-
rity operators at the security checkpoint. Through simulation, we found that the highest
skilled operators outperform their lowest-skilled counterparts on analyzing X-ray im-
ages, but perform worse on both searching luggage and performing patdowns. Further-
more, results show that a high focus on speed by security operators leads to a decrease
in luggage searches and therefore increased vulnerability.

In the second case study, we analyzed security risks regarding an Improvised Explo-
sive Device (IED) attack. Additionally, different commonly used efficiency performance
indicators in the aviation domain, such as queuing time for passengers, and the rela-
tionships between them. We showed that airport managers and regulators often have to
make important trade-offs regarding security and efficiency. However, it was found that
reducing security risks and improving efficiency are not always conflicting objectives.
Decreasing the number of passengers in the open areas of the airport was found to be an
effective measure to reduce security risks and improve different efficiency metrics, such
as queuing times.
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viii SUMMARY

One of the most critical limitations of this thesis is that of data availability. Due to
the nature of airport security, there is only a minimal amount of data available in the
public domain. While we have performed an extensive data-collection effort and used
publicly available data to calibrate our models, this lack of security data enforced us to
make assumptions about different model parameters. These assumptions may have lead
to inaccurate simulation results. The models can, however, easily be re-calibrated when
more data becomes available.

Agent-based modelling comes with its challenges. It is known that designing agent-
based models and analyzing them is a complex task. Agent-based models are designed
following a bottom-up approach, in which actors, the environment, and interactions are
all explicitly modelled. It is often up to experts to specify the behaviour of agents, and
the quality of the model therefore ultimately depends on their skills.

We, therefore, proposed a novel methodology, based on causal discovery, that aids
experts in specifying the behaviour of agents in a model. Causal discovery algorithms
generate causal graphs that depict causal relationships between variables. By applying
these algorithms to real-world data that captures the behaviour of an actor, causal graphs
are generated that are then used to specify an agent. We applied our methodology to a
case study in the security checkpoint domain. Results indicate that models designed
with our approach show closer resemblance with validation data than models designed
by experts alone.

Agent-based models can produce complex patterns that emerge from the behaviour
and interaction of agents. To improve the toolbox of analysts, we proposed a novel
methodology that uses causal discovery to characterize emergence in agent-based mod-
els. Using our methodology, we showed that queue length is an important causal factor
in the number of casualties in the case study concerning the improvised explosive device
(IED) attack. This emergent property was well identified using our methodology but is
hard to identify with traditional analysis techniques alone.

Finally, in this thesis we developed an open-source agent-based simulator called
AATOM. The simulator contains calibrated presets and templates for important airport
elements, such as the security checkpoint. We additionally provided a dataset that con-
tains data of a total of 2277 passengers that passed through the security checkpoint pro-
cess at Rotterdam The Hague Airport (RTM) to the research community. These resources
enable future researchers to develop and calibrate their own agent-based airport mod-
els.



SAMENVATTING

Luchthavens zijn belangrijke transportknooppunten die zich in het hart van moderne
beschavingen bevinden. Ze zijn van grote economische en symbolische waarde voor
landen, maar zijn daarom ook aantrekkelijke doelen voor kwaadwillenden. In de loop
der jaren hebben we succesvolle en mislukte terroristische aanslagen op luchthavens
gezien, waarvan de recente aanval op Brussels Airport en de aanval op Istanbul Atatürk
Airport twee voorbeelden zijn.

Een veelgebruikte methode om luchthavens tegen dit soort risico’s te beschermen,
is die van veiligheidsrisicobeheer. In deze aanpak worden veiligheidsrisico’s gekwan-
tificeerd op basis van bedreigingen, kwetsbaarheden en consequenties. Deze risico’s
worden dan gebruikt als basis om veiligheidsmaatregelen te nemen die de risico’s tot
aanvaardbare niveaus kunnen verminderen. Eerder werden verschillende veiligheids-
risicobeheerbenaderingen voorgesteld, zoals attack trees en security games, maar deze
hebben moeite met diverse menselijke factoren mee te nemen in hun analyse. Deze fac-
toren zijn inherent aanwezig op moderne luchthavens, omdat passagiers, werknemers
en bezoekers allemaal mensen zijn. Bovendien hebben bestaande methoden moeite om
rekening te houden met andere performance indicatoren, zoals efficiëntie.

Dit proefschrift behandelt deze beperkingen door een nieuwe benadering voor het
beheer van veiligheidsrisico’s voor te stellen die gebaseerd is op agent-gebaseerde mo-
dellen en Monte Carlo-simulaties. Deze aanpak bouwt voort op het bestaande frame-
work voor veiligheidsrisicobeheer, maar maakt gebruik van de voordelen van agent-
gebaseerde modellen. Agent-gebaseerde modellen kunnen rijke cognitieve-, sociale-
en organisatorische modellen bevatten die het modelleren van menselijk gedrag mo-
gelijk maken. Bovendien is agent-gebaseerde modellering een geschikt paradigma om
een verscheidenheid aan performance indicatoren te schatten, waaronder luchthaven-
efficiëntie.

Er zijn twee case studies uitgevoerd om de prestaties van onze agent-gebaseerde vei-
ligheidsrisicobeheerbenadering te beoordelen. In deze case study’s passen we onze aan-
pak toe om veiligheidsrisico’s op een regionale en internationale luchthaven te beheren.

In de eerste case study richten we ons op de beslissingen en prestaties van veilig-
heidsmedewerkers bij het security checkpoint. Door middel van simulatie hebben we
geconstateerd dat de meest bekwame operators beter presteren dan hun minst bekwame
tegenhangers bij het analyseren van röntgenfoto’s, maar slechter presteren bij het door-
zoeken van bagage en het uitvoeren van patdowns. Verder tonen de resultaten aan dat
een hoge focus op snelheid door veiligheidsmedewerkers leidt tot een afname van baga-
gedoorzoekingen en dus tot een verhoogde kwetsbaarheid.

In de tweede case study hebben we veiligheidsrisico’s geanalyseerd met betrekking
tot een aanval met een Improvised Explosive Device (IED). Daarbij hebben we verschil-
lende veelgebruikte efficiëntie performance indicatoren in het luchtvaartdomein, zoals
wachtrijtijden voor passagiers en de onderlinge relaties onderzocht. We hebben laten
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x SAMENVATTING

zien dat luchthavenbeheerders en toezichthouders vaak belangrijke afwegingen moeten
maken met betrekking tot veiligheid en efficiëntie. Er werd echter vastgesteld dat het
verminderen van veiligheidsrisico’s en het verbeteren van de efficiëntie niet altijd tegen-
strijdige doelstellingen zijn. Het verminderen van het aantal passagiers in de publiekelijk
toegankelijke gebieden van de luchthaven bleek een effectieve maatregel te zijn om vei-
ligheidsrisico’s te verminderen en verschillende efficiëntie performance indicatoren te
verbeteren, zoals wachtrijtijden.

Een van de meest belangrijke beperkingen van dit proefschrift is die van de beschik-
baarheid van data. Vanwege de aard van luchthavenveiligheid is er slechts een kleine
hoeveelheid data beschikbaar in het publieke domein. Hoewel we een uitgebreide data-
verzameling hebben uitgevoerd en openbaar beschikbare data hebben gebruikt om onze
modellen te kalibreren, dwong dit gebrek aan veiligheidsgegevens ons om aannames te
doen over verschillende modelparameters. Deze aannames kunnen geleid hebben tot
onnauwkeurige simulatieresultaten. De modellen kunnen echter gemakkelijk opnieuw
worden gekalibreerd wanneer meer data beschikbaar komen.

Agent-gebaseerde modellering brengt belangrijke uitdagingen met zich mee. Het is
bekend dat het ontwerpen en analyseren van agent-gebaseerde modellen een complexe
taak is. Agent-gebaseerde modellen zijn ontworpen volgens een bottom-up benadering,
waarbij actoren, de omgeving en interacties allemaal expliciet worden gemodelleerd.
Het is vaak aan experts om het gedrag van agenten te specificeren, en de kwaliteit van
het model hangt daarom uiteindelijk af van hun vaardigheden.

We hebben daarom een nieuwe methode voorgesteld, gebaseerd op causal discovery,
die experts helpt bij het specificeren van het gedrag van agenten in een model. cau-
sal discovery algoritmen genereren causale graven die causale relaties tussen variabelen
weergeven. Door deze algoritmen toe te passen op data uit de praktijk die het gedrag
van een actor vastleggen, worden causale graven gegenereerd die vervolgens worden ge-
bruikt om een agent te specificeren. We hebben onze methodologie toegepast op een
case study in het domein van de security checkpoints. De resultaten laten zien dat mo-
dellen die zijn ontworpen met onze aanpak meer lijken op validatiedata dan modellen
die door experts alleen zijn ontworpen.

Agent-gebaseerde modellen kunnen complexe patronen produceren die voortko-
men uit het gedrag en de interactie van agenten. Om de toolbox van analisten te ver-
beteren, hebben we een nieuwe methodologie voorgesteld die causal discovery gebruikt
om emergent gedrag in agent-gebaseerde modellen te karakteriseren. Met behulp van
onze methodologie toonden we aan dat de wachtrijlengte een belangrijke causale factor
is in het aantal slachtoffers in de IED case study. Deze emergente eigenschap werd goed
geïdentificeerd met behulp van onze methodologie, maar is moeilijk te identificeren met
traditionele analysetechnieken alleen.

Ten slotte hebben we in dit proefschrift een open-source agent-gebaseerde simulator
ontwikkeld, genaamd AATOM. De simulator bevat gekalibreerde waardes voor belang-
rijke luchthavenelementen, zoals het security checkpoint. We hebben bovendien een
dataset met gegevens van in totaal 2277 passagiers die het security checkpoint op Rotter-
dam The Hague Airport (RTM) hebben doorlopen aan de onderzoeksgemeenschap ver-
strekt. Met deze middelen kunnen toekomstige onderzoekers hun eigen agent-gebaseerde
luchthavenmodellen ontwikkelen en kalibreren.
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1
INTRODUCTION

Despite enormous investments in airport security, terrorists have been able to find and
exploit vulnerabilities at airport terminals. In the years after 9/11, aviation has been
targeted by several bombing attempts, such as the shoe bomber [1], the Istanbul Atatürk
Airport attack [2], and the Brussels airport attack [3].
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Figure 1.1: The number of terrorism-related incidents logged since 1994 in the Global Terrorism Database
(GTD) that are targeted at airports or aircraft [4].

Protecting airports is of utmost importance, as these are often vital infrastructures
for countries. Figure 1.1 shows the number of terrorism-related incidents targeted at
airports or aircraft between 1994 and 2017. It shows a large number of incidents in recent
years, highlighting the need for effective methods to combat them.

One of the most widely-used methods used by airports to address these types of in-
cidents is security risk management. Security risk management for airports is a process
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aiming to identify, calculate and mitigate security risks of an airport by utilizing a finite
set of resources. An important part of this process is security risk assessment, in which
security risks of the airport are identified and calculated. The modeling, assessment, and
management of airport security risks is the core focus of this thesis.

1.1. SECURITY RISK MANAGEMENT
Security risk management can be performed using a wide variety of techniques, and
each has advantages and disadvantages. Methods to perform security risk management
are broadly classified into two categories: qualitative and quantitative risk management.
Qualitative risk management is for instance based on questionnaires, intelligence data,
and interviews. In quantitative risk management, numeric tools are used to guide the
risk management process. In this thesis, we focus on quantitative security risk man-
agement. Several quantitative security risk management methodologies have been pro-
posed in literature. Expert-based methods such as the Threat, Vulnerability and Con-
sequence (TVC) methodology [5–9] are commonly used in practice. Furthermore, re-
searchers have developed computational methods, such as attack trees [10, 11], proba-
bilistic methods [12], discrete event simulation [13], and security games [14, 15].

We first provide important security-related definitions. Then, three important method-
ologies for security risk management are introduced: the TVC methodology, security
games, and attack trees. While other methods, like probabilistic tools [12], the bowtie
method [16], and discrete event simulation [13], exist, we focus our review on these three
popular methodologies. These three methods are commonly used in practice and can
exemplify many of the limitations that the other methods mentioned above also pos-
sess [16, 17].

It should be noted that security games and attack trees are often not defined as secu-
rity risk management methodologies in literature, but as security-related resource allo-
cation methodologies. They can however easily be regarded as security risk management
methodologies.

1.1.1. SECURITY DEFINITIONS
The most important definitions related to security that we use across this thesis are
shown below. A central topic in security is that of risk. While many definitions exist,
in this thesis we employ a commonly used definition of risk [9, 18–20].

Definition 1 (Security risk). The potential for loss or harm due to the likelihood of an
unwanted event and its adverse consequences.

We use the terms security risk and risk in this thesis interchangeably. Risk is often
expressed in terms of threats, vulnerabilities, and consequences. Their respective defi-
nitions are shown in [9] and are repeated below for convenience.

Definition 2 (Threat). Any indication, circumstance, or event with the potential to cause
the loss of, or damage to, an asset.

Definition 3 (Threat Scenario). A set of events, associated with a specific threat or mul-
tiple threats, partially ordered in time.
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Definition 4 (Vulnerability). Any weakness in an asset’s or infrastructure’s design, im-
plementation, or operation that can be exploited by an adversary.

Definition 5 (Consequence). The outcome of an event occurrence, including immedi-
ate, short- and long-term, direct and indirect losses and effects.

Conditional risk is another common term used in literature and used in this thesis. It
is defined as follows [9].

Definition 6 (Conditional Risk). A measure of risk that focuses on consequences, vul-
nerability, and adversary capabilities, but excludes intent.

As assets are an important element in the definitions above, we provide the Interna-
tional Organization for Standardization (ISO) definition of an asset below [21].

Definition 7 (Asset). Item, thing or entity that has potential or actual value to an organi-
zation.

To be able to reduce risks, organizations can take measures. These measures are
defined as controls and its definition is stated below.

Definition 8 (Control). Measure that is modifying risk.

1.1.2. TVC METHODOLOGY
In the Threat, Vulnerability, and Consequence (TVC) methodology, security experts first
characterize important assets in their organization. Based on these assets, they identify
a set of threats that the assets are exposed to. Risk is then characterized by estimating
threat likelihood, vulnerability and consequence separately for each identified threat.
Finally, risk mitigation is performed to reduce risks to an acceptable level. In practice,
many different variants of the TVC methodology exist [5–9], but we focus on the overlap
between these methods in this thesis.

Threat likelihood is often estimated based on intelligence data or a cost/benefit anal-
ysis. Historical data, such as the Global Terrorism Database [4], can also be used to de-
termine the threat likelihood. However, there is no guarantee that the available historic
data is an indication of future events.

To estimate vulnerability, security experts for instance use data provided by secu-
rity sensor manufacturers, internal assessments and employee surveys. Also, tools like
vulnerability logic diagrams and event trees [22] can be used to better estimate vulner-
ability. Red-teaming (real-life simulation of a threat scenario) can be used by experts as
well. Vulnerability estimates are sometimes ‘binned’, as is shown in Table 1.1, to simplify
the assessment process.

The consequence of a threat can be quantified using consequence assessment tech-
niques, where most commonly, they are expressed in monetary values. The loss of a
human life can, for instance, be quantified by using a ‘value of a single life’ (VSL), as also
discussed in [23, 24]. Consequences are commonly estimated based on expert judgment.

Finally, risk mitigation is performed by comparing the expected reduced security
risks for potential controls with the current situation. Costs and operational applica-
bility are also taken into account in this step.
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Table 1.1: An example vulnerability table that is used to categorize vulnerabilities. Table adapted from [9].

Vulnerability Range (%) Bin Number
≤3.11 0
3.12-6.24 1
6.25-12.4 2
12.5-24.9 3
25-49 4
50-74 5
75-89 6
90-100 7

1.1.3. ATTACK TREES

Attack trees provide a formal, methodical way of describing the security of systems,
based on varying threat scenarios [11]. The main concept of an attack tree is that an
attack against a system is represented in a tree structure. The root node (also top-event)
represents a successful attack on some asset within the system. Internal nodes represent
events that depend on their subsequent child nodes, while leaf nodes represent events
that can independently happen. Nodes can be attributed values that represent their like-
lihood, their cost to execute and other parameters. Leaf nodes are valued by the designer,
while the value of other nodes is calculated from the values of their child nodes. Transi-
tions between nodes can be modeled to be deterministic and non-deterministic. In the
case of deterministic transitions, a (combination of) child node(s) occurring will cer-
tainly lead to the occurrence of the parent node, while in non-deterministic transitions
this is not the case. By analyzing the values of the root node of the tree, controls can be
taken accordingly. Figure 1.2 presents an example attack tree that partially models the
threat scenario used in the illustration.

Detonate
IED

Reach target
location

Move to
check-in
queue

More
passengers
at check-in

No defender
present at
check-in

Move to
Checkpoint

Queue

More
passengers at
checkpoint

No defender
present at
checkpoint

Failed arrest
by defender

Figure 1.2: An example attack tree with two types of nodes: AND and OR.
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Alternatively, attack-defense trees form an addition to the attack trees described above.
In attack-defense trees, the designer can introduce defense nodes. The addition of de-
fense nodes in attack-defense trees allows for the modeling of interactions between at-
tacker and defender, impossible in attack trees. This allows for a more elaborate analysis
of the effectiveness of different controls, useful for determining which controls should
be installed. Some important work in this area is by Kordy et al. [25], Bistarelli et al. [26]
and Edge et al. [27].

1.1.4. SECURITY GAMES

Methods based on game theory [14, 28, 29] define a threat scenario as a security game,
with a defender and an attacker as the respective row and column players of the game.
Columns represent the options an attacker has to attack a target, whereas rows represent
the available actions the defender has to defend the target. Based on the chosen options
of the attacker and defender, an outcome (often a combination of vulnerability and con-
sequence) is determined. By finding the equilibrium of such a game, an optimal strategy
for the defender can be obtained. An example of a simple security game is visualized in
Table 1.2. Security games have found their application in a wide variety of areas, such as
airports [14, 29], coastal protection [30], wildlife protection [31] and chemical plants [32].

Table 1.2: An example security game. The row player is the defender, the column player is the attacker. The
described payoffs are for the defender (first value) and the attacker (second value).

Att. checkpoint Att. check-in
Def. checkpoint 10,-80 -100,100
Def. check-in -80,80 20,-100
Do not def. -90,80 -90,100

A large portion of security games in literature focus on finding a patrol route for secu-
rity employees called patrol planning games. These games are played on graphs where
nodes represent targets and edges are spatial connections between targets. The solu-
tion of such a game results in a patrol, which is generally a vector that consists of targets
and times. These patrol planning games have found their applications in wildlife pro-
tection [33], maritime transport security [34], and airport security [35].

1.1.5. EVALUATION OF EXISTING METHODOLOGIES

In this section, we provide a critical evaluation of the existing security risk management
methodologies. We focus on three main areas: incorporation of human aspects, incor-
poration of spatio-temporal aspects, and integration of efficiency.

HUMAN ASPECTS

Airports are socio-technical systems, and human behavior plays an important role. The
incorporation of intelligence and other dynamic, human aspects into the risk assess-
ment is difficult for security experts. It is often noted in literature that security experts
cannot be expected to estimate parameters well [36, 37], certainly in dynamic environ-
ments with many actors. Leung and Verga[37] mention that “limitations of human mem-
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ory and information processing capacity often lead to subjective probabilities that are
poorly calibrated or internally inconsistent, even when assessed by experts”.

An important underlying assumption of game theory is that the players take rational
decisions. However, researchers note that “human decision-making does not conform
to the traditional game-theoretic assumption of perfect rationality” [38, 39]. While re-
searchers try to overcome this limitation by for instance employing prospect theory [40]
and quantal response [41], the problem remains an active area of research. Furthermore,
it should be noted that security games often focus on one-to-one interactions between
an attacker and a defender. However, general social interactions, like group decision
making, are present in many threat scenarios.

Attack trees suffer from similar limitations as security games. Attack-defense trees
have the possibility to include higher-level interactions between the attacker and the
defender. However, authors also note that they are “not suitable for including human in-
teraction such as that of social engineering, because the attacker may combine different
persuasion principles to different degrees, with different associated success probabili-
ties” [42].

SPATIO-TEMPORAL ASPECTS

Airports are physical structures in which people dynamically move around. These spatio-
temporal elements can have a significant impact on the consequence of an attack. Se-
curity games struggle with incorporating spatio-temporal elements into their models.
Some recent work in security games aims to incorporate these elements by using deep
learning on images of forests [43]. However, it is unclear if this can also be used in other
domains. Similarly, attack trees struggle with the incorporation of spatio-temporal ele-
ments. The concepts of time and space are not intuitively represented in an attack tree,
and therefore this method cannot easily include these elements in the risk assessment.

EFFICIENCY

While security is a vital aspect of airport operations, these airports must be run as ef-
ficiently as possible as well. Security experts often analyze how efficient (i.e. expected
passenger queuing time or number of employees needed per passenger) a proposed se-
curity solution is. For instance, Grant and Stewart followed the TVC methodology to
manage security risks related to an Improvised Explosive Device (IED) attack, while tak-
ing into account costs for the airport [44]. Experts often have a limited amount of time,
and can therefore not evaluate the impact of all possible controls.

Both security games and attack trees can incorporate efficiency aspects into their
models. For security games, efficiency factors can be taken into account in the payoffs.
For attack trees, this can be done by taking into account efficiency factors in the valua-
tion of nodes. However, this form of incorporation of efficiency in the security models
is limited. The advantages of multi-objective analysis techniques, such as Pareto front
analysis, cannot be exploited using this technique.

1.2. AGENT-BASED MODELING
Agent-based modeling is a promising paradigm that has the potential to overcome the
above-outlined limitations of existing security risk management approaches. Agent-
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based models attempt to capture the behavior of the actors in complex systems to better
understand them and potentially increase their performance. They are characterized by
an environment, agents, and their interactions. Agent-based models have been used in
many application areas: finance [45], urban planning [46], segregation [47], and ecol-
ogy [48], among many others.

Apart from agent-based modeling, discrete event simulation may be promising tool
to overcome the above-mentioned limitations of existing security risk management ap-
proaches [13]. However, in discrete event simulation models “the entities do not actively
follow individual incentives and do not interact but pass through the model according to
the underlying sequence of operations” [49]. As we aim to overcome the lack of incorpo-
ration of human behavior in existing models, an agent-based approach is more suitable
than discrete event simulation.

Agent-based models are important tools to model realistic socio-technical processes,
by including rich cognitive, social and organizational models. They can also be used
to explicitly represent spatio-temporal elements of agents and the environment. This
then allows for the modeling of the transition between standard operations of an airport
and operations under attack. These are aspects that existing security risk management
methodologies struggle to take into account.

It is well known in the field that agent-based modeling comes with its own challenges.
We particularly focus on designing and analyzing agent-based models, which are two
important open problems in the agent-based community.

1.2.1. DESIGNING AGENT-BASED MODELS

Designing agent-based models is a complex task. Numerous tutorials and guidelines
exist that cover the design of agent-based models, but they are often limited in detail [50–
55]. These guidelines commonly specify that the three main components have to be
specified, but offer little detail on how to do this.

It is recognized by the community that a uniform framework or methodology for
designing agent-based models is lacking [50, 54]. The ‘overview, design concepts, and
details’ (ODD) protocol aims to overcome this and has been advocated widely in litera-
ture [56, 57].

While the ODD protocol contains detailed steps to design agent-based models, no
insights on how to design the behavioral properties of agents are provided. With the
right dataset, data-driven methods may be useful to specify behavioral properties of
agents [58]. These data-driven methods find relationships between variables in a dataset,
which could determine relationships between actions of agents and the outcomes in the
environment.

This idea of using data-driven methods to design agent-based models has been ex-
plored by Kavak et al. [58]. In that work, behavioral properties of agents are learned from
data by applying machine learning techniques, such as support vector machines and
decision trees. While these more traditional machine learning techniques are effective
tools to understand how variables relate to each o, they do not reveal the structure of re-
lationships between variables. A particularly promising method to reveal this structure
is that of causal discovery.
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1.2.2. ANALYZING AGENT-BASED MODELS
Complex interactions of agents with each other and the environment can lead to the
emergence of higher-level patterns. These emergent properties are an important fea-
ture of agent-based models but are hard to characterize. Some work was done to classify
types of emergence, and is generally based on desirability [59, 60] or complexity [61, 62].
Two desirability categories are distinguished: positive emergence and negative emer-
gence. Positive emergent properties are desired outcomes of interactions of agents, while
negative emergent properties are not. This categorization is commonly determined by
experts that have a good understanding of the modeled domain. Several levels of emer-
gence complexity are distinguished as well. They range from simple and weak, to strong
and even spooky. Simple emergence can easily be predicted and reproduced, and weak
emergence can easily be reproduced in simulations. Strong emergence cannot be re-
produced by simple models and is hard to understand without deep knowledge of the
system. Finally, spooky emergence cannot be explained nor predicted with the current
knowledge of the system.

Sensitivity analysis techniques are commonly used to analyze the behavior of agent-
based models and the corresponding emergent properties [63–65]. These techniques
analyze the input-output relations of the model but do not reveal the inner structure
of agent-based models. More recently, machine learning techniques have found their
application in analyzing agent-based models as well [66]. These techniques identify pat-
terns in the input and output of the model and generate meta-models that predict model
outputs. These techniques have shown successes in the past, but it remains difficult to
analyze emergent behavior. A particularly promising method to understand agent-based
model behavior is that of causal discovery.

1.3. CAUSALITY
Traditional analysis techniques are used to determine how two or more variables are re-
lated. This can indicate that one causes the other, but a confounding factor can also
influence both variables at the same time. In the field of causality, researchers aim to
find directed causal relationships between variables, by means of causal graphs [67, 68].
A causal graph is most commonly a Directed Acyclic Graph (DAG) that depicts the causal
relations between variables. An arrow from variable X to variable Y means that the for-
mer variable causes the latter. If no arrow between X and Y exits, this means that X does
not cause Y .

Causal graphs can be analyzed by determining which variables form causal paths
with other variables in the graph. Another way to use causal graphs is by determining
the effectiveness of an experiment to reveal the strength of a causal relationship. A de-
tailed description of this approach was introduced by Pearl [67]. Causal effects between
variables can be quantified using these graphs as well [69].

Two main methods for creating causal graphs exist. In the first approach, experts use
available knowledge and theories to construct a graph. Shrier and Platt [70] provide an
example of this expert-based approach. In the second method, as also used in this the-
sis, causal-discovery algorithms are used to automatically generate causal graphs based
on available data. Two important methods to perform causal discovery have emerged in
the field: score-based methods (e.g. [71]) and constraint-based methods (e.g., [72–74]).
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Score-based methods assign a score to a causal graph, while constraint-based methods
use the statistical independence of variables to define constraints on causal graphs. Ma-
linsky and Danks provide a practical guide for using causal-discovery algorithms [75].

1.3.1. AGENT-BASED MODELING AND CAUSALITY
A limited amount of work exists to bridge the gap between the fields of causality and
agent-based modeling. One of the most extensive works to date is that of Casini and
Manzo [76]. They argue that, in an ideal case, a modeler ensures that their agent-based
model 1) uses all available theories to explain reality, 2) is calibrated with real data, and 3)
is validated with real data. In this way, an agent-based model is not just a counterfactual
(something contrary to facts) but can be used to draw causal conclusions about the real
world. They provide a very basic methodology to use agent-based modeling for causal
inferences, as outlined below.

1. Employ experimental and statistical data to show that the assumed causal links
are unlikely to be random.

2. Define hypotheses about causal relationships.

3. Translate hypotheses to an agent-based model by also incorporating data.

4. Run agent-based simulations to determine if the hypothesized causal relation-
ships are still observed.

The methodology is only a very small part of the paper and has not been applied to an
illustrative case study. Furthermore, it only consists of a set of higher-level steps that
cannot easily be used in practice and does not exploit the strengths of causal graphs
commonly used in the field of causality.

The work of Kvassay et al. [77] employs a more computational approach towards
combining agent-based models with causality. They investigate causal relationships
that lead to emergent behavior in an agent-based model. The core of their work re-
volves around the concept of causal partitions. By using causal partitioning, the relative
importance of influencing factors on an emergent phenomenon is determined. Their
methodology heavily depends on the existence of difference equations in the definition
of a model, while in practice these equations might not exist.

Guerini and Moneta [78] propose a method for agent-based models validation that
uses causal discovery as a basis. They specifically focus on economic models that esti-
mate time-series using so-called structural vector autoregressive (SVAR) models. They
use causal discovery to generate two SVAR models: one based on real-world data, one
based on agent-based model outcomes. These models are then compared using a dis-
tance measure, and the agent-based model is considered to be valid if the distance be-
tween the two SVAR models is sufficiently small. The method is specifically tailored for
SVAR models, and it is hard to generalize to other types of agent-based models.

Finally, Marsha and Galea [79] discuss how agent-based modeling can be used as
an alternative for two types of causal inference in epidemiology: randomized controlled
studies and observational studies. They define an agent-based model that is used to sim-
ulate the development of an illness in a population of humans. By analyzing how certain
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treatments change the distribution of sick and healthy people, higher-level causal infer-
ences are drawn. Their work only focuses on the final outcome of a treatment, while
intermediate (direct) causes are ignored.

None of the works that bridge the fields of agent-based modeling and causality ad-
dress the important challenge of designing agent-based models. Furthermore, none of
these works relate emergent properties of agent-based models to causal graphs that are
commonly used in the causality field. These causal graphs identify structure in the out-
put of agent-based models and form a promising means to analyze emergence in agent-
based models.

1.4. PROBLEM STATEMENT & THESIS OVERVIEW
As outlined above, this thesis addresses the important challenge of managing security
risks related to airport operations. To address this challenge, we employ the fields of
agent-based modeling and causality. The following problem statement is defined, which
is central to this thesis.

Can agent-based security risk management be performed using causal discovery?

To address this problem statement, the following six research questions are formu-
lated. These questions will be answered in each of the chapters of this thesis.

1. How can agent-based modeling be used to perform security risk management for
airport operations?

We propose AbSRiM, an approach based on traditional security risk manage-
ment methodologies, but with agent-based modeling and Monte Carlo simula-
tion at its core in Chapter 2. The approach consists of four steps: scope selection,
agent-based model definition, agent-based model analysis (risk assessment), and
risk mitigation.

2. How can human factors be taken into account while performing security risk man-
agement?

In Chapter 3, we design an agent-based model that model the performance
and decision making of security operators using cognitive agent models. We specif-
ically focus on the vulnerability of airport security checkpoints.

3. How can performance metrics, such as operational efficiency, be taken into account
while performing security risk management?

In Chapter 4 we analyze security risks regarding an Improvised Explosive De-
vice (IED) attack, in combination with different commonly used efficiency perfor-
mance indicators in the aviation domain, such as queuing time for passengers.

4. How can efficient airport security patrol routes be designed using agent-based mod-
eling?

We present an alternative method to find efficient airport security patrol routes,
a risk mitigation strategy, that combines our agent-based approach with game the-
ory. This is presented in Chapter 5.
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5. How can agent-based models be designed using causal-discovery algorithms?

Chapter 6 addresses the problem of agent-based model development using
causal discovery. In this chapter, we present a novel methodology that uses causal
discovery to aid the development of agent-based models.

6. How can agent-based models be analyzed using causal-discovery algorithms?

Model analysis is an important part of the risk assessment step in the AbSRiM
approach, and an important open problem in the agent-based community. We
propose the AbACaD methodology, which uses causal-discovery algorithms, to an-
alyze emergence in agent-based models in Chapter 7.

Table 1.3: An overview of scope of each of the chapters in this thesis, based on the four steps of the AbSRiM
approach. ABM stands for using agent-based models methods in the steps, GT stands for the additional appli-
cation of game theory in these steps. CD represents the application of causal discovery for the steps. When a
cell is empty, the specific step is not considered in the chapter.

Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7
Scope selection ABM ABM CD
Agent-based
model definition

ABM ABM CD

Agent-based
model analysis

ABM ABM GT CD

Risk mitigation ABM ABM GT

Table 1.3 provides an overview of the scope of each of the chapters in this thesis.
Chapter 2 introduces the AbSRiM approach, in which we use agent-based models to
manage security risks. The steps of the AbSRiM approach (scope selection, model defi-
nition, model analysis, and risk mitigation) form the rows of the table. Chapters 3 and 4
then provide two case studies in which the AbSRiM approach is applied. Chapter 5 ex-
tends Chapter 4 and shows that game theory can additionally be incorporated in the
analysis and mitigation of security risks. This leads to superior results in comparison to
the agent-based approach in Chapter 4. Chapters 6 and 7 utilize causal-discovery algo-
rithms to design and analyze agent-based models. The use of these algorithms reduces
the dependency on domain experts for designing and analyzing agent-based models.
The proposed methodologies are useful in the security domain but are also applicable
to agent-based models in general.
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Each chapter can be read on its own, but it is recommended to read Chapters 1 and 2
before continuing to other chapters of this thesis. Furthermore, it is recommended to
read Chapter 4 before Chapter 5. Chapters 6 and 7 can be read on their own, and focus
specifically on designing and analyzing agent-based models using causal discovery. The
final Chapter 8 provides conclusions and recommendations for this thesis. Figure 1.3
shows a graphical outline of the thesis structure, in which the recommended reading
order of this thesis is shown.

Chapter 1

Chapter 2

Chapter 3 Chapter 4 Chapter 6 Chapter 7

Chapter 5

Chapter 8

Figure 1.3: The recommended reading paths for this thesis.



2
AGENT-BASED SECURITY RISK

MANAGEMENT

Security risk management is essential for ensuring successful airport operations. This
chapter introduces AbSRiM, a novel agent-based modeling and simulation approach to
perform security risk management for airport operations. It uses formal socio-technical
models that include temporal and spatial aspects. The approach contains four main
steps: scope selection, agent-based model definition, risk assessment, and risk mitigation.
The approach is based on traditional security risk management methodologies, but uses
agent-based modeling and Monte Carlo simulation at its core. Agent-based modeling is
used to model threat scenarios, and Monte Carlo simulations are then performed with
this model to estimate security risks. Chapters 3 and 4 will apply the AbSRiM approach to
different case studies.

This chapter is adapted from previously published work in the proceedings of the International Conference on
Practical Applications of Agents and Multi-Agent Systems (2017) [80] and the Risk Analysis Journal (2019) [81].
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2.1. INTRODUCTION
Security risk management for airport operations is a process aiming to identify, calculate
and mitigate security risks of the airport by utilizing a finite set of resources. An impor-
tant part of this process is security risk assessment, in which security risks of the airport
are identified and calculated. Methods to perform security risk assessment can be clas-
sified into two categories: qualitative and quantitative risk assessment. Qualitative risk
assessment is for instance based on questionnaires, intelligence data and interviews.
In this thesis, we focus on quantitative security risk assessment. Several security risk
management methods that use a quantitative approach have been proposed in litera-
ture. Expert-based methods such as the Threat, Vulnerability and Consequence (TVC)
methodology [5–9] are commonly used in practice. Furthermore, researchers have de-
veloped analytical methods like attack trees [10, 11], probabilistic methods [12], and se-
curity games [14, 15].

It is often observed that conventional methods have their limitations. For instance,
these methodologies struggle to incorporate diverse social interactions, which are inher-
ently present in many threat scenarios in airport operations. Furthermore, the transition
between standard operations and operations under an attack is often not well modeled
in current analytical models. Finally, most of the analytical models cannot properly take
into account spatio-temporal aspects, such as the distribution of passengers over time,
that are present in airports.

We therefore propose AbSRiM, a novel agent-based modeling and simulation ap-
proach to perform security risk management in airport operations. The approach is
based on traditional security risk management methodologies, but has been designed
to overcome the above-mentioned limitations. An agent-based model can be used to
model realistic socio-technical processes, by including rich cognitive, social and orga-
nizational models. It can also be used to explicitly represent spatio-temporal elements
of the agents and the environment. This then allows for the modeling of the transition
between standard operations of an airport and operations under attack.

This chapter is structured as follows. Section 2.2 describes AbSRiM, the agent-based
security risk management approach proposed in this thesis. A conceptual comparison
with existing methodologies is made for the AbSRiM approach in Section 2.3. Finally, a
conclusion is provided in Section 2.4.

2.2. ABSRIM: AGENT-BASED SECURITY RISK MANAGEMENT
Here, we introduce AbSRiM: an Agent-Based Security Risk Management approach for
airport operations. An overview of the different steps in the AbSRiM approach is outlined
below. The approach follows several of the main steps of the traditional TVC methodol-
ogy, but steps 2 and 3 differ significantly.

1. Scope selection

(a) Characterize assets

(b) Identify threats

(c) Construct n threat scenarios
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2. Agent-based model definition

(a) Define operational model M

(b) Define security models M= {M1, . . . , Mn}

3. Risk assessment

(a) Estimate threat likelihood

(b) Estimate conditional risk

4. Risk mitigation

(a) Define maximum risks Rmax

(b) Identify controls K

(c) Determine control strategy

The first step is used to determine the scope of risk management. Relevant assets
of the airport have to be characterized, and based on the characterized assets, a set of
security threats is identified. They are in turn used to construct a set of n threat scenar-
ios. Next, an agent-based model M , the operational model, is defined. The operational
model is a representation of operations in the airport and at least includes the identified
assets. This model forms the basis for the subsequently created security models. Se-
curity models M1, . . . , Mn extend operational model M , and are defined for each of the
constructed threat scenarios in S. A security model extends the operational model and
includes a non-empty set of adversary agents that execute the attacker actions in the
threat scenario. These security models are later used to estimate security risks.

Then, threat likelihood is estimated using a traditional approach, while conditional
risk is estimated using Monte Carlo simulations. Finally, risk mitigation is done by treat-
ing risks that are considered too high. This consists of defining the maximum risk per
threat scenario and identifying a set of feasible controls that can be implemented. Based
on these, the best control strategy is determined using different analysis techniques.

2.2.1. SCOPE SELECTION
The selection of scope is the first step of the AbSRiM approach. It consists of three parts:
(a) identification of assets, (b) identification of threats, and (c) construction of threat
scenarios. Each of these parts are used to determine the focus of the rest of the steps in
the approach.

A set of assets is identified that will be used in the risk assessment. An asset can for in-
stance be the physical structure of an airport terminal or passengers that visit it. Ideally,
a complete set of assets is identified. However, identification of a subset of important
assets still allows for the execution of a security risk management with a narrower focus.

Based on the identified assets, different threats that relate to these assets are identi-
fied. Threats are identified using a method that is similar to the classic TVC methodol-
ogy. In this method, security experts generate a list of threats based on their experience,
intelligence data, and historic data. Similar to the identification of assets, a subset of
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important threats can also be chosen. This gives the security risk management proce-
dure a narrower focus. The identified threats are then used by security experts to con-
struct threat scenarios. These threat scenarios are used to estimate security risks in the
subsequent steps. The selected scope in this step forms the basis for the definition of
agent-based models in the next step.

2.2.2. AGENT-BASED MODEL DEFINITION

The definition of the agent-based model is the second step of the AbSRiM approach.
Two types of agent-based models are defined in this step: an operational model M , and
a set of security models M1, . . . , Mn . The operational model is used to model standard
operations that take place at the airport. In an airport, this consists of processes, such as
the check-in process and the security check. The model should include a representation
of each of the assets, in an operational context, which had been identified in the scope
selection. A security model extends the operational model M and includes a represen-
tation of the attackers in a specific threat scenario. These attackers execute the attacker
behavior in the threat scenario that was specified in the scope selection step.

Formally, in operational model M , an environment that represents the relevant air-
port operations is defined. Furthermore, a set of agents executing standard operations
in the airport is defined. This can for instance be check-in employees or security offi-
cers. Finally, a set of defender agents is defined that can have operational tasks, such as
answering passenger questions, and security-related tasks.

The operational model M forms the basis of the security models M1, . . . , Mn . A se-
curity model Mi extends model M by including a set of attacker agents that execute the
attacker behavior in threat scenario si . These attacker agents interact with the defend-
ing agents by trying to prevent them from stopping their attack. The defenders, earlier
defined in model M , in turn aim to stop an ongoing attack by the attacker agents.

These models require the selection of a modeling language. The selection of the lan-
guage largely depends on the selected scope of security risk management, but certain
aspects are required to be present. The desiderata for a modeling language include the
following abilities: (1) to represent discrete and continuous time; (2) to specify stochastic
processes; (3) to specify both qualitative and quantitative aspects; and (4) to represent
behavioral and cognitive properties of agents and interaction between agents.

Discrete and continuous time specification is needed to be able to specify the dy-
namics of an attack in progress. Other dynamic processes can also be present: passen-
gers moving in the airport terminal and checking in of passengers. Stochastic processes
are inherently present in airport operations, for instance, the random arrival process
of passengers, and random luggage checks at the security checkpoint. Furthermore,
stochasticity is required for Monte Carlo simulations (see Section 2.2.3) to be useful.
Modeling of human behavior involves reasoning, which requires the language to be able
to express qualitative aspects. Quantitative aspects and relations are commonplace in
airport operations. For instance, the number of flights on a day is important, as is the
number of passengers that fly with a specific flight. Finally, representing cognitive and
behavioral properties is important for modeling human agents, and is elaborated in the
architecture desiderata.

The architecture should be capable to represent a range of functions for the agents in
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the model: (1) making observations and perform actions; (2) to store information; (3) to
maintain goals; and (4) to reason. Observing other agents and the environment, as well
as performing actions is essential for any agent to perform its task. Another important
aspect of an agent is that it should be able to store information that can be used later.
For instance, this information can be used for maintaining internal goals of the agent. A
goal of an airport passenger can for instance be to reach their gate in time, while a goal of
an attacker can be to cause as many fatalities as possible. Finally, agents should be able
to reason about their goals and the stored information to make decisions. As with the
selection of the language, the selection of the architecture largely depends on the scope
of the security risk management.

Example languages that can be used are the Temporal Trace Language (TTL) [82] and
LEADSTO [83]. Example architecture is the BDI architecture [84], the CLARION architec-
ture [85] or the Desire architecture [86].

After the operational model and the security models are specified, the models are
validated. A large body of research is devoted to model validation [87–89]. Model val-
idation is a difficult task, but most existing validation frameworks contain at least the
following elements: ensure the face validity of the model, ensure the internal validity,
and perform sensitivity analysis.

When ensuring face validity, domain experts verify if they think the model results are
considered reasonable [90]. Then, internal validity is for instance verified by checking if
the model produces similar outputs for different random seeds [91]. As part of internal
validation, one can also perform tracing. In this case, agent traces are compared to ex-
pected behavior of agents. Sensitivity analysis is then done to determine the effects of
changing model parameters on the output parameters [64]. The interested reader is re-
ferred to the work of Windrum et al. for an overview agent-based model validation [89].

It can be hard to validate models related to security. Often, limited or no data is
available in this domain and performing field tests might be hard to do. In this case, ex-
perts play an essential role in the process of validating the model. In some cases real-life
experiments can be done [92, 93], potentially improving the validity of the model. Fur-
thermore, operational aspects of the models can more readily be validated using data.

2.2.3. RISK ASSESSMENT
The assessment of risks is the third step in the AbSRiM approach. For each threat sce-
nario si ∈ S constructed in step 1(c), a corresponding security risk ri is calculated based
on simulation results of model Mi defined in step 2. A security risk ri is defined as a
function of Threat Likelihood and Conditional Risk, and holds for some time period T .
By estimating conditional risk, we ensure that dependencies between vulnerability and
consequence are captured as well.

R(si ,T ) = f (P (si ,T ),Rc (si ))

Conditional risk Rc (si ) is estimated as follows. For each security model Mi and asset

al , a real-valued Consequence function C (M j
i , al ) is defined. This function is used to

determine the Consequence value for asset al of simulation run j in model Mi . It takes
both direct losses and indirect losses into account. Direct losses can for instance include
casualties of a simulated threat scenario. Indirect losses, such as longer-term business
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disruptions, are then based on historical data and the estimated direct losses. If this

consequence is 0, the attacker was unsuccessful in M j
i .

By performing Monte Carlo simulations, the conditional risk is estimated based on
N simulation runs. This is done as follows:

R̂c (si ) =
∑N

j=1

∑
al∈A C (M j

i , al )

N

where C (M j
i , al ) is the obtained consequence with respect to a specific asset al in threat

scenario si , and R̂c (si ) is the estimator of the conditional risk for threat scenario si ,
Rc (si ). From a Monte Carlo perspective, conditional risk can be seen as the expected
value of the consequence functions. The vulnerability of the scenario can be obtained
by calculating the ratio between the number of nonzero consequence values and N (i.e.
the total number of consequence values). The consequence of the scenario can be cal-
culated by averaging the nonzero consequence values. Vulnerability and consequence
values are not needed to calculate risks, but they can be used to guide the subsequent
risk management step.

The total risk of all threat scenarios, denoted Rtot al (T ), is obtained by adding all risks
for individual threat scenarios.

Rtot al (T ) = ∑
si∈S

R(si ,T )

Threat likelihood P (si ,T ) for threat scenario si is estimated by security experts in-
dependently from model Mi , as is commonly done in the TVC methodology. They base
their estimates on historical data, intelligence data, and experience.

2.2.4. RISK MITIGATION
Risk management is the last step of the AbSRiM approach and is used to reduce the risks
that were quantified above. In this step, specific controls (as part of control strategies)
are investigated to reduce the risks to the system. To do this, acceptable risks per security
threat are defined. If the estimated risks exceed the acceptability criteria, a control has
to be implemented to reduce these risks.

This effectiveness to reduce risks is estimated as follows. The operational model and
the security models are adapted, such that the control is incorporated in the model as
well. Then, steps 3 of this approach is repeated to estimate the risk with the updated
models. These newly estimated risks are then compared to the previously obtained esti-
mates to determine their effectiveness to reduce risks. Controls are finally ranked based
on their operational costs, operational usability and their effectiveness to reduce risks.
Based on this ranking, airport managers can determine which (set of) control(s) is most
suitable to implement.

2.3. COMPARISON OF ABSRIM WITH RELATED WORK
In this section, we provide a comparison between AbSRiM and existing security risk
management methodologies (as discussed in Chapter 1) based on the following set of
criteria: independence from experts, human aspects, transition to threat, spatio-temporal
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aspects, quality of assessment, availability of tools and ease of assessment. It should be
noted that this comparison is often on a more conceptual level.

2.3.1. INDEPENDENCE FROM EXPERTS

The TVC method relies on estimations from security experts that are used to estimate pa-
rameters such as vulnerability and consequence, but also perform the risk management
step. Security games still rely on security experts to determine values for the specifica-
tion of payoffs. In comparison with AbSRiM, the definition of a security game is easier to
do then the definition of an agent-based model. Agent-based models require the defini-
tion of a large set of parameters, while security games only require a few. This leads to a
larger dependency on domain experts by AbSRiM.

Compared to security games, more parameters need to be determined by security
experts for attack trees as each leaf node needs to be valued by an expert. However,
compared to AbSRiM, fewer parameters have to be defined for attack trees and it is easier
to validate an attack tree.

AbSRiM can also be combined with machine learning techniques that allow for au-
tomatic identification of different threats. Based on the defined operational model (see
Section 2.2.2), an attacker agent can be defined to learn which actions lead to conse-
quences in the defined operational model. Learning of the attacker agent can be accom-
plished by using reinforcement learning techniques, like Q-learning [94]. A sequence of
successful actions of the attacker (i.e. actions leading to a nonzero consequence) is then
considered a threat scenario. This can further reduce the dependency on security ex-
perts and potentially improve the quality of this step. This machine learning process to
identify threats can not straightforwardly be included in the alternative methodologies.

2.3.2. INCLUSION OF HUMAN ASPECTS

The incorporation of intelligence and other dynamic, human aspects into the risk as-
sessment is difficult for security experts. It is often noted in literature that security ex-
perts cannot be expected to estimate parameters well [36, 37], certainly in dynamic en-
vironments with many actors. Leung and Verga [37] mention that “limitations of human
memory and information processing capacity often lead to subjective probabilities that
are poorly calibrated or internally inconsistent, even when assessed by experts”.

An important underlying assumption of game theory is that the players take rational
decisions. However, researchers note that “human decision-making does not conform
to the traditional game-theoretic assumption of perfect rationality” [38, 39]. While re-
searchers try to overcome this limitation by for instance employing prospect theory [40]
and quantal response [41]; the problem remains an active area of research. Further-
more, it should be noted that security games often focus on one-to-one interactions
between an attacker and a defender. However, general social interactions, like group
decision making, are present in many threat scenarios. While multiplayer games have
been investigated [95], they oftentimes do not go beyond three players. Furthermore,
partially observable stochastic games form interesting methods to incorporate limited
observation capabilities of agents [96, 97]. This is a more realistic assumption than the
standard fully observable games. However, even partially observable stochastic games
cannot reach the same level of human behavior modeling as agent-based models, as in-
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cluding complex cognitive models is difficult in these models.
Attack trees suffer from similar limitations as do security games. Attack-defense trees

can include higher-level interactions between the attacker and the defender. However,
authors also note that they are “not suitable for including human interaction such as that
of social engineering, because the attacker may combine different persuasion principles
to different degrees, with different associated success probabilities” [42]. Countless ex-
amples of the incorporation of this social human behavior in agent-based models can
be found in literature [98].

2.3.3. TRANSITION FROM NORMAL OPERATIONS TO THREAT
As many systems mostly operate following standard operations, the transition from these
standard operations to the defense against an attack form an important aspect of secu-
rity. In the TVC methodology, experts often consider this aspect but have no formal way
of doing so.

This transition is also hard to model in security games as they assume the system to
be in a state of attack. This transition can be modeled well by using agent-based models,
as the standard operations are already modeled in the defined operational model M .

Like in security games, the transition from standard operations to the defense against
an attack is hard to model for attack trees. They are defined to model a specific threat
and therefore struggle with representing this transitional phase. As time can explicitly
be taken into account by agent-based simulation models, this transition can be modeled
and investigated.

2.3.4. INCLUSION OF SPATIO-TEMPORAL ASPECTS
Security games struggle with incorporating spatio-temporal elements into their models.
These spatio-temporal elements, like the structures of buildings and the distribution of
people in a shopping mall over time, can have a significant impact on the consequence
of an attack. Some recent work in security games aims to incorporate spatial elements
by using deep learning on images of forests [43]. However, it is unclear if this can also be
used in other domains.

Similarly, attack trees struggle with the incorporation of spatio-temporal elements.
The concepts of time and space are not intuitively represented in an attack tree, and
therefore this method cannot easily include these elements in the risk assessment. Agent-
based modeling allows for intuitive incorporation for both space and time and therefore
allows for a potentially more accurate risk assessment.

2.3.5. QUALITY OF ASSESSMENT
The quality of assessment refers to the accuracy of the risk assessment that each of the
methodologies produce. It is often stated that it is hard to validate risk assessments [99],
but some high-level remarks are relevant here.

The TVC method heavily relies on basic analytic tools and security experts, leading to
possibly inaccurate estimates. Cox provides an extensive overview of the different limi-
tations of the TVC methodology [18]. The TVC methodology estimates risks by multiply-
ing threat likelihood, vulnerability and consequence. However, basic probability theory
states that this is only allowed if these values are completely independent. Dependen-
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cies are certainly present between these risk components, and the TVC methodology,
therefore, violates this rule. The use of Monte Carlo simulations to estimate conditional
risks directly in the AbSRiM approach overcomes this limitation of inter-dependencies
between vulnerability and consequence. Whereas dependencies between threat likeli-
hood and conditional risks remain in AbSRiM.

The three methodologies generate results based on validated computational models,
and indeed security games and attack trees were shown to be useful in practice. AbSRiM
has the potential to overcome the limitations mentioned above and lead to better esti-
mates but have to show usefulness in a wider variety of applications.

2.3.6. AVAILABILITY OF TOOLS
Once an attack tree is defined, results can be obtained with relative ease. Researchers
have developed an extensive tool-set to automate the risk estimation process [100]. The
same holds for security games. While many of these security games are proven to be
NP-hard, researchers have developed fast algorithms for both approximations and exact
solutions [15]. Contrary to AbSRiM, results for attack trees and security games have to
be obtained only once and can be interpreted fast. In AbSRiM a time consuming and
extensive sensitivity analysis has to be performed.

2.3.7. EASE OF ASSESSMENT
A major advantage of the TVC methodology is that it can be performed with relative ease.
No model needs to be defined and so results can be obtained fast. As mentioned before,
this is not the case with AbSRiM, as defining agent-based models is a time-consuming
process. Lastly, security games and attack trees also require the definition of models,
but they are easier to define than agent-based models. This allows for an easier risk
assessment and management than in AbSRiM.

2.4. CONCLUSION & FUTURE WORK
This chapter introduced AbSRiM, a novel agent-based security risk management ap-
proach for airport operations. The approach contains four main steps: scope selection,
agent-based model definition, risk assessment, and risk management. AbSRiM is based
on traditional security risk management methodologies but uses agent-based modeling
as the main paradigm to assess security risks. The effectiveness of the approach will be
shown in Chapters 3 and 4 by applying it to different case studies.

AbSRiM provides a promising way to include important elements, such as human
aspects and spatio-temporal aspects, in the assessment of risk. However, AbSRiM re-
quires an extensive modeling effort and requires a lot of input from domain experts to
be effective. This problem will be addressed in Chapters 6 and 7.

More research is needed to better identify the strengths and weaknesses of AbSRiM
in different case studies. For instance, AbSRiM can be applied to more threat scenarios
related to airport operations, and different domains, such as shopping malls and sta-
diums. Finally, the automatic identification of threat scenarios using machine learning
techniques can be investigated in more detail. This technique can potentially be used to
complement the threats that security experts identify.





3
SECURITY OPERATOR BEHAVIOR

As mentioned in Chapter 2, existing risk assessment methodologies struggle with account-
ing for human behavior. In this chapter, we apply the AbSRiM approach, as proposed in
Chapter 2, to a case study on security operator behavior. We investigate how the decision-
making and performance of human security operators can be taken into account while
assessing vulnerability at an airport security checkpoint. To this end, we design an agent-
based model, in which the performance of security operators is modeled using a functional
state model, while decision making is modeled using decision field theory.

This chapter is currently under review at the Transportation Research Interdisciplinary Perspectives journal.
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3.1. INTRODUCTION
Despite enormous investments in airport security, terrorists have been able to find and
exploit vulnerabilities at security checkpoints. In the years after 9/11, aviation has been
targeted by several bombing attempts [101–103], such as the shoe bomber [1]. Each
of those attempts exploited new vulnerabilities and bypassed the security checkpoint
successfully. It is only after such an attempt that new regulations and procedures are
developed to address the exploited weakness in the security checkpoint. This reactive
approach leaves airports vulnerable to innovative attackers. This problem is well recog-
nized within the scientific literature, but developing a method that accurately assesses
all vulnerabilities in a security checkpoint is a challenging task.

The security checkpoint is operated by security operators that constantly have to per-
form cognitive tasks, such as detecting illegal items on an X-ray image [104]. These op-
erators also continuously have to make decisions, such as the decision to confiscate a
potential weapon or not. Empirical research has shown that security operators do not
necessarily follow protocol, but regularly bend and break the rules [105–108]. They com-
monly ignore potential threats and alarms are often processed as false. Furthermore, the
performance of security operators is dependent on a variety of factors, of which cogni-
tive task demands and personality are two examples. These human factors affect the per-
formance of the checkpoint as a whole and additional vulnerabilities may emerge from
their behavior. Therefore any method that aims to systematically identify all vulnerabil-
ities in a security checkpoint should include these cognitive aspects in the analysis.

The objective of this chapter therefore is to understand how the decision-making
and performance of human operators influence vulnerability at airport security check-
points. To this end, we follow the AbSRiM approach of Chapter 2 to identify and quantify
the vulnerabilities of two typical airport security checkpoint setups. The contribution of
this chapter is twofold. First, we define a novel agent-based model to assess vulnerabil-
ity, in which we specify security operators’ behavior by combining two different cogni-
tive models. The performance of security operators on different tasks in the checkpoint
is modeled using the functional state model [109], and their decision-making process
is modeled using decision field theory [110]. The developed model can also easily be
adapted to test future concepts of security checkpoints, such as X-ray operators working
remotely. These types of experiments are hard to perform directly at airports, as it may
interrupt security operations. Secondly, by performing experiments with the model, we
generate new insights with respect to vulnerabilities at the security checkpoint. Three
types of experiments are performed: experiments related to operator performance, ex-
periments related to operator decision making, and experiments related to different air-
port security checkpoint setups.

This chapter is structured as follows. First, related literature about human perfor-
mance and decision making is reviewed in Section 3.2. Then, the agent-based model that
we developed for this chapter is described in Section 3.3 and calibrated in Section 3.4.
Three experiments were performed with the model and are described in Section 3.5. The
first experiment is used to understand the influence of security operator performance on
vulnerability, and the second for understanding the influence of security operator deci-
sion making on vulnerability. The third experiment is then used to investigate the effect
of using different security checkpoint setups on vulnerability. Finally, the chapter is con-
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cluded in Section 3.6.

3.2. RELATED WORK

Different studies have shown that the performance of security operators is not always
optimal and that it is common for them to bend and break the rules [105–108, 111].

The performance of humans is dependent on a variety of factors, of which cogni-
tive demands of a task and personality are two examples [112, 113]. Several computa-
tional models have been proposed in literature to model the performance of humans.
Many of these models have a specific focus on aspect, like situation awareness [114].
The Functional State Model is a dynamic performance model that describes the perfor-
mance of an agent as a function of task complexity, the state of the agent and its char-
acteristics [109]. The model incorporates a large set of different factors, such as stress,
exhaustion and situation awareness. The model was validated by empirical experiments
with human operators from defense. This is also the model that we use in this chapter to
model human performance, as it aims to incorporate a diverse set of factors.

Human decision making has been a long-studied field, and an extensive overview of
modeling human decision making can be found here [115, 116]. Two main streams can
be distinguished when modeling human decision making: bounded and unbounded
rationality [116]. In bounded rationality, decisions are made within a set of human con-
straints such as limited information or processing speed of the brain, while in unbounded
rationality these constraints are not present. In this chapter, we also use the bounded
rationality paradigm. Within the bounded rationality paradigm, several types of models
are developed in literature: linear decision making models [116], machine learning ap-
proaches [117] and diffusion models [110, 118]. We focus on probabilistic decision mak-
ing, which is shown to be well capable of account for human irrationality. Important
models in this area are the decision field theory model [110] and the Ratcliff diffusion
model [118]. We used the decision field theory model in this chapter to model decision
making of security operators, as it has strong empirical support and is famous for its
ability to reproduce many known irrationalities in human decision making.

Only a few works exist that aim to model the behavior of security operators [119, 120].
This research models the effects of human factors on the performance of the security sys-
tem by using a fuzzy inference system. However, their system is mostly based on expert
opinions. This chapter focuses on more detailed cognitive models of human security op-
erators, and how they can be used to estimate vulnerability. Furthermore, we explicitly
represent interactions between agents (security operators and attackers), and important
security devices, such as body scanners.

3.3. MODELLING THE SECURITY CHECKPOINT

This section describes the agent-based model that was developed to assess vulnerabili-
ties at an airport security checkpoint, while focusing on human performance and deci-
sion making. The specification of the environment is discussed in Section 3.3.1, and the
different types of agents are discussed in Section 3.3.2.
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3.3.1. ENVIRONMENT
The environment of the model contains four different objects: luggage, weapons, sen-
sors and equipment. Luggage has a complexity level that influences the task complexity
of operators that interact with this luggage. The complexity level can either be high or
low. Furthermore, luggage is owned by a passenger and may contain explosive traces
(represented as a Boolean value) and/or a weapon.

Then, the weapon object conceptualizes a weapon that an attacker agent aims to
bring past the security checkpoint. A weapon is of a certain type. The type of weapon
can, for instance, be a ceramic knife or an explosive liquid. Similar to luggage, a weapon
can contain explosive traces. Furthermore, a weapon has a perceived risk, rper c , that
indicates to which extent a security operator perceives objects that closely resemble the
weapon as a risk to the airport. For instance, explosive liquids resemble a bottle of water
and are therefore perceived as a low risk. Perceived risk is formalized as a real number
between 0 and 1. While rper c is different for each operator, we assumed that it is the
same for everyone, and, therefore, included it as part of the weapon. Finally, a weapon
can be on the body of an attacker, or in the luggage of an attacker. A full list of weapon
types and their corresponding parameters is shown in Section 3.4.

Different sensors were defined in the model: X-ray sensor, Walk-through metal de-
tector (WTMD), explosive trace detector (ETD) and body scanner. Each sensor has a
probability p sensor

detect (weapon_t y pe) to detect a specific weapon type, called base detec-
tion probability. This parameter is calibrated and shown in Section 3.4. Based on this
detection probability, the sensor either detects or does not detect a weapon when pre-
sented, which can then be observed by operators. The X-ray sensor is an exception to
this standard, as this sensor only allows operators to observe the luggage that is cur-
rently sensed by the sensor. In this case, the likelihood of detection is determined by the
skill of the x-ray operator.

Finally, two types of equipment were defined in the model: queue separators and X-
ray systems. Queue separators are used to guide passengers to the security checkpoint,
while the X-ray system moves luggage forward through an X-ray sensor.

3.3.2. AGENTS
Three different agent types were defined: passengers, attackers, and operators. Each of
these agents are human agents and are discussed in more detail below.

PASSENGERS AND ATTACKER AGENTS

Passengers and the attacker were defined similarly. They both do not exhibit sophis-
ticated strategical behavior. Passengers carry luggage that they bring to the security
checkpoint. Furthermore, passengers could carry explosive traces and they can own a
weapon. This weapon can, as defined above, either be on the body of the passenger
or in its luggage. We refer to a passenger that owns a weapon as an attacker, and as a
passenger otherwise.

SECURITY OPERATORS AGENTS

A set of security operators that execute activities at the security checkpoint were defined:
patdown operator, ETD check operator, luggage check operator, and X-ray operator. This
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section discusses the definition of the X-ray operator, as the other operator types are
defined similarly.

Airport security is largely defined by regulations and guidelines defined by different
regulatory institutes. For instance, the European Union has regulations for its mem-
bers [121, 122], the United States has the Aviation and Transportation Security Act [123],
and the ICAO has a security manual [124].

Following these regulations and guidelines, each of these operators executes a fixed
set of tasks and decisions. An X-ray operator inspects output generated by the X-ray ma-
chine and determines if there is a potentially illegal item. When this is the case, (s)he
has to inform the luggage check operator, who then searches the luggage. Security op-
erators do not necessarily follow this protocol, but regularly bend and break the rules.
They commonly ignore potential threats and alarms are often processed as false [105–
108, 111]. Furthermore, humans cannot continuously perform optimally. It is depen-
dent on a variety of factors, of which cognitive demands of a task and personality are
two examples [112, 113].

The performance of security operators on different tasks in the checkpoint is mod-
eled using the functional state model [109], and their decision-making process is mod-
eled using decision field theory [110]. In the case of the X-ray operator, the modeled task
is inspecting output generated by the X-ray machine, while the modeled decision is that
of informing or not informing the luggage check operator.

The functional state model, the decision field theory model, and their integration is
discussed below.

Functional State Model To model the performance of security operators, the func-
tional state model was selected [109]. While the model contains a set of 37 parame-
ters, we only discuss the most important parameters here. For the other parameters, the
reader is referred to the work of Bosse et al. [109]. The input for the model is the task
level (TL), which is dependent on the skill level (SL) of the operator and the task com-
plexity (TC) of the task at hand. For an X-ray operator, the task complexity represents
how complex the luggage (s)he is currently investigating is. This dependency is modeled
as follows:

T L(t ) = TC (t )

SL
(3.1)

The output of the model is the performance quality (PQ) of the agent, indicating how
well the operator is performing. A PQ of 1 corresponds to the baseline performance of
an agent, while values lower than 1 correspond to performances that are worse than this
baseline and values higher than 1 correspond to performances better than baseline. No
theoretical bounds of PQ were provided in the of Bosse et al. [109]. However, typical PQ
values in our simulation results are in the range of 0.5 and 1.5.

PQ is dependent on two factors: provided effort (PE) and task level (TL):

PQ(t ) = PE(t )

T L(t )
(3.2)

PE is determined by the generated effort (GE) of the agent, recovery effort (RE) and
noise effort (NE). The latter two parameters correspond to the ability of humans to de-
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creases exhaustion, and the effort the human has to contribute to the noise in the envi-
ronment respectively.

PE(t ) =GE(t )−RE(t )−N E(t ) (3.3)

GE is the most important contributor to PE, and is ultimately defined by effort mo-
tivation (EM), among many other parameters. We refer to equations 2 and 4 in the work
of Bosse et al. for a complete deduction of GE [109, 125].

Effort motivation is based on the current task level and the difference between expe-
rienced pressure (EP) and optimal experienced pressure (OEP). EP is similar to a person’s
stress level, while OEP determines how well a person can cope with a high EP. Finally,
EP is, among other terms, related to generating effort above and below a critical point.
The critical point is the amount of effort someone can generate without becoming ex-
hausted. For an X-ray operator, PQ is reflected in the likelihood (s)he observes a weapon
from the observations of the X-ray sensor. This is modeled as follows.

poper ator
detect (weapon_t y pe) = max(0,1−

1−px−r ay
detect (weapon_t y pe)

k ·PQ
) (3.4)

The value px−r ay
detect (weapon_t y pe) corresponds to the base likelihood that a specific type

of weapon is detected by an X-ray operator, which is calibrated in Section 3.4.2. The
value 1− px−r ay

detect (weapon_t y pe) corresponds to the base probability of not detecting
the weapon: the base false-negative rate. When performing well (i.e. a high PQ), X-ray
operator improves on this base false-negative rate, and vice verse. We model this by
dividing the base false-negative rate by the performance quality and a scaling factor k.
The underlying assumption here is that the false-negative rate linearly decreases with
increasing PQ. This false-negative rate is then transformed back to a detection probabil-
ity by subtracting it from 1. To ensure that the value falls between 0 and 1, we take the
maximum of 0 and the value obtained above.

The other operators at the security checkpoint use this performance model to exe-
cute the patdown activity, search luggage and perform an ETD test. The value of k, and
other related parameters of the functional state model are calibrated in Section 3.4.

Two different personality types are introduced based on the work of Bosse et al.: per-
sonality I and personality II [109]. Bosse et al. extensively experimented with these two
personality types and performed an in-depth analysis of their behavior. Type I has a rel-
atively high OEP, meaning that it can cope well with high EP levels, while type II does
not. This allows the first personality type to perform better under high pressure. We
experiment with these personality types in our analysis.

Decision Field Theory The decision-making process of the security operators was mod-
eled based on the work of Busemeyer and Townsend [110]. The decision-making process
in this model is an iterative process in which the operator constantly updates their pref-
erences until the preference for one of the options exceeds a decision threshold value.
This threshold value is one of the inputs of the model and its magnitude is related to the
effort an agent spends on a decision. The higher the threshold value, the more time and
energy the security operator needs to reach it.
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During each iteration, the agent focuses on one of his goals. The selection of this
goal is a random process, but the likelihood of the agent focusing on a goal depends
on the attention weight. Once the attention of the agent is focused on one of his goals,
the agent’s preferences are updated based on the agents beliefs about how each of the
options helps him in achieving the goal (s)he currently focuses on. The magnitude with
which the preference for each of the goals is updated is known as valence. This valence
is defined for each combination of goals and options.

Finally, the decision-making process is influenced by the agent’s initial beliefs. This
initial preference is the preference the agent has for each outcome before the decision
process starts. An overview of this process is shown in the bottom part of Figure 3.1.

Threshold

Initial Preference

Belief

Attention Weight

Input

Preference

Valence

Attention

Threshold
Reached?

Model

Decision

Output

Figure 3.1: An overview of the functional state model [109] (top) and the decision field theory model [110]
(bottom) used in this work. The integration between the two models is shown as well.
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For an X-ray operator, one decision is identified. If the X-ray operator observes a
potential weapon (see also Section 3.3.2), (s)he has to decide if the luggage requires a
search from the luggage check operator. The options for the X-ray operator are inform
or ignore. Furthermore, three goals are defined for the X-ray operator based on existing
literature [126, 127].

• Accuracy

– The operator wants to do their work as well and accurate possible. The im-
portance of this goal may be dependent on pressure within the organizations
or the agent’s standards.

• Speed

– The operator wants to do their job as fast as possible. The importance of
this goal may be due to pressure within the organization to reach a certain
throughput or the security operator wanting to minimize effort.

• Perceived Risk

– It is the job of the security operator to minimize the risk of an attack. Per-
ceived risk represents the beliefs an agent has about the potential conse-
quences of the observed prohibited item. The importance of this goal may
be dependent on the agent’s beliefs about the likelihood of an attack and his
risk aversion.

Both luggage check operators and physical check operators use this decision mecha-
nism to determine if a passenger requires secondary screening when an illegal object
was found. The ETD operator makes the same decision when explosive traces were ob-
served. The other related parameters of this model are calibrated in Section 3.4.

Integration of models We integrated the models by relating parameters of the func-
tional state model to the decision field theory model. The relation between the models
is shown in Figure 3.1.

The decision threshold was set to be equal to the provided effort (PE) as defined in
the functional state model. Provided effort denotes the effort that is contributed to the
task by the agent. This relation means that the higher the provided effort, the more effort
the agent wants to invest in making an accurate decision. This is based on findings by
Busemeyer and Townsend [110]. Furthermore, we assumed that the initial preference of
the X-Ray operator is according to regulations present at the security checkpoint, mean-
ing that there is a strong initial preference to request a luggage check if needed. The next
section describes how these parameters are calibrated.

3.4. MODEL SENSITIVITY AND CALIBRATION
In this section, the sensitivity of the functional state model and the decision field theory
model is discussed. Furthermore, it is described how the overall model was calibrated.
Different parameters had to be calibrated: parameters related to weapons, sensors, air-
port configurations, and operators. These are discussed in detail below.
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3.4.1. SENSITIVITY ANALYSIS
We performed sensitivity analysis of both the functional state model and the decision
field theory model. Figure 3.2(a) shows how different task levels affect the performance
quality and the provided effort in the functional state model. Results were obtained after
the task level was kept constant for 20 seconds. At this point, the performance quality
converged to an equilibrium value for any task level. From the figure, it becomes clear
that both personality types have the highest performance quality around a task level of
250. The peak performance of personality type I is at a task level 230. At this point, it
outperforms personality type II by 24%.

At task levels lower than 225 the performance quality of both personalities rapidly
drops. This is mainly due to a lack of provided effort as can be seen in Figure 3.2(b). In
this range, personality type II outperforms personality type I by 20%. At task levels above
275, the performance of both personalities exponentially decreases. The provided effort
of both agents stays approximately stable around 230, meaning that the agent cannot
provide more effort. At even higher task levels the performance quality drops.
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(a) Performance quality for different task levels.
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(b) Provided effort for different task levels.

Figure 3.2: The effect of changing task levels on performance quality and provided effort.

We investigated the sensitivity of the decision field theory model as well. The values
in Table 3.3 were used with c = 30, but the initial preference for the inform decision
was varied. The decision threshold was set to a uniform random value between 70 and
250, which is the range of provided effort values as observed above. Two scenarios were
investigated: 1) a weapon with a perceived risk of 0 was observed, and 2) a weapon with
a perceived risk of 1 was observed. A total of 1000 simulations were performed for each
data point.

Figure 3.3 shows how different initial preferences for the inform decision influence
the decision of the X-ray operator. Both graphs have the same general shape. The choice
to inform the luggage-check operator increases from a baseline value to 100% when the
initial preference becomes 250. At initial preferences above 250, the operator chooses
to inform the luggage-check operator 100% of the time. This is because the initial pref-
erence already exceeded the threshold value. The range of values for both scenarios is
different. In scenario 1, the luggage-check operator is informed 93% of the time without
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Figure 3.3: The effect of changing initial preferences on the decision of X-ray operators to inform luggage-check
operators when an illegal item was observed.

any initial preference, while this is only 50% in scenario 2. In scenario 1 the dominant
decision is to inform, as two out of three goals favor this decision. As the perceived risk
is zero in scenario 2, there are effectively only two goals: accuracy and speed. Neither of
these goals dominates the other, leading to a baseline of 50% inform decisions.

3.4.2. WEAPON AND SENSOR CALIBRATION

Table 3.1 shows the different weapon types used in this chapter. For each of the weapon
types, it is indicated if they contain explosive traces and their perceived risk. It should
be noted that the perceived risk represents the risk that is perceived by operators for
objects that resemble the weapon. For instance, if a bomb is not recognized as such (like
explosive liquids), the perceived risk is much lower. Bombs and fire-arms were assumed
to have the highest perceived risks, while liquids were not perceived as a large risk, as
operators continuously confiscate water bottles. Knives were perceived as a larger risk,
but they are still commonly observed.

Table 3.2 shows the different detection probabilities for weapon-sensor combina-
tions and weapon-activity combinations. The values for X-ray performance is based
on literature [128], as well as the explosive bulk detection probabilities for body scan-
ners [129]. No data could be found on how security operators perform on searching
luggage and patdowns. These values were therefore based on assumptions.

3.4.3. AIRPORT CONFIGURATIONS CALIBRATION

Two different airport configurations were defined based on IATA documentation [104]:
the regional airport and the international airport. There are two main differences be-
tween these configurations. First, the regional airport uses a WTMD whereas the inter-
national airport uses a body scanner. This choice of equipment impacts the detection
rates of weapons hidden on the body of the attacker. The second difference is the com-
munication between the X-ray operator and the luggage check operator. At the regional
airport, there is the possibility to communicate directly, while at the international airport
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Table 3.1: The different types of weapons with a description, an indication if explosive traces are present and
their perceived risk.

Type
Explosive
Traces

rper c Description

Explosive Bulk Y 1 An improvised explosive device.

Explosive Liquid Y 0.1
Liquid explosives are often
not directly recognized as
a bomb.

Explosive Powder Y 0.2
Explosives in powder form
are commonly not
recognized as a bomb.

Gun N 1 A standard handgun.
Knife N 0.3 A small knife.
Ceramic Knife N 0.3 A small knife without metal.

Table 3.2: The detection probability pdetect (weapon) for each sensor and activity.

Expl.
Bulk

Expl.
Liquids

Expl.
Powder

Gun Knife
Ceramic
Knife

WTMD 0.00 0.00 0.00 1.00 1.00 0.00
Body Scanner 0.56 1.00 0.00 1.00 1.00 1.00
X-Ray
Activity

0.735 0.645 0.645 0.875 0.675 0.675

Lugg. Search
Activity

0.90 0.90 0.90 0.90 0.90 0.90

Pat Down
Activity

0.90 0.90 0.90 0.90 0.90 0.90

the luggage check operator is not in direct contact with the X-ray operator. The luggage
check operator has to perform an X-ray himself/herself to determine where the weapon
can be found.

3.4.4. OPERATOR PERFORMANCE CALIBRATION

The task complexity (TC) of operators for the different tasks that they perform are cal-
ibrated in this section. To this end, we assumed three different skill levels (SL) for op-
erators: 0.8 (low), 0.9 (medium), and 1.0 (high). These levels correspond to a realistic
variation in skill between agents in the functional state model, based on experimenta-
tion with the functional state model and values found in literature [128]. Furthermore,
we assumed a base task level (T Lbase ) of 150, corresponding to a performance quality
(PQ) of around 0.5. The base task level is the task level when the agent is not performing
its activity and is based on the work of Bosse et al. [109]. An X-ray operator has about
one second to identify potentially prohibited items in luggage and research has shown
that the number of false negatives increases when the images become harder to inter-
pret [128]. Based on the same work, we assumed that the performance of an X-ray oper-
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ator decreases with 5.47% for more complex luggage.
The scaling factor k was calibrated as follows. The value for k ×PQ should be equal

to 1, as an average operator performs according to the base detection probability. We
have performed 1000 simulations for each skill level, personality type, and task level to
determine the mean performance quality of operators, and found that it corresponds to
0.59. We use this mean performance quality to finally find k to be equal to 1.68.

3.4.5. OPERATOR DECISION CALIBRATION
For operator decision making, the following parameters had to be calibrated: initial pref-
erence, decision threshold, and valence. We used attention weight as a parameter to ex-
periment with. The decision threshold is equal to the provided effort PE as suggested
in the work of Busemeyer and Townsend [110]. The valences and initial preferences are
shown in Table 3.3. The initial preference for the inform decision was assumed to be
the decision threshold of the agent multiplied with a constant of cpr e f = 0.95. This in-
dicates that the X-ray operator has a strong preference to follow rules and regulations.
Furthermore, the valences related to speed and accuracy are ±c for both options. We
chose c = 30 such that the mean decision time of X-ray operators corresponds to times
reported in literature [128]. Finally, the valences for the perceived risk goal were made
dependent on the perceived risk of the observed weapon. We assumed this to be a mul-
tiplication between c and the perceived risk. The parameters of the other operators were
determined similarly.

Table 3.3: Calibration of the decision parameters for the X-ray operator.

Initial Pref. Accuracy Speed Perc. Risk
Inform cpr e f · DT c -c c · rper c

Ignore 0.0 -c c -c · rper c

3.5. EXPERIMENTS AND RESULTS
We performed experiments with the model to assess vulnerabilities at different security
checkpoint setups. The setup of the experiments are discussed first, followed by a dis-
cussion of results.

3.5.1. EXPERIMENTAL SETUP
The model was implemented in the AATOM simulator, which is a Java-based airport ter-
minal operations simulator [130]. It is agent-based and contains several calibrated pre-
sets and templates of basic airport terminal components that can readily be used. No
other simulator that we know of contains such a combination of agent-based modeling
and pre-calibrated airport-specific components.

As specified in the model description, four operator agents were defined in the model:
patdown operator, ETD check operator, luggage check operator, and X-ray operator.
We used a single security lane setup, and passengers were generated for a single flight
with up to 100 seats. A single attacker was introduced among the passengers that went
through the security checkpoint.
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The following parameters were varied in the execution of the experiments.

• Attacker parameters

– Weapon. The weapon the attacker uses is one of the weapons shown in Ta-
ble 3.1.

– Weapon Location. The attacker has the option to hide the weapons on his
body or in his luggage.

• Checkpoint Configuration. The checkpoint configuration is either the regional air-
port or the international airport.

• Operator parameters

– Skill Level. The skill level of the agents is either 0.8 (low), 0.9 (medium) or 1.0
(high).

– Personality Type. The agents either have personality I or II, based on the work
of Bosse et al. [109].

– Attention Weights. The attention weight for each goal is set to 0.33 (low), 0.5
(medium) or 0.67 (high). The weights are normalized so that they add up to
one after they are selected.

A total of N = 15,000 simulation runs were performed, while using a uniform random
assignment of the above parameter values. After assigning parameter values in a simula-
tion, they do not change until the next simulation run. Furthermore, agents are assumed
to not learn during a simulation run. Finally, a simulation finishes when all passengers
have passed through the security checkpoint.

3.5.2. RESULTS
The results are discussed as follows. We define vulnerability as the proportion of attack-
ers that moved past the security checkpoint with their weapon. These attackers did not
receive secondary screening and their weapon was not confiscated. We first show how
the skill level and personality type of security operators influence their performance.
Then, we show how different attention weights of the decision field theory model influ-
ence the decisions made by the operators. Both these results are an indication of the vul-
nerability of the security checkpoint, as both performance and decision making directly
influence the number of secondary screenings and weapon confiscations. Finally, an
overall vulnerability assessment of the different checkpoint configurations is conducted
and a discussion is provided.

PERFORMANCE OF OPERATORS

The performance quality of X-ray operators and luggage check operators can be found
in Figure 3.4. The performance quality of security operators is directly related to the vul-
nerability of the security checkpoint. A low performance quality of any of the operators
leads to a higher vulnerability, as items are detected with a lower probability. As can be
seen in the figure, PQ increased with skill level for X-ray operators. The agents with the
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highest skill level (of 1) outperformed the agents with the lowest skill level (of 0.8) with
5.2%.

Different results were observed for luggage check operators. The operators with the
highest skill level were outperformed by the agents with the lowest skill level by 4.0%.
This also seems counter-intuitive but can be explained from the mechanisms of the
functional state model. If the task level becomes too low, the performance quality drops,
as skilled agents are not motivated enough to generate effort. For operators with a lower
skill level, the task is more challenging and they are more motivated to put in the ef-
fort. This lead to the counter-intuitive result that the most skilled agents were not top
performers on this relatively simple task. This result may seem counter-intuitive but is
caused by the fact that agents perform (relatively) simple tasks and find it hard to moti-
vate themselves to put in enough effort. Following the functional state model, operators
with a higher skill level, experience a lower task level for the same task as their lower-
skilled counterparts. Generated effort is, among other parameters, based on the moti-
vation of the operator, which in turn is partially determined by the task level. Because
the task level is lower for higher-skilled operators, the effort motivation decreases, which
decreases the provided effort. Our simulation results have shown that this negative ef-
fect on performance quality of decreased motivation is larger than that of an increased
task level for lower-skilled operators. Section 3.3.2 provided a discussion of the different
variables in the functional state model.

These results are not unique to the Functional State Model and our model. Hackman
and Oldham proposed a so-called Motivating Potential Score [131] which is a framework
that is widely used in literature. MPS is, among other terms, composed of skill variety.
This is strongly related to what we have defined as skill level in this chapter and explains
the connection between motivation and skill level. Furthermore, jobs with a high MPS,
have a positive effect on motivation, performance and job satisfaction [132]. This then
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relates motivation to task performance.
The differences between the performance quality of analyzing X-ray images and check-

ing luggage can be explained as followed. Analyzing X-ray images is a difficult cognitive
task for humans. A large number of stimuli have to be processed and illegal items have
to be identified at a high speed. An operator performing a luggage check has more time
to execute the task at hand. Typically, they take around 90 seconds, while X-ray opera-
tors only have a few seconds for their task. This allows the luggage check operators to
generate more effort and therefore reaching higher performance quality.

Furthermore, agents that cannot cope with pressure well (type II) outperform agents
that can better cope with pressure (type I) by 20%. The results of the different personality
types shown in this figure are an aggregate of all skill levels. Personality type II has a
relatively low OEP, which is closer to the actual experienced pressure than the high OEP
of personality type I. The difference between these values determines the effect on effort
motivation. A low difference leads to a low reduction in effort motivation, while a high
difference leads to a high reduction of effort motivation. As mentioned before, a lower
effort motivation finally leads to a lower performance quality.

DECISION MAKING OF OPERATORS

We analyze the decision-making process of X-ray operators. When an X-ray operator de-
tects a potential weapon, the agent has two options. The first option is to ignore that
the potential weapon was observed, while the second option is to inform the luggage
check operator. When a potential weapon was detected, luggage check operators were
informed correctly 93.7% of the time on average. This number varied based on the at-
tention weights for each of the goals, as shown in Figure 3.5. Not searching luggage when
it contains a weapon, directly increases the vulnerability of the system.

One of the reasons for an X-ray operator to not inform the luggage check operator
is that it might not perceive the potential weapon as an actual weapon. For instance,
liquid explosives might resemble a water bottle. While a water bottle is illegal according
to checkpoint regulation, regulations are not always strictly enforced by security opera-
tors [105–108]. Not informing the luggage check operator then leads to faster processing
of passengers, which is of enormous economic importance for airports.

From the figure, it becomes apparent that the attention weight for speed was the
most dominant parameter in the inform decision. Varying this parameter from low (0.33)
to high (0.67), lead to a 12% decrease in luggage searches. The second most important
parameter is the attention weight for accuracy. Increasing this parameter from low to
high, caused an 11% increase in luggage searches. The attention weight for risk was less
dominant. An increase from low attention to high caused a 5.3% increase in luggage
searches. This parameter was less influential, as many potential weapons are not per-
ceived as a large risk by the operators. Speed and accuracy, on the other hand, played a
more important role in the decision-making process. While not shown, results for deci-
sions by other types of operators followed similar trends.

Jesus performed a questionnaire among security operators at a regional airport to
determine how they make trade-offs between security and efficiency [133]. One of the
main findings of his research was that operators could be classified into three categories:
1) passenger level of service operator, 2) security-focused operator, and 3) efficiency-
focused operator. About 13% of the surveyed employees fell into the last category. These
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employees mostly focused on improving the efficiency of checkpoint operations and
barely on security.

While the results of Jesus are not readily comparable to our results, we do observe an
interesting similarity between them. Both results indicate that some employees mostly
focus on executing their work efficiently (i.e. high attention weight for speed), which
then results in increased vulnerabilities.
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Figure 3.6: The performance of the checkpoint setups for the different weapons defined in this work. Per-
formance is shown in terms of vulnerability (weapon not confiscated and no secondary screening; red bar),
percentage of secondary screening (with or without weapon confiscation; green bar), confiscated weapons
(without secondary screening; blue bar).

DIFFERENT CHECKPOINT SETUPS

The performance of the security checkpoint for different weapons and locations are
shown in Figure 3.6. In this figure, the distribution between three potential outcomes of
a scenario are shown: vulnerability (weapon not confiscated and no secondary screen-
ing), secondary screening (regardless of weapon confiscation) and the situation in which
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the weapon was confiscated while no secondary screening was conducted.
From this figure, it becomes clear that some weapons were never confiscated at the

regional airport. These weapons cannot be detected by the equipment used to scan the
passengers. None of the explosives smuggled on the body get detected by the WTMD
and the same holds for ceramic knives. Explosives only got detected by a random ETD
check, which lead to a secondary screening in 10.1% of the cases. Furthermore, knives
can be taken through the checkpoint at the regional airport without large consequences.
Most often, the knife got confiscated and the attacker could try again at a different time
as the chances on a secondary screening were found to be almost zero. The regional
airport performed best on detecting guns in luggage. These weapons were confiscated
84.8% of the time when they were located in the luggage (as compared to 70.0% in the
international airport) and immediately lead to a secondary screening. This becomes
90.7% when the attacker carried the weapon on their body.

At the international airport, only one type of weapon remained undetected. Smug-
gling explosive powder through a body scanner had a success rate of 88.6%. The only
measure against it was a random ETD check. Furthermore, liquid explosives and pow-
ders hidden in luggage were confiscated only 32-34% of the time. Even when these
items were confiscated, the security operator did not necessarily recognize these items
as bomb parts and allowed the attacker to move on. Bulk explosives, on the other hand,
were detected in 50% of the cases and lead to immediate secondary screening. An at-
tacker bringing a gun was very unsuccessful at the international airport. The attacker
was most successful when locating the gun in their luggage, but this only had a success
rate of 30%. Knives could best be brought hidden in the luggage as well. In that case,
they were only confiscated 36% of the time and the chances of secondary screening were
minimal. However, the potential impact of a knife past the security checkpoint is far
more limited than that of other weapons investigated in this chapter.

The regional airport outperformed the international airport on checking luggage for
all weapons. In the regional airport, 62.6% of the weapons in the luggage are confiscated,
whereas in the configuration of the international airport this is only 42.6%. The main
reason for this is the lack of communication in the configuration of the international
airport. The X-ray operator flags luggage for a search, but the luggage check operator has
to identify the weapon on the X-ray image himself. This extra step in the process caused
a loss in performance of 32% and occurs solely because two officers independently had
to recognize a weapon on an X-ray image instead of just one.

Relation with related work ABC News reported in 2015 that in 95 percent of trials un-
dercover investigators were able to smuggle mock explosives or banned weapons through
checkpoints [134]. Two years later, this percentage decreased to a still extremely high
value of around 80 percent [135]. These problems do not only exist in the United States.
The Telegraph reported late 2014 that airport security failed to detect half of the danger-
ous weapons at Frankfurt airport [136]. The vulnerabilities that we found in this chapter
(see Figure 3.6) are close to these public reports. However, to the best of our knowledge,
there is no public data available that evaluates the effectiveness of security checkpoints
specifically for different weapon types, as we do in this chapter. While we have used all
data that was available to calibrate the different capabilities of sensors to detect each
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weapon type, more work is needed to validate our results.

3.5.3. DISCUSSION OF RESULTS

As mentioned in Section 3.4, the calibration of the model was based on a set of simpli-
fying assumptions. These assumptions influenced the magnitude of the resulting vul-
nerabilities in different checkpoint configurations. The calibration of the model can be
improved by performing field tests to determine different parameters. For instance, the
performance of operators for searching luggage can be evaluated by providing security
operators a set of luggage containing legal and illegal objects. Furthermore, perceived
risks of objects can be evaluated for different operators using a similar method. Deci-
sion making of operators can be calibrated better by performing choice experiments,
such as the one performed by Jesus [133].

While vulnerability estimates are inherently hard to validate, some researchers per-
formed real-life experiments [92, 93]. This form of validation is a direction of further
research for this chapter. Both calibration and validation of the model can still be im-
proved, but the proposed model is still valuable for airport security practitioners, as it
can be used to generate improved results when more data becomes available.

We did not consider all security mechanisms that are present in airports. For in-
stance, intelligence agencies can detect attackers before they arrive at the security check-
point. behavior detection officers [137, 138] are also capable of detecting suspicious be-
havior at the security checkpoint and perform secondary screenings based on that. Fur-
thermore, more strategic attacker behavior in which the attacker chooses the right type
of weapon for the checkpoint configuration can be considered as well.

Agent-based modeling is an important tool to better understand complex systems.
Using our model, vulnerabilities caused by imperfect human decision making and per-
formance were identified. Understanding how these vulnerabilities emerge enables air-
ports and policymakers to improve their security policies and reduce vulnerabilities. Our
model can be used to test future concepts of security checkpoints. For instance, when
X-ray officers do their work remotely, our model can be adapted with relative ease to
determine the performance of such a setup. These types of experiments cannot easily
be performed at airports, as it may interrupt security operations. Furthermore, exper-
iments with humans are known to be hard to perform due to the diversity of human
behavior. Using our model, these experiments can be performed more easily. This can,
for instance, be done by hiring operators with the right personality type and skill set, or
by taking these aspects into account while planning operators.

Our agent-based approach is more time consuming to perform than most other vul-
nerability assessment methodologies and requires a large amount of data for calibration.
Other vulnerability assessment methodologies form better alternatives in cases with a
lack of time or data, but our approach is particularly suitable to investigate vulnerabili-
ties in which human behavior plays a role. A more in-depth discussion about the advan-
tages and disadvantages of the use of agent-based modeling is discussed in Chapter 2.
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3.6. CONCLUSION
In this chapter, we investigated how the decision-making and performance of human
operators can be taken into account while assessing vulnerability at airport security
checkpoints. Following the AbSRiM approach of Chapter 2, we developed an agent-
based model, in which the performance of these operators was modeled using the func-
tional state model, while decision making was modeled using decision field theory.

Simulation results indicate that the highest skilled operators outperform their lowest
skilled counterparts on analyzing X-ray images, but perform worse on both searching
luggage and performing patdowns. This leads to similar differences in security check-
point vulnerabilities as well. These skilled operators find their tasks too easy and are
unable to motivate themselves to put in the required effort. Furthermore, the goals the
operator focuses on during the decision-making process were found to influence vul-
nerability. A high focus on accuracy or perceived risk for the X-ray operator leads to
an increase in luggage searches, and therefore reduced vulnerabilities. However, a high
focus on speed leads to a decrease in luggage searches and therefore increased vulner-
ability. The developed model can be used to assess the effect of human behavior and
decision making on the performance of current and future security checkpoint proce-
dures, which is often impossible using real-live experiments. More work is needed to
calibrate and validate the model and simulation results, but initial results are promising.

This chapter can be extended by investigating how other types of security measures
(i.e., behavior detection officers) influence the vulnerability of the security checkpoint.
Furthermore, the influence of the time that the attacker is generated can be investigated
in future work. The vulnerability with respect to other threat scenarios (i.e., a bomb
attack before the security checkpoint) can be investigated as well. In Chapter 4 we will
investigate how security risks are related to airport efficiency metrics, such as queuing
time at the security checkpoint. Finally, the model can be calibrated better by using
classified data on sensor performance, operator performance and attacker behavior.





4
SECURITY AND EFFICIENCY

Both security and efficiency are important performance metrics of air transport systems.
In this chapter, we extend the AbSRiM approach as proposed in Chapter 2 to additionally
identify relationships between security risks and efficiency performance indicators. We
apply the methodology to a case study that analyzes security regarding an Improvised Ex-
plosive Device (IED) attack. In addition, different commonly used efficiency performance
indicators in the aviation domain, such as queuing time for passengers, and the relation-
ships between security and efficiency is analyzed.

This chapter has previously been published in the Transportation Research Part C: Emerging Technologies
journal (2019) [139].
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4.1. INTRODUCTION
Improving the security and efficiency of airports are two of the most important strate-
gic objectives of the International Civil Aviation Organization (ICAO) [140]. Apart from
ICAO and airports themselves, the research community has shown interest in methods
to estimate and improve both security and efficiency.

Airport terminal efficiency has been studied using a wide range of different approaches.
For instance, data driven approaches utilize airport data to estimate their efficiency [141,
142], while Bayesian models have been used to more efficiently process the vast amount
of airport data [143]. Moreover, traditional simulation studies estimate efficiency in cur-
rent and hypothetical scenarios [144, 145]. Finally, agent-based simulation methods
were used to more accurately incorporate heterogeneous passenger behavior [146, 147].

Airport security is driven by a large set of rules and regulations defined by a variety of
institutes. For instance, ICAO has a security manual [124], the European Union has reg-
ulations [121, 122], and the United States has the Aviation and Transportation Security
Act [123]. These rules and regulations form the basis for the implementation of security
measures at airport terminals, but airports still have some freedom to implement these
measures according to their preferences.

To assess (and/or improve) airport terminal security, many methods have been pro-
posed in literature. Most commonly, the so-called threat-vulnerability-consequence (TVC)
methodology is used in practice. Many variants of the TVC methodology exist: the Risk
Analysis and Management for Critical Asset Protection (RAMCAP) approach [9], the ICAO
security manual [124], the security risk assessment handbook [7], and the RAND terror-
ism risk estimation handbook [8]. In the TVC methodology, security risks are estimated
based on three threat components: threat likelihood, vulnerability and consequence.
These components are individually assessed by security experts, and are used as a guide
to implement security measures. The TVC methodology heavily depends on security ex-
perts, who cannot take into account all complex processes and interactions at an airport
terminal (see also Chapter 2).

To overcome the dependency on security experts, researchers have developed an-
alytical methods to assess security risks, as also discussed in Chapter 1. Some of these
methods recognize that security and efficiency are related. However, many of the security-
oriented studies only consider efficiency as a constraint, while most efficiency-oriented
studies model security measures only as an efficiency bottleneck [144]. A notable ex-
ception to this is the work of Wilson et al. [148], in which efficiency and security are
estimated simultaneously using a simulation method. However, this work lacks a formal
methodology and uses a basic notion of security by only incorporating vulnerability in
their analysis. Moreover, the work of Kirschenbaum [149] investigates tradeoffs between
security and efficiency using informal quantitative methods, but does not follow a for-
mal analytical methodology. Finally, Grant and Stewart performed a traditional security
risk assessment on an Improvised Explosive Device (IED) attack, while taking into ac-
count costs for the airport [44]. Their work concerned a higher-level tradeoff between
costs and security, while other efficiency performance indicators may be of influence as
well.

The goal of this chapter is to develop a formal methodology to analyze security, effi-
ciency, and identify and quantify relationships between them, using agent-based mod-



4.2. METHODOLOGY

4

45

eling as a central paradigm. Agent-based modeling forms a promising paradigm, as it
allows for detailed analysis of security, efficiency and their corresponding relationships,
which is often hard in the above-mentioned modeling frameworks. Agent-based models
are important tools to better understand complex systems, such as airports. Attackers
and defenders can naturally be represented by agents with diverse strategies and non-
linear interactions between them. Agent-based modeling therefore forms a promising
paradigm in which both efficiency and security can be estimated simultaneously.

Other security risk assessment methodologies, such as attack trees, often transform
airport operations to a group of linear relations, which limits the modeling capacities
of these methods. Complex interactions, such as the detection of an ongoing attack by
a behavior-detection employee cannot be modeled in such paradigms. Furthermore,
spatial-temporal elements, such as the position of passengers over time, are hard to in-
corporate in these methods. Moreover, most other security risk assessment approaches
either do not consider efficiency performance indicators at all, or consider efficiency as
a constraint. Alternatively, discrete event simulations can be used to perform this type
of analysis. However, in discrete event simulations “the entities do not actively follow
individual incentives and do not interact but pass through the model according to the
underlying sequence of operations” [49]. In this work, we incorporate human behavior
and the interactions between agents (for instance the behavior-detection employee and
the attacker), which fits the agent-based paradigm better.

The methodology proposed in this chapter extends the AbSRiM approach of Chap-
ter 2. It consists of four steps: scope selection, agent-based model definition, security
and efficiency estimation, and analysis of simulation results. The steps of the AbSRiM
approach are combined with a typical agent-based approach to analyze efficiency of op-
erations. We apply our methodology to a case study in which we analyze security re-
garding an IED attack, commonly used efficiency performance indicators at an airport
terminal, such as queuing time for passengers and number of employees, and their cor-
responding relationships.

Section 4.2 introduces the proposed methodology, while the rest of the chapter ap-
plies the methodology to a case study described in Section 4.3. In Section 4.4 the corre-
sponding agent-based model is introduced, and in Section 4.5 the estimation of security
risks and efficiency performance indicators relative to the case study is described. Fi-
nally, in Section 4.6 the simulation results are analyzed and discussed.

4.2. METHODOLOGY
Our methodology to analyze security risks, efficiency performance indicators and cor-
responding relationships contains four main steps, outlined in Figure 4.1. The first step
is used to determine the scope of the analysis. It is further discussed in Section 4.2.1.
The second step, agent-based model definition, forms the basis of the analysis. In this
step, an agent-based model is defined that will be further used to estimate efficiency
performance indicators and assess security risks. This step is further discussed in Sec-
tion 4.2.2. Based on the defined models, security risks are assessed and efficiency perfor-
mance indicators are estimated by means of Monte Carlo simulations in the third step
of the methodology (Section 4.2.3). Finally, in the fourth step the simulation results are
analyzed (Section 4.2.4).
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Figure 4.1: The methodology used in this chapter.

Steps 1(a,c,d) and 3(b) are used in most variants of the TVC methodology. These
steps are complemented by the additional steps 2(b) and 4(b), which were previously
discussed in the AbSRiM approach of Chapter 2. Furthermore, a typical agent-based
approach for estimation of efficiency of operations follows steps 1(a-b), 2-4(a). This
methodology integrates these approaches, while adding step 4(c) to find relationships.

4.2.1. SCOPE SELECTION

In this first step the scope of the project is defined. The first step is the selection of the
specific operational processes and assets to focus on. For the airport domain, an ex-
ample process can be the check-in process at the airport terminal, while assets can be
passengers or the airport terminal building. Based on the selected domain, a set of effi-
ciency performance indicators has to be selected and a set of security threats have to be
characterized. Based on the characterized security threats, specific threat scenarios for
each of the threats are constructed. Efficiency performance indicators are used to quan-
tify a specific element of efficiency in the selected domain, related to efficiency goals of
the airport. In the airport domain, this can for example be the average queuing time for
passengers. An example threat scenario is the following: a single attacker brings an IED
to a regional airport and detonates it in a publicly accessible area of the airport.
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4.2.2. AGENT-BASED MODEL DEFINITION
For the above selected scope of the project, the agent-based models M and M1, . . . , Mn

are defined. The operational model M is defined to model the selected operations of
the domain and is used to estimate efficiency performance indicators selected in the
previous step.

Model M defines an environment that represents the environment of the domain
area. Then, a set of agents that execute the standard operations in the domain is de-
fined. In an airport, this can for example be passengers or check-in employees. Finally,
a set of defender agents is defined. In the context of airports, these can for instance be
behavior-detection employees or X-ray officers. These defender agents can additionally
have operational task, such as helping passengers find directions.

The model forms the basis for security models M1, . . . , Mn . These models are used to
represent the n threat scenarios in S, which are in turn used to estimate security risks
related to the corresponding threat scenario. Each model Mi defines a non-empty set of
attacker agents, on top of the components already present in M . The attacker agents ex-
ecute the attacker behavior in threat scenario si , while the defender agents try to prevent
the attackers from being successful.

Both a modeling language and an agent architecture need to be selected to specify
the models. A modeling language should at least include the following abilities: (1) rep-
resentation of time; (2) representation of stochastic processes; (3) specification of both
qualitative and quantitative aspects; and (4) representation of behavioral and cognitive
properties of agents and interaction between agents. The following elements should at
least be present in an agent architecture: (1) observation and action; (2) storage of in-
formation; (3) maintenance of goals; and (4) reasoning. The Temporal Trace Language
(TTL) [82] and LEADSTO [83] are example languages. The BDI architecture [84], and
the Desire architecture [86] are example architectures. A more extensive discussion on
language selection and architecture selection is provided in Chapter 2.

4.2.3. SECURITY & EFFICIENCY ESTIMATION
The third step of the methodology is the estimation of efficiency performance indicators
and assessment of security risks from simulation results. A set of efficiency performance
indicators and security risks are generated, that are used to identify and quantify rela-
tionships in the next step.

EFFICIENCY PERFORMANCE INDICATOR ESTIMATION

Efficiency performance indicators are estimated by performing Monte Carlo simula-
tions. These Monte Carlo simulations are performed with model M . By extracting rel-
evant information from simulation results of M , each of the efficiency performance in-
dicators defined in 1(b) are estimated. For example, the average queuing time of pas-
sengers can be obtained by averaging over the queuing time for each of the passengers
present in the simulation model.

SECURITY RISK ASSESSMENT

For each threat scenario si ∈ S defined in step 1(d), a corresponding security risk ri is
calculated based on simulation results of model Mi defined in step 2.
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An agent-based security risk management methodology is used following the Ab-
SRiM approach of Chapter 2. A security risk ri is defined for some time period T as a
function of Threat Likelihood and Conditional Risk, as outlined below.

R(si ,T ) = f (P (si ,T ),Rc (si ))

Risk R(si ,T ) (or ri in short) is the risk value for threat scenario si in time period T .
Conditional risk Rc (si ) is estimated as follows. For each threat scenario si and asset al

(as defined in the scope selection), a real-valued Consequence function C (M j
i , al ) is de-

fined. This function is used to determine the Consequence value for some simulation
run j in model Mi . This Consequence function incorporates estimates of direct losses
and indirect losses. Direct losses for instance include fatalities and physical damages of
a simulated threat scenario. Indirect losses, such as decreased number of future passen-
gers and business disruptions, are then based on the estimated direct losses and histor-
ical data.

Monte Carlo simulations are performed to estimate conditional risk based on a set of
N simulation runs. This is done by calculating the following estimate of conditional risk
for some scenario:

R̂c (si ) =
∑N

j=1

∑
al∈A C (M j

i , al )

N

where C (M j
i , al ) is the consequence for asset l in simulation run j of model Mi . R̂c (si )

is the estimated conditional risk for scenario si . By calculating the ratio between the
number of nonzero consequence values and N (i.e., the total number of consequence
values), the vulnerability of the scenario can be obtained. The mean of the nonzero
consequence values corresponds to the consequence of the scenario.

Threat likelihood P (si ,T ) for threat scenario si is estimated independently from model
Mi . Commonly, crime databases and intelligence data are used to estimate the Threat
Likelihood [44].

4.2.4. ANALYSIS OF SIMULATION RESULTS
Simulation results are analyzed following a structured approach. First, the influence of
model parameters on efficiency performance indicators is established using statistical
analysis techniques. For instance correlation analysis, or more advanced methods such
as (global) sensitivity analysis [65, 150, 151] and uncertainty analysis [151] can be used.
Similarly, the influence of model parameters on security risks is established using the
same techniques.

Relations between model parameters, security risks, and efficiency performance in-
dicators are obtained in this step. This is done by determining which parameters influ-
ence both security risks and efficiency performance indicators. By analyzing emergent
effects in the defined agent-based models, unexpected relationships can be identified as
well.

4.3. CASE STUDY
The remainder of this chapter applies this methodology to analyze security and effi-
ciency, and identify and quantify relationships between them in the domain of a small
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airport terminal. The reference airport handles under 2 million passengers per year and
has a centralized security checkpoint. The operations that are included in the study are:
check-in, facility visits, security checkpoint operations, queuing, gate processes and the
movement of passengers between these processes. We focus on a single asset: humans
(i.e., all passengers and employees). A visualization of the airport terminal used in this
case study is shown in Figure 4.2.
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Figure 4.2: The airport layout of the case study, with indicators for different areas. A, B and C are facility areas.
D is the check-in area and E are queuing areas. F is the checkpoint area, G is the gate area and H is the entrance
area.

We focus on a single threat: a bomb attack in the open areas of the airport terminal,
as for instance seen at the Atatürk Airport attack and the Zaventem Airport attack. Based
on this threat, two threat scenarios in which an attacker aims to detonate an IED in the
open areas of the airport are represented: an early attack and a late attack.

Five efficiency performance indicators are defined: number of employees n, mean
time in checkpoint queue over all passengers Tqueue , mean time to gate over all passen-
gers Tg ate , number of missed flights miss, and monetary loss loss.

We focus this case study on three main research questions, as outlined below.

• How does the number of passengers influence the identified efficiency perfor-
mance indicators and the security risk with respect to the security threat?

• How does the number of checkpoint lanes influence the identified efficiency per-
formance indicators and the security risk with respect to the security threat?

• How does the number of behavior-detection employees and their respective strate-
gies influence the identified efficiency performance indicators and the security
risk with respect to the security threat?

4.4. AGENT-BASED MODEL
Three agent-based models for the above selected scope are defined. We refer to the op-
erational model as M , while the model that includes the threat scenario is referred to as
Mi ed . The modeling language is discussed in Section 4.4.1, and the agent architecture is
discussed in Section 4.4.2. The operational model and the security models are discussed
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in Section 4.4.3 - Section 4.4.4. Section 4.4.5 finally describes the parameters used in the
models.

4.4.1. MODELLING LANGUAGE

To specify the dynamics of a multiagent system, the order-sorted predicate logic-based
language called LEADSTO is used [83]. This language allows both discrete and continu-
ous modeling of a system at different aggregation levels. Furthermore, one can express
both qualitative and quantitative aspects of a system using LEADSTO.

Dynamics in LEADSTO are represented as evolution of states over time. A state is
characterized by a set of properties that do or do not hold at a certain point in time. To
specify state properties for system components, ontologies are used that are defined by a
number of sorts, sorted constants, variables, functions and predicates (i.e., a signature).
For every system component A, a number of ontologies can be distinguished: the on-
tologies IntOnt(A), InOnt(A), OutOnt(A), and ExtOnt(A) are used to express respectively
internal, input, output and external state properties of the component A. For a given
ontology Ont , the propositional language signature consisting of all state ground atoms
based on Ont is denoted by APROP(Ont). State properties are specified based on such
ontology by propositions. Propositions are formed, combining ground atoms by logical
operators such as conjunction, negation, disjunction, and implication. Input ontolo-
gies contain elements for describing perceptions of an agent from the external world,
such as the observed function obs: IntOnt(A) → APROP(IntOnt(A)). Output ontologies
describe actions and communications of agents. To this end, the function performed:
ACTION → APROP(OutOnt(A)) is introduced. Then, a state S is an indication of which
atomic state properties are true and which are false: S: APROP(Ont) → {true, false}.

time
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Figure 4.3: Timing relationships for LEADSTO expressions.

LEADSTO enables modeling of direct temporal dependencies between two state prop-
erties in successive states, also called dynamic properties. A specification of dynamic
properties in LEADSTO is executable and can be depicted graphically. The format is de-
fined as follows. Let α1 and α2 be state properties of the form ‘conjunction of atoms
or negations of atoms’, and e, f , g ,h non-negative real numbers. In the LEADSTO lan-
guage the notation α1 �e, f ,g ,h α2 means: if state property α1 holds for a certain time
interval with duration g , then after some delay (between e and f ) state property α2 will
hold for a certain time interval of length h (Fig. 4.3). To indicate the type of a state prop-
erty in a LEADSTO property we shall use prefixes i nter nal (c), input(c), output(c) and
external(c), where c is the name of a component. Consider an example dynamic prop-
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erty:

i nput (A)|obs(ar r est_fail)�0,0,1,1

out put (A)|performed(detonate())

Informally, this example expresses that if agent A observes a failed arrest during some
time unit, then A will detonate an IED in the following time unit. Next, a trace or trajec-
tory γ over a state ontology Ont is a time-indexed sequence of states over Ont (where
the time frame is formalized by real numbers). A LEADSTO expression α1 �e, f ,g ,h α2,
holds for a trace γ if:

∀t1[∀t [t1− g ≤ t < t1 ⇒α1 holds in γ at time t ]

⇒∃d [e ≤ d ≤ f &∀t ′[t1+d ≤ t ′ ≤ t1+d +h

⇒α2 holds in γ at time t ′]]

More details on the semantics of the LEADSTO language can be found in [83].

4.4.2. AGENT ARCHITECTURE
Agents are modeled following an adapted version of the AATOM architecture visual-
ized in Figure 4.4. The architecture is loosely based on a framework of Blumberg [152],
Hoogendoorn [153] and Reynolds [154]. It is described in detail in a technical report [155].

Strategic Layer

Tactical Layer

Operational Layer

Perception
Module

Actuation
Module

Observations Actions

Activity Module

Navigation

Module

Activity
Activity

Activity 1

Interpretation

Module

Belief Module

Reasoning Module

Planning
Decision

Making

Analysis

Goal Module

Goal 1
Goal 1

Goal 1

Belief Module

Figure 4.4: The AATOM architecture and its different modules.

In this architecture, three layers are distinguished, namely the operational layer, the
tactical layer and the strategic layer. Each of these layers has a set of modules that ex-
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ecute specific tasks. The operational layer is responsible for doing observations (per-
ception module) and performing actions (action module). Communication with other
agents is also executed by the action module. Based on observations, actions and in-
ternal states the belief module maintains a belief in the tactical layer. That layer is also
responsible for navigation (navigation module) and activity execution (activity module).
Finally, the strategic layer maintains a higher level belief (strategic belief module) and
generates a plan (planning module). A plan is defined as an ordered sequence of activ-
ities that are executed by the agent. For each agent in the model, relevant modules are
described in more detail.

Activities form a central concept in this architecture. They have a starting condi-
tion, a set of actions that have to be executed and an ending condition. Based on these
conditions, an activity is defined to be in either of the three different activity states:
not_started, in_progress, finished. All activities start in the not_st ar ted state and switch
to the i n_pr og r ess state when the starting condition is met. Finally, they switch to
the finished state when the ending condition is met. The activity state is represented
as follows: activity_state: ACTIVITY ×ACTIVITY _STATE → APROP(IntOnt(A)). In addi-
tion, an activity can be the next activity in the planning of an agent (determined by the
planning module). This is defined in the following function: next_activity: ACTIVITY →
APROP(OutOnt(A)) is introduced.

Employee agents and attacker agents only have a single activity they can perform,
while passenger agents can execute more activities. They therefore plan their activities
following a set of simple rules, explained in more detail in Section 4.4.4.

4.4.3. ENVIRONMENT

The airport terminal environment consists of several elements, categorized into four dif-
ferent categories: physical objects, IEDs, areas and flights. A visualization of the airport
terminal environment is shown in Figure 4.2.

Two types of physical objects, wall and desk, are defined. An IED is defined by its lo-
cation, the number of particles and mass. It is carried by an attacker, denoted carried_by
(ied,attacker). Areas are used to specify functionality of regions in the airport termi-
nal, where check-in_area, checkpoint_area, facility_area, queuing_area, gate_area and
entrance_area are the types of areas present in the model. Some areas, such as the
gate_area, are accessible to passengers only after execution of the checkpoint_activity
(airside), while others, such as the entrance_area, are publicly accessible (landside). Fi-
nally, a flight is defined to be an abstract concept with the following properties: depart
s_at (flight, ft i me ), has_gate(flight,gate_area) and has_desk(flight ,desk). The value ft i me

is the time at which the flight departs. The flight also has at least one desk that passen-
gers use for checking in and exactly one gate_area.

4.4.4. AGENTS

The model M contains three types of agents, namely: passengers, operational employees
and behavior-detection employees (BDE). The last two agent types are also the defender
agents in the model. We assume that there are no other persons, such as visitors, as they
form a very small part of the population in the airport under consideration. All agents are
human agents and are designed using the framework discussed in Section 4.4.2. These
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agents are discussed in more detail in subsequent sections.

PASSENGER AGENT

Passengers are agents that depart with some flight f in the environment. They are char-
acterized by the following five properties: arrival time tarrival, level of disorientation d ,
suitability of luggage s, checked-in c and facility visitor y .

The arrival time tarrival is the time at which the passenger is generated (in the entrance
_area). The level of disorientation d refers to how disoriented or confused the passenger
appears in the airport, and the suitability of luggage s refers to how well the luggage of
the passenger fits the appearance of the owner. For example, a business traveller with a
large suitcase has a low suitability of luggage. Both these properties are conceptualized
with a real number. These properties are important indicators that are used in the SPOT
program of the TSA [137, 138]. In the SPOT program, officers assign points to passengers
to quantify their danger to the airport. If the points assigned to a passenger exceed a
threshold, a secondary screening is initiated.

Checked-in c is a Boolean value indicating whether the passenger is already checked-
in on arrival, and facility visit y indicates which facility the agent will visit (none, bathroom,
restaurant, shop). Passengers can observe physical objects and other agents that are in
line of sight within a radius robs . Furthermore, passengers can observe the area that
they are in, and the flight they are taking. Finally, a wait request communicated by other
agents can be observed.

Based on these observations, passengers find a collision free path between the dif-
ferent activity locations using the Jump Point Search pathfinding algorithm [156], some-
times used in pedestrian simulators [157]. This is executed by the navigation module,
and done when all activities are in the not_started activity state or when an activity
switched from in_progress to finished. Passengers follow their generated path (using the
action module) by changing their location point using the Social Force model defined by
Helbing and Molnar [158]. Passengers can also wait for a specified time tw ai t .

Passengers can perform the following activities: check-in_activity, checkpoint_activity,
facility_activity and gate_activity. These activities are planned (in the order as they ap-
pear) by the planning module. The checkpoint and gate activity are always executed by
agents, while the check-in and facility_activity are only executed if the prop -i n_activity,
checkpoint_activity, facility_activity and gate_activity. These activities are planned (in
the order as they appear) by the planning module. The checkpoint and gate activity are
always executed by agents, while the check-in and facility_activity are only executed if
the property checked-in c is false or the property facility visit f is not none, respectively.
If the check-in_activity or checkpoint_activity, cannot be executed (when all activity ar-
eas are occupied), passengers perform a wait action in the nearest queuing area until an
activity area becomes free. Passengers are removed from the model when t = Ft i me .

The check-i n_acti vi t y is executed in a check-in area and consists of a wait action.
The activity starts when the passenger observes a wait communication of an employee.
The checkpoint activity is executed in a checkpoint area and consists of the same steps as
the check-in activity. The facility_activity consists of a wait action. The time of the wait
action depends on the type of facility f that is visited. Finally, the gate activity is executed
in the gate area of the flight of the passenger and consists of a single wait action until the
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flight leaves. The LEADSTO properties below formalize the gate activity.

i nput (A)|obs(flight)∧obs(g ate_ar ea)

& exter nal (A)|has_gate(flight,gate_area)

& i nter nal (A)|next_acti vi t y(g ate_acti vi t y)�Ft i me−t ,Ft i me−t ,1,1

out put (A)|performed(w ai t (Ft i me − t ))

out put (A)|performed(w ai t (Ft i me − t ))�0,0,1,1

i nter nal (A)|acti vi t y_st ate(g ate_acti vi t y,finished)

ATTACKER AGENT

The attacker agent is modeled in the models Mied−early and Mied−late. It is a human agent,
like passengers, characterized by its arrival time tar r i val and the level of disorientation
d , suitability of luggage s. In Mied−early , the attacker has an early tarrival, while this is late
in Mied−late. The attacker agent has a single goal: achieve as many fatalities at the airport
as possible.

To achieve this goal, it can observe physical objects, passengers and attackers in ra-
dius robs . The attacker can further determine the area it is currently in. The number of
passengers at the checkpoint area and the check-in area can also be observed, regard-
less of the observation radius. This can be due to communication with other attackers,
or observation using tools. Finally, the attacker can observe that it is being arrested by a
BDE.

The attacker carries an IED that it uses to cause fatalities. To be able to be successful
(from an attacker’s perspective), the attacker executes the attacker_activity. The activ-
ity consists of three phases: target selection, movement to target and execution of attack.
The target selection is based on a single criterion, namely the observed number of people
in the checkpoint_area and the check-in_area. The attacker chooses the target with the
highest number of passengers, independent of its characteristics. In the second phase,
the attacker moves from the arrival location to the target area. The attacker can then be
observed by a BDE (if present), resulting in one of two outcomes. With a probability of
parrest the attacker is arrested and cannot finish the attack, while otherwise the attacker
detonates the IED on the spot. This was for instance seen in attacker behavior at the
Atatürk Airport attack of 2016 [2]. If the attacker was not observed by any BDE, it contin-
ues moving to the target area, where phase three is initiated. In this phase, the attacker
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detonates the IED. The LEADSTO properties below formalize the activity.

tar r i val = t �0,0,1,1 i nter nal (A)|path(t ar g et )

i nter nal (A)|path(t ar g et ))�1,tmove ,1,1

pr ob(out put (A)|performed(move(t ar g et )), p) & pr ob(i nput (A)|obs(ar r est ),1−p)

i nput (A)|obs(t ar g et )∨obs(arrest_fail)�0,0,1,1

out put (A)|performed(detonate())

out put (A)|performed(detonate()) || i nput (A)|obs(ar r est )�0,0,1,1

i nter nal (A)|acti vi t y_st ate(at t acker _acti vi t y,finished)

OPERATIONAL EMPLOYEE AGENT

The operational employee can observe a single passenger at a time in a small radius.
It can execute a single action, namely the communication of a wait request. This ob-
servation and action is used in the single activity the standard employee executes: the
employee_activity. This activity consists of the communication of a wait order (of a spec-
ified time tw ai t ) to the passenger, when a passenger is observed. The standard employee
interacts with passengers that either perform the check-in_activity or the checkpoint_activity.

BEHAVIOR-DETECTION EMPLOYEE AGENT

The behavior-detection employee can observe physical objects, passengers and attack-
ers in radius robs and in direct line of sight. They cannot be observed to be a BDE by
attackers or passengers, as it operates undercover.

Three different strategies can be employed by the BDE: static observation, dynamic
observation and intelligent observation. When performing static observation, the BDE
positions itself at the queue in front of the security checkpoint and executes its job there.
For dynamic observation, the BDE constantly moves between two areas: the checkpoint
_area and the check-in_area. Finally, when performing intelligent observation, the BDE
estimates every tintelligent seconds which area has most passengers. The BDE will then
move to the area with the highest number of passengers and performs its job there.

The BDE randomly chooses one agent of these observed agents (that it did not eval-
uate yet) to evaluate if it is an attacker or not. To do that, the BDE assigns points to the
observed agent based on the SPOT program [137, 138, 159]. First, a threshold dthreshold

is defined for level of disorientation d . If the observed agent has a level of disorientation
d > dthreshold, two points are assigned. Moreover, the suitability of luggage s is com-
pared against a threshold sthreshold. If the agent exceeds the threshold, three points are
assigned. Finally, if the difference between the arrival time tarrival and the flight time of
an agent exceeds the threshold fthreshold, one point is assigned. If the number of points
exceeds four, the BDE attempts to arrest the agent. If the agent is a passenger, the pas-
senger is arrested and the BDE will leave the airport terminal with the passenger. If the
agent is an attacker, the ar r est action is executed with a success rate of parrest , while
the arrest_fail action is executed otherwise. If the arrest action is executed, the attacker
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Table 4.1: The model parameters that were varied in the experiments.

Parameter Values
Number of flights f 1, 2, 3 flights
Number of checkpoint lanes open l 2, 3, 4 lanes
Number of check-in desks open k 3, 5 desks
Number of BDEs d 0, 1, 2 empl.
BDE strategy static, dynamic, intell.
Attacker time early, late

is stopped and will not detonate the IED. If the arrest was not successful, the attacker
detonates the IED on the spot.

It takes some time tevaluation to evaluate the agent. This time is calculated as follows:

tevaluati on = tmax− (c1 ·abs(dthr eshol d −d) +
c2 ·abs(sthr eshol d − s))

where tmax is the maximum time that a BDE spends on evaluation of agents, and the ci ’s
are constant. This relationship indicates that passengers with traits close to the thresh-
old take longer to evaluate than passengers that are not.

The BDE uses the above described observations and actions to execute the behavior
_detect_activity. In this activity, the BDE moves between a list of locations locati on_l i st
in the airport terminal, while checking if it observed an attacker. When this is the case,
the employee tries to arrest the attacker.

It is noted that both the attacker and the BDEs can be modeled to be more complex
than the current form. For example, more strategic behavior (i.e., a small decoy attack) in
both the attacker and the BDEs can be included. Collaboration between teams and cam-
era observations could also be added. For now, this is beyond the scope of this chapter.

4.4.5. MODEL PARAMETERS
Five model parameters were defined and shown in Table 4.1. Other internal parameters
of the models are discussed Section 4.6.1.

Passenger arrival at the airport follows a distribution based on the number of flights
f and data collected at the regional airport. This has a direct influence on the num-
ber of passengers present within the model over time. The number of checkpoint lanes
open refers to the number of passengers that can perform the checkpoint_activity si-
multaneously. This influences the number of employees directly as follows: ncheckpoint =
4l+mod(l ,2). This relationship indicates that it is beneficial to open checkpoint lanes in
pairs, as also recommended by IATA [104]. The number of check-in desks open refers to
the number of check-in desks through which a passenger can check in. An open check-in
desk requires a single employee. The number of BDEs present influences the number of
employees present, and potentially the effectiveness of the defense. Furthermore, three
BDE strategies are defined: static, dynamic and intelligent. Some of these parameters
cannot be influenced by the airport directly. For example, the number of flights also de-
pends on airlines, and the number of BDEs has to be determined in collaboration with
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regulators. Finally, the attacker time tattack defines the time that the attacker executes its
attack.

4.5. ESTIMATION OF SECURITY AND EFFICIENCY
The third step of the proposed methodology estimates security risks and efficiency per-
formance indicators based on the agent-based models described above. They are dis-
cussed in detail below.

4.5.1. EFFICIENCY ESTIMATION

The efficiency performance indicators, as defined in Section 4.3 are calculated as follows.
The time in checkpoint queue for passengers Tqueue is measured by calculating the time
a passenger spends in the queui ng _ar ea closest to the checkpoi nt_ar ea. A passenger
is considered to have missed its flight if it is not in the g ate_ar ea at time ft i me . We define
loss as follows:

loss = ((|Pmax |− |P |) · revp −miss · cmi ss

where |Pmax | is the maximum number of passengers that the airport can process. P is
the set of passengers that arrived on the flight day and r evp is the mean revenue per
passenger. Furthermore, cmissed is the costs that an airport has for each passenger that
misses a flight. The other efficiency performance indicators, number of employees and
time to gate, are trivially obtained from the simulation results. For each of the defined
efficiency performance indicators it holds that lower is better.

4.5.2. SECURITY RISK ASSESSMENT

As defined in Section 4.2.3, the Consequence function needs to be defined. Furthermore,
Threat Likelihood has to be estimated independently from the models. Both of these
elements are described in more detail below.

IED CONSEQUENCES

As an IED attack at an airport terminal is modeled, a Consequence model is defined
to estimate the number of lives lost after an attack. The model is based on the work
of Pope [160], who designed a prediction tool that is able to quickly assess the human
injury after a terrorist attack. The Consequence model described below forms the Con-

sequence function C (M j
i ed ).

It is argued that there are two main causes for fatalities after an IED attack: blast wave
propagation and fragmentation injuries. While other factors are of influence on human
injuries, only these two elements are considered in this model.

Blast wave prediction The explosion of an IED causes the release of a lot of energy,
resulting in the propagation of a blast wave. Rapid changes in pressure are associated
with this blast wave and can cause injury or death. Kingery and Bulmash [161] show that
there is a relation between the mass of the explosive, the distance to the explosive, and
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the incident pressure P . This relation is outlined below:

z = d

mass1/3

U = k0 +k1 log10 z

P = c0 + c1U + c2U 2 + . . .+ cnU n

where d is the distance in meters between the IED and the target and mass is the IED
mass in kg. The ki ’s and ci ’s are constants, while P refers to the incident pressure in kPa.
The relationship above assumes an unobstructed path between the IED and the target,
while in practice walls and other physical objects can reflect the pressure wave. This is
modeled by generating imaginary IEDs on a commensurate location on the other side
of the wall. Walls are then ignored and the pressure contributions from both sources are
superimposed to find the total pressure at a specific location.

The incident pressure at the location of each human agent is recorded and translated
to a fatality probability, based on the work of Zipf and Cashdollar [162]. Finally, a random
number is drawn to determine if the agent survived or not. The number of fatalities
caused by the incident pressure is referred to as cbl ast .

Fragmentation Prediction Apart from fatalities due to pressure changes, injuries and
fatalities can arise due to the presence of fragments. Two types of fragments are distin-
guished: primary fragments and secondary fragments. Primary fragments are the frag-
ments that are present within the IED, while secondary fragments are the fragments that
originate from the environment (i.e., ceiling or other objects in the environment). Here,
only a set of K primary fragments originating from the IED are considered. The initial
directionΘinit of a fragment is determined using a uniform distribution, while the initial
speed vinit is set to be a constant.

The fragment will then move around the environment following a Newtonian motion
model. If the path of the fragment intersects with a human, the distance that it covers
within the human body (called depth of penetration, DOP ) is recorded. A truncated lin-
ear relation between fatality probability and DOP is assumed. Finally, a random number
is drawn to determine if the human survives or not, for each human that survived the
blast impact. The number of human fatalities caused by fragmentation is referred to as
cfrag .

Consequence Function The Consequence function is then defined to be the sum of
the fatalities caused by the blast wave and the fragmentation.

C (M j
i ed , a1) = cbl ast + c f r ag

In this function only the fatalities are taken into account. A more extended approach
could also take into account injuries, damages to physical structures and indirect conse-
quences, but this is currently beyond the scope of this chapter.
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THREAT LIKELIHOOD

Threat likelihood is based on the work of Grant and Stewart [44], which in turn is based
on historic data originating from a terrorist database [163]. From this database, it was
obtained that historically there were an average of 1.7 IED attacks on airport terminals
in Western countries each year [164]. Based on an estimate of 100 to 200 large hub air-
ports, Grant and Stewart finally obtain an estimate of 0.5-2.0%. This percentage means
that there is between 0.5% and 2% chance per airport terminal per year that someone at-
tempts to attack it. As small airports seem less likely to be a target for terrorists, we chose
a conservative likelihood of 0.5% for such an attack. As this estimate is based on histor-
ical data, it may very well be inaccurate. Data from intelligence agencies can provide
more accurate estimates of threat likelihood.

4.6. EXPERIMENTS & RESULTS
Experiments performed with the above discussed model are presented in this section.
The setup of the experiments is discussed in Section 4.6.1 and the results are discussed
in Section 4.6.2.

4.6.1. MODEL CALIBRATION & EXPERIMENTAL SETUP

We have calibrated the model based on airport data, literature data, and assumptions
if no data could be obtained. The calibrated parameters are found in Appendix A. We
simulate a flight morning, between 05:00-07:00, where 05:00 corresponds to t = 0 sec. All
flights are defined with the same departure time, which is standard practice in the airport
under consideration. This is due to noise restrictions that are enforced on the airport.
We assume a load factor of 0.75 for all aircraft, leading to 135 passengers per flight. The
layout of the airport was shown in Figure 4.2. Revenue per passenger is based on an ACI
economics report [165], while the costs per missed flights are based on assumptions. The
proportion of checked-in passengers was based on estimates of airport managers. The
actual proportion can be obtained from airline data, which was unavailable for airport
managers. No data was available for the facility visits at the airport, so this was based on
assumptions.

The desired speed was assumed to be 1 m/s, and only individual passengers were
considered. We assumed a single carry-on luggage for passengers that were checked-in,
and an additional checked luggage for passengers that were not checked-in. Based on
discussions with airport managers, we assumed that 20% of passengers arrive in the first
half hour, 60% of passengers arrive in the second half hour, and the remaining 20% of
passengers arrive in the third half hour. Passengers in these blocks are generated using a
Poisson distribution with an arrival rate that ensures that the right number of passengers
arrive. Check-in times were based on estimates by airport managers. The checkpoint pa-
rameters were obtained by fitting a distribution over 102 manually collected checkpoint
processing times between 05:00 and 07:00 at the airport on March 22nd 2017.

The observation radius robs of agents was assumed to be equal to 10 meter. The
behavior-detection employee parameters were calibrated as follows. We assumed that
a BDE arrests 0.025 passenger per hour, which falls within the range provided by the
United States Government Accountability Office report [137]. Assuming that both pas-
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senger disorientation d and passenger luggage suitability s follow a normal distribution
with mean 0 and variance 1, the BDE thresholds dthres and sthres become 2.395. We as-
sumed that following the SPOT program, 75% of the time an attacker is observed. This
leads the attacker disorientation d and attacker luggage suitability s to follow a normal
distribution with mean 3.5, and we assumed the same variance as for passengers. The
attacker is generated in the same way as a passenger for all other parameters. Based on
a CNN news report [166], we assumed that a BDE takes up to 20 seconds to evaluate
the characteristics of a passenger or attacker. The corresponding evaluation constants
ci were based on assumptions. The arrest probability par r est was set to 0.8, based on the
work of Price and Forrest [167].

The mass of the IED was based on a report by the Department of Homeland Secu-
rity [168]. The number of particles and their initial speed were finally based on assump-
tions. Some of the constants found in Table A.1 will benefit from more extensive sensi-
tivity analysis in the future. The output variables are the number of employees n, mean
time in checkpoint queue Tqueue , the mean time to gate Tgate, the number of missed
flights mi ss, the monetary loss l oss and the risks ried−early and ried−late of the threat sce-
narios, as set out in Section 4.5.

For the implementation of the model, we developed the AATOM simulator [130], a
Java-based open-source agent-based airport terminal operations simulator. This simu-
lator contains a large library of airport terminal related components, and basic imple-
mentations of attacker agents. A visualization of an AATOM simulation was shown in
Figure 4.2. For each combination of model parameters, 500 simulation runs were exe-
cuted. A simulation ends when the flights have left; after 7200 seconds.

4.6.2. EXPERIMENTAL RESULTS
In this section, the results of the experiments are discussed. We first analyze the influ-
ence of the model parameters on efficiency, followed by an analysis of the influence on
security. Finally, we discuss some of the relationships that were found between these
performance areas. This constitutes to the fourth and last step in the proposed method-
ology.

EFFICIENCY PERFORMANCE INDICATORS

Figure 4.5 shows two typical buildups of passengers over time in the checkpoint queue,
where Figure 4.5a shows the buildup under low passenger conditions, while Figure 4.5b
shows a setup in saturated passenger conditions. From this figure the arrival pattern of
passengers can be observed. When the slope of the figures changes, a different arrival
rate of passengers is observed. This effect is more clearly visible in the three flight setup,
as a larger queue buildup is observed there. This is due to the number of passengers in
the queue being directly related to the mean queuing time Tqueue.

If we consider mean checkpoint queuing times Tqueue for different airport setups
(see Figure 4.6), it can be observed that three check-in desk setups mostly have shorter
queuing times than five check-in desk setups. In the three check-in desk setups, the pas-
sengers arrive at the checkpoint queue more gradually due to longer waiting times at
the check-in, leading to shorter queuing times. While not shown in the figure, it should
be noted that five check-in desk setups generally lead to shorter times to gate for pas-
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(a) f = 2 flights.
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(b) f = 3 flights.

Figure 4.5: The number of passengers in the checkpoint queue over the flight morning. Graphs show a config-
uration of l = 3 checkpoint lanes and k = 3 check-in desks. Note that the scale of the y-axis is different for both
configurations.
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(b) k = 5 check-in desks.

Figure 4.6: The mean queuing time (in seconds) of passengers in the flight morning for different airport con-
figurations. The values between brackets are the 95% confidence intervals.

sengers. Furthermore, opening more checkpoint lanes leads to a higher number of em-
ployees present, but opening too few checkpoint lanes can lead to an increase in missed
flights. Determining the number of checkpoint lanes and check-in desks is an important
tradeoff that airports have to make on a regular basis with respect to these efficiency
performance indicators. However, these decisions do not only influence efficiency of
the airport but also security, as discussed in Section 4.6.2.

CASUALTIES WITHOUT DEFENDERS

Figure 4.7 shows the mean number of casualties (in the case of a late attack) for dif-
ferent airport configurations. This corresponds to the conditional risks of the different
threat scenarios. It further shows the choices of attacker (i.e., detonate IED at check-in or
checkpoint) between the different configurations. In the three check-in desk setups, the
attacker mostly chooses the check-in desks as a target, as most passengers are present
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Figure 4.7: The number of casualties in a late attack for different airport configurations. The values between
brackets are the 95% confidence intervals, and the percentages correspond to the proportion of times the
attacker chooses for the checkpoint queue. Percentages smaller than 50% are shown in bold.

in that area. However, this does not hold for the setups with two or three flights and two
checkpoint lanes open and the setup with three checkpoint lanes open and three flights.
The attacker has a strong preference for the checkpoint as a target in the five check-in
desk setup. It nearly always chooses for this location as a target.

More flights generally lead to more casualties per flight as well. This is mainly caused
by a nonlinear increase in queue lengths for increasing numbers of flights. When com-
paring the number of casualties with the number of checkpoint lanes, it can be ob-
served that a higher number of checkpoint lanes results in a lower number of casualties
per flight. This does not hold for the single flight case, as the number of casualties re-
mains constant or even increases when more checkpoint lanes are opened. In this case,
any number of checkpoint lanes is sufficient to prevent a buildup of passengers in the
queue. The extra casualties (for the configuration with five check-in desks) are caused
by the higher number of employees that are present at the checkpoint. In this situation,
it is beneficial from both a security and efficiency perspective to reduce the number of
checkpoint lanes open as much as possible. In all the other situations, it is beneficial
from a security perspective to open more checkpoint lanes, but that clearly increases
the number of employees. At the same time, mean queuing time Tqueue is reduced. This
constitutes to an important tradeoff that has to be made by airport managers.

If we compare the setups in which the check-in area was preferred by the attacker in
the three check-in desk setups with the corresponding five check-in desk setups, it can
be observed that with five check-in desks the number of casualties is reduced. This is the
case, because the total number of passengers in the queue that is attacked is reduced. In
general it holds that the size of the longest queue (i.e., checkpoint queue or check-in
queue) is a good linear indicator for the expected number of casualties (R = 0.72). This
also somewhat holds for the total number of passengers present in the open areas of the
airport (R = 0.59), but not in situations in which at least ten passengers are present in
the shorter queue (R = 0.27). To minimize the expected casualties, the airport should
therefore minimize the size of the longest queue. Ideally, this is done by reducing the
size of both queues. However, airport managers might not have the financial means
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Figure 4.8: The relationship between the ratio of queue lengths and the number of casualties under different
passenger loads.

to hire the required number of employees. Alternatively, the size of the queues could
be balanced as much as possible, by choosing the right number of check-in desks and
checkpoint lanes. This is a result similar to the results of Grant and Stewart, who argue
that distributed security queuing “will offer casualty reductions when used in preference
to centralized security queuing” [44]. Figure 4.7 shows how to minimize the expected
casualties in our reference airport.

To illustrate that the size of the queues should be balanced as much as possible, we
performed a controlled experiment in which the total number of passengers is set to a
constant, while distributing the passengers over the different queues according to dif-
ferent ratios. Figure 4.8 shows the number of casualties for different proportions of pas-
sengers in the checkpoint queue. In this figure, a minimum number of casualties was
observed at a ratio of around 0.5. In this case, the queues are equally balanced. This is
a result that can be generalized to similar situations in other airports as well. The con-
sequence of an IED attack can be lowered by distributing passengers over the available
space as well as possible.

The number of casualties was found to be a bit higher when all passengers are in
the check-in queues as compared to the checkpoint queue. This is the case, because
the attacker can better position himself between the passengers than in the checkpoint
queue (as can be seen from Figure 4.2). This trend is reversed (although not shown in the
figure) for very low passenger numbers, as also discussed above. It should be noted that
this strategy of balancing queues might lead to increased security risks of other threat
scenarios, not considered in this chapter. This forms an interesting direction for future
research.

Different Passenger Types We analyzed the effect of different passenger types on our
simulation results. We consider two passenger types in isolation: senior passengers and
family passengers. The luggage drop time of senior passengers was calibrated to follow a
normal distribution with mean 63.7 and variance of 35.1. Their luggage collect time fol-
lows a normal distribution with mean 59.4 and variance of 48.2. The luggage drop time
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of family passengers then follows a normal distribution with mean 69.2 and variance of
36.1, while their luggage collect time follows a normal distribution with mean 80.6 and
variance of 53.0. These distributions were based on manually collected checkpoint pro-
cessing times on four days in March and April 2018. The classification of passenger type
was performed manually as well. It should be noted that these distributions already in-
clude the effects on processing speed for different amounts of luggage. Furthermore, a
large part of the senior passengers considered fly several times per year from the airport
under consideration.

It was found that the number of casualties is reduced with 12.0% for senior passen-
gers on average. This is due to faster collection of luggage for this type of passengers, as
compared to the passengers considered in the rest in this chapter. Contrary, family pas-
sengers move through the security checkpoint slower than the default passenger. This
leads to an increase of 3.4% of casualties on average. The mix of passenger types has
a large influence on security risk and efficiency performance indicators. Airports there-
fore need to consider the passenger mix they serve when making decision related to both
security and efficiency.

BEHAVIOR-DETECTION EMPLOYEE

In all airport setups and threat scenarios, the number of casualties is reduced when a
(set of) BDE(s) is hired. This holds regardless of the strategy of the BDE. In general, the
intelligent BDE is best capable of defending against attacks of different types. The agent
is most frequently found at the area in which the attack will take place, and therefore
performs more arrests than the other BDE types. A typical example of the performance
of BDEs with different strategies is shown in Figure 4.9.
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Figure 4.9: The number of casualties in a late attack with three check-in desks for different types of defenders.
The values between brackets are the 95% confidence intervals.

However, the intelligent defender is not always better capable of defending against
attacks. Figure 4.10 shows the mean number of casualties in a late attack for two different
defender strategies: dynamic and intelligent. The static defender performs similar to
the intelligent defender and is therefore not shown. In this case, the dynamic defender
performs better than the intelligent defender.
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Figure 4.10: The number of casualties in a late attack with five check-in desks for different types of defenders.
The values between brackets are the 95% confidence intervals.

This can be explained as follows. Figure 4.11 shows a histogram of casualties for the
configuration with three flights, three checkpoint lanes, five check-in desks and a single
BDE with different strategies. Note that in this configuration the checkpoint queue is
much larger, and therefore the attacker always chooses this as a target. From Figure 4.11
it can be observed that the dynamic BDE make a higher number of arrests (zero casual-
ties), and has a region in which a very low number of casualties is observed. This is the
case, as the dynamic BDE moves between the check-in area and checkpoint area, while
the other BDEs only perform their work in the checkpoint area. As the queue is long
there, these other defenders do not have the time to assess every passenger, and there-
fore the attacker might be missed. The dynamic defender might observe the attacker (at
the entrance area), as few other passengers are present in the check-in area. Note that
these two areas are close together, and that the BDE can therefore observe passengers
in both areas while it is in the check-in area. The region of very low casualties is caused
by the failed arrests in this region. As only few passengers are around, fewer casualties
are observed. On the contrary, when the intelligent defender (and also the static BDE)
performs a failed arrest, the detonation of the IED occurs close to the checkpoint queue.
This then leads to a higher number of casualties in the case of a failed arrest.

While not modeled in this chapter, observant passengers may also help prevent an
ongoing attack to become successful. This was for instance seen in the 2018 Belgium
train attack [169]. This forms an interesting direction for future research.

SECURITY AND EFFICIENCY

To be able to determine the sensitivity of the estimated efficiency and security outputs
to the model parameters, Spearman’s rank correlation test was performed. This test as-
sesses monotonic relationship between the parameters and outputs. Conditional risk
(Rc (Mi ed )) is used as an output parameter, as Threat Likelihood remains constant for all
parameter combinations. Figure 4.12 shows the results of this test and indicates insignif-
icant results (p ≤ 0.05) crossed out.
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(b) One intelligent defender.

Figure 4.11: Histogram of casualties for two different defender strategies: intelligent and dynamic. Results are
shown for a configuration with three flights, three checkpoint lanes, five check-in desks and a single defender.
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tors and conditional security risks. The rows of this figure show the different model parameters, while the
columns show the output parameters (efficiency performance indicators and conditional security risk). In-
significant results (p ≤ 0.05) are crossed out.

Results show that the number of flights f had a positive correlation with each of the
output parameters, with an exception of monetary loss. The number of checkpoint lanes
open l shows opposite relationships with the parameters. For instance, fewer checkpoint
lanes open results in longer time to gate Tg ate and more casualties. This makes sense,
as fewer checkpoint lanes open result in longer queues and longer queuing times. This
in turn results in higher passenger densities in the queuing area, resulting in a higher
number of fatalities. Furthermore, it shows that both the number of check-in desks open
and the presence of a BDE have a low influence on most output parameters. However,
the number of BDEs does have a negative correlation with the number of casualties.
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(b) The casualties in an early attack with respect to the queuing
time.
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(c) The casualties in a late attack with respect to the number of
employees.
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Figure 4.13: The number of casualties in a three flight setup in relationship to the number of employees and
queuing time. Note that the axes are reversed.

We show this effect in more detail in Figure 4.13. Figure 4.13a-4.13b show the number
of casualties in an early attack in relationship to queuing time and number of employ-
ees, while Figure 4.13c-4.13d show the same relationships for casualties in a late attack.
Each of these results are shown for a three flight setup. It can be seen that the number
of employees and queuing time do not have a strong relationship to the number of ca-
sualties in an early attack. However, in a late attack, the relationship becomes stronger.
There is a strong negative relationship between the number of employees present and
the expected number of casualties. This is a clear tradeoff that has to be made by airport
managers, as also mentioned before. They have to choose how many more potential
casualties they are willing to accept for a reduced number of employees. In contrary,
the mean queuing time for passengers at the checkpoint has a positive relationship with
the expected number of casualties. If we only consider these two output parameters,
it is beneficial for airports to choose for configurations that lead to low casualties and
queuing times. There is only one such configuration that minimizes both objectives: the
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configuration with four checkpoint lanes, two intelligent defenders, and three check-in
desks (see also the configuration indicated with an arrow Figure 4.13). However, this is
a configuration in which 21 employees are present; only two fewer than the maximum
number. Similar results are found when Tqueue is replaced with Tg ate . Pareto analysis
can further be used to determine which configurations are optimal with respect to the
defined objectives.

4.7. CONCLUSIONS & FUTURE WORK
Understanding security, efficiency and the relationships between them is essential, as
airport managers regularly have to make decisions that influence these performance ar-
eas. Important decision regarding security and efficiency are often made based on ex-
perience and assumptions. This chapter introduced a novel methodology to analyze se-
curity, efficiency, and relationships between these performance areas using agent-based
modeling. It combines the AbSRiM approach of Chapter 2 with a typical agent-based
approach to analyze efficiency of operations. The proposed methodology is capable
of analyzing security, efficiency and their relationships in detail, and therefore forms a
promising way to investigate different tradeoffs between security and efficiency.

The proposed methodology was applied to a case study in a regional airport termi-
nal. Relationships between risks regarding an IED attack and efficiency performance
indicators, such as the average queuing time for passengers and number of employees,
were quantified. Results show that airports should attempt to spread passengers across
the available space as much as possible. Furthermore, it was found that reducing secu-
rity risks and improving efficiency are not always conflicting objectives. For example,
decreasing the number of passengers in the open areas of the airport is an effective mea-
sure to reduce security risks and improve different efficiency aspects.

Human behavior is far more complex than modeled in the discussed case study.
More research is needed to include this complexity in the agent behavior. Furthermore,
more extensive analysis, such as causal analysis [170] will be performed in Chapter 7.
Another interesting possibility for further research is to integrate the proposed method-
ology with security games. This work could be used to determine payoff values in a secu-
rity game, while the framework of security games can be used to find optimal defender
policies. This is the topic of Chapter 5. Furthermore, Pareto analysis could be performed
to determine a set of dominant airport configurations. Different threat scenarios, such
as a shooting, and efficiency performance indicators, such as facility revenue, can also
be investigated. Finally, the methodology could be generalized to identify relationships
that also include other performance areas such as safety [171], resilience [172] and envi-
ronmental impact [173].



5
AGENT-BASED

EMPIRICAL GAME THEORY

An important method to mitigate the risk of terrorist attacks is through security patrols,
as we have also shown in Chapter 4. In this chapter, we extend the three simplistic security
patrol strategies of Chapter 4 by using an empirical game theory approach. Using this
approach we estimate game-theoretic payoffs using the agent-based model of Chapter 4.
This is an improvement over current game theory practices, as they often rely solely on
expert assessment to estimate game payoffs.

This chapter has previously been published in the Aerospace journal (2020) [174].
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5.1. INTRODUCTION
Ever since the attacks on the World Trade Center, airports significantly enhanced security
operations, procedures, and checks. Not only security has improved, but also terrorists
have adapted their way of acting. The Brussels and Atatürk Airport attacks (2016) illus-
trate a recent terrorist threat where publicly accessible areas of airports are the target of
attack. Protecting these targets, where many people move freely, is a challenging task
for security agencies because attackers do not have to face passenger or carry-on lug-
gage checks. Additionally, limited security resources make it extremely difficult to track
a terrorist in a crowded scene.

Airport security patrols are an effective method to defend against these types of at-
tacks. However, security resources are often scarce, preventing full coverage of all targets
at all times. Security patrol routes, therefore, have to be intelligently deployed by taking
into account differences in the importance of targets, different attack threats, and po-
tential uncertainty over the types, capabilities, knowledge, and preferences of attackers
faced.

Game-theoretic analysis has emerged as a powerful tool to provide optimal decisions
in the security domain. Game theory provides a mathematical framework to study inter-
actions between strategic and self-interested agents who maximize the effectiveness of
their actions. This makes it is appropriate to model adversarial reasoning for security
resource allocation and scheduling problems [175].

One application of game theory is in the domain of security resource allocation and
scheduling, included in a research area known as security games. These have shown to
be successful in solving real-world security problems in which security officers deploy
limited resources to protect important infrastructures against human adversaries [29,
30, 176–178]. A security game is a two-player game between a defender and an attacker.
The defender wants to allocate her1 limited resources to defend critical targets, while
the attacker seeks his most favorable target to attack. Each player has a set of available
actions associated with a particular payoff (also known as utility), based on the outcome
of the corresponding choices within the game. Payoffs are the reward and penalties to
both the defender and the attacker in a successful or an unsuccessful attack.

Commonly, game-theoretic models rely only on expert knowledge to estimate payoff
values. However, these are hard to estimate, since uncertainty is intrinsic to real-world
security domains. It is therefore difficult for a security expert to properly estimate payoff
values for different defender-attacker interactions. Moreover, exclusive reliance on hu-
man expert assessment can be expensive, prone to human biases and restrictive [179].

Agent-based modeling and simulation is a promising technique to address the chal-
lenge of estimating payoffs. Agent-based models consist of a set of autonomous and
intelligent agents who can perceive their environment and interact in the environment
to solve problems, achieve goals and execute tasks. Agent-based models are particularly
suitable to represent socio-technical systems, such as airports. Considering an airport
terminal environment, it allows the specification of different agents, such as airport op-
erational employees, passengers, security officers, and an attacker agent, who are able to
perceive all processes happening around them and interact with each other to achieve

1The attacker is, following convention, referred to as “he” and the defender as “she”.
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their individual goals.

Through simulations, it is possible to identify emergent patterns and relations that
are not explicitly coded in the model. One example of an emergent property is the vul-
nerable areas in an airport terminal where an attack can lead to a large number of casu-
alties. The identification of these vulnerable areas is of crucial importance as it indicates
patrol areas where security should be reinforced.

The goal of this chapter is to improve the payoff matrices in security games, by using
agent-based model results to define them. Although many security studies have focused
on either agent-based modeling [180], or security games [29, 181], combining both ap-
proaches to improve security-game payoffs has not been addressed. To this end, we
investigate a scenario in which an attacker aims to detonate an improvised explosive de-
vice (IED) on a publicly accessible area of a regional airport, while security agents exe-
cute patrol routes in the airport terminal. We utilize the agent-based model of Chapter 4
to determine the number of casualties of a terrorist attack and use these results to spec-
ify payoffs in a security game. This security game is then used to determine the patrol
route of security officers that minimizes the expected number of casualties in a terrorist
attack.

This chapter is organized as follows. In Section 5.2, we discuss relevant related work,
and in Section 5.3 an overview of the case study is provided. Then, Section 5.4 provides
an overview of our novel methodology, while Section 5.5 explains the proposed model in
detail. The discussion of the simulations results is presented in Section 5.6, and, lastly,
Section 5.7 concludes this chapter.

5.2. RELATED WORK
This section provides an overview of relevant work in the domain of security games and
agent-based modeling.

5.2.1. SECURITY GAMES

Security Games have emerged as an important research domain in multi-agent systems.
Over the past years, game-theoretic models have been deployed in many real-world ap-
plications: canine-patrol and vehicle checkpoints at the Los Angeles International Air-
port [29], allocation of US Federal Air Marshals to international flights [177], US Coast
Guard patrol boats [30], and many others [176, 178].

Security games are often formulated as a Stackelberg game [29]. A Stackelberg Se-
curity Game assumes a leader (defender) and a follower (attacker). The defender must
protect a set of targets as well as possible, using limited resources. The attacker aims
to maximize the impact of its attack. In these games, it is assumed that the defender
first commits to a (possibly randomized) security policy, while a strategic attacker uses
surveillance to learn and create beliefs about the defender’s strategy. After careful plan-
ning, the attacker selfishly optimizes its payoff, considering the policy chosen by the
defender. The outcome of such a game is an equilibrium: a combination of strategies in
which both players’ strategies are best-response to each other, i.e. cannot improve their
payoff by changing their strategy.

A strategy can be of two types: pure strategies or mixed strategies. A pure strategy of
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an agent is one of the agent’s actions, which is selected with certainty. A mixed strategy is
a probability distribution over the set of actions. A mixed strategy allows for randomiza-
tion which is critical in security domains as it avoids the vulnerability that comes with
predictability associated with human-designed schedules. Humans are unable to pro-
duce a completely random set of events, leading to potentially predictable patterns that
may be explored by an intelligent attacker [182].

Relevant to this chapter are papers that focus on security scheduling and allocation
to prevent the attacker from exploiting a particular gap in the defender’s patrol. One rele-
vant application was introduced by Pita et al. [29], who computed optimal schedules that
randomized road security checkpoints and terminal canine patrols. In that work, Pita et
al. specify the patrolling problem as a Bayesian Stackelberg game, allowing the agent to
appropriately weigh the different actions in randomization, as well as uncertainty over
adversary types. However, that work did not explicitly consider spatio-temporal aspects,
assuming that the attacker chooses a target to attack and is automatically at that loca-
tion, without considering the time it takes to reach it. Moreover, the attacker agent could
only be arrested at a target, while in real-world scenarios he can also be caught in his
path from the airport entrance towards his target.

Furthermore, Prakash et al. [183] employed an empirical game theory approach. This
empirical approach uses a simulation engine to model the domain area and then uses
this to specify game payoffs. This methodology is similar to the one proposed in this
chapter, but instead of using agent-based modeling to estimate the game payoff values,
the authors use standard event-based simulation models for the same purpose. Agent-
based modeling is capable of characterizing socio-technical systems, including the rep-
resentation of agents’ behavior and interactions which is impossible using the method-
ology of Prakash et al. Furthermore, their work focused on the domain of cybercrime,
which is a has several differences from the airport security domain. There is a growing
body of theoretical work in the field of empirical game theory, of which the work of Well-
man et al. [184] and more recently the work of Tuyls et al. [185] are examples. Despite
being important theoretical contributions, these do not consider human behavior and
interactions and are not specific for security problems.

Other notable work is in the area of spatio-temporal security games, also known as
patrol planning games. Generally, these games are played on graphs where targets are
nodes and a patrol strategy is a vector consisting of defender’s positions at each point in
time. This approach captures the spatial evolution over time, i.e. correlates one position
at time t to another position at time t +1. Applications range from robotic patrols [186]
to green security games [33], and protection of major infrastructures such as airports [30,
187]. Fang et al. [188] focuses on protecting mobile targets, which results in a continuous
set of strategies for the agents. Motivated by the domain of ferry protection, Xu et al. [189]
developed a model to solve spatio-temporal games with weighted moving targets.

A recent relevant work in the domain of spatio-temporal game theory was introduced
by Zhang et al. [190]. Zhang focuses on finding optimal randomize patrol strategies in a
chemical cluster. In that work, potential targets are represented as nodes of a patrolling
graph. The security surveys different areas by traveling in the graph and staying a cer-
tain amount of time at each node when patrolling that target. The main contribution of
Zhang’s work is that an optimal patrol schedule does not correspond to a randomized
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fixed patrolling strategy (fixed set of different positions over time), but rather to a set of
transition probabilities between nodes of the patrolling graph. In other words, their pa-
trol schedule represents the probability that the defender performs a certain movement.
Due to these advantages, we will use the work of Zhang et al. as a basis for our case study.

Despite being a field with many real-world successful deployments, security games
also face multiple challenges. Those include bounded rationality [191, 192], uncertainty
arising due to human dynamic behavior [193, 194], and learning in security games, with
a special emphasis on reinforcement learning to identify the best defender strategy against
an adaptive opponent who is able to observe defender’s behavior, learn and adapt to best
respond to it [195]. To partially overcome these limitations, we use agent-based model-
ing to define payoffs in security games.

5.2.2. AGENT-BASED MODELING

Agent-based modeling is one of the most prominent approaches to study the perfor-
mance of complex adaptive multi-agent systems [196]. Complexity can be interpreted as
non-linear interactions between agents (or agents with the environment), leading to un-
expected emergence patterns. Agent-based modeling provides a bottom-up approach to
build socio-technical systems with autonomous and intelligent agents who can perceive
their environment and interact in the environment. Using agent-based models, multi-
ple scales of analysis and multiple types of adaption and learning mechanisms can be
incorporated, which is not straightforward with other modeling techniques. Addition-
ally, it can be used to explicitly represent spatio-temporal elements of agents and the
environment, which allows for a better representation of dynamic and uncertain sys-
tems.

Noteworthy work in the aviation sector includes the work of Weiss et al. [180], who
developed an agent-based model for airport defense, and the work of Cheng et al. [197]
who created an agent-based model to evaluate the effect of group dynamics on passen-
ger flow during an evacuation in an airport terminal. Moreover, in Chapter 2 we intro-
duced a novel agent-based methodology combined with Monte Carlo simulations for
security risk assessment. In that work, security agents aimed to detect forbidden items
in passenger’s luggage while being under constant time pressure.

In Chapter 4, we developed an agent-based model to study the relationship between
security and efficiency in a regional airport terminal. It focuses on a scenario where
an attacker aims to detonate an IED in a publicly accessible area of a regional airport
while considering efficiency indicators such as queuing time for passengers, among oth-
ers. This chapter offers a promising methodology to investigate airport security and ef-
ficiency. We use the work of Chapter 4 in our case study, as described below.

5.3. CASE STUDY
This section describes the system, operational context, and scenarios under study. We
study a scenario in a regional airport terminal, where a security officer patrols around
four identified targets: entrance hall, check-in area, and checkpoint area. We focus on
a threat scenario in which a bomb attack in the publicly accessible areas of our regional
airport terminal occurs. Based on this threat, twenty attacking scenarios are modeled
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varying in the period of 25 minutes with a 5 minutes increment per scenario (e.g., an at-
tacker entering the airport within the first five minutes,. . . ) For each attack time interval,
the attacker selects one of the four identified targets to attack. That period was chosen to
enclose all the attacks that may happen within the first thirty minutes since the attacker
takes time to move from the airport entrance to the selected target.

Figure 5.1 illustrates the airport open publicly accessible area analyzed in this case
study. The focus of our study is on airport terminal patrols, which includes processes
such as check-in, facility visits, security checkpoint operations, queuing, gate processes,
movement of passengers between these operations, and movement of security officers
around the airport terminal. Using our empirical game theory methodology, as de-
scribed below, we aim to determine the most effective patrolling route for a security
officer in the airport terminal.

Figure 5.1: Airport layout of the open publicly accessible areas considered in this case study, with indicators
for different targets. 0: Entrance area, 1 and 2: Check-in areas, 3: Security checkpoint area. For the full airport
layout, refer to Chapter 4.

5.4. METHODOLOGY

The main aim of this chapter is to decrease uncertainty in game-theoretic payoff struc-
tures by estimating them using agent-based simulation results. There is a significant
need to address uncertainty in both players’ rewards, since key domain features like at-
tacker behavior, that contribute to these rewards, are hard to estimate exactly by experts
alone. Hence, this methodology improves on the game-theoretic payoff structures which
often rely only on expert assessment. To accomplish this goal, we propose the following
methodology, graphically shown in Figure 5.2.

First, we define the agent-based model. Every agent-based model requires the def-
inition and modeling of three key entities: agents, their environment and interactions
between agents and agents with the environment. In this chapter, we extend the model
of Chapter 4. This model was chosen as a starting point since most airport terminal
processes along with the strategic, tactical and operational behavior of passengers, de-
fenders, and an attacker was modeled.
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Figure 5.2: Step by step methodology followed in this chapter. Note: ABM refers to agent-based modeling and
GT refers to game theory. Dark gray boxes correspond to the GT model (Step 2 and 5). White boxes correspond
to the agent-based model (Step 1 and 3). The light gray box represent the interaction between the agent-based
model results and the game-theoretic payoff function.

An initial evaluation of the agent-based model was performed to analyze how the air-
port system behaves in different scenarios. This helped to gain knowledge of critical ar-
eas with the highest agglomeration of passengers where an attack could have hazardous
effects in terms of impact (human casualties). Those were deemed as potential targets.
Using this information, 20 different threat scenarios (see Section 5.3) were modeled for
the IED threat. The outcomes of the agent-based model simulations will later be used to
specify game-theoretic payoffs.

The specification of a game-theoretic model consists of the definition of the players
involved in the game, specification of the mathematical model constraints and assump-
tions, and the solution concept to find an equilibrium solution for both players. In this
chapter, we follow the model of Zhang et al. [190]. Zhang defines a game-theoretic model
aiming to select random, but strategic security patrols in a chemical cluster. This model
is used, as it is a spatio-temporal game, where the set of actions available for each agent
takes into consideration both spatial and temporal conditions. This is a crucial require-
ment in security domains since a terrorist attack can happen anytime and anywhere.

Security patrols should also be spatio-temporal, rather than only spatial, since the
security officer can only detect an attacker if he is both in observation range and there is
a time overlap between the attacker intrusion and the security patrol. Furthermore, this
allows security officers to take different actions at distinct points in time, rather than
following a predefined optimal fixed patrolling strategy. This is a great advantage as it
enables better patrol randomization. The model assumes perfect rational players, i.e.
reward maximizers whose strategies are best responses to each other.

The next step is to integrate both methods, which forms the core of our methodol-
ogy. This step starts by generating the agent’s strategies that will be simulated in the
agent-based model and how they are translated to the player’s set of actions in the game
framework. These actions in our model consist of security patrols in the airport terminal
for the defender, as well as attacks at distinct times and targets for the attacker. Each
attacker-defender strategy-pair is modeled and simulated in the agent-based model so
that payoffs for each combination of actions are generated.
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Once all attacker and defender strategy combinations are simulated, the agent-based
model outcome is computed. This output is defined as the average number of human ca-
sualties after an IED attack. This is then used as an input to define payoffs for the players
in the game. The key contribution of this chapter is embedded in this step, where game-
theoretic payoff matrices are enhanced with data generated by an agent-based model
capable of simulating real-world events, rather than relying only on expert assessment.
In this way, more objective and more robust payoff structures are incorporated in secu-
rity games.

The last step of the integration process consists of solving the game (i.e. finding an
equilibrium) and generating optimal strategies for both players. These results indicate
the set of actions that should be taken at each time step by both players. Moreover, the
optimal payoff values are computed. The proposed methodology ends with the eval-
uation of the optimal solution. This is done by simulating the (probabilistic) optimal
defender-attacker strategy pair in the agent-based model. The resulting agent-based
model metrics are gathered and used as input to compute the payoff values for both
players. These are compared to the ones obtained initially after solving the game to con-
firm that the game-theoretic solution strategies are optimal.

5.5. MODELS

This section describes the agent-based model, the game-theoretic model and the inte-
gration of the two models. This corresponds to the first four steps of the methodology.

5.5.1. AGENT-BASED MODEL

The agent-based model environment consists of a regional airport terminal including
physical objects (wall and desks), an IED (defined by its location, number of particles
and mass), terminal areas (check-in, checkpoint, queuing, gate, facility and entrance
area) and flights (Chapter 4). The outline of the terminal building is shown in Figure 5.1.
Agents cannot obtain complete, accurate, up-to-date information about the environ-
ment’s state, because it is limited by their observation range. Hence, the environment is
partially accessible.

The agent architecture has three different layers: Strategic Layer, Tactical Layer and
Operational Layer. In each layer, there are different modules responsible for the exe-
cution of specific actions. The Operational Layer comprises a perception module that
is responsible for the agent’s observation and an actuation module that executes actions
and communications between agents. The Tactical Layer consists of a belief module that
maintains beliefs based on observations, actions, and internal states. This layer is also
responsible for the navigation and activity accomplishment. Lastly, the Strategic Layer
is responsible for a higher level belief and for generating a plan: an ordered sequence of
activities to be carried out by the agent.

All passengers, security agents, operational employees, and the terrorist attacker are
represented by agents. Below the main characteristics of these agents are summarized.
A full description of this model can be found in Chapter 4.
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OPERATIONAL EMPLOYEE

Operational employees communicate a wait request to passengers when they are in their
observation range. These waiting requests can be communicated to passengers com-
pleting check-in or checkpoint activities.

PASSENGER

Passengers are described by airport arrival time, level of disorientation, the suitability of
their luggage, whether they checked-in already, and if they are a facility visitor. For now,
it suffices to state that the level of disorientation refers to how confused the passenger
arrives in the airport, while suitability of luggage attributes how well the luggage of the
passenger fits with their appearance. These properties are associated with real numbers
and are important indicators used in the SPOT program of the TSA [198]. In that pro-
cedure, security officers assign points to passengers to evaluate their danger to the air-
port: if the points accredited to a certain passenger surpasses a threshold, a secondary
screening is performed. Passengers can complete different activities, namely: check-in,
checkpoint, facility and gate activity.

ATTACKER

The attacker is a human agent like any other passenger and hence shares the same char-
acteristics. However, he has one unique goal: to cause as many human casualties at the
airport as possible. To achieve this objective, the attacker agent carries an IED that he
intends to detonate. This activity consists of three phases: target selection, movement
to target and execution of the attack. More details of the attacker agent can be found in
Chapter 4.4.4.

This chapter extends the model of Chapter 4 by modeling different attacking sce-
narios based on an IED threat. Thus, in the first phase, the target selection is deter-
ministic, meaning that the attacker has already selected a target to attack (from the set
of 4 available options) before entering the airport. This approach implements a com-
mon assumption in security games where the attacker is assumed to have identified a
breach/weakness in the security schedule through long term observation. Therefore,
the attacker already knows when and where to execute his attack. In the second phase,
the attacker moves from the airport entrance to the target. On his way, he might be ob-
served by a security officer resulting in one of two events. With a probability par r est ,
the attacker is arrested and is not able to execute the attack, and with a probability of
1−par r est he detonates the IED on the spot. Alternatively, the attacker is not observed
and continues moving towards the target, where the last phase starts. Once he reached
that area, the attacker detonates the IED.

SECURITY PATROLLING AGENT

A security patrolling agent can observe physical objects, passengers, and attackers in her
observation radius and line of vision. The security patrolling agent has a set of strategies
corresponding to patrols around the airport which she follows.

During a patrol, the security officer randomly chooses an agent within her observa-
tion range, to evaluate whether it is an attacker or not. This evaluation lasts for a certain
period and is performed according to the SPOT program described previously. When the
points assigned to the observed agent exceed a specific threshold, the security officer will
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try to arrest the agent. If the agent is a passenger, the passenger is arrested and they both
leave the airport. On the other hand, if the agent is an attacker, the security agent may
arrest the attacker with a probability of par r est . If the security agent successfully arrests
the attacker, the IED is not detonated. Alternatively, the attacker detonates the IED on
the spot.

5.5.2. GAME-THEORETIC MODEL
We explain the spatio-temporal game of Zhang et al. [190], by describing the different
components of the game. The game of Zhang et al. is a graph game, so we first trans-
late the airport terminal layout to a graph. Based on this graph, we then specify the
patrolling graph. This patrolling graph describes the possible actions and strategies of
the defender.

Then, the time discretization scheme, the players in the game, and their set of actions
and rewards are discussed. Finally, the solution concept is explained, along with the
method to find equilibrium solutions. This section explains the theoretical basis of the
game, while Section 5.5.3 later specifies how we applied this to our case study.

1 2 3

0

e1

e3

e2 e4

e5

Figure 5.3: The graph model G(V ,E) of the airport ter-
minal. The targets correspond to the targets as shown
in Figure 5.1.
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Time

Figure 5.4: Two example strategies in a reduced ver-
sion of the patrolling graph of the game. The actual
patrolling graph contains nodes with corresponding
times up to 1000 seconds.

AIRPORT GRAPH

The airport terminal is described by a graph G(V ,E) where |V | represents the number
of vertices and |E | the number of edges, shown in Figure 5.3. Targets are modeled as
vertices whereas the path between those is modeled as edges. Two important parame-
ters are considered: time to move between targets and time to patrol a target. The time
to move between targets (i.e. edge length) is constrained by the airport layout, whereas
a target patrolling time is determined by the target importance for security purposes.
Targets where a higher density of passengers is expected need to be patrolled more thor-
oughly.

PATROLLING GRAPH

Based on the airport graphic model, a patrolling graph Gp (Vp ,Ep ) is generated. A basic
example of such a graph is graphically illustrated in Figure 5.4. In this figure, we show
two reference strategies for the security agent. In both cases, the security agent starts her
patrol at T0 at time 0. At this moment, she has two possible choices: either to move to T3

(blue arrow) or stay at T0 (red arrow). If the defender chose to move to T3, then she only
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has one option available: patrol T3 for two time units. On the other hand, if the defender
stayed in T0 previously, her choices are confined to moving to T1, and then staying there
for one time unit. Finally, the security agent terminates either patrol strategy by moving
to T0 at time 3. These are just two representative examples of defender’s strategies to
illustrate the definition of a strategy, but there are many more possible strategies in this
example.

A node in Gp is defined by a tuple (t , i ), where t ∈ [0, tmax ] specifies the time and
i ∈ 0,1, . . . , |V | − 1 represents a node in the airport graph G(V ,E). An edge from node
(t1, i1) to (t2, i2) represents an action of the security agent where she moves from i1 at
time t1 and arrives at i2 at time t2. A deterministic patrol strategy is a sequence of edges
denoted as e1

p , . . . ,eN
p , where e i

p ∈ Ep is a patrolling edge, and N refers to the length of
the patrolling graph, i.e. to the last patrolling edge. These patrolling graph edges have
to comply to three requirements: (i) the in-degree of the start node of e1

p is zero; (ii) the

out-degree of the end node of eN
p is zero; (iii) e i

p and e i+1
p are connected, which means

that the end node of e i
p is the start node of e i+1

p .

TIME DISCRETIZATION

The time dimension is discretized into equal time slices with the length of each time
slice representing a second, with a total of tmax times. It is assumed that the security
patrolling time and traveling time can only start at integer values of the time axis. The at-
tacker can only start his attack at the beginning of each time slice as well. An attack lasts
for a different amount of time depending on the target since the attacker takes different
time from the airport entrance towards the target. Using this discretization scheme, it is
possible to list all attacker strategies.

PLAYERS

The model considers a two-player game between a security agent (defender/leader) and
a terrorist (attacker/follower), where both players are assumed to be perfectly rational.
Consequently, both players are payoff maximizers. It is assumed that the attacker can
gather information about the security patrol by long term observation, and the game is,
therefore, a Stackelberg game.

STRATEGIES

The strategies for both the defender and the attacker are introduced below.

Defender At each node of the patrolling graph Gp , the defender can choose to examine
that target or move to an adjacent node. These choices are described as edges in Gp . In
this way, we define the security agent’s strategy sd as a set of probabilities of transitions
between nodes in the patrolling graph Gp .

sd = ∏
(vi ,v j )∈Ep

cvi−v j (5.1)

where cvi−v j specifies the probability of transition between node vi ∈Vp to node v j ∈Vp ,
and

∏
represents the Cartesian product of all edges in Gp (i.e. all (vi , v j ) ∈ Ep ).
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Attacker An attacker’s pure strategy sa is defined by a target to attack and a time to
start the attack.

sa = (t , i ) (5.2)

where t ∈ [0, . . . , tmax ] represents the attack start time and i ∈ {T0, . . . ,T3} denotes the
airport target. Furthermore, the attacker is constrained to attack only one target, i.e.
play a pure strategy.

PAYOFF

Payoffs are provided after every transition between nodes. Equation 5.3 gives an example
of the defender payoff function.

Ud = R1 × c1 + . . .+RN × cN (5.3)

Each element Ri contains the payoff value associated with a particular transition be-
tween nodes ci in the patrolling graph. The specific definition of these variables in our
case study will be explained in Section 5.5.3.

RN and cN denote the payoff value associated with the last transition between nodes.
This may lead to transitions between nodes that do not produce any outcome in the
agent-based model. In this case, the payoff value associated with those transitions is
assumed to be zero for both agents.

The reward value is defined based on a particular outcome arising from the agent-
based model: the average number of human casualties for each transition between nodes
of the patrolling graph Gp . Section 5.6 elaborates further on the reward structure out-
lined in this chapter. The game is defined as a zero-sum game, hence the attacker reward
Ua =−Ud .

SOLUTION CONCEPT

To find an equilibrium solution, the model employs the concept of Stackelberg equilib-
rium (s∗d , s∗a ) = (~c∗, (t∗, i∗)) that meet the following constraints:

(t∗, i∗) = ar g max(t ,i )∈Sa ua(~c, (t , i )) (5.4)

~c∗ = ar g max~c∈Sd
ud (~c, (t∗, i∗)) (5.5)

As in all Stackelberg Security games, the defender (leader) first commits to a pa-
trolling strategy~c, while the attacker (follower) can observe the defender’s strategy and
acts optimally according to it (Equation 5.4). The security officer can also determine
the attacker’s optimal solution, hence she choose her strategy optimally as well (Equa-
tion 5.5). Since the player’s reward functions are linear polynomials of~c, a multiple linear
programming algorithm can be used to compute the Stackelberg equilibrium solution.

In the first step, ua and ud are initialized for each attacker strategy. Then, a linear
programming algorithm can be formulated, as shown below.

• Objective Function:
M ax~c∈Sd

ud (t #, i #,~c) (5.6)
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• Constraints: ∑
i n∈{s∈Vp |(s,Vp )∈Ep }

ci n−Vp = ∑
out∈{e∈Vp |(Vp ,e)∈Ep }

cVp−out (5.7)

∑
out∈{e∈Vp |(r oot ,e)∈Ep }

cr oot−out = 1 (5.8)

ua(t #, i #) ≥α+ua(t , i ),∀(t , i ) ∈ Sa (5.9)

ua =−ud (5.10)

Where i n, s, e, out and r oot refer to nodes of the patrolling graph Gp , α is a small
positive number and Sa(Sd ) is the strategy set of the attacker (defender). The r oot nodes
represents a target where the security officer starts her patrol shift. Constraint 5.7 illus-
trates a property of probabilities cs−e that, for each intermediate node (node with both
income and outcome edges) of Gp the sum of all income probabilities must equal the
sum of all outcome probabilities. Constraint 5.8 describes a second property of probabil-
ities cs−e that the sum of probabilities going out from the root node equals 1. This means
that the defender starts at the root node and must perform an action on what to do next.
Constraint 5.9 assumes that the attacker strategy ua(t #, i #) is the attacker optimal strat-
egy. Moreover, α ensures that this model does not rely on the “tie-breaking2” assump-
tion, but it is still optimal. Lastly, constraint 5.10 defines a zero-sum game. The Stack-
elberg equilibrium is found by getting the arguments (~c, (t , i )) for which Equation 5.6 is
maximum.

5.5.3. INTEGRATION OF AGENT-BASED RESULTS AS GAME-THEORETIC PAY-
OFFS

Our integration of agent-based modeling and game theory is accomplished in three se-
quential steps. First, both the security and attacker strategies are generated, followed by
the specification of game payoffs using agent-based model results. The last step consists
of generating the optimal strategies for both players.

GENERATE AGENTS’ STRATEGIES

The first step of the integration module starts with the generation of the defender and
attacker strategies. We discuss each of them individually below.

Defender strategy Given the chosen time discretization of 1 second, the set of strate-
gies for the security agent is defined as follows. The airport entrance hall is regarded as
the root node from where each patrol starts and ends. Following the airport layout (see
Section 5.3), the security agent can only move to adjacent nodes.

Once the security agent reaches a certain target, she stays there for a given period
(patrolling time) which differs from target to target. The reasoning behind this choice
was to distinguish between targets that are more security-critical to the airport. For ex-
ample, a successful attack in an area with a higher density of people can lead to more

2The ‘tie-breaking’ concept assumes that, when the follower (attacker) is indifferent on payoffs by playing
different pure strategies, he will play the strategy that is preferable for the leader (defender).
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human casualties, thus that target should be better monitored. The patrol times as used
in this chapter are shown in Table 5.1. These are based on initial experiments with the
agent-based model and expert input. To include uncertainty related to disruption on se-
curity patrols, the time spent at the targets is according to a Normal distribution. When
the patrolling time has passed, the agent has to move to another adjacent node.

Table 5.1: Patrolling time for each target in seconds. Normal distributions are characterized by their mean (first
parameter) and the standard deviation (second parameter).

T0 T1&T2 T3

N (60,30) N (240,30) N (360,30)

Using the layout of the airport graph (see Section 5.3), and the patrolling times of Ta-
ble 5.1, we generated all possible deterministic patrolling strategies that can be executed
within 1000 seconds. By performing a brute force search, we identified a total of 66 dif-
ferent patrol strategies that fit these criteria. This corresponds to a total of 596 different
patrolling graph edges (movements).

Attacker strategy We considered twenty actions for the attacker. These actions have
a five-minute interval uncertainty, for a period of twenty-five minutes for each of the
identified targets (T0, . . . ,T3). The attacker agent may be caught in his path towards the
target, even if both the security agent and the terrorist agent are not in the same area, but
the latter is within the observation range of the former. This is a closer representation of
reality than the standard game-theoretic formulation, as security officers can observe
further than just their current target. This ensures that more realism is included than
would be possible in the game-theoretic formulation alone.

SPECIFY PAYOFFS USING AGENT-BASED RESULTS

After generating the set of strategies for both agents, the next step is to specify the payoffs
based on the agent-based model outcomes obtained from the previous step. As men-
tioned above, we focus on the average number of human casualties.

The number of casualties is estimated as follows. For each attacker and defender
strategy, a consequence function that assesses the number of human fatalities is calcu-
lated for the simulated threat scenario. This function is used to determine the conse-
quences for a simulation run of our agent-based model. Monte Carlo simulations are
executed to evaluate the average number of casualties based on a set of N simulation
runs. This average number of casualties corresponds to the conditional risk Rc , as de-
fined in Chapter 4.

Following the generic payoff function specified in Section 5.5.2, first, we define ~R
as the average number of casualties for each transition between nodes. Fi refers to the
average number of casualties obtained when the defender performs the movement cor-
responding to the probability that the defender performs move i , denoted as ci . Equa-
tion 5.11 shows the used payoff function.

U d
t ar g et ,t i me =−(F1 × c1 + . . .+F596 × c596) (5.11)
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The final game-theoretic model consists of 11,920 payoff values generated from the
combination of 20 different attacker options and 596 security patrolling movements.

The above payoff function uses different F values for each attacker strategy combina-
tion. Therefore, 20 different payoff functions were defined U0,0, . . . ,U3,4 for each player.
The target index varies from 0 (T0) to 3 (T3). The time index varies from 0 (attack enters
the airport within the first 5 minutes) to 4 (attack enters the airport between the 20 to 25
minutes). Moreover, the defender’s reward has a negative sign to penalize her for each
human fatality. We assumed a zero-sum game, thus the attacker reward has the opposite
value of the defender.

VERIFICATION OF OPTIMAL STRATEGIES

In the last step of our methodology, we generate the optimal attacker and defender strat-
egy using the generated payoff values. These optimal strategies are simulated in the
agent-based model and the outcomes of this simulation are compared to the ones ob-
tained with the initial simulation assessment. The results are expected to be similar to
positively verify the optimal game-theoretic solution. It is important to note that this
does step does not correspond to validation. Validation of the strategy can be done us-
ing real-life tests, but is known to be difficult in practice [92, 93].

5.6. EXPERIMENTS & RESULTS

Experiments performed with the above model are described in this section. First, the
agent-based model experimental setup and results are described. Then, game-theoretic
results are shown. Both the game-theoretic rewards are detailed along with the Stackel-
berg game solution for a generated security probabilistic patrol route and a fixed patrol
route. Finally, the optimal strategies obtained for a probabilistic patrol route are sub-
jected to evaluation.

5.6.1. EXPERIMENTAL SETUP

The agent-based model contains a set of parameters in the experiments, of which the
important ones are shown in Table 5.2. Apart from the number of simulations runs N ,
the parameters in this table were calibrated in Chapter 4. Additional parameter values
of the model may be found in that chapter as well. It is important to note that all flights
are defined with the same departure time, as commonly happens at regional airports.
The model was implemented in the AATOM simulator, a Java-based open-source agent-
based airport terminal operations simulator [130].

The number of simulations required to obtain a proper estimate of the distribution
of the model output was determined based on the coefficient of variation. Figure 5.5
shows the coefficient of variation for two different attacker-defender strategy pairs. It
shows that the coefficient of variation tends to stabilize between 300 and 400 simula-
tions. Consequently, the number of simulations N was set to be 500 to ensure a proper
estimation of the model output for all attacker-defender strategy pairs.
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Table 5.2: Agent-based model parameters.

Parameter Value
Simulation parameters

Simulation runs 500
Airport and flight parameters

Flight departure time 7200 sec
Number of flights 3
Number of open checkpoint lanes 2
Number of open check-in desks 3

Agents parameters
Proportion passengers check-in 0.5
Check-in time Norm(60,6) sec
Checkpoint time Norm(45,4.5) sec
Observation radius 10 m
Security arrest probability 0.8

Figure 5.5: Coefficient of variability varying with the number of simulation runs

5.6.2. AGENT-BASED MODEL RESULTS

Table 5.3 shows a selected subset agent-based results associated with a particular de-
fender transition between two nodes of Gp (i.e. a movement) and an attacker strategy
(target, time).

Table 5.3: Illustrative example of agent-based outcomes. Cas. denotes the average number of casualties. Eff.
represents the efficiency of the patrol for each movement, which is defined as the percentage of simulation
runs in which the defender successfully arrested the attacker.

Start Node End Node Att. Strategy Cas. Eff. (%)
(Time (s), Target) (Time (s), Target) (Target,Time (min))

(0, T0) (6, T2) (T0;0−5) 4.27 0
(6, T2) (246, T2) (T0;0−5) 2.194 21.72

(1933, T3) (1964, T0) (T0;0−5) - -
(0,T0) (31, T3) (T3;0−5) 0 100
(0, T0) (31, T3) (T0;20−25) - -

(1582, T3) (1942, T3) (T3;20−25) 11.615 7.69
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Figure 5.6: The optimal patrolling strategy over time and the attacker’s best response. The black lines sym-
bolize the defender’s optimal (probabilistic) patrolling strategy. Each line segment (each movement) has an
associated number representing the probability that the defender will do that movement. The red line illus-
trates the attacker’s best response strategy. Note that the red line only covers T3 for the sake of visualization
simplicity. In reality, the attacker enters the airport through its entrance (T0) and takes some time to arrive at
the target destination. Lastly, the remaining colors with lower opacity represent all possible movements that
may have been chosen by the security officer.

From the agent-based model simulation, two scenarios can occur. First, for a par-
ticular defender movement and attack strategy, an interaction between both agents oc-
curs. This interaction may be a successful attack or a successful arrest. However, it may
also happen that for a particular defender movement and attack strategy, no interaction
between both agents occurs. The later happens since the time of the defender move-
ment does not coincide with the attack interval. For instance, movement (1933,T3) to
(1964,T0) will not lead to a defender-attacker interaction when the attacker attacks T0

within the first five minutes. Later in the game formulation, these cases will have a zero
payoff value associated. The reasoning behind this choice was to assign a neutral payoff
value for both players in the cases where they did not interact.

5.6.3. GAME-THEORETIC RESULTS
Based on the results of Section 5.6.2, we describe the game-theoretic solution, focusing
on rewards and strategies for each player.

STACKELBERG GAME SOLUTION

Figure 5.6 shows a graphical representation of the Stackelberg Equilibrium solution of
the game. The black lines symbolize the defender’s optimal patrolling strategy, i.e. the
non-zero probabilities for each of the actions of the defender. Each line segment has an
associated number representing the probability that the defender will take that action,
which is not shown in the figure. For instance, at time 0, the defender will move to check-
in area (T2) with a probability of 0.129. Alternatively, the defender also has an option to
stay at the airport entrance (T0) for 60 seconds with a probability of 0.871.

An interesting result of the generated strategy is that T1 is not patrolled at all. This
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target is covered by patrolling T2, which is close to T1. The area around T1 is in the
observation radius of the defender when she is in T2. Furthermore, T2 is a more central
target, and can, therefore, be reached faster from the other targets.

The attacker’s best response strategy is to attack the checkpoint area (T3), entering
the airport at a time between ten to fifteen minutes, illustrated in Figure 5.6 as a red line.
Note that the red line only covers T3 for visualization simplicity. In reality, the attacker
always enters the airport through T0 and takes some time to arrive at the target.

Table 5.4 shows the agent-based model results associated with the patrol movements
corresponding to the optimal patrol strategy. Only the patrol movements that lead to a
defender-attacker interaction are shown. It is important to note that there is one move-
ment for which the period does not coincide with the attacker entering time of 10 to 15
minutes. This occurs since the attacker takes time to reach his target destination in a
crowded airport. All other movements that are part of the optimal strategy, but are not
present in Table 5.4, are those where there was no interaction between both players. The
payoff associated with those movements is set to zero.

Table 5.4: Agent-based results associated with the movements of the defender that are part of the optimal
patrol strategy.

Start Node End Node Prob. Cas. Eff. (%)
(Time (s), Target) (Time (s), Target)

(403, T3) (763, T3) 0.129 2.286 72.67
(763, T3) (794, T0) 0.129 1.540 78.94
(794, T0) (1000, T0) 0.129 6.083 41.35
(475, T2) (715, T0) 0.871 1.427 70.68
(721, T0) (781, T0) 0.871 2.284 72.59
(781, T0) (1000, T0) 0.871 5.430 47.70

(1006, T2) (1246, T2) 1 10.789 0

When the probability value and expected number of casualties associated with each
movement (as outlined in Table 5.4) are introduced in Equation 5.11, the optimal reward
values for the defender and attacker are obtained.

U d
3,2 =−(2.286×0.129+1.540×0.129+6.083×0.129

+1.427×0.871+2.284×0.871+5.430×0.871

+10.789×1) =−20.03

The attacker reward is the negation of the defender’s reward, i.e. U a
3,2 = 20.03. Fig-

ure 5.7 shows every attacker’s reward value associated with each attacker’s strategy against
the defender optimal (probabilistic) patrolling strategy. These are computed similarly as
the one illustrated in the Equation above.

These results show that attacking the security checkpoint (T3) between 5 and 20 min-
utes yields the highest reward for the attacker when comparing to attacking other targets
within the same time frame. This may be explained as follows. Passengers arriving in
previous time intervals finished their check-in activity and are going towards the secu-
rity checkpoint, leading to a higher density of people around that area. Thus, if the attack
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Figure 5.7: Attacker reward values for each attacking strategy, when the defender performs the optimal patrol
illustrated in Figure 5.6.

is successful, its impact would be large. This is not the case for all the other targets since
there are passengers who did the check-in online and go straight to the T3 which results
in a lower concentration of passengers around those areas. Moreover, an attack within
the first five minutes has a lower consequence since fewer people are at the airport ter-
minal. The airport gets more crowded as time gets closer to the flight departure time.

It is also worth noticing that an attack on targets T0, T1 and T2, at the latest time
interval yields higher rewards for the attacker when comparing to other periods. This
is the case, as the number of people entering the airport considerably increases during
that time interval which results in a higher concentration of people in those areas. This
increase results from the fact that as time passes by, it gets closer to the flight departure
time and therefore more people start entering the airport. As mentioned earlier, the
latter increases the chances and consequences of a successful attack.

By comparing the results of Figures 5.6 and 5.7, the defender’s optimal strategy choice
may be justified as follows. From Figure 5.7 it can be observed that the attacker reward
by attacking T3 while entering the airport between five to ten minutes yields the second-
highest value. Therefore, the defender favors the patrol of that area during the corre-
sponding period. The latter observation may be the reason why the defender’s optimal
strategy does not contain additional movements that patrol the optimal attack target at
the optimal attack time (between 10 to 15 minutes).

However, the optimal defender strategy does not coincide with the attacker target
for the entire attack time interval. Namely, the defender choice after leaving T3 is to go
either to T2 or T0, and, eventually, staying there until a new patrol starts. These results
can be explained by the fact that the attacker, in his path to T3, may be detected by the
defender if she is either at check-in area 2 (T2) or the airport entrance (T0).

These results show that the optimal security patrol gives special emphasis to high-
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Figure 5.8: The deterministic optimal patrolling strategy over time and the attacker’s best response. The black
lines symbolize the defender’s optimal patrolling strategy. The probability associated with each movement is
1.

impact areas, such as the security checkpoint, to reduce the total security risk. This is an
improvement over the more simplistic strategies as shown in Chapter 4.

DETERMINISTIC PATROLLING STRATEGY

In the current patrolling practice, the security officer may follow a deterministic pa-
trolling strategy. In a deterministic patrolling strategy, the probability that an action is
taken is constrained to be either 0 or 1, rather than a probabilistic value between 0 and
1. To investigate this scenario, we follow the same procedure illustrated in Section 5.6.3,
but with the aforementioned constraint where the decision variables are either 0 or 1.
Figure 5.8 illustrates the optimal strategy for both agents. The red line represents the
attacker’s optimal strategy, while the black line denotes the defender’s best response. It
is interesting to observe that for a fixed patrolling strategy, the attacker’s best response
remains to be T3, but changes the attacking time interval to a time range between five
to ten minutes. This result shows that attacking T3 during the time interval between
five and ten minutes yields a high payoff for the attacker. Therefore, it reinforces the de-
fender’s patrol choice of covering that target during that time interval in the probabilistic
patrol strategy, as discussed in Section 5.6.3.

Results, as shown in Figure 5.8, show that if the defender would follow the fixed pa-
trolling route and the attacker plays his best response rewards for the defender and the
attacker are -21.417 and 21.417 respectively. This shows that by randomizing over differ-
ent movements at different times, the defender can generate strategies that are effective
against a potential terrorist attack. These conclusions can help airport managers design
security procedures.

5.6.4. VERIFICATION
Finally, the last step of our methodology is to simulate the optimal game-theoretic defender-
attacker strategy pair in the agent-based model and compare the results with the ones
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resulting from the initial agent-based simulations. In this step, we can verify if the ob-
tained solutions from the game-theoretic model are still valid in the agent-based model.

To do this, we simulated the optimal probabilistic defender patrolling strategy in the
agent-based model. A total of 2000 simulations were executed. We simulate the obtained
defender strategy against all attacker strategies (i.e. all target-time combinations). Fig-
ure 5.9 represents the average number of casualties per attacked target per time when
the defender performs her optimal probabilistic patrol strategy. Note that Figure 5.9 is
different from Figure 5.7 as the prior represents the optimal reward value. This is a func-
tion of the average number of casualties and the probability of executing the optimal
movements.

From Figure 5.9 it can be noted that the number of casualties when the attacker at-
tacks T0 is lower than at other targets. The airport entrance is a target where people
do not agglomerate as intensively as they do at the check-in areas (T1 and T2) and the
checkpoint (T3). Furthermore, the highest patrol efficiencies occur at the optimal attack
target (T3). This reinforces the choice of the defender’s optimal strategy since it achieves
a higher arrest rate against the optimal attacker target.
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Figure 5.9: The number of casualties per attacking strategy against the optimal defender’s strategy.

In order to understand the variability in the number of casualties in each simula-
tion run, a boxplot of the results in Figure 5.10 was generated. This figure shows that
the number of casualties in T0 is lower than those on the other targets, while T3 yields
higher casualties values on average. This is due to the fact that the passenger density at
the airport entrance is smaller than the check-in areas, which is smaller than the security
checkpoint. T3 also yields the highest number of casualties that occurred in one simu-
lation. This is a striking result because it indicates that a successful attack leading to a
higher number of human fatalities may happen in reality, even if the security is execut-
ing the optimal patrol strategy. Therefore, it can be concluded that despite the optimal
security strategy having higher patrol arrest rates at T3, the potential consequences of a
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successful attack there are highest.

Figure 5.10: Number of casualties per target per time in each simulation run. Note that the axis scales are
different among targets. Two outliers (40 and 56 casualties), at T3 between 20 and 25 minutes, were omitted
from the figure to enhance readability.

Finally, Table 5.5 shows the new agent-based model results associated with the patrol
movements corresponding to the optimal probabilistic patrol strategy. Therefore, if the
probability value and casualty value associated with each movement (in Table 5.5) are
introduced in Equation 5.11, it is possible to compute the defender and attacker optimal
reward values.

Table 5.5: Empirical results for the optimal patrolling strategy in the verification step. All other movement
probabilities are zero.

Start Node End Node Prob. Cas. Eff. (%)
(Time (s), Target) (Time (s), Target)

(403,T3) (763,T3) 0.129 2.667 73.56
(763,T3) (794,T0) 0.129 1.976 76.12
(794,T0) (1000,T0) 0.129 5.602 43.08
(475,T2) (715,T0) 0.871 1.413 71.26
(721,T0) (781,T0) 0.871 2.096 82.61
(781,T0) (1000,T0) 0.871 6.721 53.19

(1006,T2) (1246,T2) 1 9 0
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U d
3,2 =−(2.667×0.129+1.976×0.129+5.602×0.129

+1.413×0.871+2.096×0.871+6.721×0.871

+9×1) =−19.22

The attacker reward is the opposite of the defender’s reward, i.e. U a
3,2 = 19.22. If we

compare these values with the one achieved by the game-theoretic model (-20.030/20.030)
we conclude that the payoffs are close, which verifies the proposed strategy.

5.7. CONCLUSIONS & FUTURE WORK
This chapter introduced a novel methodology to improve game-theoretic solutions by
specifying payoff values based on the outcomes of an agent-based model. These payoff
values are often defined by relying on expert assessment alone, which can be prone to
errors and human biases. Our empirical game theory methodology improves current
game-theoretic formulations by relying on data generated by the agent-based model of
Chapter 4.

The methodology was applied to a case study in a regional airport terminal for an
improvised explosive device threat. Results show that by strategically randomizing pa-
trol routes, higher expected rewards for the security officer are achieved. This leads to
a reduced number of expected casualties in an improvised explosive device attack. Fur-
thermore, it was found that by allowing the defender to make probabilistic decisions at
different time points, a higher reward is obtained when comparing to a fixed optimal
patrolling strategy. This supports the results of Zhang et al. [190]. Results further show
that the optimal security patrol gives special emphasis to high-impact areas, such as the
security checkpoint, to reduce the total security risk. This is an improvement over the
more simplistic strategies as shown in Chapter 4.

This chapter can be extended in several directions. Firstly, different strategies with
less restrictive constraints may be investigated to understand if better rewards can be
achieved. For instance, time spent at each target may be varied more to understand the
influence of that parameter on the current model. Secondly, research on human behav-
ior can be included to incorporate more complex behavior in the agent-based model. In
addition, the game model can also be improved to incorporate different human ratio-
nality models [191]. Lastly, uncertainty related to potential patrol disruptions may also
be further investigated to improve the current game-theoretic model [194].





6
USING CAUSAL DISCOVERY TO

DESIGN AGENT-BASED MODELS

The AbSRiM approach, as proposed in Chapter 2, is centred around agent-based models.
However, designing agent-based models is a difficult task. It is a creative process, and the
quality of the model ultimately depends on the knowledge and skill of the modellers. Some
guidelines exist to aid modellers in designing their models, but they generally do not in-
clude specific details on how the behavior of agents can be defined. We, therefore, propose
the AbCDe methodology in this chapter, which uses causal discovery algorithms to specify
agent behavior. The methodology combines important expert insights with causal graphs
generated by causal discovery algorithms based on real-world data. These causal graphs
represent the causal structure among agent-related variables, which is then translated to
behavioral properties in the agent-based model.

This chapter is currently under review at the Simulation Modelling Practice and Theory journal.
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6.1. INTRODUCTION
Agent-based models are important tools to understand the world around us. These mod-
els aim to replicate complex systems by specifying the behavior of actors, leading to a
better understanding of them. Agent-based models have shown to be useful in a variety
of areas, ranging from urban planning [46] to ecology [48].

Designing agent-based models is not a trivial task. It is a creative process, and the
quality of the model ultimately depends on the knowledge and skill of the modelers.
Some guidelines exist to aid (new) modelers in their model development, and they share
some similarities [50–55]. Most of these guidelines are quite high-level, and do not go
beyond a description of which elements have to be defined.

A notable exception is the ‘overview, design concepts, and details’ (ODD) protocol,
which has been used widely in literature [56, 57]. It provides a detailed set of steps, along
with guidelines, to design agent-based models and individual-based models. However,
even this extensive protocol does not include specific guidelines on how the behavior of
agents can be defined. It remains up to the creativity and expertise of the modeler to
determine how this behavior is specified.

With more and more data becoming available over the last decades, methods to in-
terpret and understand this data became better as well. The field of data analysis is con-
cerned with finding patterns and relationships in a dataset. Numerous methods to find
these patterns and relationships exist, of which regression, neural networks, and cluster-
ing are three examples [199].

A particularly promising method to find relationships between variables is that of
causal discovery [67]. Using causal discovery algorithms, a causal graph is generated
based on available data. These causal graphs show the causal relationships between
variables and identify structure in the dataset. With the right dataset, causal discovery
algorithms provide insights into the observable behavior of agents and their results in
the environment. These insights can then be used to specify the behavior of agents in an
agent-based model, potentially leading to a better model.

In this chapter, we propose AbCDe, a novel methodology that aids the development
of agent-based models using causal discovery. The methodology combines causal graphs
with insights of experts to specify the behavioral properties of agents. This provides the
modeller with a more structured approach towards specifying the behavioral properties
of agents, reducing the dependency on experts alone. The methodology is applied to a
case study in the security checkpoint, in which a new concept of operations is evaluated.
In this concept, a service lane processes passengers that are expected to be slow, and the
other open lanes process the remaining passengers. This concept of operations is pro-
jected to improve overall throughput of the system, as faster passengers do not have to
wait for slower passengers in front of them.

This idea of using data-driven methods to design agent-based models has been ex-
plored by Kavak et al.[58]. In that work, behavioral properties of agents are learned from
data by applying machine learning techniques, such as support vector machines and
decision trees. While these more traditional machine learning techniques are effective
tools to learn behavioral properties, they do not reveal the structure of relationships be-
tween variables related to agents. A particularly promising method to reveal this struc-
ture is that of causal discovery. We follow a similar approach to that of Kavak et al., but
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focus on using causal discovery instead of traditional machine learning techniques.
Kvassay et al. [77] provide a method, based on causal partitioning, to analyze causal

relationships relating to emergence in agent-based models. These causal partitions spec-
ify the relative importance of influencing factors on emergent properties, which helps to
understand these properties better. This work focuses on analyzing agent-based model
behavior, and does not cover designing them.

Guerini and Moneta [78] cover the topic of agent-based model validation. They es-
timate time-series of economic models using structural vector autoregressive (SVAR)
models. Using causal discovery algorithms they generate two SVAR models: one based
on results generated by the designed agent-based model, and the other based on actual
data. When the two SVAR models are similar enough, they agent-based model is con-
sider validated. This work only covers agent-based model validation, and does not cover
designing agent-based models.

This chapter is structured as follows. The AbCDe is outlined in Section 6.2. Then, the
case study is outlined in Section 6.3, and a discussion is provided in Section 6.4. Finally,
the chapter is concluded in Section 6.5.

6.2. METHODOLOGY
This section outlines the novel Agent-based Causal discovery Design methodology, called
AbCDe, which is used to design agent-based models with causal discovery algorithms.
The methodology contains five steps, which are graphically outlined in Figure 6.1.

The methodology exploits the ever-growing availability of data to design agent-based
models. Using data on behavior of agents, a causal graph is generated using causal dis-
covery algorithms. This graph is then, with the aid of experts, translated into behavioral
properties of agents. These properties ultimately determine the dynamics of the model,
leading to insights into the phenomenon that is modeled.

Causal discovery algorithms provide a more structured method to develop agent-
based models than relying on experts alone. However, experts are still needed in many
aspects of the methodology to ensure that the model is of high quality. This combina-
tion of causal discovery algorithms and experts can lead to better models than models
created by experts alone. Each of the steps of the methodology is outlined in detail in the
subsequent sections below.

6.2.1. PURPOSE, RESEARCH QUESTION AND HYPOTHESIS

As in any modeling study, the purpose of the model should be defined first, as a general-
purpose agent-based model is not effective [196]. Based on the defined purpose of the
model, all other modeling decisions are made. Example purposes are for instance: ‘to
explore the causes of the indirectly observed Anasazi population dynamics in the Long
house Valley in Arizona between 800 and 1400’ [200, 201] and ‘explore the relationship
between how tolerant individuals are of the opposite group and how segregated neigh-
bourhoods are, when individuals express intolerance by moving’ [202, 203].

Based on the purpose of the model, a (set of) research question(s) is formulated.
These research questions are more specific than the purpose and further limit the ele-
ments that need to be modeled later. Following the same examples as above, these re-
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search questions can be: ‘does the environmental variability itself explain the abandon-
ment of the Anasazi of the Long House Valley?’ and ‘why do members of two different
groups separate into different neighbourhoods?’.

After defining the research question(s) of the study, hypotheses have to be defined
as well. These hypotheses state the expected answers to the research questions. In the
Anasazi an hypothesis could be: ‘environmental factors only cannot explain the sudden
abandonment of the Long House Valley’, while in the segregation model this could be:
‘small preferences of individuals to live near members of the same group lead to largely
segregated areas’.

6.2.2. SCOPE AND CONCEPTUAL MODEL
Based on the first step of the methodology, the scope of the model is determined. This
specifies what elements will be included in the model and what will not be included. In
the Anasazi example, households and their behavior fall in the scope of the model, but
not individuals. Also extreme weather events are outside the scope of the model, but soil
quality is included. In the segregation model, housing prices fall outside the scope of the

Figure 6.1: The methodology used in this chapter.
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model, but individual preferences on the type of neighbors is included in the model.
Once the scope is clarified, a conceptual model is formalized. The conceptual model

forms the basis for the remainder of the methodology. In this conceptual model, agents
are identified first. An agent, in this chapter, is defined as an entity that perceives its en-
vironment through sensors and acts upon that environment through effectors [204]. In
this step, we specifically focus on the identification of the agents to be modeled, along
their characteristics and the behavior that they can exhibit. Only the higher-level behav-
ior that the agents exhibit is specified (i.e. what the agent can do); the full specification
of the behavior (i.e. how the agent does it) will be done in step 4 of the methodology.

For the running Anasazi example, a household is the only agent type that is modeled.
A household has a specific age (in years), a location and specific nutritional requirement.
They are able to harvest food, and split into two households when the fertility age has
been reached. In the segregation example, one agent is identified: a family. A family is
of a specific type (A or B), and lives at a certain location. It has a preference to live close
to at least a certain percentage of families of the same type, and can move to another
location.

When the agents are identified, the environment of the model is specified. The en-
vironment, as used in this chapter, comprises non agent objects, which agents can ob-
serve and act upon. These objects may be related to each other. In the Anasazi model,
the environment consists of cells of 100 by 100 meter. Each cell has a soil quality and
can contain water. A cell has (changing) weather conditions and can be inhabited by a
set of households. The environment of the segregation model contains cells that can be
occupied by a single family, or unoccupied. These cells can also be neighbors of each
other.

The conceptual model also serves as a basis for the terminology used when design-
ing the rest of the model. It can be considered to extend the conceptual model with an
ontology, which describes the model, related concepts and relationships between them.

6.2.3. DATA COLLECTION & ANALYSIS

After identifying the agents and specifying the environment, data is collected about the
behavior and characteristics of the agents in the model. This data is obtained by observ-
ing agents, their actions, and the consequences of these actions in the real world. This
will later be used to specify behavioral properties of agents.

Depending on what is modeled, different types of data can be collected. The col-
lected data that will be used to generate behavioral properties is always on the agent-
level (and not population-level), and should therefore contain as much detail about the
characteristics of the agent (as defined in the conceptual model of the previous step), its
behavior and the results of this behavior. Data is therefore in the form of characteristics
of agents, actions performed by agents, effects of agent actions on the environment and
effects of agent actions on other agents.

Collected data must be quantitative and not qualitative to be useful for the causal
discovery algorithms as used in the next step. It is also important to gather data in dif-
ferent circumstances, at different times, so that a complete picture of the agent behavior
can be obtained.

Qualitative data and population-level data can be useful in other aspects of model
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development. For instance, it can be used to calibrate the population size and distribu-
tion, or specify parts of the model of which no quantitative data is available.

In the Anasazi example, data cannot be collected anymore as the investigated period
is centuries ago. However, archaeological data contains information on locations of set-
tlements, movement behavior of households, and their nutritional requirements. In the
segregation example, data could be collected by surveying families of different groups
about their reasons to move to another neighborhood. Furthermore, official govern-
ment data on movement of families and compositions of neighborhoods can be used as
well.

The collected data is then analyzed following standard data analysis techniques, such
as clustering, regression and statistical tests. This provides early insights into the behav-
ior of agents, and will be useful for the next step of the methodology.

6.2.4. BEHAVIORAL PROPERTIES
We informally define behavioral properties as all aspects of the agent that relate to its
actions, including interactions, and communications. We explicitly exclude cognitive
properties of agents, as these are often not observable and therefore cannot be captured
in a quantitative dataset. Behavioral properties are formalized based on two sources:
causal discovery and expert input. These aspects are discussed in detail below, com-
bined with a discussion on how to translate them to behavioral properties.

CAUSAL DISCOVERY

Causal discovery algorithms are used to infer a causal structure from available data. Sev-
eral methods have been proposed to generate causal graphs, of which the most impor-
tant types are constraint-based methods [72–74] and score-based methods [71, 205]. In
the constraint-based category, the PC algorithm [73] is very popular, while in the score-
based category, the GES algorithm [205, 206] is frequently used in literature.

A causal discovery algorithm is used on the dataset that was collected in the previous
step. Before applying the algorithm, the data has to be preprocessed. This preprocessing
is done to ensure that only agent behavior is found, and not emergent effects. These
emergent effects should be part of the model, but not explicitly coded into the behavior
of agents. It should emerge from the behavior and interaction of agents in the model. In
the Anasazi example, the total number of households over time is an emergent effect that
should not be considered by the causal discovery algorithm. In the segregation example,
the time it takes for an area to be segregated is an emergent effect that should not be
considered by the causal discovery algorithm.

Furthermore, the dataset has to be organized such that a single graph for a single
agent is produced. Data of other agents can be included in the dataset for the agent un-
der consideration, so that observable behavior, such as communication and alterations
of the environment, can be found by the causal discovery algorithms as well.

After preprocessing, a causal discovery algorithm is applied to the dataset, leading to
a causal graph representing the behavior of an agent in the model. The generated graphs
relate characteristics of agents to exhibition of their behavior by means of including an
arrow between them. Results of behavior of other agents, or properties of environmental
objects are included in the graph following the same standard.
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EXPERT & THEORY INPUT

After generating the causal graphs, an expert provides input for two purposes. First, the
expert checks the graph that was generated for inconsistencies with their knowledge and
the original data analysis that was performed in the previous step. These inconsistencies
are then fixed in the graph.

Second, the expert provides additional insights based on theories from literature
or their experience. These insights can be used to compensate for missing data in the
dataset, and provide another means to specify behavioral properties in the next step.

SPECIFICATION OF BEHAVIORAL PROPERTIES

After obtaining both the causal graph and the input of experts, the behavioral properties
are specified with the aid of experts. These properties can be obtained from the graph
(updated by the expert) by selecting a variable to be used as a behavioral property, and
using its parents as building blocks to specify the behavior. We use Figure 6.2 as a fic-
tional example to illustrate this process. In this figure, a part of the causal graph of the
Anasazi example is visualized; specifically the variable f ar m_yi eld , along with its par-
ents.

Soil qual. House age Weather

Farm yield

Figure 6.2: A fictional example of a part of the causal graph of the Anasazi example.

Different methods exists to translate a variable into a behavioral property. The first
option for specifying a behavioral property is by using conditional distributions. Follow-
ing this approach, distributions for the farm yield are obtained for different combina-
tions of parent values, by fitting distributions over the available data. An example of this
is shown in Equation 6.1 below.

f ar m_yi eld =


N (soi l _qual ×20,25) 0 < ag e < 10, weather = bad

N (soi l _qual ×40,15) 0 < ag e < 10, weather = g ood

N (soi l _qual ×25,10) ag e ≥ 10, weather = bad

N (soi l _qual ×48,23) ag e ≥ 10, weather = g ood

(6.1)

In this equation, the f ar m_yi eld follows different Normal distributions based on
the age of the household and weather conditions. The main advantage of this approach
is that the behavior of the agent best represents the data, leading to a better model. How-
ever, this requires large amounts of data to be effective, and leads to models with a high
number of parameters.
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Another method to define a behavioral property is to use (non-)linear regression
models. Using this technique, the behavioral property is regressed on the parent vari-
ables. In the farm yield example, this could lead to for instance Equation 6.2, as shown
below.

f ar m_yi eld = 15× soi l _qual +3.2×ag e +12×weather (6.2)

where bad weather is represented as 0, and good weather as 1. The advantage of this
approach is that fewer parameters are present in the model, making the model simpler
to understand. Additionally, noise can be introduced to the function to represent uncer-
tainty in the outcome of the behavior of the agent. Equation 6.3 shows an example of
this.

f ar m_yi eld = 15× soi l _qual +3.2×ag e +12×weather +N (0,5) (6.3)

Other methods that learn models from data, such as neural networks or decision trees,
can also be used to specify behavioral properties. Using the insights and expertise of
experts, the selection of a method to specify behavioral properties is made. Experts are
also use to correct and extend the behavioral properties once generated using the meth-
ods described above. Experts are crucial in the determination of the final behavior of
agents, but the generated causal graphs and the translation method as described above
form important guidelines for these experts.

6.2.5. IMPLEMENTATION AND ANALYSIS
While the focus of this methodology is on the previous steps of designing agent-based
models, they still need to be implemented, calibrated and validated to be useful. These
three steps are addressed in this section.

IMPLEMENTATION

After specification of the model, it has to be implemented in a programming language or
platform. The main requirement is that the language or platform should be capable to
codifying all the defined behavior in the previous step. Example programming platforms
are Netlogo [207], Mason [208], RePast [209], and Gama [210]. General programming
languages such as Java or Python can be used as well, but requires more effort from the
programmer to be effective.

CALIBRATION

When the model is implemented, it has to be calibrated. Klügl describes the process
of calibration as ‘parameters have to be set in a way that a structurally correct model
produces a valid outcome’ [90]. Depending on the specific model, the right approach for
calibration has to be chosen. Calibration can be done using experts manually setting the
model parameters, or more automatic approaches [211].

VALIDATION

Once the model is calibrated, the model has to be validated as well. It is often defined as
‘the process of determining whether a simulation model is an accurate representation
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of the system, for the particular objectives of the study’ [212]. Klügl provides a com-
prehensive overview of how agent-based models can be validated [90]. As the AbCDe
methodology is data-driven, it is important to note that the data used for generating the
causal graphs should not be used for validation. The data should either be split into two
parts (one part for validation, one for calibration), or other validation techniques, such
as face validity, should be used to validate the model.

When the model is validated, it can be used to answer the research questions and
test the hypotheses as defined in the first step.

6.3. CASE STUDY
We apply the AbCDe methodology to a case study in the field airport security. The case
study is used to illustrate the AbCDe methodology, and the airport security domain is
used to do that. In airport terminals, the security checkpoint is the most important bot-
tleneck for passengers, and an important source of costs for airport management. As
airport passenger numbers are projected to increase in the future, it is essential that se-
curity checkpoints are operated efficiently.

In this case study, we explore a new concept of operations, using a service lane, to
improve the efficiency of the security checkpoint. A service lane processes passengers
that are expected to be slow, and the other open lanes (defined as normal lanes) process
the remaining passengers. This concept of operations is projected to improve overall
throughput of the system, as faster passengers do not have to wait for slower passen-
gers in front of them. Slow passengers also receive extra help from experienced security
officers, potentially increasing the throughput as well.

We design an agent-based model following the AbCDe methodology to determine
the effects of implementing a service lane on the throughput of the security checkpoint,
as compared to a standard setup. The steps of the methodology, applied to this case
study, are outlined below.

6.3.1. PURPOSE OF THE MODEL, RESEARCH QUESTIONS AND HYPOTHESES

The purpose of the model is defined as follows.

To determine the effects of implementing a service lane on the throughput of the secu-
rity checkpoint, as compared to a standard setup.

A single research question is defined for the model, and stated below.

What is the effect of implementing a service lane setup on the throughput of security
checkpoint operations at an airport, as compared to a standard setup?

We specify the following hypothesis, related to the research question as defined above.

The service lane setup increases the overall throughput of the security checkpoint sys-
tem, by increasing throughput in the normal lanes. The service lane will see a decrease in
throughput, as compared to original lanes.
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6.3.2. SCOPE AND CONCEPTUAL MODEL
We focus on the behavioral aspects of the security checkpoint actors, while excluding
cognitive processes of passengers and security employees. The focus of the causal dis-
covery step in the methodology is on the behavior of the passenger. The security em-
ployees are defined as simple agents based on expert input.

Now that the scope of the model is clarified, we specify the conceptual model. This
conceptual model is specified in more detail in a technical report [155], but the most
important elements are provided below. We identify the environmental objects that are
modeled first. These our outlined below.

• Luggage. Luggage is owned by a passenger, and has a specific threat level. This is
a real value between 0 and 1.

• X-ray box. Object in which luggage is dropped. Luggage can be dropped into mul-
tiple boxes.

• X-ray sensor. Detects the threat level of luggage that it observes.

• Walk-through metal detector (WTMD). Randomly specifies passengers to require
an explosive trace detection (ETD) or patdown.

• Flight. Abstract concept that has an associated flight time. Passengers are associ-
ated with exactly one flight.

• Queue separator. Physical objects that are used to form queue areas for passen-
gers.

Now that the environment of the model is specified, we specify the agents of the
model. The focus of the causal discovery part of this methodology is at the passenger,
but we briefly discuss the other agents below as well.

• Passenger. Agent that is associated with a flight, and moves through the security
checkpoint. It is also of a specific passenger type, such as young or business. The
most important actions are drop and collect, which refers to dropping and collect-
ing luggage at the security checkpoint. These actions are the focus of the remain-
der of this case study, and will illustrate the process of using causal discovery for
the specification of behavioral properties.

• X-ray operator. Uses the X-ray sensor to determine if luggage needs an extra
check, and communicates this with the luggage check operator. This is done when
the threat level of luggage exceeds a threshold.

• Luggage check operator. Checks luggage when requested by the X-ray operator.
This is modeled as a waiting time for passengers.

• Patdown operator. Performs patdowns and ETD checks. These actions are mod-
eled as a waiting time for passengers.
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6.3.3. DATA GATHERING AND ANALYSIS

We collected data of passengers moving through the security checkpoint at Rotterdam
The Hague Airport. This data is previously discussed in a publication that is currently
under submission, and can be found in a public repository [213].

Table 6.1: The data that was gathered for each passenger in the dataset, along with example data of a slow and
a fast passenger. Table from [213]

General Data Type Example slow Example fast
1 Lane number 3 3
2 Date 7-4-2018 7-4-2018
Characteristics
3 Passenger type Young Regular
4 Experience 0 1
5 Number of boxes 1 1
6 Group size 3 1
Timing Data
7 Start time luggage drop 17:55:14 17:01:09
8 End time luggage drop 17:56:06 17:01:18
9 Time WTMD 17:56:16 17:01:22
10 Time WTMD 2x 17:57:53 -
11 Time WTMD 3x - -
12 Start time WTMD check 17:57:57 -
13 End time WTMD check 17:58:30 -
14 Start time ETD check - -
15 End time ETD check - -
16 Start time luggage collect 17:58:35 17:02:02
17 time end luggage collect 17:59:04 17:02:13
18 Start time luggage check - -
19 End time luggage check - -

Data for a total of 2277 passengers, flying to 16 different destinations was gathered.
Three types of lanes were considered: standard, normal and service lanes. Data for stan-
dard lanes was gathered between 23 February 2018 and 17 April 2018, while data for nor-
mal and service lanes was collected on the experimental days: 17 December 2018 and 18
December 2018. A service lane was used to process passengers that are expected to be
slow, while the normal lanes processed the other passengers. Standard lanes processed
all passengers. Days and times were chosen based on isolated blocks of flights that were
scheduled, such that all passengers were expected to fly with these flights. For each pas-
senger, 19 different aspects of the security checkpoint process were gathered, which are
outlined in Table 6.1. These aspects are mostly related to timing of the different subpro-
cesses they go through, but also relate to characteristics of the agent.

We analyzed this data in the same manuscript, and show two important results here.
Figure 6.3 show the mean security checkpoint time for the six considered passenger
types: business, senior, family, young, passengers with reduced mobility (PRM) and reg-
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Table 6.2: The extracted process duration from the gathered data, based on the entries as specified in Table 6.1.
Table from [213].

Time period Shorthand Calculation method
luggage drop time drop period between 7 and 8
Waiting time
before WTMD

wait I period between 8 and 9

Waiting time
after WTMD

wait II

minimum of
1) period between 9 and 16,
2) period between 10 and 16,
3) period between 11 and 16,
4) period between 13 and 16

luggage collect time collect period between 16 and 17
Security checkpoint time checkpoint period between 7 and 17
Other time other checkpoint - drop - wait I - wait II - collect

ular. The security checkpoint time is also split up into 5 distinct parts: drop, collect, wait
I, wait II and other. These parts are defined according to their respective definitions in
Table 6.2. PRM passengers were found to be the slowest group with an average of 207
seconds, and business passengers were the fastest with 168 seconds on average. These
are according to expectations, as business passengers are often experienced travellers,
while PRM passengers often require extra help to go through the security checkpoint.

Business Senior Family Young PRM Regular
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Figure 6.3: The mean processing times, split into five subprocesses, for each of the passenger types in the
dataset. Figure from [213].

Figure 6.4 shows the performance of different security checkpoint setups. It shows
that four standard lanes had a higher throughput than the throughput of both service
lane setup, and five standard lanes had lower throughputs. When just comparing through-
put, the service lane setup performed slightly above average compared to the standard
setups. However, just the data on its own is not conclusive, so a modeling study will be
beneficial to understand the advantages and disadvantages of a service lane setup bet-
ter. In the next section, we will use causal discovery to design an agent-based model to
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achieve that goal.
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Figure 6.4: The maximum throughput (normalized to passengers per lane per hour) for the 11 different security
checkpoint setups. Setups starting with ’o’ are composed of original lanes, while setups starting with ’n’ contain
a normal lane and a service lane. Figure from [213].

While we gathered data for 2277 passengers, it is by no means a very large dataset.
However, it is the largest and most detailed dataset on the topic of airport security, and
we therefore use this dataset for our study. It suffices to illustrate the workings of the
methodology.

6.3.4. AGENT BEHAVIOR
As mentioned in Section 6.3.2, we focus the generation of behavioral properties on the
drop and collect behavior of passengers. We build two models for these behavioral prop-
erties based on two independent assumptions by experts. For the first model, the char-
acteristics model, we assume that the drop and collect are solely based on the character-
istics of the agent and additional random factors. For the second model, the extended
model, we assume that these behaviors are additionally influenced by behavior of the
agent in front of it.

We use the data of the standard lanes to generate the behavioral properties of the
agent, while we use data of the service lane experiment to validate the models. To gener-
ate the graphs, we combine the score-based GES [205, 206] algorithm and the constraint-
based PC algorithm [73], following the Algorithm 3 of Chapter 7.

We use the following variables from the dataset to generate the graph for the charac-
teristics model:

• drop

• collect

• boxes

• type
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dr op patdown
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(a) The generated graph for the standard model.
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etd

col l ect

(b) The expert-based corrected graph for the standard
model.

Figure 6.5: The generated graph for the standard model, along with the expert-based corrections.

• group size

These variables are a combination of the characteristics of the agent, and the two
behavioral properties that we are interested in (drop and collect).

The same variables are used for the extended model as well, but the following vari-
ables are additionally used:

• dropp

• wait Ip

• boxesp

• typep

• group sizep

These variables are related to the passenger that performs the security checkpoint
process before the passenger under consideration. It is important to note that these con-
sist of the observable behavior and characteristics (i.e. observable by the passenger) of
the passenger in front of the passenger for which the behavioral properties are defined.

Figure 6.5a and Figure 6.6a show the graphs that were generated by the causal discov-
ery algorithm for the characteristics model and the extended model respectively. Based
on expert insights, these graphs are translated to their final versions, as shown in Fig-
ure 6.5b and Figure 6.6b.

The graph generated for the characteristics model shows that both ETD and patdown
are not connected to any other variable in the graph. That means that these are inde-
pendent variables that can be generated in the model independently as well. Then, both
boxes and type have a causal relationship with both drop and collect. This implies that
these characteristics combined are of influence on the speed in which passengers drop
and collect luggage. The generated graph additionally shows that boxes is caused by both
drop and collect. Based on expert advice, we assume this link to be unidirectional in the
direction of drop and collect. Finally, the size of the group influences collect, but not
drop. In a security checkpoint, passengers travelling in groups often wait for each other
to finish collecting their luggage. In this way, they can continue their journey to the gate
together. This is not the case for dropping luggage, as passengers can only pass through
the WTMD individually.
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(a) The expert-based corrected graph for the extended
model.
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(b) The expert-based corrected graph for the extended
model.

Figure 6.6: The generated graph for the extended model, along with the expert-based corrections.

The extended model is based on a generated graph that contains five more variables,
and is therefore more complex. This shows that some variables related to the previous
passengers are closely related to the same variables of the passenger under considera-
tion. To allow for fair comparison between the two models, we assume that both the
group size and the type of agent are independently generated. To this end, we remove
the links g r oupp ↔ g r oup, t y pep ↔ etd , t y pep ↔ t y pe and dr opp → g r oup. Another
important factor that we use to correct the graph, is the assumption that the passenger
under consideration cannot influence characteristics or behavior of the passenger that
is next in line. The links dr op → dr opp , boxes → boxesp and t y pe → boxesp are there-
fore removed. Finally, we reverse the direction of the arrow dr op → boxes.

The above-described process of expert assessment and improvement of the gener-
ated graph is vital for the remaining steps of the model development.

Now that the graphs are complete, we transform them into agent behavior. For the
characteristics model, we generate conditional random distributions for the time the
passenger takes to drop luggage (based on boxes and type), and collect luggage (addi-
tionally based on the group size). To fit these distributions, we use data of all passen-
gers in the calibration set that possess the right characteristics. We use the Kolmogorov-
Smirnov test [214] to determine which of the following distribution has the best fit: Expo-
nential distribution, Gamma distribution, Generalized Extreme Value distribution, Nor-
mal distribution, Poisson distribution, and Weibull distribution. Equations 6.4-6.5 below
show the drop and collect distributions for a business passenger travelling alone with
one box worth of luggage.

dr op =Gener al i zedE xtr emeV alueDi str i buti on(43.95,19.81,−0.07) (6.4)

col l ect = Nor mal Di str i buti on(36.12,20.93) (6.5)
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where the Normal distribution is parameterized by its mean (first parameter) and
standard deviation (second parameter), and the Generalized Extreme Value distribution
is parameterized by its location (first parameter), scale (second parameter) and shape
(third parameter).

A similar procedure as above is followed for the extended model. However, the parent
variables that specify the drop and collect distribution are continuous variables, as com-
pared to discrete and categorical variables in the characteristics model. We therefore use
a method to fit a generalized linear model [215, 216], based on maximum likelihood esti-
mation (MLE), for the drop and collect distributions. We use the Poisson distribution as a
basis for both the drop and collect variables, and a linear combination of their respective
parent variables to specify the parameterλ of the Poisson distribution. Equations 6.6-6.9
show the distributions for drop and collect.

λ1 = 3.30+0.24×boxes +0.009×dr opp −0.001× (boxes ×dr opp ) (6.6)

dr op = Poi ssonDi str i buti on(expλ1) (6.7)

λ2 = 3.86+0.006×dr op −0.002×w ai t Ip −2.18e−5 × (dr op ×w ai t Ip ) (6.8)

col l ect = Poi ssonDi str i buti on(expλ2) (6.9)

The boxes parameter is based on the passenger type, the number of boxes that the
previous passenger used (boxesp ) and the wait I time of the previous passenger (w ai t Ip ).
When collecting data we observed that passengers will take longer to drop their luggage
if they cannot continue to the WTMD yet. For instance, they realize they have their belts
still on, and use an extra box to put that in, or take off their shoes and put that in a new
box. This may explain the relationship between the number of boxes and these parame-
ters. We follow a generalized linear modeling approach to specify the boxes distribution
in the extended model as well. However, as type is a categorical variable, we specify a dis-
tribution for each passenger type individually. Equations 6.10-6.11 show the distribution
for the Business passenger; other passenger types are defined similarly.

λ3 = 0.93−0.03×boxesp −0.01×w ai t Ip +0.003× (boxesp ×w ai t Ip ) (6.10)

dr op = Poi ssonDi str i buti on(expλ3) (6.11)

6.3.5. IMPLEMENTATION AND ANALYSIS
We have implemented the three models in the AATOM simulator, an agent-based airport
terminal operations simulator [130]. A screenshot of the implementation in the AATOM
simulator is shown in Figure 6.7. For calibration, we focus our analysis on a single flight
setup, with a single standard lane open. For validation, we focus the analysis on a two-
flight setup, with a service lane and a normal lane open.

CALIBRATION

We calibrated the model with the data that was collected for the nine standard lanes.
All important parameters, their descriptions, and their calibrated values can be found in
Tables 6.3-6.5. Most parameters could be calibrated using the data, but three parameters
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Figure 6.7: A screenshot of the model implemented in AATOM.

have to be set by experimentation. Below we list the three parameters, along with the
values that we tested to calibrate them.

• desiredSpeed. Tested values: 1.0, 1.1, . . . , 1.5.

• numberOfDropPlaces. Tested values: 2, 3.

• numberOfCollectPlaces. Tested values: 2, 3.

We ran a total of N = 1000 simulations for each of the 24 combinations, for all three
models, and extracted the following four output values for each simulation run.

• wait I. The mean wait I time of all passengers in the simulation. See Table 6.2 for a
description of this value.

• wait II. The mean wait I time of all passengers in the simulation. See Table 6.2 for
a description of this value.

• throughput. The maximum number of passengers that passed through the secu-
rity checkpoint in any 45 minutes period.

• occupation. The mean number of passengers that was using the security check-
point simultaneously for the same period as the highest throughput was observed.
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Table 6.3: The calibrated parameters of the model, sorted for different aspects of the model. When the value
states experiment, different values are used for the standard lane setup as compared to the service lane setup.
The value calibration refers to a parameter that is calibrated in Section 6.3.5. The Generalized Extreme Value
distribution is parameterized by its location (first parameter), scale (second parameter) and shape (third pa-
rameter).

Parameter Description Calibrated value
Passenger

desiredSpeed
The desired speed (in m/s) that the
passenger moves through the checkpoint.

Calibration

type The passenger type. Based on passengerTypeDistribution

groupSize
The size of the group the passenger
travels with.

Based on groupSizeDistribution

Operator

proportionETD
The proportion of passengers that
receive an ETD check.

0.1312

ETDCheckDistribution The distribution of ETD check times.
GeneralizedExtremeValueMathDistribution(
6.73,4.36, 0.69);

proportionWTMD
The proportion of passengers that
receive a patdown.

0.0787

WTMDCheckDistribution The distribution of patdown times.
GeneralizedExtremeValueMathDistribution(
19.19,9.35, -0.01);

illegalObjectThreshold
The proportion of passengers that
does not have an illegal item.

0.9243

luggageCheckDistribution The distribution of luggage check times.
GeneralizedExtremeValueMathDistribution(
35.20,27.78, 0.33);

Checkpoint
numberOfNormalLanesOpen The number of standard lanes that are open. 1 (calibration), 1 (validation)
serviceLaneOpen The service lane is open or not. false (calibration), true (validation)

numberOfDropPlaces
The number of passengers that can
simultaneously drop luggage at the
X-ray system.

Calibration

numberOfCollectPlaces
The number of passengers that can
simultaneously collect luggage at the
X-ray system.

Calibration

Flight

numberOfFlights
The number of flights. All flights
are assumed to leave at the same time.

2

passengersPerFlight The number of passengers per flight. 160

arrivalDistribution The distribution in which passengers arrive.
20% (first half hour), 60% (second),
20% (third), 0% (last)

Passenger distribution

passengerTypeDistribution
The distribution of passenger types
in the population.

Table 6.5

groupSizeDistribution
The distribution of group sizes
in the population.

Table 6.4

serviceLaneDistribution
The proportion of passengers per type
that will be directed to the service lane.

Table 6.5

These output parameters are emergent effects of the model, and are not explicitly
coded into the behavior of any agent. This makes them suitable parameters to determine
the quality of the calibrations. We perform linear normalization for each of these output
values, using the following functions.
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Table 6.4: The distribution of group sizes for the different passenger types.

Group Size 1 Group size 2 Group size 3
Business 0.75 0.16 0.09
Senior 0.12 0.67 0.21
Young 0.02 0.15 0.83
Family 0.22 0.52 0.27
PRM 0.16 0.58 0.26
Regular 0.34 0.50 0.16

σ= sd(X ) (6.12)

xmi n = mean(X )−2σ (6.13)

xmax = mean(X )+2σ (6.14)

xnor m = x −xmi n

xmax −xmi n
(6.15)

where X represents the vector of all output values of a specific type (i.e. all simulated
wait I times), and x ∈ X . We perform the same procedure for these output parameters in
the real data.

We calculate the Euclidean distance between each of the calibrations and the real
data. Table 6.6 shows the best calibrations for each model type, along with the calculated
distance.

It is interesting to observe that for all three models the same number of drop places
and collect places are obtained, and similar desired passenger speeds are found. This is
a good indication that these values correspond to their real-world equivalents.

VALIDATION

In this final step, we assess the performance of the models by using data of the normal
and service lanes. In comparison with the calibration step, we change the distribution of
arriving passenger types (see Table 6.5), have two lanes open instead of one, and specify
one lane as a service lane. The proportion of passengers per type that are sent to the

Table 6.5: The proportion of passengers of different types in the calibration and validation experiment (first
two columns). The proportions do not add up to 1 due to rounding errors. The last column represent the
proportion of passengers of a specific type that are sent to the service lane in the validation experiment.

Calibration Validation Service lane
Business 0.15 0.17 0.21
Senior 0.17 0.23 0.60
Young 0.15 0.13 0.41
Family 0.11 0.07 0.76
PRM 0.012 0.004 1.00
Regular 0.41 0.37 0.51
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Table 6.6: The calibrated models along with their distances to the real data.

Model dropPlaces collectPlaces desiredSpeed Distance
Expert 3 3 1.4 2.1627
Characteristics 3 3 1.4 2.2265
Extended 3 3 1.5 2.2164

service lane are also specified in Table 6.5. We normalize the data following the same ap-
proach as the calibration, and calculate the distance again. As we have two open lanes
instead of one, the number of output parameters has also doubled. The resulting dis-
tances to the validation data for the calibrated models of Table 6.6 are shown in Table 6.7.

Table 6.7: The calibrated models along with their distances to the validation data. For fair comparison, the
models with (2), are the models that have the same calibration parameters as the extended model.

Model Distance
Extended 3.4862
Characteristics (2) 3.6056
Expert 3.6071
Expert (2) 3.6157
Characteristics 3.6486

Results show that the extended model has the shortest distance to validation data.
It is followed by the characteristics model (2), and the expert model. The highest dis-
tance with the validation was by the characteristics model, followed by the expert (2)
model. These results indicate that building a model with our methodology can improve
the accuracy of the models over models developed by experts alone. While more work
is needed to show the advantages and disadvantages of the methodology, these initial
results are promising.

6.4. DISCUSSION
An important issue that occurred during the generation of causal graph is that different
algorithms and parameters produce quite diverse causal graphs. By integrating the PC
algorithm with the GIES algorithm, following the approach of Chapter 7, this problem
is partially addressed, but certainly not solved. We believe that further developments in
the field of causal discovery will improve our methodology as well.

A major advantage of our methodology is that it provides modellers with a toolbox to
design agent-based models. Previously, agent behavior was mostly defined based on
expert skills, but with this toolbox it makes it easier for experts to come up with the
behavioral properties. By no means we believe that experts become obsolete with our
methodology, but we do believe that it can help make agent-based models better and
more consistent.

The quality of the model generated with the AbCDe methodology depends heavily on
the data that is used to generate causal graphs. For some applications, such as terrorism
and future technological advances, virtually no data exists or can be gathered. For these



6.5. CONCLUSIONS

6

113

applications our methodology cannot be used, and traditional expert-based model de-
sign is more suitable. In cases where agent-specific data can be gathered, such as our
examples on airport security checkpoint efficiency and segregation, our methodology
can impact the final quality of the developed model.

6.5. CONCLUSIONS
Causal discovery algorithms translate data into a directed causal graph that reveals the
causal structure among variables. In this chapter, we investigated how these algorithms
can be incorporated in the design process of agent-based models. We therefore pro-
posed an agent-based model-design methodology, called AbCDe, that uses causal dis-
covery algorithms and the growing availability of data to specify behavioral properties.
This methodology combines traditional expert-based model design techniques with causal
graphs to design better models.

We applied the methodology to a case study that studies the effects of implementing
a so-called service lane at the security checkpoint. We gathered a dataset containing de-
tailed information about over 2,000 passengers moving through the security checkpoint.
The models that are generated with the AbCDe methodology show closer resemblance
to validation data than an existing model that was designed by an expert alone.

More case studies have to be performed to understand the advantages and disad-
vantages of our methodology better, but first results are promising. Future work can
also focus on developing dedicated causal-discovery algorithms for agent-based model
development, instead of adapting existing algorithms for that purpose.





7
USING CAUSAL DISCOVERY TO

ANALYZE EMERGENCE IN

AGENT-BASED MODELS

In Chapter 6 we showed that agent-based models can effectively be designed using causal
discovery. However, analyzing agent-based models is a complex task as well. Agent-based
models typically contain complex non-linear interactions between agents and generate
emergent properties that cannot easily be explained. They are most commonly analyzed
using sensitivity analysis techniques. While these techniques help understanding agent-
based models better, they are not a one-size-fits-all solution. In this chapter, we explore
the novel use of the causal-discovery algorithms of Chapter 6 as an additional means to
analyze agent-based models. We propose the AbACaD methodology: Agent-based model
Analysis using Causal Discovery. In this methodology, emergence in agent-based models is
analyzed using causal-discovery algorithms in combination with both machine learning
and sensitivity analysis techniques.

Parts of this chapter have previously been published in the Simulation Modelling Practice and Theory journal
(2019) [217].
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7.1. INTRODUCTION
Agent-based modeling is commonly used to analyze complex systems. These systems
are characterized by a large variety of components that interact with each other. Agent-
based models mimic the behavior of the actors in these systems to better understand
them and potentially increase their performance. An interesting feature of agent-based
models is that of emergence: “patterns, structures, and behaviors that were not explicitly
programmed into the models, but arise through the agent interaction” [218]. One of the
prominent techniques to understand emergent properties is sensitivity analysis. Using
sensitivity analysis, one aims to determine the effect of changing input parameters on
the output variables of an agent-based model. Sensitivity analysis, however, does not
shed light on the causal relationships between different elements of a model.

To better understand emergent properties of agent-based models, we propose AbA-
CaD in this chapter. AbACaD is a novel methodology in which emergence in agent-based
models is analyzed using causal discovery in combination with both machine learn-
ing and sensitivity analysis techniques. Causal-discovery algorithms are combined to
generate a causal graph that represents causal relationships between model parameters
and output variables of the model. This causal graph is then exploited to understand
emergent properties of the model better. Machine learning and sensitivity analysis tech-
niques are additionally used, as a synthesis of analysis outcomes from different meth-
ods allows for richer explanations of emergent behavior. Furthermore, causal graphs
sometimes give inconclusive results, which can be cross validated using these different
analysis techniques.

Two case studies are used to exemplify the use of the methodology. The first case
study focuses on the El Farol bar problem, in which agents only enjoy going to the El
Farol bar when it is not overcrowded. The second case study focuses on airport security
and efficiency, in particular on an Improvised Explosive Device (IED) attack.

This chapter is outlined as follows. The AbACaD methodology is outlined in detail in
Section 7.2, and the two case studies are discussed in more detail in Section 7.3. Finally,
a discussion is provided in Section 7.4 and the chapter is concluded in Section 7.5.

7.2. ABACAD METHODOLOGY
This section outlines the AbACaD methodology: Agent-based model Analysis using Causal
Discovery. The methodology consists of several steps, graphically shown in Figure 7.1.

The core of the methodology lies in the inference of a causal graph derived from data
generated by agent-based simulations performed with the model. Sensitivity analysis
and machine learning analysis provide extra insights in emergence of the agent-based
model.

The combination of these three methods is used for cross validation purposes. Fol-
lowing this approach, sensitivity analysis and machine learning techniques are used to
identify potential inconsistencies produced by the causal-discovery algorithms. At the
same time, a combination of the three techniques provides richer insight into the be-
havior of the model. Causal discovery introduces structure to the output, while sensi-
tivity analysis sheds light on the magnitude of the effect of model parameters on output
variables. Machine learning algorithms generate a metamodel of the agent-based model
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Figure 7.1: The AbACaD methodology.

under consideration. This combination of the three analysis techniques provides versa-
tile insights in the emergent behavior of an agent-based model.

The advantages of using the causal-discovery algorithms for analyzing emergence in
agent-based modeling are twofold. First, it provides the researcher another means to
understand the emergent properties of the agent-based model that was developed and
the real-world system that it mimics; it provides insight in which factors cause (emer-
gent) behavior of the model. This can lead to potentially unforseen explanations of
emergent properties that could not be revealed by the sensitivity analysis or machine
learning techniques alone. Second, a causal graph provides a clear representation of
the underlying mechanisms in an agent-based model. This allows the modeler to effec-
tively communicate results to external (non-technical) parties. Each of the steps of the
methodology are explained in detail below.

7.2.1. DEFINE AGENT-BASED MODEL

This chapter assumes a well calibrated and validated model as a starting point. As with
any agent-based model the environment of the model has to be defined. In addition,
the agents, their mutual interactions and their interactions with the environment of the
model have to be defined. It is assumed that this model has a set of model parameters,
with associated parameter ranges or distributions, and a set of output variables. We refer
to output variables as the measured output quantities of the model, and refer to model
parameters as the quantities that can be changed in the model. All other parameters of
the model are considered constants.

Choosing the right model parameters and output variables is essential for a proper
understanding of the model in later stages of the methodology. This is a creative pro-
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cess that requires knowledge about the system that is modeled. Furthermore, when
too few parameters are present, interesting emergent properties might not be observed,
while too many parameters might lead to uninterpretable large graphs. An overview of
designing proper agent-based models is provided by Grimm et al. [56] and Macal and
North [219].

7.2.2. SIMULATION WITH AGENT-BASED MODEL
Once the model is defined, simulations are performed based on the model. To this end,
a sampling strategy to explore the behavior of the model by simulation has to be chosen.
This sampling strategy can range from simple methods, such as exhaustively sampling
every parameter combination N times, to more complex methods, such as Latin Hyper-
cube Sampling (LHS) [65], sequential sampling [220] and importance sampling [221].

Determining the appropriate sampling strategy for a given agent-based model is an
important open problem in the agent-based modeling community. It depends on a large
number of criteria, such as the computational requirements of the model, the type of
model parameters, the complexity of the model output, the computational resources or
even the programming language in which the model was implemented.

Some authors address the described issues in their work. For instance, Edalia and
Yücel provide a metamodel-guided technique that helps to choose the right sampling
methodology [222]. Furthermore, Bremer and Sonnenschein compare a set of sampling
techniques on an agent-based smart grid model [223]. These works provide a guideline
to choose the right sampling strategy.

After selecting the sampling strategy, simulations are performed with the agent-based
model. The output of these simulations is analyzed in the subsequent steps.

7.2.3. MULTIPLE CLUSTERS
When the output of the model is too complex, many analysis techniques struggle to fully
capture its dynamics. It is therefore useful to split the data in clusters with more ho-
mogeneous behavior and dynamics [224]. These homogeneous clusters are then ana-
lyzed separately, and their dynamics can more easily be captured by analysis techniques.
When the data does not contain clusters, the subsequent analysis steps of AbACaD are
performed with the full output dataset.

To be able to detect whether homogeneous clusters exist, different techniques can
be used. For instance, the Silverman’s test can be performed to determine whether the
output data is multimodal [225]. This test can also be done to determine the number
of modes in the data. Another set of tests is based on clustering algorithms, such as K-
means clustering [226]. Three main algorithms to determine the number of clusters are
distinguished: the elbow method [227], the silhouette method [228] and the gap statistic
method [229]. Another method to limit the complexity of the model outputs, is to limit
the parameter range of a model parameter to a default value. This will impact the detec-
tion of emergent properties, as certain patterns may not be present. This is similar to the
one-at-a-time method for local sensitivity analysis, as also discussed in Section 7.2.4.

Clustering of data gives insights in specific aspects of the model, and helps to under-
stand emergence in these regions better. These emergent effects might be diminished
in the total dataset, and therefore invisible in the analysis. It is important to understand
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the characteristics of the different clusters well. Without a proper understanding of these
clusters, and their respective differences with the total dataset, the graphs cannot be eas-
ily interpreted. Clustering the dataset into many clusters (i.e. more than three) makes the
analysis more complicated, as too many clusters have to be analyzed independently.

7.2.4. SENSITIVITY ANALYSIS
We perform sensitivity analysis to get a better understanding of the model. Several meth-
ods to perform sensitivity analysis on agent-based models exist, and their usefulness de-
pends on the specific model that was defined and the goals of the analysis. For instance,
local sensitivity can be assessed using one-at-a-time (OAT) methods, while global sen-
sitivity can be assessed using variance-based methods [64]. A large number of other
methods exists to perform sensitivity analysis [63–65].

7.2.5. MACHINE LEARNING ANALYSIS
Another form of analysis of agent-based models is that of machine learning analysis. Es-
sentially, using machine learning a metamodel of the agent-based model is generated,
which helps to understand relationships between model parameters and output vari-
ables [224, 230]. Many types of machine learning algorithms exist to perform metamod-
eling of the agent-based model. Examples include regression trees, neural networks,
(linear) regression, support vector machines and combinations thereof.

Within the field of machine learning, there are many options to analyze agent-based
models, and the selection of the right algorithm depends on the type of model. Some
authors have looked into choosing the appropriate technique for a given model. For
instance, Arroyo et al. provide a methodology that explains why and when machine
learning algorithms can be used for agent-based models [66]. Furthermore, Sanchez
and Lucas provide an overview of methods that can be used to analyze agent-based
models [230]. These works provide guidelines to choose the right machine learning al-
gorithm.

7.2.6. CAUSAL DISCOVERY
Causal discovery is the process of inferring a causal structure from available data. In
this methodology, we use data generated by agent-based simulations performed with
the model that was defined in the first step to generate a causal graph. This generated
causal graph adds structure to the model parameters and output variables, and is used
to better understand emergent properties of agent-based models. Similarly to machine
learning models, causal graphs can be seen as a form of metamodels.

The PC algorithm is widely used in the domain to generate causal graphs. It is de-
signed to generate a causal graph based on observational data. The PC algorithm first
generates an undirected graph, called the skeleton, using an adjacency search algorithm.
The skeleton is used as a basis for the rest of the algorithm, in which edges are oriented
based on so-called V-structures in the skeleton. The algorithm finally results in a com-
pleted partially directed acyclic graph (CPDAG), which represents the Markov equiva-
lence class of DAGs that were inferred from the data. In case of sampling errors in
the data or hidden variables, the PC algorithm might output an invalid CPDAG. Such
a CPDAG cannot be extended to a valid DAG with the same skeleton and V-structures.
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This is resolved by randomly trying a set of different directions for the unresolved edges,
and then choose the first combination that results in an extendable CPDAG. This can
however lead to very different CPDAGs for the same set of inputs.

We manage the above instability of output by the following Algorithm 1, presented
below. This algorithm simultaneously tunes the tuning parameter α. Smaller values of
α generally lead to fewer edges in the graph, and the value for α is commonly based
on assumptions in previous work. In contrast, we automatically tune this parameter α
based on the maximum number of edges that we would like to observe in the generated
CPDAG, and the stability of the PC algorithm output. We consider the output of the PC
algorithm stable when it generates the same output c times. We refer to a PC-generated
graph with at most e edges as Ge

pc .

Data: dataset D , maximum number of edges e, stability constant c
Result: CPDAG Ge

pc

stable ← false;
α f i nal ← 1;
Ge

pc ← fully connected graph;

while |ed g es(Ge
pc )| > e ∨ ¬stable do

α f i nal ← 1
10α f i nal ;

Ge
pc ← pc(D,α f i nal );

stable ← i sSt able(Ge
pc ,α f i nal ,c);

end
Algorithm 1: PC algorithm with automatically tuned α parameter.

Apart from the constraint-based PC algorithm, we employ the Greedy Equivalence
Search (GES) algorithm [206]. An adapted algorithm, GIES, allows for interventional
datasets (i.e. datasets in which variables were purposely varied), as compared to obser-
vational datasets used in the PC algorithm [205].

The GIES algorithm uses a greedy search algorithm to maximize some score function
that scores potential causal graphs based on data. It consists of three phases: forward
phase, backward phase and turning phase. In the forward phase, starting from an empty
graph, edges are added to the graph while improving the score. In the backward phase,
edges are removed from the graph again while improving the score. Finally, the turning
phase checks if turning edges around can still improve the score. An important param-
eter that can be tuned is the parameter d that specifies the maximum degree of each of
the vertices in the graph, where a low d generally leads to sparser graphs. The choice
of this parameter is highly domain dependent, and requires some domain knowledge to
set. Contrary to theα parameter in the PC algorithm, the maximum degree d of the GIES
algorithm is a more intuitive parameter to tune. We therefore do not use an automatic
tuning algorithm, as we used for the PC algorithm. We refer to the graph with a maxi-
mum degree of d as Gd

g i es .
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Data: PC graph set Gpc , GIES graph set Gg i es

Result: Graph Gmr g

Gmr g ← fully connected graph;
for e ∈ edges(Gmr g ) do

i ← 0;
for G ∈Gpc do

if e ∈ edges(G) then
i ← i + 1;

end
end
for G ∈Gg i es do

if e ∈ edges(G) then

i ← i +
|Gpc |
|Gg i es | ; . Equal weights for GIES and PC

end
end
if i ≤ |Gpc | then . Weighted majority not reached

edges(Gmr g ) ← edges(Gmr g ) \ {e};
end

end
Algorithm 2: Graph Merging Algorithm.

GRAPH MERGING

As will be discussed in detail in Section 7.3, the graphs that are generated by the PC
algorithm and the GIES algorithm are not always consistent. They are generated based
on respectively a constraint-based algorithm and a score-based method, often leading
to different results. Furthermore, a lowerα in the PC algorithm and a lower d in the GIES
algorithm commonly lead to sparser and thus different graphs than graphs generated
with higher parameter values. We therefore find it useful to merge the considered graphs
using a weighted majority-vote procedure. As the parameter range of the PC algorithm
is generally larger than the parameter range of the GIES algorithm, we proportionately
add weight to GIES graphs in the algorithm. This algorithm starts with a fully connected
graph Gmr g , and removes an edge between two variables if the majority of considered
graphs does not have an edge between these variables. This is outlined in Algorithm 2.

We use Algorithm 3 in this chapter to generate a causal graph. This algorithm first
generates a set of PC graphs Gpc using Algorithm 1 and a set of GIES graphs Gg i es using
the unaltered GIES algorithm. These graphs are finally used to generate the majority
graph using Algorithm 2.

The selection of the range of algorithm parameters (i.e. Epc and Dg i es ) is important.
Choosing too many sparse graphs (i.e. many PC graphs with a low e) risks missing cer-
tain causal relationships, while choosing too many dense graphs is prone to detecting
incorrect relations.

This algorithm does not replace the need for proper analysis of the individual graphs
that are generated by the algorithms. Some specific graphs might produce structures
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that are of great interest, but are eliminated from the majority graph.

Data: dataset D , range of PC graph edges Epc ,
range of GIES graph degrees Dg i es , stability constant c
Result: Graph Gmr g

Gpc ←;;
Gg i es ←;;
for e ∈ Epc do

Gpc ←Gpc ∪ g ener ate_pc(D,e,c);
end
for d ∈ Dg i es do

Gg i es ←Gg i es ∪ g i es(D,d);
end
Gmr g ← g r aph_mer g e(Gpc ,Gg i es );

Algorithm 3: Causal Discovery Algorithm.

7.2.7. EVALUATE INCONSISTENCIES
The generated graph structure is compared to both (global) sensitivity analysis results
and machine learning analysis results, and inconsistencies are noted. Domain experts
are exploited to assess the source of these inconsistencies and put the results in per-
spective. The inconsistencies have to be explained before moving on to the final step of
analysis of emergence.

It is important to note that the analysis methods generate output of different ex-
planatory power. Sensitivity analysis determines the size of the effect of model param-
eters on output variables, while causal discovery adds structure to the output. Machine
learning algorithms generate a meta-model of the agent-based model under considera-
tion. Due to these inherent differences of the analysis techniques, differences in results
might occur as well. These differences might not necessarily indicate a contradiction,
but might point towards different emergent properties involving the same variables. This
needs to be taken into account while analyzing potential inconsistencies, but can be
beneficial during the final step as outlined below.

7.2.8. ANALYZE EMERGENCE
The graph Gmr g is used to identify emergent behavior observed in the agent-based model.
Emergent effects in the graph are observed by finding indirect relationships between
model parameters and output variables. It is this presence of an intermediate variable
that explains how a certain effect is realized. Furthermore, the absence of causal rela-
tionships between model parameters and output variables can have important implica-
tions. For instance, the absence of a path between two correlated parameters can indi-
cate that expected causal path does not exist. When the graph indicates a relationship
between variables, sensitivity analysis and machine learning analysis are used to deter-
mine the strength and direction of the relationship.

By systematic analysis of the (absent) links in the generated graph, in combination
with the other analysis methods, causal relationships that are different from the initial
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understanding of the modeler can be found. The modeler can further investigate these
relationships, gaining a better understanding of the model and potentially, the phe-
nomenon that is modeled. This is ideally done in discussion with domain experts. The
unexpected relationships could be an indication of positive emergence.

It could also be that the analysis points towards an unwanted causal path between
two variables. This is an indication of negative emergence [59], and has to be addressed
in subsequent versions of the model. This characterization of a relationship being un-
wanted is also to be determined in discussion with domain experts.

When no examples of negative emergence have been found, the analysis is complete.
If negative emergence was found, the model has to be updated, returning the researcher
to the first step. This will further improve the model, and will help the researcher to gain
a better representation of the phenomenon that is investigated.

7.3. CASE STUDIES
Two case studies are performed to illustrate the use of the AbACaD methodology as out-
lined in Section 7.2. The first case study is on the El Farol bar problem, while the second
case study focuses on security and efficiency in a regional airport terminal. We use the
implementations of the PC algorithm and the GIES algorithm from the pcalg [231] pack-
age in R [232], and implemented Algorithms 1-2 in R as well. An additional analysis of
the central AbACaD algorithm (see Section 7.2.6) is also provided.

7.3.1. EL FAROL BAR PROBLEM
We analyze the well-known El Farol bar problem [233] using the AbACaD methodology.
In the El Farol bar problem, the attendance of a popular bar in Santa Fe, New Mexico
is investigated. The bar is especially popular on Thursday nights, but is deemed un-
pleasant if it is overcrowded. We investigate how the way people choose to visit the bar
influences the attendance. In particular, we are interested in the overall attendance of
the bar, the variability, the strategies of agents, and the population inequality.

An agent-based model for this problem was defined and implemented in the Netl-
ogo environment by Rand and Wilensky [234], and a visualization is shown in Figure 7.2.
In this model, three parameters are present: number of strategies (n), memory size (m)
and overcrowded threshold (T ). A strategy consists of a set of m+1 weights that represent
how an agent believes that each of the m previous week attendances affects the atten-
dance in the current week, complemented with a constant baseline attendance. These
strategies are unique for each agent, and are randomly generated. Of the n strategies an
agent can choose from, he uses the best possible strategy to predict the attendance of
the current week, and makes his decision accordingly.

We analyze the model with a set of S = 100 agents, n ∈ [1,20], m ∈ [1,20] and T ∈
{0,5, . . . ,100} in a time period of t = 104 weeks. Results are recorded based on the last 52
weeks. Output of the model is considered in six dimensions:

• Mean bar attendance A. The mean number of agents that attended the bar.

• Mean variability V . The mean difference between attendance of two consecutive
weeks.
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Figure 7.2: A visualization of the Netlogo implementation of the El Farol bar problem.

• Mean attendance difference Adiff. The mean difference between the attendance
and the overcrowding threshold.

• Number of times overcrowded O. The number of times the bar was overcrowded.

• Last changed strategy C . The mean week that the agents last changed their strat-
egy.

• Population inequality G . The Gini coefficient of the overall bar attendance [235].
A low Gini coefficient represents an equal distribution of bar visits among the pop-
ulation, and a high Gini coefficient represents the opposite.

We analyze results based on a set of Ntot = 300,000 samples generated by a maximin
latin hypercube sample design. The cluster counting algorithms, as specified in Sec-
tion 7.2.3, returned different results, although both the elbow method and the silhouette
method indicated a total of 3 clusters. The Silverman’s test indicated a total of 6 modes,
while the gap statistic method indicated at least 10 clusters. We perform sensitivity and
machine learning analysis for the full dataset, and generate and analyze a causal graph
for this set as well. Additionally, we generate and analyze the graphs for three clusters
obtained by k-means clustering.

SENSITIVITY & MACHINE LEARNING ANALYSIS

We performed sensitivity analysis to determine the first order effects of each model pa-
rameter on the output variables. Figure 7.3 shows this variance decomposition for each
of the output variables. It shows that the overcrowded threshold T has a large influence
on three outputs: mean attendance A, number of times overcrowded O, and attendance
difference Adi f f . Each of these outputs are directly related to attendance, and it there-
fore makes sense that there is a strong relationship between T and these outputs. It is
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Table 7.1: Spearman correlation matrix.

. A V O C G Adi f f

n −0.04 0.57 −0.14 0.68 −0.54 −0.07
m −0.18 −0.53 −0.03 −0.45 0.51 −0.18
T 0.92 −0.23 −0.85 −0.34 −0.45 −0.92

furthermore clear that there is a large interaction effect of the parameters on the remain-
ing three output variables: mean variability V , last changed strategy C and population
inequality G . Memory size m has a strong effect on the mean variability V . No individ-
ual parameters has a large influence on population inequality G , and a similar trends is
observed for the last changed strategy C .
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Figure 7.3: The variance decomposition of each of the output variables of the El Farol bar model. Interactions
are shown as int., residuals are shown as res.

We further show a Spearman’s rank correlation matrix in Table 7.1. This shows similar
trends as the variance decomposition as seen in Figure 7.3, but does not show interac-
tion effects. In this matrix, the direction of the relationship is indicated, but lacks the
interaction and residual effects that is observed in Figure 7.3.

Similar to the above analysis methods, regression helps to identify important param-
eters. We performed ordinary least squares regression, and show the regression coef-
ficients in Table 7.2. The parameters with high correlation coefficients (Table 7.1) and
high variance contributions (Figure 7.3) also have nonzero regression coefficients. The
regression coefficients additionally describe the strengths of the relationship between
model parameters and output variables.

CAUSAL DISCOVERY

Next we perform causal discovery on the agent-based model approach using the causal
discovery algorithm (Algorithm 3) with Epc = {12, . . . ,19}, Dg i es = {3,4} and c = 5. These
parameters were derived by initial exploration of the parameter space. The total num-
ber of differences between the individually generated graphs are outlined in Table 7.3.
We define a difference as the minimum number of arrow additions and removals to
transform one graph into another. The differences between the smaller PC graphs are
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Table 7.2: The regression coefficients for the El Farol bar problem.

Intercept n m T
A 32.826 -0.144 -0.621 0.569
V 27.827 0.968 -2.108 -0.064
O 64.26 -0.32 -0.289 -0.602
C 80.84 1.957 -1.722 -0.215
G 0.45 -0.015 0.013 -0.002
Adi f f 32.826 -0.144 -0.621 -0.431

quite small, while the GIES graphs differ a lot more from any of the PC graphs. The final
merged graph Gmr g is shown in Figure 7.4, and this graph is used as the basis for the
remainder of the analysis.

Table 7.3: The number of differences between the considered graphs, and the total sum of differences in the El
Farol bar problem.

G12
pc G13

pc G14
pc G15

pc G16
pc G17

pc G18
pc G19

pc G3
g i es G4

pc

G12
pc 0 3 3 5 5 9 14 13 13 17

G13
pc 3 0 0 2 2 6 13 12 12 16

G14
pc 3 0 0 2 2 6 13 12 12 16

G15
pc 5 2 2 0 5 6 11 10 14 16

G16
pc 5 2 2 0 0 6 11 10 14 16

G17
pc 9 6 6 6 6 0 13 12 12 16

G18
pc 14 13 13 11 11 13 0 5 21 17

G19
pc 13 12 12 10 10 12 5 0 18 14

G3
g i es 13 12 12 14 14 12 21 18 0 6

G4
g i es 17 16 16 16 16 16 17 14 6 0

Sum 82 66 66 66 66 86 118 106 122 134

INCONSISTENCIES

Some interesting differences and similarities are observed when we compare the gener-
ated graph Gmr g with the analysis results in Section 7.3.1. Specifically, we observe the
most dominant sensitivity parameters for each output variable (as shown in Figure 7.3),
and check how that corresponds to the graph structure of Gmr g . Each of the output vari-
ables was found to be a direct descendant of the most dominant model parameters in
Gmr g . An important exception to this is the relationship between memory size m and
population inequality G . These two variables are indirectly related through the interme-
diate output variable variability V , C and A. We will discuss this in more detail in the
next section on emergent behavior. As all of the dominant relations as found in sensitiv-
ity analysis are also paths between variables in the graph, there are no inconsistencies
that need to be explained.
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Figure 7.4: Gmr g for the El Farol bar problem. The grey nodes are the model parameters, and the white nodes
are the model outputs.

EMERGENCE

Some interesting observations are made based on the generated majority graph. As dis-
cussed in the previous paragraph, no direct effect between memory size m and the pop-
ulation inequality G is observed. A possible explanation is the following. With an in-
crease in memory size m, the total population starts to make better predictions (i.e. low
C ), as a bigger memory allows for more variables to be taken into account. These better
predictions lead to a reduced variability V between weeks. Furthermore, when the vari-
ability reduces, and the strategies are more stable, the same people end up going to the
bar every week. This then gives an unfair division of people attending, and thus a high
Gini coefficient. This effect is also additionally reinforced by the correlation coefficient
as observed in Table 7.1.

Another interesting observation is the bidirectionally of the link between V and C .
This is a cycle in which a lower variability leads to agents changing their strategy less,
then leading to a lower variability, and so on. The used algorithms (i.e., GIES and PC)
are explicitly designed to yield directed acyclic graphs. This by definition prevents them
from generating cycles. However, when the direction of a link is unclear, different input
parameters for the algorithms might return graphs with opposite edge directions. In this
case, the merging algorithm returned both edges (V ↔ C), as they were seen in different
outputs of the GIES and PC algorithm.

Memory size m has one other path to population inequality G , which is through
mean bar attendance A. This relation is intuitive as well; with a very high mean bar
attendance A, most agents visit the bar frequently, and therefore the Gini coefficient is
low. The other way around holds as well. When only few people regularly attend the bar,
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the Gini coefficient becomes high.
Another relationship identified is that between attendance difference Adiff and mean

bar attendance A. These two parameters are closely related, and it makes sense that a
causal link is identified. However, it would be expected that the link is defined the other
way around, as attendance influences attendance difference as following this equation:
Adiff = A −T . This can easily be reformulated as A = Adiff +T , which makes it hard to
distinguish the direction of the causal link.

By only performing sensitivity analysis and machine learning, it is difficult to de-
tect this type of indirect relationships between variables. The structure of the generated
causal graphs provides an extra means to analyze emergent behavior in agent-based
models. In this case we observed an indirect relationship between memory size and
the last time agents changed their strategy, which leads to a better understanding of the
underlying model.

Clustering Apart from analyzing the graph generated by the full dataset, we generated
three separate graphs for three clusters generated by the k-means algorithm. The means
and variances of each of the model variables are indicated in Table B.1 and Table B.2
of Appendix B respectively. As expected, variances in the cluster are smaller than the
total dataset. Furthermore, for each output variable, the mean differs in at least one
cluster from the mean in the total dataset. The three corresponding graphs are shown in
Appendix C.

We discuss the graph of the first cluster here, as similar analysis can be done for the
other two clusters. This cluster has a high mean overcrowding threshold T and memory
size m. This leads to a comparatively high mean attendance A and low mean variability
V . Compared to the original graph, the relationship between variability V and popula-
tion inequality G is removed. The correlation coefficient between these two variables in
the original dataset (r = −0.62) is double that of the same correlation coefficient in the
cluster (r =−0.30). G also has a causal link with attendance difference Adiff in the graph.
Again the correlation coefficient is higher (r = 0.20 vs. r = 0.44), and an edge is added for
that reason. In some cases, the addition of an edge cannot be explained by changed cor-
relation coefficients or variances. In this case, the enforced graph structure (i.e. directed
acyclic graphs) can play a role in the addition of the edge. The other clusters have simi-
lar types of additions and removals of edges. This cluster analysis shows how emergent
effects in specific regions of the model can be found that are not observed by analyzing
the full dataset.

7.3.2. SECURITY & EFFICIENCY
We consider the agent-based model on airport security and efficiency described in Chap-
ter 4, which contains a broader set of interactions between agents than the El Farol bar
problem. In this model, passengers, security operators and an attacker are explicitly
modeled. Passengers move through different areas of the airport (e.g., check-in area
or security checkpoint area) and interact with security operators. The attacker aims
to achieve as many fatalities as possible by detonating an Improvised Explosive Device
(IED) in the most crowded queue of the publicly accessible areas of the airport.

The model is used to investigate the relationships between casualties in such an IED
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attack and different efficiency dimensions in terminal operations. A visualization of the
implementation of the model is shown in Figure 4.2.

The following model parameters are considered: number of flights f ∈ {1,2,3}, num-
ber of checkpoint lanes open l ∈ {2,3,4}, number of check-in desks open k ∈ {3,5}, num-
ber of behavior detection employees (BDEs) d ∈ {0,1,2}, BDE strategy s ∈ {static, dynamic,
intelligent} and the attacker time tat t ack ∈ {early, late}.

We focus our analysis on seven output dimensions. The first one relates to casualties,
while the remaining six are related to efficiency.

• Number of casualties ri ed . The number of casualties.

• Mean time in checkpoint queue Tq . The mean time passengers spend in the
checkpoint queue.

• Mean time to gate over all passengers Tg . The mean time passenger take to reach
the gate from the moment they arrive at the terminal.

• Number of missed flights miss. The number of passengers that missed their flight.

• Monetary loss loss. The total loss the airport made as compared to the maximum
possible profit. This is based on the total number of passengers and the number
of passengers that missed their flight.

• Queue length QL. The queue length at the time of attack.

• Number of employees n. The number of employees present.

We analyze results based on a set of N = 500 samples for each combination of model
parameters, leading to a total of Ntot = 126,000 samples. The different cluster count-
ing algorithms of Section 7.2.3 returned inconclusive results. The Silverman’s test indi-
cated 12 modes, the elbow method indicated 4 clusters, the silhouette method returned
3 clusters and the gap statistic method indicated a single cluster. The remainder of this
analysis focuses on the full dataset, as this is the minimum number of clusters found.

SENSITIVITY & MACHINE LEARNING ANALYSIS

We provide the same results overview as shown in the El Farol bar problem. Figure 7.5
shows the first order sensitivities of the model parameters, their interactions and the
residuals for each of the output variables.

Contrary to the El Farol Bar problem, some variables have a large residual element.
For instance, almost half of the variance in the number of casualties ri ed cannot be ex-
plained by first order sensitivities alone. As the modeled system is a complex system,
many elements influence ri ed . For instance, the choice of an attacker influences the
number of passengers it can harm, and the location of the passengers influence the like-
lihood that they survive. Both of these elements are complex to predict, and therefore a
large residual remains. Furthermore, two model parameters were found to be especially
important: the number of flights f and the number of checkpoint lanes l . These param-
eters influence all output variables, except the number of employees n. The number of
flights f influences the number of passengers directly, while the number of checkpoint
lanes l has a large influence on the processing speed of these passengers.
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Figure 7.5: The variance decomposition of each of the output variables of the security model. Interactions are
shown as int., residuals are shown as res.

Table 7.4 shows the Spearman’s rank correlation matrix of the model parameters and
the output variables. It shows similar effects to the sensitivities in Figure 7.5, but the
direction of the relation is also shown. Furthermore, it makes it easier to observe that
some parameters, such as the time of attack, do not influence a whole range of output
variables.

Table 7.4: Spearman correlation matrix for the security model.

. Tq Tg n miss loss QL ri ed

f 0.75 0.58 0 0.4 −0.83 0.75 0.21
l −0.53 −0.45 0.93 −0.41 −0.19 −0.18 −0.03

Tat t ack 0 0 0 0 0 0.14 0.12
d 0 0 0.21 0 0 0 −0.3
s 0 0 0.07 0 0 0 −0.24
k 0.1 −0.3 0.31 0.01 0.01 0.02 −0.09

Similar to the above analysis methods, regression helps identifying important pa-
rameters. We performed ordinary least squares regression, and show the regression co-
efficients in Table 7.5. Results are similar as compared to the El Farol bar problem.

CAUSAL DISCOVERY

As in the El Farol Bar problem, we analyze the graphs generated by Algorithm 3, with
Epc = {18, . . . ,23}, Dg i es = {3,4} and c = 5. These parameters were derived by initial explo-
ration of the parameter space. The total number of differences between the individually
generated graphs are outlined in Table 7.6.

The differences are smaller as compared the differences in the El Farol bar problem
(see Table 7.3), certainly when taking into account the sizes of the graphs. A likely expla-
nation is that the El Farol bar problem has a larger element of dependence on random
initial conditions embedded in the model. The security and efficiency model consis-
tently generates more predictable patterns. Agents in the El Farol Bar Problem base their
decisions on a set of random initial conditions, and the state of every other agent in the
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Table 7.5: The regression coefficients for the security model.

Intercept f l Tat t ack d s k
Tq 373.63 208.34 -204.02 0 0 0 22.69
Tg 1277.51 195.31 -173.45 0 0 0 -44.25
n 0.33 0 4.00 0 1.00 0 1.00
mi ss 4.32 2.87 -3.00 0 0 0 0.24
loss 9509.73 -2254.98 -636.78 0 0 0 51.12
QL -23.64 15.38 -10.36 21.40 0 0 1.88
ri ed -1.29 7.78 -3.49 9.75 -4.58 -1.87 0.103

model. In contrast, agents in the airport security model show more structured inter-
actions with other agents. Agents interact at fixed moments and places (e.g. when go-
ing through the security checkpoint), and with a more limited number of agents. These
more structured interactions then lead to more predictable patterns in the model, and
therefore smaller differences between graphs.

The merged graph Gmr g is visualized in Figure 7.6. As before, we use this graph as a
basis for the remainder of the analysis.

Table 7.6: The number of differences between the considered graphs, and the total sum of differences in the
security and efficiency model.

G18
pc G19

pc G20
pc G21

pc G22
pc G23

pc G3
g i es G4

g i es

G18
pc 0 3 2 5 5 7 14 15

G19
pc 3 0 5 2 2 4 13 14

G20
pc 2 5 0 5 5 5 16 15

G21
pc 5 2 5 0 0 2 15 12

G22
pc 5 2 5 0 0 2 15 12

G23
pc 7 4 5 2 2 0 17 14

G3
g i es 14 13 16 15 15 17 0 9

G4
g i es 15 14 15 12 12 14 9 0

Sum 51 43 53 41 41 51 99 91

INCONSISTENCIES

When comparing the generated graph Gmr g with the sensitivities found in Section 7.3.2,
a couple of interesting similarities and differences are noted. We again observe the most
dominant sensitivity parameters for each output variable, and compare that to the graph
structure of Gmr g . The most dominant parameters for mean queuing time Tq are the
number of checkpoint lanes l and the number of flights f . These are both observed as a
direct cause in Gmr g . Time to gate Tg has the same dominant parameters, but the num-
ber of checkpoint lanes l causes Tg through Tq . This is intuitive as a large portion of the
time passengers take to reach their gate is the time they spend queuing. The number of
missed flights has two dominant parameters: number of checkpoint lanes l and number
of flights f . The number of flights is only observed as an indirect effect, through both Tq
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Figure 7.6: Gmr g for the security and efficiency model.

and Tg . We will discuss this indirect effect in more detail in the next section on emer-
gence. All other output variables are directly caused by their most important influential
model parameters.

Gmr g falsely states that the time of the attack causes queue length. While early at-
tacks generally are associated with shorter queue lengths and late attacks with longer
queue lengths (see also the previous section), it is not caused by the attack time. It makes
sense that the algorithms infer that relationship, as no additional information is provided
to the algorithm. Similar results are seen in sensitivity analysis and regression analysis.
The causal links Tg → n and loss →QL were also falsely identified. This is an important
indication that the generated causal graph should be interpreted with care. While these
relationships might give important insights into the phenomenon under consideration
and the emergent behavior of the model, they are not necessarily required to be true.
Domain knowledge and cross validation with the other analysis techniques is essential
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to recognize these inconsistencies.

EMERGENCE

The graph Gmr g identifies an indirect relationship between the number of checkpoint
lanes l open and the monetary loss. This is an expected relationship: the number of
checkpoint lanes l influences the number of missed flights (directly and through Tq ),
which is a causal factor for monetary loss. This is an emergent phenomenon in the
model that is well identified by the causal discovery algorithm, but too complex to iden-
tify with the other analysis techniques alone.

Another example of emergent behavior identified by the causal graph is that of the
emergence of risk. Three model parameters were identified as causes: number of flights,
defender strategy and number of defenders. These parameters were also identified as
important parameters in sensitivity analysis. Another causal factor of risk is queue length.
The length of the queue indicates how many passengers are at the checkpoint area,
which is a good indicator of risk as well. Queue length in turn is related to mean queu-
ing time Tq , which is caused by the number flights, checkpoint lanes open and check-in
desks open.

7.3.3. ABACAD ANALYSIS
In this section, the causal discovery algorithm (Algorithm 3), which is central to the AbA-
CaD methodology is analyzed. We first outline how graph merging influences the graph
structure in Section 7.3.3. Then, in Section 7.3.3 we outline the effect of reducing the
sample size on the structure of the graph.

EFFECT OF GRAPH MERGING

To understand the benefits of the above graph merging algorithm, we define two addi-

tional graph types: Gpc
mr g and Gg i es

mr g . The first graph is the graph formed by applying a
graph merging algorithm similar to Algorithm 2 to the PC graph set Gpc , while the last
graph is formed by using the same procedure on the GIES graph setGg i es . We investigate
the differences between the graph Gmr g and the graphs generated by the PC algorithm
and the GIES algorithm in the security and efficiency model.

The resulting graph Gpc
mr g is visualized in Figure 7.7a and the graph Gg i es

mr g is visual-
ized in Figure 7.7b. Both graphs have five arrows that are missing as compared to the

combined graph Gmr g (Figure 7.6). Gg i es
mr g has an additional 3 arrows that are not present

in Gmr g . These three arrows are only observed in one of the two Gd
g i es graph, and there-

fore do not end up in Gmr g . As both the PC algorithm and the GIES algorithm miss some
arrows, we found it useful to merge the generated graphs to a single graph Gmr g (see Fig-
ure 7.6). This graph includes the most likely edges of both algorithms, which improves
the potential of the analysis.

REDUCED SAMPLE SIZE

We investigate the stability of Algorithm 2 for smaller sample sizes. To this end, we ana-
lyze the graph Gmr g based on the security and efficiency model comprised of sampling
each parameter combination N = 500 times, and compared it to graphs generated with
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Figure 7.7: The merged graphs while only using either the PC graphs or the GIES graphs. The dashed red arrows
indicate missing arrows as compared to Gmr g . The blue arrows indicate additional arrows as compared to
Gmr g .

smaller sample sizes. The resulting differences between the graphs are outlined in Fig-
ure 7.8; increasingly smaller sample sizes generally lead to larger differences with the
original graph.

The graphs generated with smaller samples tend to have fewer edges. In graphs gen-
erated with between 350 and 450 samples, this mostly leads to a reduction of edges while
the structure remains intact otherwise. In graphs generated with even fewer samples,
different edges are added and the structure of the graph starts to change. It is therefore
important to determine the right sample size and sampling method when performing
simulations with the model (see also Section 7.2.2).

7.4. DISCUSSION
In the development of AbACaD, we found that the causal-discovery algorithms generate
quite diverse causal graphs for similar parameter sets. We addressed this problem by
using a graph merging algorithm (see Algorithm 3), but believe that further advances in
the development of causal-discovery algorithms will help make this algorithm obsolete.
While the graph merging algorithm generates understandable and more stable struc-
tures, the causal graph should be interpreted with care, as in some cases edges were
generated, while no causal relationship exist (see Section 7.3.2 for an example).
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Figure 7.8: The differences between the graphs Gmr g generated by different sample sizes and the graph Gmr g
generated with the maximum number of N = 500 samples per model parameter combination.

To enrich the exploration and explanation of model behavior, causal graphs were
combined with other analysis techniques in AbACaD. Sensitivity analysis and machine
learning analysis give additional insights on, for instance, the strength of relationships
between parameters. Insights from domain experts additionally help to provide insights
into emergent behavior of agent-based models. Combined with the structure that causal
graphs provide, emergent behavior are more readily identified and analyzed. In particu-
lar, we found the AbACaD methodology to be useful when the model meets the following
criteria.

First, causal graphs are only useful to analyze agent-based models when sufficient
output variables are defined. With only a few variables, the structure that is generated
by the causal discovery algorithm becomes trivial and will not provide new insights into
the workings of the model. In this case, traditional sensitivity analysis is sufficient to
understand the relationship between model parameters and the output variable(s). The
choice of the appropriate output variables is essential for finding emergent properties.
When variables are not included, emergent properties related to these variables cannot
be found. It is a creative process and requires a basic understanding of the model and the
domain to define the appropriate variables. Variables can also iteratively be added after
initial analysis of graphs, sensitivity analysis outcomes and machine learning outcomes.

Secondly, the model should exhibit non-trivial emergent behavior for the AbACaD
methodology to be useful. Complex system models, such as sociotechnical system mod-
els, commonly show this type of non-trivial emergent behavior. This makes AbACaD
especially useful for analyzing these type of models. When no emergent behavior, or
only trivial emergent properties are present in the model, the causal graphs will not pro-
vide interesting new insights in the model. In that case, traditional sensitivity analysis is
sufficient to understand the model.

Finally, the model should be able to generate enough data for the causal-discovery
algorithms to be useful. When only a very limited number of runs can be performed
with the model, for instance due to computational constraints, the causal-discovery al-
gorithms are not able to generate stable causal graphs (see also Section 7.3.3).
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7.5. CONCLUSIONS & FUTURE WORK
In this chapter, it was investigated how causal-discovery algorithms can be used to ex-
tend the analytic toolbox of agent-based modelers. To this end, we proposed the AbACaD
methodology: Agent-based model Analysis using Causal Discovery. In this methodology,
emergence in agent-based models is analyzed using causal discovery in combination
with both machine learning and sensitivity analysis techniques. The causal-discovery
algorithms PC and GIES were combined, using a novel merging algorithm, to generate a
causal graph based on agent-based simulation outcomes. This graph is a representation
of the causal relationships between the model parameters and the output variables of
the model, and is then exploited to improve the understanding of emergent properties
in the model.

AbACaD was applied to two different case studies. The first case study is based on
the El Farol bar problem, while the second case study is in the field of airport security.
New emergent properties, such as the moment agents change their strategy in the El
Farol bar problem were identified. Furthermore, we found the queue length to be an
important factor indirect factor in the number of casualties in an improvised explosive
device (IED) attack. These emergent properties were well identified using AbACaD, but
are hard to identify with traditional analysis techniques alone.

This chapter can be extended in several directions. First, more case studies can be
undertaken to determine the strengths and weaknesses of the AbACaD methodology in
different circumstances. Different uses of causal analysis techniques can be investigated
in relationship to agent-based modeling. For instance, causal graphs can be generated
based on calibration data to aid the development of agent-based models, or they could
be used to explain agent-based simulation outcomes more easily to non-experts.
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CONCLUSIONS

This thesis addressed the important challenge of managing security risks at airport ter-
minals. Airport terminals are complex, dynamic socio-technical systems in which hu-
man behavior plays an important role. Furthermore, airport terminals are physical struc-
tures in which people dynamically move around, and therefore spatio-temporal aspects
need to be considered. Existing security risk management methodologies struggle tak-
ing into account these human factors and spatio-temporal dynamics of airport termi-
nals. There is an additional need to integrate security risk management approaches
with methods that can assess and improve operational efficiency. This is challenging us-
ing current security risk management methodologies. We therefore proposed an agent-
based security risk management approach in this thesis, which can overcome the afore-
mentioned limitations of existing methodologies.

We first provide a brief answer to the problem statement posed in the introduction.
We then address the six research questions that were additionally posed in the introduc-
tion. After that, we provide an overview of the contributions of the thesis, and finally, we
discuss the limitations and recommendations for future work.

8.1. PROBLEM STATEMENT
The following problem statement was posed in the introduction of this thesis.

Can agent-based security risk management be performed using causal discovery?

We showed that the use of causal discovery benefits both the design and analysis of
agent-models. Causal-discovery algorithms generate causal graphs that depict causal
relationships between variables. By applying these algorithms to real-world data that
describes the behavior of actors, causal graphs are generated. These graphs describe
important direct and indirect relationships between actor-related variables, providing
insights into the behavior of actors. The generated causal graphs are then used to specify
agents. We showed that models designed with our causal-discovery methodology better
resemble validation data than models that were designed by experts only.

137
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A second advantage of causal-discovery algorithms is obtained by using them to
analyze agent-based model outcomes. Following this method, emergent properties of
agent-based models can be characterized. We found emergent properties of agent-based
models in two case studies using our causal-discovery methodology that are hard to find
with traditional analysis techniques alone.

Furthermore, we proposed a novel agent-based security risk management approach
(AbSRiM) that relies on agent-based models and Monte Carlo simulations. This ap-
proach builds on existing security risk management frameworks but exploits the advan-
tages of the agent-based modeling paradigm. Using case studies, we show that human
factors can effectively be taken into account while assessing security risks, and perfor-
mance metrics, such as efficiency, can be incorporated in the assessment. Below, we
provide a more in-depth answer to our problem statement using the research questions
of the introduction.

8.2. RESEARCH QUESTIONS
Six research questions were addressed in this thesis; below we state the key conclusions
for each of them.

1. How can agent-based modeling be used to perform security risk management for air-
port operations?
In Chapter 2 we proposed an agent-based approach for security risk management of air-
port operations, called AbSRiM. The approach contains four main steps: scope selection,
agent-based model definition, risk assessment, and risk management. AbSRiM is based
on traditional security risk management methodologies but uses agent-based modeling
as the main paradigm to assess security risks. By performing Monte Carlo simulations,
risk is estimated based on emergent properties that arise from the interaction of attack-
ers and defenders in the modeled airport. This combination of traditional security risk
management principles and the agent-based modeling paradigm brings unique advan-
tages. It enables the incorporation of human aspects in the assessment of risks, as well
as spatio-temporal aspects. Furthermore, it allows for a natural incorporation of other
performance metrics, such as efficiency of operations, in the decision-making of secu-
rity experts.

2. How can human factors be taken into account while performing security risk man-
agement?
In Chapter 3 we showed that the decision-making and performance of human security
operators is an important factor in the vulnerability of airport security checkpoints. The
AbSRiM approach was used to develop an agent-based model that incorporates two cog-
nitive models. The performance of security operators was modeled using the functional
state model, while their decision making was modeled using decision field theory. Sim-
ulation results indicate that the highest skilled operators outperform their lowest skilled
counterparts on analyzing X-ray images, but perform worse on both searching luggage
and performing patdowns. We found that these highest skilled operators are not moti-
vated enough to generate effort for simple tasks, such as performing patdowns.

The case study showed that the agent-based modeling paradigm, and the AbSRiM
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approach in particular, are a suitable method to take human factors into account while
performing security risk management.

3. How can performance metrics, such as operational efficiency, be taken into account
while performing security risk management?
While security is a vital aspect of airport operations, these airports must be operated
as efficiently as possible. We adapted the AbSRiM approach to incorporate other per-
formance metrics as well. Using this extended method, we analyze security regarding
an Improvised Explosive Device (IED) attack, in combination with different commonly-
used efficiency performance indicators in the aviation domain, such as queuing time
for passengers. Results showed that reducing security risks and improving efficiency are
not always conflicting objectives, but that often important trade-offs have to be made
between security and efficiency.

Using this case study, we showed that the agent-based modeling paradigm and the
AbSRiM approach are a suitable paradigm for managing security risks while taking into
account operational efficiency.

4. How can efficient airport security patrol routes be designed using agent-based mod-
eling?
A popular method to mitigate security risks in airport terminals is through security pa-
trols. As stated above, resources are often limited and have to be used effectively. Secu-
rity games are often used to find optimal security patrol routes, but these games require
the estimation of payoffs. We used the model of Chapter 4 to improve the estimation of
payoffs in a security game. By combining these approaches, we improve the security pa-
trol strategies that were specified by experts alone. We showed that an efficient security
patrol gives special emphasis to high-impact areas, such as the security checkpoint, to
reduce the total security risk.

Using this case study, we showed that an agent-based approach integrated with se-
curity games could yield superior results than either method alone.

5. How can agent-based models be designed using causal-discovery algorithms?
Agent-based models are the central theme in this thesis, but it is well known that design-
ing them is a complex task. In Chapter 6, we provide a methodology that addresses the
problem of designing agent-based models based on causal discovery. This methodology
combines real-world data about agent behavior and causal-discovery algorithms. These
algorithms generate causal graphs that represent the causal structure among agent-related
variables. These graphs are then translated into behavioral properties in the agent-based
model. This methodology was applied to a case study in which we develop agent-based
models to assess different concepts of operations for security checkpoints. We showed
that a model designed with our methodology shows a closer resemblance with validation
data than the model that was developed by experts only.

We found that human experts are still very much needed to design agent-based mod-
els, even with the proposed causal discovery methodology. Our methodology, however,
provides a new means to discover the structure of agent behavior, which is hard to find
for experts alone.
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6. How can agent-based models be analyzed using causal-discovery algorithms?
As well as designing agent-based models, analyzing agent-based models is difficult. Agent-
based models typically contain complex non-linear interactions between agents and
generate emergent properties that cannot easily be explained. To overcome this diffi-
culty, we propose the AbACaD methodology: Agent-based model Analysis using Causal
Discovery. In this methodology, emergence in agent-based models is analyzed using
causal discovery in combination with both machine learning and sensitivity analysis
techniques. By applying AbACaD to the model developed in Chapter 4, we derived the
structure among model variables and outputs, such as queue length and the number of
flights, which is hard to identify with traditional analysis techniques alone. This struc-
ture then helps to understand the emergent behavior of the model better.

As was also the case in designing agent-based models using causal-discovery algo-
rithms, human experts are vital in analyzing agent-based models with our methodology.
However, the AbACaD methodology provided a new means to discover the structure of
the output of agent-based models, which is hard to find by experts alone.

8.3. CONTRIBUTIONS
This thesis made contributions to two main domains: security and agent-based model-
ing. These are outlined below.

8.3.1. SECURITY

In the area of security, we showed that an agent-based approach to manage security
risks overcomes three major limitations of current methods: incorporation of human
factors, incorporation of spatio-temporal effects and the identification of relationships
and trade-offs with other performance metrics. We provided new models and simula-
tion results that advance the understanding of airport security, the influence of human
behavior and decision making on the vulnerability of airports, and the interaction be-
tween airport security and efficiency. This identification of relations between security
and efficiency allows for more informed decision making concerning, for instance, the
allocation of security resources.

We also found that there was no tool available to implement agent-based models
of airport operations easily. We, therefore, developed an open-source simulation plat-
form, called AATOM, that contains calibrated presets and templates for several airport
elements1. This tool can be used to analyze a variety of domains, such as security, effi-
ciency, gate assignment, and resilience.

Another contribution in the area of airport security is a reference dataset that we
gathered to design the agent-based model of Chapter 6 which assesses the performance
of security checkpoints2. The dataset contains data of a total of 2,277 passengers that
passed through the security checkpoint process at Rotterdam The Hague Airport (RTM).
We published detailed timing data about their journey through the process, as well as

1AATOM is described in a paper presented at the Summer Simulation Conference [130]. AATOM can be down-
loaded from: https://github.com/StefJanssen/AATOM.

2The dataset will be published with the accompanying paper [213].

https://github.com/StefJanssen/AATOM
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basic characteristics, such as the size of the group that they were traveling with. To the
best of our knowledge, no such dataset exists in the public domain. Future researchers
can use the dataset to calibrate their models, analyze the performance of security check-
points, and to understand the behavior of different passenger types.

8.3.2. AGENT-BASED MODELING

Both the dataset and the AATOM simulator, as described above, are contributions to the
agent-based domain as well. We showed that the dataset could be used to effectively
design an agent-based model. Furthermore, using several case studies, we showed the
benefits of using AATOM to implement airport-related agent-based models.

Most importantly, we showed that causal discovery contributes to two critical chal-
lenges in the agent-based domain: designing and analyzing agent-based models. We
exploited the ever-growing amount of data to design agent-based models using causal
discovery. We generate causal graphs based on data about agents to specify behavioral
properties of agents in an agent-based model. This reduces the dependency on human
experts to design agent-based models and can improve the quality of the designed mod-
els.

Furthermore, we use the same causal-discovery algorithms to analyze emergence in
agent-based models. Our methodology provides a new means to discover the structure
of the output of agent-based models, which is hard to find by experts alone. This uti-
lization of causal graphs to improve agent-based models has not been explored to this
extent before.

8.4. LIMITATIONS & FUTURE WORK
One of the most important limitations of this thesis is that of data availability. Due to the
nature of airport security, there is only a minimal amount of data available in the public
domain. For instance, data that relates to the capabilities of security sensors, such as
body scanners, is classified to prevent it from being misused by potential adversaries.
While we have used the available data to calibrate our models, this lack of detailed se-
curity data enforced us to make assumptions about different model parameters. These
assumptions may have lead to inaccurate simulation results. Our models can, however,
easily be re-calibrated when more data is made available.

With the lack of available data, comes the additional difficulty of validating secu-
rity models. Performing conceptual validation and verification of the models is possi-
ble without the use of data. However, to effectively perform operational validation and
predictive validation of the designed models, more data is needed. This is an impor-
tant open problem in the security domain and is also present in this thesis. Addressing
this lack of validation in security models is a significant challenge that is open for future
scholars.

Another limitation of this thesis is in the area of causal discovery. The algorithms in
that field are in constant development, and no single algorithm is currently superior in
the field. Current algorithms are not entirely consistent with each other and generate dif-
ferent causal graphs for the same dataset. By merging two important algorithms of this
field, we partially addressed this issue, but the limitation is by no means resolved. Future
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work can focus on resolving this issue, which will directly benefit the methodologies we
proposed in Chapter 6 and Chapter 7 of this thesis.

In Chapter 4, we analyzed security risks in combination with airport efficiency. An
important direction for future work is to analyze security risks with relationship to other
performance metrics, such as safety and resilience. These performance metrics are also
of vital importance to airports, and should all be part of an integrated airport decision-
making tool of the future. Finally, the security risk management approach, as proposed
in this thesis, can be applied to different domain areas. For instance, shopping malls
and sports stadiums are attractive targets for terrorists, due to the high density of people.
This large presence of humans makes our agent-based approach very suitable to apply
to these domains.



A
CALIBRATION OF MODEL

Table A.1: The calibrated parameters of the model as described in Chapter 4.

Parameter Value Origin
Simulation parameters

Simulation runs N 500 per configuration -
Airport parameters

Departure time Ft i me 7200 sec Airport Data
Passengers per flight 135 Assumptions
Airport Layout See Figure 4.2 Airport Data
Revenue per passenger r evp $21.22 [165]
Missed flight costs cmi ss $212.20 Assumption

Agent parameters
Prop. passengers checked-in c 0.5 Airport Data
Prop. facility visit f
(none/bathr oom/r est ./shop)

0.25/0.25/0.25/0.25 Assumption

Desired speed vdes 1 m/s Assumption
Arrival Distribution
(ear l y/mi ddl e/l ate)

20%/60%/20% Airport Data

Check-in time Nor m(60,6) sec Airport Data
Luggage drop time Nor m(54.60,36.09) sec Airport Data
Physical check time Nor m(43.00,20.96) sec Airport Data
ETD check time Nor m(34.80,15.17) sec Airport Data
Luggage collect time Nor m(71.50,54.95) sec Airport Data
Observation radius robs 10 m Assumption
Pass. disorientation d Nor m(0,1) [137]
Pass. luggage suitability s Nor m(0,1) [137]
Att. disorientation d Nor m(3.5,1) [137]
Att. luggage suitability s Nor m(3.5,1) [137]
Att. arrival time tat t ack 1900 sec or 3900 sec -
BDE threshold dthr eshol d 2.395 [137]
BDE threshold sthr eshol d 2.395 [137]
BDE threshold fthr eshol d 3600 [137]
BDE arrest prob. par r est 0.8 [167]
BDE maximum evaluation time tmax 20 [166]
BDE evaluation constants ci 2.5 Assumption

IED parameters
IED mass m 5 kg [168]
Number of particles K 50 Assumption
Initial particle speed vi ni t 1000 m/s Assumption
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B
CLUSTER CHARACTERISTICS

Table B.1: The means for each of the three clusters in the El Farol bar problem.

n m T A V O C G Adi f f

1 10.19 12.12 77.77 68.40 4.30 4.84 61.00 0.27 -9.37
2 9.41 12.21 27.10 37.76 5.56 46.36 70.48 0.42 10.67
3 13.49 3.60 45.47 57.20 44.46 32.32 99.70 0.13 11.73
Full 10.50 10.50 50.00 53.23 12.649 27.79 72.55 0.31 3.23

Table B.2: The variances for each of the three clusters in the El Farol bar problem.

n m T A V O C G Adi f f

1 28.82 22.83 188.27 76.17 15.99 59.60 82.22 0.005 40.22
2 31.46 22.09 273.31 183.57 18.54 59.17 219.61 0.017 60.62
3 18.66 3.38 664.22 135.22 349.91 53.42 17.38 0.005 364.56
Full 30.25 30.25 837.50 325.49 326.82 409.28 323.90 0.023 210.01
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Figure C.1: Gmr g for the first cluster of the El Farol bar model.
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Figure C.2: Gmr g for the second cluster of the El Farol bar model.
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Figure C.3: Gmr g for the third cluster of the El Farol bar model.
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[25] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer, Foundations of attack–
defense trees, in International Workshop on Formal Aspects in Security and Trust
(Springer, 2010) pp. 80–95.

[26] S. Bistarelli, M. Dall’Aglio, and P. Peretti, Strategic games on defense trees, in In-
ternational Workshop on Formal Aspects in Security and Trust (Springer, 2006) pp.
1–15.

[27] K. S. Edge, G. C. Dalton, R. A. Raines, and R. F. Mills, Using attack and protection
trees to analyze threats and defenses to homeland security, in Military Communica-
tions Conference (IEEE, 2006) pp. 1–7.

[28] A. Farraj, E. Hammad, A. Al Daoud, and D. Kundur, A game-theoretic analysis of
cyber switching attacks and mitigation in smart grid systems, IEEE Transactions on
Smart Grid 7, 1846 (2016).



BIBLIOGRAPHY 155

[29] J. Pita, M. Jain, J. Marecki, F. Ordóñez, C. Portway, M. Tambe, C. Western,
P. Paruchuri, and S. Kraus, Deployed armor protection: the application of a game
theoretic model for security at the los angeles international airport, in Proceedings
of the 7th international joint conference on Autonomous agents and multiagent
systems: industrial track (International Foundation for Autonomous Agents and
Multiagent Systems, 2008) pp. 125–132.

[30] E. A. Shieh, B. An, R. Yang, M. Tambe, C. Baldwin, J. DiRenzo, B. Maule, and
G. Meyer, Protect: An application of computational game theory for the security
of the ports of the united states. in AAAI (Toronto, ON, 2012) pp. 2173–2179.

[31] R. Yang, B. Ford, M. Tambe, and A. Lemieux, Adaptive resource allocation for
wildlife protection against illegal poachers, in Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems (International Founda-
tion for Autonomous Agents and Multiagent Systems, 2014) pp. 453–460.

[32] L. Zhang and G. Reniers, A game-theoretical model to improve process plant pro-
tection from terrorist attacks, Risk analysis (2016).

[33] H. Xu, B. Ford, F. Fang, B. Dilkina, A. Plumptre, M. Tambe, M. Driciru, F. Wanyama,
A. Rwetsiba, M. Nsubaga, et al., Optimal patrol planning for green security games
with black-box attackers, in International Conference on Decision and Game The-
ory for Security (Springer, 2017) pp. 458–477.

[34] M. Jakob, O. Vanek, and M. Pechoucek, Using agents to improve international mar-
itime transport security, IEEE Intelligent Systems 26, 90 (2011).

[35] M. Jain, J. Tsai, J. Pita, C. Kiekintveld, S. Rathi, M. Tambe, and F. Ordónez, Software
assistants for randomized patrol planning for the lax airport police and the federal
air marshal service, Interfaces 40, 267 (2010).

[36] R. M. Cooke and L. L. Goossens, Tu delft expert judgment data base, Reliability
Engineering & System Safety 93, 657 (2008).

[37] K. Leung and S. Verga, Expert judgement in risk assessment, Defence R&D Canada
Centre for Operational Research & Analysis 57 (2007).

[38] Y. D. Abbasi, M. Short, A. Sinha, N. Sintov, C. Zhang, and M. Tambe, Human adver-
saries in opportunistic crime security games: Evaluating competing bounded ratio-
nality models, in Proceedings of the Third Annual Conference on Advances in Cog-
nitive Systems ACS (2015) p. 2.

[39] R. Yang, C. Kiekintveld, F. Ordóñez, M. Tambe, and R. John, Improving resource al-
location strategies against human adversaries in security games: An extended study,
Artificial Intelligence 195, 440 (2013).

[40] D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, in
Handbook of the fundamentals of financial decision making: Part I (World Scien-
tific, 2013) pp. 99–127.



156 BIBLIOGRAPHY

[41] R. D. McKelvey and T. R. Palfrey, Quantal response equilibria for normal form
games, Games and economic behavior 10, 6 (1995).

[42] J.-W. H. Bullée, L. Montoya, W. Pieters, M. Junger, and P. H. Hartel, Regression
nodes: Extending attack trees with data from social sciences, in Socio-Technical As-
pects in Security and Trust (STAST), 2015 Workshop on (IEEE, 2015) pp. 17–23.

[43] N. Kamra, U. Gupta, F. Fang, Y. Liu, and M. Tambe, Policy learning for continu-
ous space security games using neural networks, in AAAI Conference on Artificial
Intelligence (2018) pp. 1103–1112.

[44] M. J. Grant and M. G. Stewart, Benefit of distributed security queuing for reduc-
ing risks associated with improvised explosive device attacks in airport terminals,
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Me-
chanical Engineering 3, 021003 (2017).

[45] B. LeBaron, Agent-based computational finance, Handbook of computational eco-
nomics 2, 1187 (2006).

[46] M. Batty, Cities and complexity: understanding cities with cellular automata,
agent-based models, and fractals (The MIT press, 2007).

[47] A. H. Auchincloss, R. L. Riolo, D. G. Brown, J. Cook, and A. V. D. Roux, An agent-
based model of income inequalities in diet in the context of residential segregation,
American journal of preventive medicine 40, 303 (2011).

[48] V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W. M. Mooij, S. F. Railsback, H.-H. Thulke,
J. Weiner, T. Wiegand, and D. L. DeAngelis, Pattern-oriented modeling of agent-
based complex systems: lessons from ecology, science 310, 987 (2005).

[49] N. Metzner, A comparison of agent-based and discrete event simulation for assess-
ing airport terminal resilience, Transportation Research Procedia 43, 209 (2019).

[50] F. Klügl, C. Oechslein, F. Puppe, A. Dornhaus, et al., Multi-agent modelling in com-
parison to standard modelling, Simulation News Europe 40, 3 (2004).

[51] F. Klügl and A. L. Bazzan, Agent-based modeling and simulation, AI Magazine 33,
29 (2012).

[52] M. Janssen and E. Ostrom, Empirically based, agent-based models, Ecology and
society 11 (2006).

[53] C. M. Macal and M. J. North, Tutorial on agent-based modeling and simulation
part 2: how to model with agents, in Proceedings of the 38th conference on Winter
simulation (Winter Simulation Conference, 2006) pp. 73–83.

[54] C. M. Macal, Everything you need to know about agent-based modelling and simu-
lation, Journal of Simulation 10, 144 (2016).



BIBLIOGRAPHY 157

[55] D. Helbing and S. Balietti, How to do agent based simulations in the future, H. Dirk,
& S. Balietti, Modeling Social Mechanisms to Emergent Phenomena and Interac-
tive Systems Design. SFI Working Paper. Retrieved 10, 2013 (2011).

[56] V. Grimm, U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard,
T. Grand, S. K. Heinz, G. Huse, et al., A standard protocol for describing individual-
based and agent-based models, Ecological modelling 198, 115 (2006).

[57] V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske, and S. F. Railsback, The
odd protocol: a review and first update, Ecological modelling 221, 2760 (2010).

[58] H. Kavak, J. J. Padilla, C. J. Lynch, and S. Y. Diallo, Big data, agents, and machine
learning: towards a data-driven agent-based modeling approach, in Proceedings
of the Annual Simulation Symposium (Society for Computer Simulation Interna-
tional, 2018) p. 12.

[59] B. P. Zeigler, A note on promoting positive emergence and managing negative emer-
gence in systems of systems, The Journal of Defense Modeling and Simulation 13,
133 (2016).

[60] J. C. Mogul, Emergent (mis) behavior vs. complex software systems, in ACM SIGOPS
Operating Systems Review, Vol. 40 (ACM, 2006) pp. 293–304.

[61] L. B. Rainey and A. Tolk, Modeling and simulation support for system of systems
engineering applications (John Wiley & Sons, 2015).

[62] S. Mittal and L. Rainey, Harnessing emergence: The control and design of emergent
behavior in system of systems engineering, in Proceedings of the Conference on Sum-
mer Computer Simulation (Society for Computer Simulation International, 2015)
pp. 1–10.

[63] E. Borgonovo and E. Plischke, Sensitivity analysis: a review of recent advances, Eu-
ropean Journal of Operational Research 248, 869 (2016).

[64] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity analysis in prac-
tice: a guide to assessing scientific models (John Wiley & Sons, 2004).

[65] J. C. Thiele, W. Kurth, and V. Grimm, Facilitating parameter estimation and sen-
sitivity analysis of agent-based models: A cookbook using netlogo and r, Journal of
Artificial Societies and Social Simulation 17, 11 (2014).

[66] J. Arroyo, S. Hassan, C. Gutiérrez, and J. Pavón, Re-thinking simulation: a method-
ological approach for the application of data mining in agent-based modelling,
Computational and Mathematical Organization Theory 16, 416 (2010).

[67] J. Pearl, Causality (Cambridge university press, 2009).

[68] J. Peters, D. Janzing, and B. Schölkopf, Elements of causal inference: foundations
and learning algorithms (MIT press, 2017).



158 BIBLIOGRAPHY

[69] M. H. Maathuis, M. Kalisch, P. Bühlmann, et al., Estimating high-dimensional in-
tervention effects from observational data, The Annals of Statistics 37, 3133 (2009).

[70] I. Shrier and R. W. Platt, Reducing bias through directed acyclic graphs, BMC med-
ical research methodology 8, 70 (2008).

[71] S. Magliacane, T. Claassen, and J. M. Mooij, Ancestral causal inference, in Advances
in Neural Information Processing Systems (2016) pp. 4466–4474.

[72] D. Colombo, M. H. Maathuis, M. Kalisch, and T. S. Richardson, Learning high-
dimensional directed acyclic graphs with latent and selection variables, The Annals
of Statistics , 294 (2012).

[73] P. Spirtes, C. Glymour, and R. Scheines, Causation, prediction, and search, 2nd ed.
(MIT Press, 2001).

[74] J. Zhang, On the completeness of orientation rules for causal discovery in the
presence of latent confounders and selection bias, Artificial Intelligence 172, 1873
(2008).

[75] D. Malinsky and D. Danks, Causal discovery algorithms: A practical guide, Philos-
ophy Compass 13, e12470 (2018).

[76] L. Casini and G. Manzo, Agent-based models and causality: a methodological ap-
praisal, Linköping University, Department of Management and Engineering, The
Institute for Analytical Sociology, The IAS Working Paper Series 2016:7.

[77] M. Kvassay, P. Krammer, L. Hluchý, and B. Schneider, Causal analysis of an agent-
based model of human behaviour, Complexity 2017, 1 (2017).

[78] M. Guerini and A. Moneta, A method for agent-based models validation, Journal of
Economic Dynamics and Control 82, 125 (2017).

[79] B. D. Marshall and S. Galea, Formalizing the role of agent-based modeling in causal
inference and epidemiology, Am J Epidemiol 181, 92 (2015).

[80] S. Janssen and A. Sharpanskykh, Agent-based modelling for security risk assess-
ment, in International Conference on Practical Applications of Agents and Multi-
Agent Systems (Springer, 2017) pp. 132–143.

[81] S. Janssen, A. Sharpanskykh, and R. Curran, Absrim: An agent-based security risk
management approach for airport operations, Risk Analysis , 1582 (2019).

[82] T. Bosse, C. M. Jonker, L. Van der Meij, A. Sharpanskykh, and J. Treur, Specification
and verification of dynamics in agent models, International Journal of Cooperative
Information Systems 18, 167 (2009).

[83] T. Bosse, C. M. Jonker, L. Van Der Meij, and J. Treur, A language and environment
for analysis of dynamics by simulation, International Journal on Artificial Intelli-
gence Tools 16, 435 (2007).

http://dx.doi.org/10.1155/2017/8381954
http://dx.doi.org/10.1093/aje/kwu274


BIBLIOGRAPHY 159

[84] M. Bratman, Intention, plans, and practical reason (David Hume Series, 1987).

[85] R. Sun, The motivational and metacognitive control in clarion, Modeling inte-
grated cognitive systems , 63 (2007).

[86] F. M. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur, Desire: Modelling
multi-agent systems in a compositional formal framework, International Journal of
Cooperative Information Systems 6, 67 (1997).

[87] C. A. Fossett, D. Harrison, H. Weintrob, and S. I. Gass, An assessment procedure for
simulation models: a case study, Operations Research 39, 710 (1991).

[88] B. Heath, R. Hill, and F. Ciarallo, A survey of agent-based modeling practices (jan-
uary 1998 to july 2008), Journal of Artificial Societies and Social Simulation 12, 9
(2009).

[89] P. Windrum, G. Fagiolo, and A. Moneta, Empirical validation of agent-based mod-
els: Alternatives and prospects, Journal of Artificial Societies and Social Simulation
10, 8 (2007).

[90] F. Klügl, A validation methodology for agent-based simulations, in Proceedings of
the 2008 ACM symposium on Applied computing (ACM, 2008) pp. 39–43.

[91] X. Xiang, R. Kennedy, G. Madey, and S. Cabaniss, Verification and validation of
agent-based scientific simulation models, in Agent-directed simulation conference
(2005) pp. 47–55.

[92] B. Ford, Real-World Evaluation and Deployment of Wildlife Crime Prediction Mod-
els, Ph.D. thesis, University of Southern California (2017).

[93] S. Gholami, B. Ford, F. Fang, A. Plumptre, M. Tambe, M. Driciru, F. Wanyama,
A. Rwetsiba, M. Nsubaga, and J. Mabonga, Taking it for a test drive: a hybrid
spatio-temporal model for wildlife poaching prediction evaluated through a con-
trolled field test, in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (Springer, 2017) pp. 292–304.

[94] C. J. Watkins and P. Dayan, Q-learning, Machine learning 8, 279 (1992).

[95] K.-H. Lee and R. Baldick, Solving three-player games by the matrix approach with
application to an electric power market, IEEE Transactions on Power Systems 18,
1573 (2003).

[96] F. De Simio, M. Tesei, and R. Setola, Game theoretical approach for dynamic active
patrolling in a counter-piracy framework, in Recent Advances in Computational
Intelligence in Defense and Security (Springer, 2016) pp. 423–444.

[97] C. M. Laan, A. I. Barros, R. J. Boucherie, H. Monsuur, and J. Timmer, Solving par-
tially observable agent-intruder games with an application to border security prob-
lems, Naval Research Logistics (NRL) 66, 174 (2019).



160 BIBLIOGRAPHY

[98] W. Jager, R. Verbrugge, A. Flache, G. De Roo, L. Hoogduin, and C. Hemelrijk, Ad-
vances in Social Simulation 2015, Vol. 528 (Springer, 2017).

[99] J. Zhuang, V. Bier, and S. Guikema, Introductions to adversary behavior: Validating
the models, Risk Analysis 36, 650 (2016).

[100] B. Kordy, P. Kordy, S. Mauw, and P. Schweitzer, Adtool: security analysis with
attack–defense trees, in International Conference on Quantitative Evaluation of Sys-
tems (Springer, 2013) pp. 173–176.

[101] BBC News, Airlines terror plot disrupted, http://news.bbc.co.uk/1/hi/uk/
4778575.stm (2006), accessed: 2019-11-12.

[102] N. G. Edmunds, Indictment, (2010).

[103] J. F. Burns, Yemen bomb could have gone off at east coast, http://www.nytimes.
com/2010/11/11/world/europe/11parcel.html (2010), accessed: 2019-11-
12.

[104] IATA, Checkpoint of the future - blueprint 2014, (2012).

[105] A. A. Kirschenbaum, M. Mariani, C. Van Gulijk, S. Lubasz, C. Rapaport, and H. An-
driessen, Airport security: An ethnographic study, Journal of air transport manage-
ment 18, 68 (2012).

[106] A. A. Kirschenbaum, C. Rapaport, S. Lubasz, M. Mariani, C. Van Gulijk, and H. An-
driessen, Security profiling of airport employees: complying with the rules, Journal
of Airport Management 6, 373 (2012).

[107] A. A. Kirschenbaum, The cost of airport security: The passenger dilemma, Journal
of Air Transport Management 30, 39 (2013).

[108] A. A. Kirschenbaum, The social foundations of airport security, Journal of Air Trans-
port Management 48, 34 (2015).

[109] T. Bosse, F. Both, R. Van Lambalgen, and J. Treur, An agent model for a human’s
functional state and performance, in Proceedings of the 2008 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence and Intelligent Agent Technology-Volume
02 (IEEE Computer Society, 2008) pp. 302–307.

[110] J. R. Busemeyer and J. T. Townsend, Decision field theory: a dynamic-cognitive ap-
proach to decision making in an uncertain environment. Psychological review 100,
432 (1993).

[111] United States House of Representatives, A decade later: a call for tsa reform, (2011).

[112] C. Gonzalez, Task workload and cognitive abilities in dynamic decision making,
Human Factors 47, 92 (2005).

[113] P. A. Hancock, A dynamic model of stress and sustained attention, Human factors
31, 519 (1989).

http://news.bbc.co.uk/1/hi/uk/4778575.stm
http://news.bbc.co.uk/1/hi/uk/4778575.stm
http://www.nytimes.com/2010/11/11/world/europe/11parcel.html
http://www.nytimes.com/2010/11/11/world/europe/11parcel.html


BIBLIOGRAPHY 161

[114] M. R. Endsley, Toward a theory of situation awareness in dynamic systems, Human
factors 37, 32 (1995).

[115] M. Osman, Controlling uncertainty: a review of human behavior in complex dy-
namic environments. Psychological bulletin 136, 65 (2010).

[116] M. C. Canellas, Decision Making with Incomplete Information, Ph.D. thesis, Geor-
gia Institute of Technology (2017).

[117] F. P. Gibson, M. Fichman, and D. C. Plaut, Learning in dynamic decision tasks:
Computational model and empirical evidence, Organizational Behavior and Hu-
man Decision Processes 71, 1 (1997).

[118] R. Ratcliff and G. McKoon, The diffusion decision model: theory and data for two-
choice decision tasks, Neural computation 20, 873 (2008).
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