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Preface

Since the start of hydrocarbon production in the Netherlands, measurement cam-
paigns have been performed to measure the resulting subsidence, to which gas and
oil companies in the Netherlands are legally obliged. The majority of the gas fields
in the Netherlands, including the Groningen gas field, are operated by Nederlandse
Aardolie Maatschappij B.V. (NAM). Different subsidence measurement techniques
(leveling, GPS) have been utilized since the 1960s. Synchronously, geodetic estima-
tion methodologies have been developed to estimate subsidence due to hydrocarbon
production from the measurements, in which the Delft Institute of Earth Observation
and Space Systems (DEOS) has been closely involved. Since the 1990s, satellite radar
interferometry (InSAR) as a deformation monitoring technique has developed. How-
ever, the situation in the Groningen area is not favorable (temporal decorrelation,
rural areas, atmospheric disturbances, small deformation rates—several mm/year—
over a large spatial extent). In 2003, the project ’Fundamenteel Onderzoek Radar
Interferometrie’ was approved, which enabled a four year PhD research to investigate
the feasibility of InSAR for monitoring subsidence due to hydrocarbon production.
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Audience

The research described in this thesis investigates the applicability of satellite radar
interferometry (InSAR) for deformation monitoring, in particular subsidence due to
hydrocarbon extraction. It covers the subject in a generic way, from the precision
and reliability of InSAR as a measurement technique to the estimation of the defor-
mation signal of interest in the potential presence of multiple deformation causes.
It provides an overview of the Persistent Scatterer InSAR (PSI) theory, and sub-
sequently focuses on the accuracy of the parameter estimates. For the reliability
assessment of InSAR deformation estimates, which is essential for operational use,
the multi-track datum connection procedure is introduced. The presented metho-
dologies are demonstrated in an integrated way for the entire northern part of the
Netherlands and a part of Germany (covering ∼15.000 km2) using time series of ERS
and Envisat acquisitions. The capabilities of PSI for wide-scale monitoring of subsi-
dence rates of several millimeters per year in rural areas are shown. Furthermore, it
is demonstrated that the temporal observation density of PSI improves the insight
in hydrocarbon reservoir behavior. The reader is assumed to have a background in
geosciences and to be familiar with basic radar interferometry concepts. The thesis is
designed for both researchers and the industry, since it translates the research results
into the consequences for the operational use of InSAR for subsidence monitoring.

Readers who are interest in a geophysical background of the Groningen gas reser-
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voir and the prediction of subsidence at ground level are referred to chapter 2. For
the theoretical background of PSI and its precision and reliability, the reader is
recommended to focus on the chapters 3, 4, and 5. If one has a background in
PSI and is looking for the specific application for subsidence monitoring due to
gas extraction in the Netherlands, the reader is referred to chapter 6, preceded by
chapter 5, which addresses the reliability assessment methodology for PSI defor-
mation estimates. Readers who are most interested in the operational use of PSI
for monitoring subsidence due to hydrocarbon production are referred to chapter 7.
To conclude, chapter 8 addresses the potential of PSI for improving knowledge on
reservoir behavior.



x Contents



Summary

Monitoring surface deformation induced by hydrocarbon production using satellite
radar interferometry

The start of hydrocarbon production in the 1960s in the northeastern part of the
Netherlands has resulted in subsidence of the ground level, which has been estimated
from periodic leveling campaigns. Although leveling is a precise and reliable tech-
nique for subsidence monitoring, it is labor intensive, expensive and poses a safety
risk since measurements are taken along roads. Hence, the application of satellite
radar interferometry (InSAR) is investigated for subsidence monitoring, coupled
with the potential improvement of reservoir behavior monitoring due to the InSAR
observation frequency. The main focus lies on the Groningen gas field, which has
a diameter of ∼30 kilometers, at ∼3 kilometers below surface. Complicating fac-
tors for the application of InSAR for subsidence monitoring in the Groningen area
are surface changes in time due to its agricultural character (temporal decorrela-
tion), atmospheric disturbances, and the low subsidence rates (< 1 cm/year) over
a large spatial extent. Hence, the applicability of Persistent Scatterer InSAR (PSI)
is investigated. PSI utilizes objects with a coherent phase behavior in time for the
estimation of deformation and other phase contributions. Since the subsidence mo-
nitoring period exceeds the lifetime of a satellite (5–10 years), multiple sensors are
required: ERS-1, ERS-2 and Envisat phase observations have been used.

Both the presence of PS in rural areas and the accuracy of PSI deformation estimates
have been investigated. The PS density varies from 0–10 PS per km2 in rural areas
to more than 100 PS per km2 in urban areas. Approximately 80% of the Groningen
subsidence area is covered with at least one PS per km2. The quality assessment
of PSI for monitoring subsidence due to hydrocarbon production has two compo-
nents: the precision and reliability of the measurement technique, and the relation
of the deformation estimates to the deformation signal of interest (the idealization
precision). The stochastic model of PSI has been validated in a controlled corner
reflector experiment, using independent leveling measurements. The estimated pre-
cision for ERS-2 and Envisat double-difference displacements is 3.0 and 1.6 mm
(1-sigma) respectively. The correlation coefficient between the Envisat and leveling
double-difference displacements is 0.94. The precision of displacements for natural
PS (objects in the terrain) in the Groningen area varies from ≤3 mm in urbanized
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areas to 3–7 mm (1-sigma) in rural areas, where the distances between neighboring
PS are larger.

Only the fractional phase of a PS is observed; the number of integer phase cycles
is unknown. Since the integer ambiguities are included as unknowns in the system
of equations, there is no redundancy in the estimation procedure. Hence, a test-
ing procedure on outliers and model errors can not be performed in the parameter
estimation of a single arc spanned by two PS. However, under the assumption of am-
biguity resolution success rates of 1, the effect of imperfections in the mathematical
model of PSI has been assessed. Inaccuracies in the azimuth sub-pixel position can
lead to additional errors of ∼0.5 mm/year in the PS displacement rate (velocity)
estimates. Random orbit errors with a standard deviation of 5 and 8 cm in radial
and across-track direction respectively can lead to velocity errors up to ∼1 mm/year
between near and far range. Regarding the stochastic model, the possibilities of vari-
ance component estimation (VCE) have been investigated. Moreover, a reference
independent quality measure has been proposed, the Dilution of Precision.

A multi-track datum connection procedure has been developed to perform a reliabi-
lity assessment, if success rates of 1 cannot be guaranteed. Multi-track datum con-
nection utilizes overlapping independent tracks that redundantly observe the same
deformation signal. The Groningen subsidence bowl is (partly) observed by six ERS
tracks (adjacent and cross-heading). After datum connection, the standard devi-
ation of the PS velocity estimates is less than 1 mm/year for 70% of the clusters
of nearby multi-track PS. Moreover, multi-track deformation estimates have been
utilized to decompose deformation along line-of-sight into vertical and horizontal
movements.

Subsidence due to hydrocarbon production can be contaminated by other deforma-
tion regimes, such as foundation instabilities and shallow compaction. The idea-
lization precision for the estimation of the deformation signal of interest may be
improved by exploiting the physical PS properties and by using a-priori knowledge
on the spatio-temporal behavior of the deformation signal of interest. PS character-
ization to improve the idealization precision is based on the assumption that direct
reflections from (well-founded) buildings are the most suitable targets for the esti-
mation of deformation due to deep subsurface displacements. PS heights, Envisat
Alternating Polarization observations, and the PS reflection pattern as a function
of viewing geometry have been utilized to select PS that represent direct reflections
from elevated targets. Case studies in two areas show a shift towards velocity esti-
mates of a lower magnitude after PS selection, but this shift is not significant (< 0.5
mm/year). Since subsidence due to hydrocarbon production is the common defor-
mation regime, this implies that it can be estimated from PS that are selected based
on spatial correlation, provided that the majority of the buildings in an area are
well-founded. It is recommended to evaluate this condition in all subsiding areas.

The deformation estimates from PSI and leveling campaigns have been cross-validated,
taking the accuracy of both measurement techniques into account. The correlation
coefficient between the displacement rates of both techniques is 0.94, comparable to
the correlation coefficient of displacements in a controlled corner reflector experiment
(0.94), and comparable to the correlation coefficient of displacement estimates from
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repeated leveling campaigns (∼0.94–0.97). Moreover, the spatio-temporal density
can be applied for monitoring reservoir behavior, e.g., the uplift due to underground
gas storage is captured by PSI. It can be concluded that PSI has reached the matu-
rity to be operationally used for monitoring subsidence due to gas extraction in the
northern part of the Netherlands—stand-alone or, in specific cases, in concert with
significantly reduced leveling campaigns or GPS.

Gini Ketelaar

September, 2008
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Samenvatting

Het monitoren van bodembeweging veroorzaakt door olie- en gaswinning met
behulp van satelliet radar interferometrie

De gaswinning in het noordoosten van Nederland vanaf de jaren zestig heeft geleid
tot bodemdaling. Deze wordt afgeleid uit gemeten hoogteverschillen tussen vaste
peilmerken in waterpascampagnes. Alhoewel waterpassen een precieze en betrouw-
bare techniek is voor het bepalen van deformatie van het aardoppervlak, is het
arbeidsintensief, kostbaar, en brengt het veiligheidsrisico’s met zich mee door het
meten langs wegen. Daarom is de inzetbaarheid van radar interferometrie (In-
SAR) onderzocht voor het monitoren van bodemdaling, mede gestimuleerd door de
hoge waarnemingsfrequentie van InSAR die een verbeterd inzicht in het gedrag van
gasvelden kan opleveren. Het onderzoek spitst zich toe op het Groningen gasveld,
dat een diameter van ∼30 kilometer heeft en op een diepte van ∼3 kilometer ligt.
De toepasbaarheid van InSAR in het Groningen gebied wordt bemoeilijkt door het
landelijke karakter (temporele decorrelatie), atmosferische verstoringen, en de lage
bodemdalingssnelheden (< 1 cm/jaar) over een uitgestrekt gebied. Daarom wor-
den objecten geselecteerd met coherente fasewaarnemingen in de tijd, de Persistent
Scatterers (PS), die veelal overeenkomen met bouwwerken in het terrein. De Persis-
tent Scatterer InSAR (PSI) techniek schat de deformatie van het aardoppervlak en
andere componenten in de fasewaarnemingen (bijvoorbeeld atmosferische verstorin-
gen) tussen de PS. Omdat de monitoringsperiode van bodemdaling de levensduur
van een satelliet overschrijdt (5–10 jaar), zijn meerdere sensoren gebruikt: ERS-1,
ERS-2 en Envisat.

Zowel de aanwezigheid van PS als de nauwkeurigheid van PSI deformatie schattingen
zijn onderzocht. De PS dichtheid varieert van 0–10 PS per km2 in landelijke gebieden
tot meer dan 100 PS per km2 in steden. Ongeveer 80% van het Groningen bodem-
dalingsgebied bevat minstens één PS per km2. De kwaliteitsbeschrijving van PSI
voor het schatten van de bodemdaling als gevolg van de gaswinning heeft twee com-
ponenten: de precisie en betrouwbaarheid van de meettechniek, en de toewijzing van
de geschatte deformatie aan een specifiek deformatie signaal (de idealisatieprecisie).
Het stochastisch model van PSI is gevalideerd met behulp van een gecontroleerd
hoekreflector experiment, met onafhankelijke waterpasmetingen. De geschatte pre-
cisie van ERS-2 en Envisat deformatie schattingen is respectievelijk 3.0 en 1.6 mm
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(1-sigma). De correlatie coëfficiënt tussen de deformatie schattingen van waterpassen
en Envisat is 0.94. De precisie van deformatie schattingen van natuurlijke PS (ob-
jecten in het terrein) in het Groningen gebied varieert van ≤3 mm in stedelijke tot
3–7 mm (1-sigma) in landelijke gebieden, waar de afstanden tussen naburige PS
groter zijn.

Een PS waarneming bevat enkel de fractionele fase; het gehele aantal fase cycli is on-
bekend. Door het opnemen van onbekenden voor de geheeltallige meerduidigheden
in de waarnemingsvergelijkingen, is er geen overtalligheid in de schattingsprocedure.
Hierdoor ontbreekt de mogelijkheid tot een toetsingsprocedure op foutieve waarne-
mingen en modelfouten voor een deformatie schatting tussen twee PS. Niettemin
is onder de aanname dat de meerduidigheden correct geschat zijn—de success rates
zijn 1—de invloed van potentiële modelfouten bepaald. Onzekerheden in de azimuth
sub-pixel positie kunnen leiden tot fouten van ∼0.5 mm/year in de geschatte defor-
matie snelheden. Willekeurige baanfouten kunnen resulteren in relatieve fouten van
∼1 mm/jaar over een heel beeld. Voor het stochastisch model zijn de mogelijkheden
van variantie componenten schatting (VCE) onderzocht. Verder is een precisiemaat
voorgesteld die onafhankelijk is van de gekozen basis (in ruimte en tijd), gebaseerd
op de determinant van de variantie-covariantie matrix.

Om een uitspraak te kunnen doen omtrent de betrouwbaarheid van de deformatie
schattingen, is de multi-track datum connectie procedure ontwikkeld. Multi-track
datum connectie gebruikt onafhankelijke overlappende tracks die hetzelfde defor-
matie signaal bemonsteren. Het Groningen bodemdalingsgebied wordt (deels) waar-
genomen door zes ERS tracks (naburig en kruisend). Na datum connectie is de
standaard afwijking van de deformatie snelheden in 70% van de multi-track PS clus-
ters minder dan 1 mm/jaar. Verder zijn de multi-track waarnemingen gebruikt voor
de ontbinding van deformatie in de satelliet kijkrichting naar verticale en horizontale
componenten.

Deformatie kan worden veroorzaakt door verschillende fysische fenomenen: gaswin-
ning, ondiepe compactie, of een slechte fundering. De idealisatieprecisie van een
specifiek deformatie signaal kan worden verbeterd door een betere identificatie van
de PS (PS karakterisatie) of door het gebruik van a-priori kennis omtrent het ruimte-
tijd gedrag van het deformatie signaal. PS karakterisatie is gebaseerd op de aanname
dat directe reflecties van diep gefundeerde punten het meest representatief zijn voor
bodemdaling als gevolg van de gaswinning. PS hoogtes, Envisat Alternating Polar-
ization waarnemingen, en het PS reflectie patroon als functie van de kijkhoek zijn
gebruikt om directe reflecties van hoge objecten te selecteren. Twee case studies
tonen een verschuiving naar kleinere bodemdalingssnelheden aan, die echter niet
significant is (<0.5 mm/jaar). Omdat bodemdaling als gevolg van gaswinning het
gemeenschappelijke signaal is, kan men volstaan met het selecteren van PS op basis
van ruimtelijke correlatie van het deformatie signaal, op voorwaarde dat het meren-
deel van de bebouwing goed gefundeerd is. Het is echter aan te raden om deze
voorwaarde in alle delen van het bodemdalingsgebied zorgvuldig te verifiëren.

De deformatie schattingen uit PSI en waterpassen zijn vergeleken, waarbij de nauw-
keurigheid van beide technieken is meegenomen. De correlatie coëfficiënt tussen de
bodemdalingssnelheden van beide technieken is 0.94, wat vergelijkbaar is met de
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correlatie coëfficiënt in een gecontroleerd hoekreflector experiment (0.94), en de the-
oretisch haalbare correlatie coëfficiënt voor geschatte deformatie uit herhaalde water-
pascampagnes (∼0.94–0.97). Door de hoge waarnemingsfrequentie kan PSI worden
ingezet voor het verbeteren van inzicht in het gedrag van gasvelden: een stijging
van het aardoppervlak als gevolg van ondergrondse gasopslag wordt bijvoorbeeld
door PSI gedetecteerd. Geconcludeerd wordt dat PSI een volwassen techniek is die
operationeel ingezet kan worden voor het schatten van bodembeweging als gevolg
van de gaswinning in noord Nederland—stand-alone of, voor specifieke gevallen,
gecombineerd met aanzienlijk uitgedunde waterpasnetwerken of GPS.

Gini Ketelaar

September, 2008
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Chapter 1

Introduction

1.1 Background

Since the 1960s, various gas and oil reservoirs in the Netherlands have been taken
into production. The largest is the Groningen gas reservoir with a thickness of
100–200 meters and a diameter of approximately 30 kilometers (NAM, 2005). Since
the start of gas extraction, the reservoir layers have been compacting, which has
resulted in subsidence at ground level up to 24.5 cm in 2003 (Schoustra, 2004).
In the Netherlands, measuring subsidence due to gas and oil extraction is a legal
obligation in order to take environmental counter measures when required. The
environmental impact of hydrocarbon production has been stressed at the start of gas
production in February 2007 from the subsurface below the Waddenzee, a protected
marine wetland area (NAM, 2006). Here, the condition of near real time subsidence
monitoring (’hand-on-the-tap’) has been imposed, to avoid negative effects on the
ecological system. These developments emphasize the need of geodetic subsidence
monitoring techniques that regularly provide geodetic observations including their
uncertainty boundaries.

Ground level movements in the Netherlands have been measured periodically by
means of leveling campaigns (de Heus et al., 1994; Schoustra, 2004). Measured height
differences from precise leveling have a precision better than 1mm/

√
km (de Bruijne

et al., 2005). Because of the long history of the leveling technique, the error budget
is well known. Moreover, leveling networks are generally designed to incorporate
redundant observations, that enable the testing and removal of erroneous measure-
ments.

Although leveling is a well-established technique for subsidence monitoring, it has
certain drawbacks: it is labor intensive and expensive. Moreover, it poses safety risks
on subsidence monitoring, since measurements have to be taken along busy roads.
Hence, the feasibility of spaceborne subsidence monitoring has been investigated
since the development of satellite radar interferometry (InSAR) as a measurement
technique from the 1990s. Various radar satellites have been operational, e.g., ESA’s
European Remote Sensing Satellites (ERS-1 and ERS-2), acquiring SAR imagery
over an area of 100×100 km with a 35 days interval. The high temporal and spatial
observation frequency of InSAR compared to leveling could potentially provide even
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additional insight in deformation mechanisms.

InSAR utilizes phase difference observations between two radar acquisitions for the
estimation of surface deformation. Besides the deformation signal of interest, the
interferometric phase also contains contributions due to atmospheric signal delay,
(residual) topography and orbital errors (Hanssen, 2001). Moreover, only the frac-
tional phase is observed (the ’wrapped’ phase), which implies that the number of
integer cycles from satellite to the surface is unknown. The InSAR methodology
that is aiming for a continuous coherent phase difference image (’interferogram’)
is referred to as conventional InSAR. Examples of the application of conventional
InSAR for deformation monitoring are the displacement field of the Landers earth-
quake, demonstrated by Massonnet et al. (1993), and the detection of subsidence
due to hydrocarbon production at the Belridge and Lost Hills oil fields in California,
U.S.A., see e.g., van der Kooij (1997). Conventional InSAR is suitable for monitoring
distinct deformation signals with a high magnitude compared to the error sources,
in areas that do not suffer from temporal surface changes. However, in areas with
low subsidence rates—subsidence due to gas extraction in the Netherlands is in the
order of several mm/year—the estimation of error sources such as atmospheric dis-
turbances is essential to obtain accurate deformation estimates. Furthermore, the
loss of coherence due to temporal decorrelation of agricultural and vegetated areas
limits the application of conventional interferometry.

To overcome the limitations of conventional interferometry, Persistent Scatterer (PS)
interferometry has been introduced (Ferretti et al., 2000, 2001). Persistent Scatte-
rers are targets with a coherent phase behavior in time, that often correspond with
man-made features in the terrain. The phase difference observations from Persistent
Scatterers are utilized for a dedicated estimation of the deformation signal and other
phase contributions, such as topographic height differences and atmospheric distur-
bances. Moreover, they form a network of reliable measurement points in which
phase unwrapping is performed. Persistent Scatterer InSAR (PSI) has been suc-
cessfully applied in urban(ized) areas, where the PS density is high. PSI has been
utilized for the estimation of deformation due to different causes: subsidence due
to water pumping, mining activities, hydrocarbon production and landslides, see
e.g., Fruneau (2003); Colesanti et al. (2005); Ketelaar et al. (2005), and Meisina et
al. (2006). A quality assessment of Persistent Scatterer InSAR (PSI) has been per-
formed by Colesanti et al. (2003): a precision of 1–3 mm for displacement estimates
and 0.1–0.5 mm/year for deformation rates has been claimed (1-sigma).

1.2 Research objectives

Because of the advances in the InSAR technique, potential applications have moved
towards areas that are severely affected by temporal decorrelation, with low defor-
mation rates over a large spatial extent. Subsidence due to gas extraction from the
Groningen gas field is characterized by subsidence rates smaller than 1 cm/year that
are distributed over a bowl shaped area with a diameter of more than 30 km. Fur-
thermore, the area has a rural and agricultural character and is subject to varying
atmospheric circumstances (Hanssen et al., 1999). Since the majority of the Gronin-
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gen area suffers from temporal decorrelation, conventional InSAR is not applicable
for subsidence monitoring. After the ERS revisit time of 35 days, only the ur-
ban(ized) areas appear coherent in the interferograms. Due to the small magnitude
of the deformation signal of interest, the estimation of error sources and a preci-
sion and reliability assessment of the deformation estimates are essential. Preceding
research on the applicability of InSAR in the Groningen area has been performed
by Hanssen and Usai (1997) and Usai (2001). To overcome the effect of temporal
decorrelation, the study focuses on coherent features (buildings, roads) in a selected
number of interferograms with short baselines. The phase observations in several
urban areas have been analyzed on their performance for subsidence estimation. De-
viations from the existing deformation profiles have indicated that a more rigorous
approach is required.

Although the quantification of the precision and reliability of PSI as a measurement
technique is essential for subsidence monitoring, it is not sufficient for the estima-
tion of the deformation signal of interest: subsidence due to hydrocarbon production.
The radar satellite observes all kinds of surface deformation from space, regardless
of the driving mechanism. A PSI displacement can represent both the instability of
a building with a bad foundation, as well as shallow compaction due to ground water
extraction or due to compacting soft soils in the shallow subsurface. Hence, both the
precision and reliability of PSI as a measurement technique and the possible defor-
mation causes have to be addressed. Moreover, the integration and cross-validation
with historical leveling measurements have to be demonstrated for the operational
use of PSI to ensure consistency in subsidence monitoring in the Netherlands.

Despite these complicating factors, the spatial and temporal observation frequency of
PSI has potential to improve subsidence monitoring. For example, Odijk et al. (2003)
show that the integration of InSAR and leveling observations results in an improved
precision of the estimated subsidence parameters in areas that are poorly covered
with leveling data. Moreover, the spatial and temporal observation frequency of
PSI can potentially improve insight in reservoir behavior, and hence optimize the
development of hydrocarbon reservoirs.

The identification of the main limitations and potential value of InSAR for subsi-
dence monitoring in the Groningen area has lead to the following central research
question :

Is the InSAR technique able to provide precise and reliable deformation estimates
for the monitoring of subsidence due to hydrocarbon production in the Netherlands,
particularly in the Groningen region?

This problem statement is divided into the following sub-questions:

1. Does the area of interest contain sufficient radar targets with coherent phase
observations?

2. Does InSAR provide a precise estimation of surface displacements in the Gronin-
gen area?
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3. How can we assess the reliability of InSAR deformation estimates?

4. Is it possible to estimate subsidence due to hydrocarbon production from In-
SAR measurements in the presence of multiple deformation phenomena?

5. Are the PSI deformation estimates in agreement with the leveling results?

6. Can InSAR aid the understanding of reservoir behavior?

7. Is the continuity of subsidence monitoring using InSAR guaranteed?

The first sub-question addresses the existence of Persistent Scatterers, which mainly
correspond with man-made features in the terrain. From these targets, a network of
double-difference phase observations (both spatial and temporal) is formed, enabling
a dedicated estimation of the deformation signal of interest by means of geodetic
adjustment and testing procedures. In urban areas, this technique has proven to be
successful. However, the performance in highly decorrelated rural areas needs to be
investigated.

The quality description of PSI estimates is divided into precision and reliability.
Precision is the dispersion of a stochastic variable around its expectation value,
whereas reliability expresses the detectability of model imperfections and their in-
fluence on the (deformation) parameter estimates. A complicating factor in the
reliability assessment of PSI deformation estimates is the lack of redundancy in the
estimation procedure when phase unwrapping cannot be assumed correct. To over-
come this limitation, we introduce a reliability assessment that exploits the PSI
estimates from multiple independent tracks.

Besides the accuracy of PSI for the estimation of ground movements in the Gronin-
gen area, the interpretation of the deformation estimates is addressed. Since radar
satellites monitor from space, they observe each surface movement, not only the
signal of interest. A PS displacement may be caused by (a superposition of) se-
veral deformation causes: structural instabilities, shallow subsurface compaction,
or hydrocarbon production. For the separation of the displacement components,
knowledge on the physical nature of the PS is required: does the PS displacement
represent a direct reflection from a well-founded building on a deep subsurface layer,
or does it represent a multi-bounce reflection with the direct surroundings that are
potentially affected by shallow compaction (Perissin, 2006)?

Cross-validation will be performed by a comparison with the displacement estimates
from the leveling technique. The stochastics of both techniques are taken into ac-
count for the estimation of the deformation parameters in an integrated way. Since
InSAR measurements can potentially replace (part of) the leveling measurements,
future continuity should be guaranteed. Since the ’lifetime’ of subsidence exceeds
the lifetime of a radar satellite mission, this implies that the deformation estimates
of multiple sensors have to be integrated.

Besides the scientific contribution, this research proposes an operational alternative
for expensive and laborious leveling campaigns. The advantages of subsidence mo-
nitoring by remote sensing techniques using regular satellite acquisitions are obvious:
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it would significantly decrease the expenses for subsidence monitoring, and reduces
the safety risks. Furthermore, both the temporal and spatial sampling frequency can
be significantly increased: up to 4 acquisitions each 35 days in stead of one leveling
campaign each 2–5 years, and more than 100 targets per km2 in urban areas versus
1–2 benchmarks per km2. Hence, besides a more controlled monitoring of subsidence
due to hydrocarbon production, InSAR can potentially contribute to an increased
insight in reservoir behavior.

1.3 Outline

Chapter 2 starts with a discussion on the formation of hydrocarbon reservoirs. Based
on reservoir properties such as compaction coefficient and thickness, methods to pre-
dict subsidence at ground level are explained. Subsequently, the leveling campaigns
in the Groningen area are addressed, followed by a review of the existing geodetic
methodologies for the estimation of subsidence due to hydrocarbon production.

The PSI estimation theory and quality description is addressed in chapter 3. It pro-
vides an overview of interferometric processing, PS selection, and the mathematical
model of PSI. Subsequently, chapter 4 focuses on the quality assessment of PSI.
This comprises both the accuracy of the deformation estimates and the estimation
of the deformation signal of interest in the presence of other deformation mecha-
nisms (’idealization precision’). The lack of redundancy in the mathematical model
that is introduced in chapter 3 limits the reliability assessment of PSI. Hence, chap-
ter 5 introduces an alternative reliability assessment that utilizes PSI estimates from
multiple independent satellite tracks that all observe the same deformation signal.
The PSI estimates of these tracks are integrated through the so-called multi-track
datum connection procedure.

The theoretical framework that is described in the chapters 3, 4, and 5 is applied for
subsidence monitoring in the Groningen area in chapter 6. The multi-track datum
connection procedure that uses six ERS tracks further expands the monitoring area
to the entire northeastern part of the Netherlands and a part of Germany. The
precision of the displacement estimates are addressed for both ERS (1992–2005) and
Envisat (2003–2007), as well as the effect of model imperfections. Furthermore, the
idealization precision of the estimation of subsidence due to hydrocarbon production
is exploited using PS characterization tools and a-priori knowledge on the spatio-
temporal behavior of the deformation signal of interest.

An important condition for the operational use of PSI is the agreement of PSI dis-
placement estimates with the historical leveling results. A strict comparison in terms
of precision and accuracy is not straightforward, since leveling and PSI observations
are physically different. Chapter 7 analyzes the correlation of displacement esti-
mates from neighboring PS and leveling benchmarks. Furthermore, it addresses the
spatio-temporal sampling of both techniques with respect to the precision of the
observations and the estimation of the deformation parameters of interest.

Prior to the formulation of the conclusions and recommendations in chapter 9, chap-
ter 8 discusses the results that have been obtained in chapters 6 and 7, and the future
outlook. It shows the potential of PSI to increase knowledge on reservoir behavior,
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e.g., subsidence and subsequent uplift over an underground gas storage can be clearly
identified due to the temporal sampling of PSI.



Chapter 2

Subsidence due to hydrocarbon production

in the Netherlands

In this chapter, the mechanism of subsidence due to hydrocarbon production is de-
scribed. Subsidence at ground level is caused by the compaction of the reservoir
rock due to hydrocarbon extraction. The spatial and temporal development of sub-
sidence is dependent on the production rate, the physical reservoir rock properties
and the overlying subsurface layers. In the Netherlands, subsidence monitoring is
legally obliged to control the water management and to avoid environmental damage.
Moreover, it provides information on reservoir behavior and well performance, for
example to control steam injection for the optimization of oil production.

Section 2.1 starts with a brief overview of the geological circumstances that are re-
quired for the existence of hydrocarbon reservoirs. Subsequently, the geophysical
properties of gas and oil reservoirs in the Netherlands, in particular the Groningen
gas field, are discussed in more detail. Based on the reservoir parameters, models
that have been developed for subsidence prediction are described. The actual sub-
sidence measurements in the Netherlands are described in section 2.2. Section 2.3
gives an overview of the subsidence estimation methodologies that have been applied
since the start of gas extraction from the Groningen field.

2.1 Geophysical background

In this section, the existence and properties of hydrocarbon reservoirs are discussed,
followed by an explanation of the Groningen gas reservoir.

2.1.1 Hydrocarbon reservoirs

Hydrocarbon is formed from organic debris exposed to high temperature and pres-
sure due to increasing overburden (overlying sediments) in time (Chapman, 1983;
Landes, 1959; Rondeel et al., 1996). It is stored in reservoir rock, where void spaces
can be filled with water, hydrocarbon liquids (oil) or hydrocarbon gas. The most
common reservoir rocks are sandstones and carbonates. The hydrocarbon composi-
tion of a reservoir depends on the type of hydrocarbons, the temperature and the



8 Chapter 2: Subsidence due to hydrocarbon production in the Netherlands

pressure in the reservoir. The fluids within a reservoir are layered according to their
density, see Fig. 2.1.

Fig. 2.1. Hydrocarbon accumulation in an anticlinal trap. The seal prevents the hydro-
carbon fluids from migrating further upwards. Water, oil and gas are layered according
to their density.

Since the hydrocarbons tend to migrate upwards, a seal and a trap are required
for hydrocarbons to accumulate. A seal consists of material that is impervious for
hydrocarbon fluids. Examples of seals are shales or evaporates (such as salt layers).
A trap is an enclosed reservoir that is that is surrounded by impervious rock. Traps
are subdivided into structural and stratigraphic traps, see Fig. 2.2. Examples of
structural traps are anticlines, faults and salt core structures. Stratigraphic traps
are caused by changes in permeability. Tilting of sedimentary layers is often required
for such a trap to exist (ibid.).

Fig. 2.2. Structural traps: anticlinal trap (left) and fault trap (middle). Stratigraphic
trap (right): tilted layers of varying permeability.

For a profitable extraction of hydrocarbons, a reservoir must meet certain quality
criteria. Besides the hydrocarbon volume, the thickness and extent of the reservoir,
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porosity and permeability are driving factors. Porosity is the percentage of the
total reservoir rock volume that is void space. Although porosity is required for
hydrocarbon storage, it does not guarantee that the hydrocarbon fluids are able
to flow in the reservoir. The ability of a rock to transmit fluid and discharge its
hydrocarbon contents is defined as the permeability. The higher the permeability of a
reservoir rock, the easier the hydrocarbon fluids will flow. Porosity and permeability
are dependent on grain shape, packing and sorting, degree of cementation and the
overburden. For more information, see Craft and Hawkins (1991) and Dake (2002).

2.1.2 The Groningen reservoir

The subsurface of the Netherlands contains numerous gas fields and several oil reser-
voirs. The majority of the hydrocarbon reservoirs is situated in the northeastern
part of the Netherlands, see Fig. 2.3. Oil and gas production in the Netherlands has
started with the discovery of the Schoonebeek oil field in 1943 and the Groningen
gas field in 1959.

The geology of the Groningen gas field is depicted in Fig. 2.4. The gas has been
formed in the Carboniferous period (365–290 million years ago). Subsequently, it
has migrated upwards to the porous sandstones in the Rotliegend layer from the
Permian period (290–250 million years ago). These sandstone layers have been
formed from aeolian and fluvial deposits (de Jager and Geluk, 2007). The aeolian
deposits form the best reservoirs since the grains are well sorted. The gas reservoirs
are sealed by the Ten Boer claystone layer and the thick Zechstein salt layer. The
boundaries of the Groningen gas reservoir are mainly defined by fault zones, with
a few closures that are caused by the orientation of the layers with respect to the
horizontal plane (NAM, 2003c).

The Groningen gas field has a horizontal extent of approximately 900 km2. It is
situated at a depth of 2750–2900 m and its thickness varies between 100 and 200
m (NAM, 2005). Porosity values vary between 16 and 20% (Teeuw, 1973). The
Groningen gas field is the largest gas field in western Europe and one of the largest
gas fields in the world. The estimated recoverable volume is ∼2700 billion m3.
The total number of wells that has been established is 295, arranged in 29 clusters.
Gas production has started in 1963. Currently, the focus lies primarily on the
gas production from the smaller gas fields in the Netherlands (NAM, 2003c). The
production from the Groningen gas field is kept relatively low (∼30 billion m3 per
year) to increase its lifetime.

Since the focus of this thesis lies on subsidence monitoring, the reader is referred
to Duin et al. (2006); Lutgert et al. (2005), and Breunese et al. (2005) for a detailed
description of the geology of the Netherlands and the performance of gas production
from the Groningen field.

2.1.3 Reservoir properties

This section explains the reservoir properties that determine the potential amount
of subsidence due to hydrocarbon production. First, the driving factors for the
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Fig. 2.3. Overview of the location and spatial extent of the Groningen gas field, including
the well locations and the faults (NAM, 2003c).
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Fig. 2.4. Cross-section of the Groningen gas field (NAM, 2003c). The location of this
cross-section is indicated in Fig. 2.3 as ’Line of Section’. The Slochteren sandstone
formation is part of the Rotliegend layer.

compaction of the reservoir are explained. Secondly, the influence of faults and
aquifers are explained.

Reservoir compaction

During the production of gas and oil, the pore pressure decreases. Because the
overburden remains unchanged, the effective stress on the grain structure of the
reservoir increases. As a result, the reservoir is compacting: its volume decreases. If
the lateral dimension of the reservoir is large compared to its thickness, compaction
mainly results in a reduction of reservoir height (Geertsma, 1973b). Hence, reservoir
compaction can initially be characterized by the vertical strain εz in the reservoir:

εz =
dz

z
, (2.1)

which is the change in reservoir height dz relative to its initial height z, caused by
an increase in effective stress due to a decrease in pore pressure dp under a constant
overburden. Reservoir compaction in vertical direction is characterized by the uni-
axial compaction coefficient cm:

cm =
1

z

dz

dp
, (2.2)

that describes the compaction per unit change in pore pressure (in bar−1). The total



12 Chapter 2: Subsidence due to hydrocarbon production in the Netherlands

compaction ∆H until a certain point in time is dependent on the difference in pore
pressure ∆p since the start of the production and the initial reservoir thickness H:

∆H = cm · ∆p ·H. (2.3)

The compressibility of the reservoir rock in lateral direction is specified by Poisson’s
ratio ν. Poisson’s ratio is the ratio between the lateral strain and the vertical strain.
Its value is ∼0.25 for the Groningen gas field. Section 2.1.4 shows that subsidence
at surface level depends both on the uni-axial compaction coefficient and Poisson’s
ratio.

The compaction coefficient

The compaction coefficient is dependent on the physical reservoir properties. There
are two methods available to derive the compaction coefficient: by laboratory tests
on core samples from the wells (Teeuw, 1973), and by means of radio-active bullets
that have been shot in the reservoir at observation wells (de Loos, 1973; NAM, 2005).

Core samples have been taken from wells in different parts of the Groningen gas field.
In the laboratory, the behavior of the reservoir rock under in situ stress conditions
has been analyzed. The reservoir compaction is determined from the relative change
in reservoir thickness due an increase in effective vertical stress under zero lateral
strain.

Besides by performing laboratory tests on core samples, compaction can be mea-
sured in situ. The measurement targets for in situ compaction measurements are
radio-active bullets that have been shot in the formation at regular distance. Their
relative displacement is measured periodically by means of a gamma-ray detector.
This gamma-ray detector is connected to a cable that is deployed in an observa-
tion well. In the Groningen gas field, eleven observation wells have been established
where these in situ compaction measurements are carried out with millimeter preci-
sion (NAM, 2005). The compaction measurements show a linear dependency on the
reservoir pressure. The compaction coefficient cm that has been deduced from these
measurements varies between 0.45 and 0.75·10−5/bar (ibid.).

The initial pressure in the Groningen reservoir was 347 bar, which has dropped to
125 bar in 2005 (ibid.); the average thickness of the reservoir is 170 m. Using
Eq. (2.3), this would imply that gas production up to 2005 has caused a total
reservoir compaction between 17 and 28 cm. The resulting compaction at ground
level is dependent on the depth and radius of the reservoir and Poisson’s ratio as
well, see section 2.1.4. Furthermore, reservoir compaction may be subject to a delay
in time (Hettema et al., 2002), in which the reservoir reconverges to an equilibrium
and the compaction propagates through the overburden to ground level.

The amount of reservoir compaction is also driven by the reservoir rock properties:
ordering, shape and hardness of the grains, and the degree of cementation or frame
rigidity (Teeuw, 1973). The rock properties also determine whether the deforma-
tion is reversible or not. The deformation of hard rock exhibits in general elastic
(reversible) behavior. The compaction of soft rock may be partly irreversible due
to crushing and relocation of grains. Rock types are subdivided in tight rock, well-
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consolidated rock, semi-consolidated rock and unconsolidated rock, with varying
porosity from 0 to 40 %, and an increasing compaction coefficient. The Gronin-
gen Rotliegend reservoir is classified as semi-consolidated, and elastic behavior is
assumed.

Reservoir connectivity

The amount of reservoir compaction is dependent on the thickness of the reservoir,
the pressure drop in the reservoir, and the compaction coefficient of the reservoir
rock. If these parameters vary through a reservoir, the reservoir compaction will
vary as well. Discontinuous changes can be found near faults. Depending on the
reservoir thickness, the vertical offset, the orientation of the faults, and the depth of
the gas-water contact, they can be sealing or not. If the drainage region of a well
contains sealing faults, the well will not produce hydrocarbons from the disconnected
block. As a result, there will a be compacting and non-compacting block on either
side of the fault. The fault pattern of the Groningen gas field is depicted in Fig. 2.3.
It has a dominantly southeast–northwest orientation. The interaction between the
reservoir blocks can impose an uncertainty on the subsidence prediction.

Aquifers

In section 2.1.1 it has been explained that a reservoir can be partly filled with wa-
ter. The part of the reservoir that is filled with water is called the aquifer. Due to
the higher density of the water, the aquifer will be located below the hydrocarbon
fluids. The presence and dimensions of the aquifer determines the pressure drop
during hydrocarbon production. If the aquifer is large with respect to the gas reser-
voir, it can provide pressure support to the hydrocarbon reservoir (NAM, 2005).
If the aquifer is small, hydrocarbon production can significantly affect the aquifer
pressure. Since the aquifer partly determines the pressure distribution within the
reservoir, knowledge on the depletion of aquifers is important for the estimation of
reservoir compaction. Moreover, uncertainties can exist about the connection of lat-
eral aquifers around fault zones. Since there are hardly any wells established in the
aquifer zones, there is a lack of observations on their pressure behavior. Geodetic
measurements at ground level, such as leveling and PSI, can provide knowledge on
the depletion of aquifers. For example, based on the leveling campaigns, it could be
concluded that the aquifer to the west of the Groningen gas field is not depleting
(ibid.).

2.1.4 Subsidence prediction methodologies

Based on the geophysical properties of the hydrocarbon reservoir and the over-
lying layers, subsidence at ground level can be predicted. Various methods have
been applied: analytical (Geertsma, 1973a), semi-analytical (Fokker, 2002; Fokker
and Orlic, 2006), numerical (Sroka and Hejmanowski, 2006) and finite element
methods (Geertsma and van Opstal, 1973; Fredrich et al., 2000).

The analytical solutions for subsidence prediction that are described by Geertsma
(1973a) assume that the overburden is uniform and elastic. The reservoir itself is
built up of so-called ’nuclei-of-strain’ that have a small but finite volume V . The
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vertical displacement uz caused by a nucleus-of-strain is given by:

uz(r, 0) = −cm(1 − ν)

π

D

(r2 +D2)3/2
∆pV, (2.4)

where:
r radial distance from the vertical axis through the nucleus-of-strain,
cm uni-axial compaction coefficient(kg/cm2)−1, see Eq. (2.2),
ν Poisson’s ratio,
∆p pore pressure reduction (kg/cm2),
D depth of burial of the nucleus-of-strain,
V volume of the nucleus-of-strain.

A negative vertical displacement implies subsidence, whereas a positive vertical dis-
placement implies uplift. The geometrical shape of the displacement induced by a
nucleus-of-strain is equal to the displacement induced by a point source as defined
by Anderson (1936) and Mogi (1958).

Surface deformation due to hydrocarbon production is not restricted to vertical
displacements. The horizontal displacement ur due to a nucleus-of-strain reads:

ur(r, 0) = +
cm(1 − ν)

π

r

(r2 +D2)3/2
∆pV, (2.5)

where a positive horizontal displacement is in the direction towards the location of
the nucleus-of-strain. From Eqs. (2.4) and (2.5) it is deduced that the ratio between
horizontal and vertical displacements equals −r/D.

The total subsidence above a reservoir can subsequently be obtained by the inte-
gration of the nucleus-of-strain solutions over the entire reservoir. A closed form
solution of the integration of the nucleus-of-strain solutions is given by Geertsma
(1973a), based on a simplified representation of the reservoir as a disc-shaped reser-
voir of thickness H and radius R at depth D. The pressure reduction ∆p is assumed
to be uniform through the reservoir. The equations are non-linear and require the
evaluation of Hankel-Lipschitz integrals. The maximum vertical displacement above
a disc-shaped reservoir can be expressed analytically:

uz(0, 0) = −2cm(1 − ν)∆pH

(

1 − D/R
√

1 + (D/R)2

)

. (2.6)

Apart from the compaction coefficient, Poisson’s ratio, the pressure drop and the
thickness of the reservoir, the ratio between the depth and the radius of the reservoir
determines the maximum amount of subsidence.

The analytical expressions for subsidence prediction are based on a simplified repre-
sentation of the subsurface. The reservoir is not a perfect disc; nor is the overburden
perfectly homogeneous. Hejmanowski and Sroka (2000) subdivide the reservoir into
elementary cubicoids with each their own geomechanical properties (thickness, com-
paction, pressure drop). Subsequently, influence functions are applied to estimate
subsidence due to a reservoir element at surface level. The total subsidence is the
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superposition of the contributions of all reservoir elements. Finite element methods
utilize a geomechanical model of the entire subsurface: the reservoir and the adja-
cent geological layers, up to ground level. Fredrich et al. (2000) models the evolution
of the displacements in the Belridge reservoir and the overburden, based on such a
finite element model.

Finite element models have the advantage that they can be applied to reservoirs of
arbitrary geometry with varying reservoir properties and pressure distribution, see
e.g., Geertsma and van Opstal (1973). Hence, a more accurate prediction of vertical
displacements and horizontal gradients can be obtained, provided that the distribu-
tion of deformation properties in the reservoir is known sufficiently. Moreover, the
overburden can be modeled more accurately in finite element models. A disadvan-
tage of finite element methods is the computation time. Hence, semi-analytical mo-
deling (Fokker, 2002; Fokker and Orlic, 2006) has been introduced. Semi-analytical
modeling avoids the time consuming finite element approach, but uses a more sophis-
ticated model for the subsurface compared to the analytical solutions of Geertsma
(1973a). Instead of assuming a homogeneous subsurface, the subsurface is divided
into multiple layers with each their own (visco-)elastic properties.

Both the analytical method from Geertsma (1973a) (with the reservoir subdivided
into smaller blocks) and finite element analysis have been applied to predict sub-
sidence due to hydrocarbon production in the Netherlands (NAM, 2005). Since
the results of both methods are comparable, the analytical method is used for the
majority of the gas fields (ibid.). Finite element analysis has been applied to calcu-
late subsidence above the Ameland reservoir: it is located below a complicated salt
structure which behavior cannot be modeled using the analytical method (ibid.).

2.2 Subsidence monitoring using leveling measurements

This section addresses the leveling campaigns that have been performed for subsi-
dence monitoring in the Netherlands, and the legal guidelines.

2.2.1 Leveling campaigns

Since the start of gas production in Groningen in the 1960s, leveling campaigns have
been performed periodically. Leveling is an optical land surveying technique that
measures height differences between established benchmarks. These benchmarks are
spatially distributed over the area of interest and are ideally a discretization of the
shape of the subsidence pattern. By measuring the benchmark height differences in
multiple epochs, the development of the subsidence bowl(s) is monitored.

Since subsidence measurements are decisive for taking environmental countermea-
sures, the quality assessment of the estimated height differences is crucial. Redun-
dant measurements have been taken in order to test observations on measurement
errors and systematic errors. Fig. 2.6 shows the leveling loops in the northeastern
part of the Netherlands. Subsidence due to gas extraction has been estimated from
repeated leveling campaigns since the start of the production. The deepest point in
the Groningen subsidence bowl has subsided 24.5 cm until 2003 (Schoustra, 2004),
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Fig. 2.5. Subsidence (mm) since the start of gas production in the center of the
Groningen subsidence bowl, estimated from leveling observations (Schoustra, 2004).
The subsidence rate has slightly decreased after the change of priority to the smaller gas
fields from the 1970s.

see Fig. 2.5. In time, the displacements are approximately linear. After the 1970s
the displacement rate has slightly decreased, after the priority has been shifted to the
smaller gas fields. The Groningen gas field and the underground gas storages in Norg
and Grijpskerk have the role of swing producer, covering peaks in demand (NAM,
2008).

Benchmark heights are orthometric and refer to the local Dutch height reference
system ’Normaal Amsterdams Peil’ (NAP). Since leveling is a relative technique, all
heights are estimated with respect to a reference benchmark.

2.2.2 Legal guidelines

Monitoring surface deformation due to mineral extraction is legally obliged in the
Netherlands according to the Dutch mining legislation (Mijnbouwwet, 2008). Oil,
gas and salt mining companies are obliged to develop and update measurement plans
that need to be approved by the Ministry of Economic Affairs. According to the
mining legislation, these measurement plans should contain the points in time, the
location of the measurements, and the measurement techniques. One measurement
campaign needs to be performed prior to the start of the production. The State
Supervision of Mines (the mining authority) supervises all mining activities in the
Netherlands, including the estimation of subsidence due to mineral extraction. Its
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Fig. 2.6. Leveling network of the 2003 campaign (left) and subsidence (cm) since the
start of gas production in 2003 (right). The gas fields are depicted in green. The total
length of the leveling trajectories is ∼1000 km.

mission is to ensure that the exploration and production of minerals in the Nether-
lands and the Dutch part of the continental shelf is carried out in a responsible and
socially acceptable manner (SodM, 2008).

Duquesnoy (2002) defines further guidelines for subsidence monitoring using the
leveling technique. A condition that is imposed on the leveling measurements is
their agreement with the precision criteria as defined by AGI (2005). Examples of
these precision criteria are the critical values for the misclosures of leveling loops
and the precision of the height difference observations.

Furthermore, Duquesnoy (2002) investigates the spatial and temporal observation
density. The required spatial benchmark density is dependent on the shape and
extent of the subsidence bowl. Guidelines are provided based on a simplified re-
presentation of the gas reservoir. The Groningen gas field may be approximated
by a disc-shaped reservoir of radius 15 km at a depth of 3 km. Based on an angle
of draw of 45 degrees, the subsidence border is located at 18 km from the center
of the reservoir. Application of the guidelines of Duquesnoy (2002) would imply a
benchmark density of 1 per km2 in the deepest part of the bowl and outside the
subsidence border. At the slopes, a slightly higher spatial density (1.5 benchmark
per km2) is required to reconstruct the spatial subsidence pattern.

The determination of the measurement frequency is dependent on the precision
of subsidence measurements. A new measurement campaign will only contribute
if the expected subsidence is significant compared to the measurement precision.
Moreover, the subsidence history based on preceding measurements can be utilized



18 Chapter 2: Subsidence due to hydrocarbon production in the Netherlands

to predict subsidence with a high precision. In this way, the measurement frequency
can be lowered as the monitoring period increases, provided that the production rate
does not change significantly. However, for practical reasons, a maximum period of
5 years is maintained between two measurement campaigns (ibid.).

2.3 Geodetic deformation monitoring

Geodetic techniques for deformation monitoring have been refined through the years.
From the estimation of benchmark height differences, deformation monitoring has
been extended with the parameterization of the temporal and spatial behavior of
the deformation phenomenon. Moreover, dynamic systems that describe the forces
and loads that cause the deformation and the physical properties of the deformation
mechanism can be included, see e.g., Welsch and Heunecke (2001). Hence, advanced
deformation analysis requires an interdisciplinary approach that integrates geodetic
and geophysical skills.

This section provides an overview of deformation monitoring methodologies that
have been applied to estimate subsidence due to gas extraction in the Netherlands. It
starts with an overview of geodetic adjustment and testing techniques. Subsequently,
point-wise multi-epoch deformation analysis is explained. This type of analysis is
followed by the estimation of continuous spatio-temporal deformation phenomena.

2.3.1 Adjustment and testing procedure

The adjustment and testing procedure underlying geodetic deformation monitoring
performs the estimation of unknown parameters and testing on observational and
model errors in an integrated way. The testing procedure is important in deforma-
tion analysis, since the optimal parameterization of the unknowns is often less well
known compared to classical geodetic applications, such as cadastral surveys. For
example: the spatial shape of subsidence due to gas extraction has a higher degree
of uncertainty than the location of the corner of a house. Hence, multiple alternative
hypotheses are evaluated to determine the mathematical model that minimizes the
least-squares residuals with respect to the observations. In this way, the optimal
deformation model is found for the signal of interest. Of course each of the models
under the alternative hypotheses should be physically explainable, to avoid fitting a
non-realistic model to the observations. This section summarizes the mathematical
framework of the adjustment and testing procedure.

The system of equations under the null hypothesis H0 is formulated as a Gauss-
Markov model:

H0 : E{y} = Ax ; D{y} = Qy, (2.7)

where y is the vector of observations, x are the unknown parameters, and the design
matrix A specifies the function relation between them. The underlining of a vector
(such as y) indicates its stochastic character; the variance-covariance matrix of the
observations is represented by Qy.

Estimates of the unknown parameters are obtained by least-squares adjustment (Teu-
nissen, 2000a). Subsequently, the validity of the null hypothesis is tested in the
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Detection, Identification and Adaption (DIA) procedure (Teunissen, 2000b). In the
Detection step, the null hypothesis is tested by means of the overall model test
(OMT):

T q=m−n = êTQ−1
y ê ; reject H0 if Tq=m−n > χ2

α(m− n, 0), (2.8)

which is dependent on the least-squares residuals ê and the variance-covariance ma-
trix of the observations. The redundancy m− n equals the number of observations
minus the number of unknowns (provided that the design matrix is of full rank).

If the overall model test is rejected, alternative hypotheses can be specified that are
evaluated in the Identification step:

Ha : E{y} = Ax+ cy∇, (2.9)

where ∇ represents the model error and cy specifies the functional relation with the
observations that can be multi-dimensional. A standard test is datasnooping, where
individual observations are checked for blunders. In this case, cy will have the shape

cyi
= (0, . . . , 0, 1, 0, . . . , 0)T (2.10)

for the ith observation.

The functional model that parameterizes the signal of interest is often not very well
known a-priori in deformation monitoring. Therefore, multiple tests of different di-
mensions are specified to trace different kinds of model deviations. In the evaluation
of tests of different dimensions, the one with the lowest teststatistic does not neces-
sarily correspond with the most likely alternative hypothesis. This is caused by the
different probability density functions for tests of different dimensions. A solution
is provided by de Heus et al. (1994) by introducing testquotients: the ratio of test-
statistics and their critical values. Provided that the power of the test is set to 50%,
testquotients can be directly compared.

The Adaptation step involves either remeasuring and replacing (a part of) the
observations or the replacement of the null hypothesis by the most likely alternative
hypothesis. To test the validity of the mathematical model after adaptation, the
DIA procedure is performed in an iterative way.

Besides the functional model, the stochastic model can be re-evaluated as well by
means of variance component estimation (VCE) (Teunissen, 1988; Amiri-Simkooei,
2007). The stochastic model is then decomposed for the estimation of the variance
factors σ2

k:

Qy =

p
∑

k=1

σ2
kQk, (2.11)

where Qk are the cofactor matrices. The estimates for the variance components σ̂
are obtained by solving the following system of equations:

σ̂ = N−1l, (2.12)

where:

Nkl = tr(Q−1
y P⊥

AQkP
⊥
AQl) ; lk = êTQ−1

y QkQ
−1
y ê, (2.13)
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where k and l are the row and column index for the kth and lth variance factor. The
required input for VCE stems from the mathematical model and the adjustment
results:

σ̂ the estimator for the variance components σ2
k,

P⊥
A the orthogonal projector: P⊥

A = I −A(ATQ−1
y A)−1ATQ−1

y , and
ê vector of least squares residuals: ê = P⊥

A y.

Since Qy itself is involved in VCE, the variance factor estimates are obtained in an
iterative way. The precision of the variance component estimates follows from the
propagation law:

Qσ̂ = N−1. (2.14)

Verhoef et al. (1996) describe the Detection-Identification-Adaption procedure for
deformation analysis incorporating VCE. Besides the estimation of variance factors
(for example to estimate the measurement precision), other stochastic parameters
such as the spatial correlation length of the residual signal can be obtained as well
through VCE. The decomposition ofQy in such a situation is explained in section 4.3.

2.3.2 Point-wise multi-epoch deformation analysis

In point-wise multi-epoch deformation analysis, the deformation signal of interest is
represented by discrete measurement points that are monitored at subsequent points
in time. An example is 1D deformation analysis using leveling measurements from
multiple epochs (de Heus et al., 1994). It can be subdivided into the following steps:

1. epoch analysis: free network adjustment and testing of leveling height diffe-
rence observations per epoch,

2. stability analysis: stability testing of underground benchmarks that are located
outside the subsiding area,

3. deformation parameter estimation.

The last step restricts to the temporal analysis of benchmark height estimates, in a
static or kinematic way. In static deformation analysis, subsidence per benchmark
is computed by subtracting the estimated height from the initial height, whereas
kinematic deformation analysis models the displacements in time: a polynomial
is fit through the height estimates, or an estimation is performed of geophysical
parameters that are driving factors for the observed deformation.

Kinematic deformation analysis can be further subdivided into a deterministic and
a stochastic approach. The deterministic approach attributes all residuals to mea-
surement noise. The stochastic approach includes a residual component that can be
addressed to model imperfections due to the simplification of the actual deformation
pattern.
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2.3.3 Continuous spatio-temporal deformation analysis

Point-wise multi-epoch deformation analysis can be further developed to deforma-
tion analysis in which the continuous spatio-temporal evolution of the deformation
phenomenon is modeled. Depending on the a-priori knowledge on the deformation
signal of interest, this requires not only functional modeling, but also stochastic mo-
deling of model imperfections. This section illustrates the application of continuous
spatio-temporal deformation analysis for subsidence phenomena.

Subsidence – functional model

The spatial evolution of subsidence over multiple epochs can be described by, e.g,
a point source model, or an ellipsoidal model, or prognosis grids, e.g., based on
geomechanical modeling of the reservoir and the subsurface.

Depending on the complexity of the deformation mechanism, subsidence can option-
ally be estimated as a superposition of point source or ellipsoidal models.
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Fig. 2.7. Subsidence (mm) above the Groningen gas field estimated as a mathematical
ellipsoidal shape (left) and subsidence prognosis based on geomechanical modeling of
the reservoir and the subsurface (right).

The point source concept stems from volcanic applications. These point sources
are often referred to as Mogi sources (Anderson, 1936; Mogi, 1958). Okada (1992)
derives the displacement field in a homogeneous half-space due to point sources of
different types. Specific directional point source types are defined for displacement
fields due to earthquakes. If only vertical displacement due to a single point source
is considered, its estimates at surface level read:

uz(r, 0) = M
D

(r2 +D2)3/2
, (2.15)

where M is a multiplication factor. The physical parameters involved in this multi-
plication factor are dependent on the application: deformation due to gas extraction,
earthquakes or volcanic activities. It can be a function of the forces acting on the
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deforming body, shear modulus, compaction coefficient, Poisson’s ratio, pressure
change, and volume changes.

Note that Eq. (2.15) is similar to Eq. (2.4). The geometrical shape of the point source
model is equal to the analytical expression for the vertical displacement due to a
nucleus-of-strain. The multiplication factor from (2.15) consists of the compaction
coefficient, Poisson’s ratio, the pressure drop and the volume of the nucleus-of-strain.
The analogy of the integration over the reservoir shape (section 2.1.4) would be the
superposition of the contribution of multiple point sources.

The second parameterization type models subsidence as (a superposition of) ellip-
soidal bowls (Kenselaar and Quadvlieg, 2001). In time, the displacement rate is
assumed linear. The subsidence velocity decreases exponentially with the distance
to the center of the bowl. The subsidence z at time t for point i on a certain location
reads:

zt0ti =

{

ż(t− t0)e
− 1

2 r
2
i for t ≥ t0

0 for t < t0
(2.16)

with:

ri =

√

((xi − xc) sinφ+ (yi − yc) cosφ)2

a2
+

((xi − xc) cosφ− (yi − yc) sinφ)2

b2
,

(2.17)
where:
ż displacement rate of point i,
ri distance of point i to the center of the subsidence bowl,
t0 starting time of subsidence,
xi, yi location of point i,
xc, yc location of the center of the bowl,
φ orientation of the bowl,
a, b length of the ellipsoidal axes.

The last model type is the subsidence prognosis: based on geophysical reservoir
behavior and the overburden, displacements are estimated in the area of interest in
a regular grid that is subdivided in blocks (the grid cells). The spatial variation of
geophysical parameters is taken into account in the subsidence prognosis. Hence,
the subsidence prognosis is more likely to provide a realistic subsidence prediction,
compared to the point source and the ellipsoidal model. The point source and the
ellipsoidal model tend to simplify the subsidence pattern. For all three model types
holds that model deviations have to be assessed. If these model deviations can be
explained by a geophysical mechanism, the functional model can be improved.

Subsidence – stochastic model

Since the functional deformation model is generally not well known a-priori, model
imperfections are often incorporated in the stochastic model. This requires the model
imperfections to be modeled by a covariance function that describes the spatio-
temporal behavior. As a result, the variance-covariance matrix does not only contain
the measurement noise component n, but also the model imperfections s:

Qy = Qnn +Qss. (2.18)
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Model imperfections comprise uncertainties in both the parameterization of the de-
formation signal itself and the physical representation of the measurement points.
For example: if the measurement points exhibit additional autonomous movements
due to shallow subsurface displacements, their displacements do not unambigu-
ously represent subsidence due to gas and oil extraction. These autonomous move-
ments can be stochastically modeled as spatially uncorrelated but temporally corre-
lated movements. An example of autonomous movements are settlement move-
ments of benchmarks that are used in a leveling network, see for example sec-
tion 6.5.4. A well-known settlement model is the Koppejan model (Verruijt and
van Baars, 2005), which models the settlement as a logarithmic function of time.
Since limt→∞ log10(t) = ∞, settlement behavior as a model imperfection is un-
bounded and therefore the variogram and its corresponding covariance function do
not exist. Autonomous movements can stochastically be modeled as a random-walk
process (Odijk and Kenselaar, 2003) or by an empirical covariance function (Houten-
bos, 2004):

σ2
st

i
= σ2

s |t− t0|2p, σst
is

u
i

=
1

2
σ2
s(|t− t0|2p − |t− u|2p + |u− t0|2p), (2.19)

where t0 is the reference time before the start of the subsidence, t and u are points
in time, and p is the power of the empirical covariance function. If p = 0.5, this
empirical covariance function reduces to the random walk model, see e.g., Chatfield
(1989). In the estimation of subsidence due to gas extraction from leveling measure-
ments in Groningen for 2003, noise due to autonomous benchmark movements was
set to 0.2 mm/

√
yr (Schoustra, 2004).
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Fig. 2.8. Left: covariance induced by stochastically modeled autonomous movements
(p=0.5, σ=0.2mm) according to Eq. (2.19). The covariance due to autonomous move-
ments increases in time. Right: variance of autonomous movements for different values
of the power p. If p is equal to 0.5, the variance increases linear in time. If p is less than
0.5, the increase in variance reduces with increasing time (settlement behavior).
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Model imperfections due to uncertainties in the parameterization of the subsidence
signal or its prognosis can be stochastically described by a covariance function as
well. An example is the covariance function from Houtenbos (2004) that models
spatially and temporally correlated deviations between measurements and the sub-
sidence prognosis:

σzt
iz

u
i

=
1

2
σ2
z(|t− t0|2p − |t− u|2p + |u− t0|2p)e−(lij/L)2 . (2.20)

where zti represents the model imperfection of point i at time t; E{zti} = 0. The
distance between the points i and j is given by lij . In Eq. (2.20), model imperfections
are modeled with a power model in time and an exponential covariance function in
space. The exponential covariance function in space models the deviations that have
a spatial correlation of length L. Due to the depth of the gas fields of ∼3 km, a
correlation length of at least 3 kilometers is expected for the deformation signal. The
correlation length was set to 4 kilometers in the estimation of subsidence due to gas
extraction in 2003 (Schoustra, 2004), to cover all spatially correlated deformation
signal. The power model in time takes random walk deviations into account that
are caused by an under- or overestimation of the subsidence prognosis in time.

The functional and stochastic modeling contributes to the precision and reliability of
a measurement technique for monitoring the deformation signal of interest. There-
fore, model imperfections will be further addressed in section 6.5 as a part of the
quality assessment.

2.3.4 Deformation analysis of subsidence due to gas extraction

Both the point-wise multi-epoch (section 2.3.2) and the continuous spatio-temporal
deformation analysis (section 2.3.3) have been applied in the Netherlands by gas and
oil companies for monitoring subsidence due to hydrocarbon production.

Point-wise multi-epoch deformation analysis has the advantage that it provides di-
rect insight in the movements of individual benchmarks. An example of point-wise
multi-epoch deformation analysis in Groningen is the analysis of subsequent bench-
mark heights obtained from leveling campaigns (de Heus et al., 1994). A disadvan-
tage of this method is that the benchmark heights are dependent on the choice of the
reference benchmark(s). Furthermore, 2% of the benchmarks disappear yearly which
results in incomplete time series (Schoustra, 2004). Moreover, the spatio-temporal
correlation of the deformation signal of interest is not utilized.

When modeling subsidence as a continuous spatio-temporal phenomenon (see sec-
tion 2.3.3), incomplete time series can easily be incorporated. Furthermore, due to
the introduction of the spatio-temporal correlation of subsidence, outliers, identifi-
cation errors and autonomous benchmark movements can be detected and removed
in an automatic way. Finally, there is no dependency on the choice of the reference
benchmark(s) due to the usage of the height difference measurements as the basic
observations.

Methodologies that apply the continuous spatio-temporal deformation analysis con-
cept are described by Kenselaar and Quadvlieg (2001) and Houtenbos (2004). The
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Subsidence Modeling (SuMo) concept of Kenselaar and Quadvlieg (2001) models
the subsidence signal z as a (superposition of) ellipsoidal bowl(s) with decreasing
linear benchmark velocities from the center of the bowl. The Subsidence Residual
modeling (SuRe) concept of Houtenbos (2004) uses subsidence prognosis grids based
on geomechanical modeling of the subsurface.

The mathematical framework underlying both SuMo and SuRe can be summarized
as:

htij = Ht0
j −Ht0

i + zt0tj − zt0ti + δhtij + δstj − δsti + δzt0tj − δzt0tj , (2.21)

where htij is the spatial height difference observation between points i and j at time

t, and Ht0
j and Ht0

i are the unknown initial heights. The functional model of sub-
sidence due to gas extraction is denoted by z. When using prognosis grids, z is
subtracted from the height difference observations, which results in subsidence resi-
duals (SuRe). The stochastically modeled components are δh (measurement noise),
δs (autonomous movements) and δz (subsidence model imperfections). In the SuRe
methodology, the parameters of these stochastically modeled components are esti-
mated through variance component estimation. Examples of stochastic parameters
are variance factors, spatial correlation length and temporal power, see Eq. (2.20).
An application of the SuRe concept including VCE is described in section 6.5.4.
Here, deformation components in Rotterdam are separated into autonomous move-
ments and spatio-temporally correlated deformation signal.

Although continuous spatio-temporal deformation analysis has clear advantages, it
is essential that the covariance function(s) that describe the model imperfections
are adequate for the estimation of the signal of interest. If not, a risk exists of the
attribution of displacement components to the wrong deformation cause. Hence, the
link to geomechanics should be prominent in continuous spatio-temporal deformation
analysis.

2.4 Conclusions

This chapter has summarized the geological and geomechanical properties of hy-
drocarbon reservoirs, and has focused specifically on the Groningen gas field in
the Netherlands. Based on the reservoir properties and production scenarios, the
subsidence pattern at ground level can be predicted. The resulting subsidence is
dependent on the geometrical shape of the reservoir, the compaction coefficient, the
thickness of the reservoir, the pressure drop in the reservoir, and the geomechanical
behavior of the overburden. Several methodologies are available to predict subsi-
dence: from analytical expressions as a function of a few reservoir parameters to
finite element analyses that take the spatially varying geophysical parameters in the
subsurface into account.

Geodetic techniques, such as leveling, are applied to measure deformation at ground
level. Therefore, the subsidence signal is discretizised by a set of measurement points,
that are monitored at subsequent epochs. Two types of deformation analysis have
been addressed: point-wise multi-epoch and continuous spatio-temporal deforma-
tion analysis. Point-wise multi-epoch deformation analysis estimates deformation
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in time for each benchmark individually. Continuous spatio-temporal deformation
analysis incorporates the spatio-temporal correlation of the signal of interest. When
the functional model of the deformation signal is not well known, model imperfec-
tions can be modeled stochastically. To conclude, the applied deformation analysis
methodologies in the Netherlands have been summarized.

Chapter 3 will focus on Persistent Scatterer InSAR as a measurement technique
that can be applied for deformation monitoring from a geodetic point of view. The
overview of deformation estimation concepts that have been presented in this chapter
will be applied in the interpretation of InSAR displacement estimates in section 4.5
and 6.5, and in the integration of InSAR and leveling deformation estimates in
chapter 7.



Chapter 3

Persistent Scatterer InSAR

In chapter 2, the physical mechanism of subsidence due to hydrocarbon produc-
tion and deformation estimation methodologies have been discussed. This chapter
introduces InSAR as a measurement technique for deformation monitoring.

InSAR utilizes phase difference observations between two radar acquisitions for the
estimation of surface deformation. Various SAR missions are currently operational,
such as ERS-2 and Envisat, acquiring SAR images that cover an area of 100×100
km with a 35 day time interval, at 800 km height, using C-band wavelength of 56
mm. Interferometric phase observations can be obtained with millimeter precision.
However, besides the deformation signal of interest, the interferometric phase also
contains contributions due to atmospheric signal delay, topography and orbital er-
rors. Moreover, only the fractional phase is observed, which implies that the number
of integer cycles from satellite to surface is unknown. Conventional InSAR can only
be successfully applied in areas that do not suffer from significant surface changes
in time, whereas the deformation signal has such magnitude that error sources are
negligible.

Subsidence due to hydrocarbon production in the Netherlands has a small magnitude
(< 1 cm/year) and a large spatial extent (the extent of the Groningen gas field is
∼30 km). Furthermore, the area of interest has an agricultural character and is
subject to surface changes (temporal decorrelation). Hence, an accurate estimation
of the error sources, such as atmospheric disturbances, is very important. Therefore,
a time series of SAR acquisitions is utilized to detect reliable measurement targets,
based on their reflectivity behavior through time: the so-called Persistent Scatterers
(PS) (Ferretti et al., 2000).

In this chapter, the estimation of deformation from PS phase observations is ex-
plained (functional model, stochastic model, and estimation procedure). It starts
with an overview of interferometric processing. Subsequently, the selection of Per-
sistent Scatterer candidates is addressed in section 3.2. Several strategies have been
developed to estimate deformation from the PS observations (Ferretti et al., 2001;
Berardino et al., 2002; Kampes, 2005). In this research, the Delft implementation of
Persistent Scatterer InSAR (DePSI) has been applied. The mathematical framework
underlying DePSI is explained in section 3.4. The functional and stochastic models
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Fig. 3.1. Left: image geometry of a SAR acquisition (Hanssen, 2001). The satellite
velocity vs is approximately 7 km/s. The dark grey area indicates the footprint of a
single pulse. The total coverage of a SAR scene, between early and late azimuth, and
near and far range, is depicted in light grey. Right: repeat-pass InSAR and detection of
deformation by means of phase difference observations.

for PSI are considered from a theoretical point of view in this chapter. The actual
application of DePSI for subsidence monitoring in the Netherlands will be addressed
in chapter 6.

3.1 Interferometric processing

SAR images consist of a grid of complex observations that can be addressed to sin-
gle resolution cells. These complex observations stem from the superposition of all
scattering targets within the resolution cell. The range resolution of a SAR acquisi-
tion depends on the system’s bandwidth (Hanssen, 2001). ERS-2 for example has a
range bandwidth of 15.55 Mhz, which corresponds with a range resolution of 9.6 m.
In azimuth direction, the Doppler bandwidth is utilized for optimizing the azimuth
resolution. The Doppler bandwidth of ERS-2 is ∼1378 Hz. The Pulse Repetition
Frequency (PRF) is a higher, 1680 Hz, to fully sample the Doppler spectrum.

The pixel spacing of a SAR image is closely related to the resolution. The pixel
spacing is determined by the sampling rate. For ERS-2, the range sampling rate is
18.96 Mhz. The ERS-2 pixel spacing in range direction is 7.9 m, which corresponds
with ∼20 m in ground range. The ERS-2 azimuth spacing is 4 m. In this thesis, the
term pixel is used as the area covered by the pixel spacing, although strictly speaking
a pixel is a infinitesimally small point that represents the resolution cell (Hanssen,
2001).

Each object on earth is observed by consecutive pulses, appearing in different range
bins in the raw data. By means of focusing, these observations are shifted to a
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common range bin. In this thesis, the input in the interferometric processing chain
are the focused Single-Look Complex (SLC) images.

Each complex observation can be converted into an amplitude and a phase obser-
vation. The amplitude represents the strength of the reflection towards the sensor
from the resolution cell. An interferogram is computed by the complex multiplica-
tion of the observations in each resolution cell from two coregistered SAR images:
a ’master’ and a ’slave’ image. The interferometric phase differences are the actual
observations from which earth surface deformation is estimated.

The computation of interferograms in this research has been performed by the Delft
Object-oriented Radar Interferometric Software (Doris) (Kampes and Usai, 1999).
The key steps are summarized in Fig. 3.2.

Fig. 3.2. Schematic overview of interferometric processing. A master (M) and a slave
acquisition (S) are oversampled and coregistered. The interferogram is computed from
the complex multiplication of the master image and the resampled slave image. In the
last stage, the reference phase of the ellipsoid is subtracted.

3.1.1 Oversampling

After reading the SLC data and the precise orbits, the SAR images are oversam-
pled with a factor 2 prior to the coregistration and the formation of interferograms.
Oversampling with a factor 2 is performed to avoid aliasing in the complex multi-
plication of the SAR images. Since the equivalent of a multiplication in the space
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Fig. 3.3. Original SAR image spectrum (left) and after oversampling with a factor of 2
(right).

domain is a convolution in the frequency domain, the spectrum length (both in azi-
muth and range) will be doubled after complex multiplication of two SAR images.
The effect of oversampling is illustrated in Fig. 3.3 and Fig. 3.4. For ERS, the pulse
repetition frequency is 1680 Hz, while the azimuth bandwidth is 1378 Hz. After
oversampling, the pulse repetition frequency is 3360 Hz, which avoids aliasing in the
complex multiplication. In the determination of the minimal oversampling factor,

Fig. 3.4. SAR image spectrum after oversampling with a factor of 2 (left) and after
complex multiplication (right). The size of the spectrum is doubled after oversampling;
due to the oversampling, aliasing does not occur.

the Doppler centroid frequency shift has to be compensated. The Doppler centroid
frequency is the center frequency of the passage of a scatterer through the antenna
beam. ESA’s SLC images are zero-Doppler processed, which means that the corre-
sponding satellite position can be found by an orthogonal projection on the precise
orbits. However, during the actual acquisition, the true Doppler centroid is never
aimed exactly perpendicular to the flight direction. Therefore, the SAR data spec-
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trum is shifted in azimuth direction. An overview of this mechanism can be found
in Hanssen (2001). For ERS-2 acquisitions with high Doppler centroid frequencies
(> 2000 Hz), oversampling with a factor 2 may not be sufficient to avoid aliasing.
An oversampling factor of 2 avoids aliasing of Doppler shifts up to 990 Hz; a factor
4 covers Doppler shifts up to 2670 Hz. Some ERS-2 acquisitions exhibit even higher
Doppler deviations, requiring even higher oversampling factors.

The radar coordinates of an oversampled image are at sub-pixel level with respect
to the original sampling rate. This implies that a target’s location in the radar
coordinate system can be more precisely determined in an oversampled image.

3.1.2 Coregistration

The oversampled SLC images together with the precise orbits (Scharroo and Visser,
1998; Doornbos and Scharroo, 2004) form the input for the coregistration of the
master and the slave image. Coregistration is a crucial step. If its precision is
not sufficient, it deteriorates the PS selection process and decreases the PS phase
observation precision. In the northeastern part of the Netherlands, the height diffe-
rences are small (< 30 meters). Here, coregistration can be performed by a second
degree polynomial. For the estimation of an accurate coregistration polynomial, it
is essential that the coregistration windows are evenly distributed over the area of
interest. Especially in rural areas that are affected by temporal decorrelation, a
proper choice of coregistration windows is required. Hence, a large number of candi-
date windows have been placed around evenly distributed local amplitude maxima,
which are assumed to correspond with terrain features that are stable in time.

The coregistration polynomial is estimated from a set of corresponding locations in
master and slave acquisitions that are acquired from correlation optimization be-
tween the (oversampled) candidate windows. To remove outliers, a geodetic testing
procedure is applied (Teunissen, 2000b; Kampes, 2005). In this step, it is important
that the size of the test, which determines the likelihood of rejecting a good obser-
vation (type I error), is not set too strict. If too many observations are incorrectly
rejected, the spatial coverage of the observations decreases, which results in inaccu-
rately extrapolated coregistration vectors in rural areas with few PS candidates.

Fig. 3.5 shows an example of the spatial distribution of the accepted observations
in the estimation of the coregistration polynomial. The locations with a high ob-
servation density correspond with the city areas. The areas that are covered with
water do not contain any observations, due to temporal decorrelation. The standard
deviation of the coregistration residuals is approximately 0.1 and 0.2 pixel in range
and azimuth direction respectively (oversampling factor 2). By depicting the spa-
tial distribution of the coregistration observations and their residuals, images with
inaccurate coregistration are easily detected.

3.1.3 Interferogram computation

After the estimation of the coregistration polynomial, the slave image is resampled
to the master image geometry. Subsequently, the interferogram is computed by com-
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Fig. 3.5. Spatial distribution of observations for the estimation of the coregistration
polynomial (left) and standard deviation of the coregistration residuals per acquisition
(right). The coregistration windows are evenly distributed over the area, also in rural
parts. The part of the image that does not contain window locations is covered with
water. The standard deviation of the coregistration residuals is ∼0.1 and ∼0.2 oversam-
pled pixels in range and azimuth direction respectively. This is equivalent to ∼0.05 and
∼0.1 pixels in range and azimuth direction in the original resolution.

plex multiplication of the master image and the resampled slave image observations.
In the last step, the interferometric phase contribution due to the ellipsoidal shape of
the earth is subtracted. Fig. 3.6 depicts the interferogram before and after reference
phase subtraction. The repetitive fringe pattern in the interferogram before sub-
traction of the reference phase depicts the phase contribution due to the ellipsoidal
shape of the earth. After subtraction of the reference phase, the urban areas that
contain coherent man-made features and the rural areas that suffer from temporal
decorrelation can be distinguished. The interferometric phase not only represents
surface deformation, but contains contributions due to atmospheric disturbance,
topographic height differences and residual orbital errors as well. To estimate de-
formation in the presence of other phase contributions, a network of measurement
points (the Persistent Scatterers) will be selected by exploitation of a time series of
SAR acquisitions. The selection of these measurement points is addressed in the
next section.

3.2 Persistent Scatterer selection

Not all phase observations in an interferogram contain useful information. The
earth surface covered by a resolution cell may change in time, targets may not
reflect back in the satellite direction, or they may not have the physical properties
to be observed with a high enough Signal-to-Noise Ratio (SNR). In order to select
coherent, i.e. interpretable, measurement points, candidate targets are selected that
have a strong and consistent reflection in time (the Persistent Scatterers (Ferretti
et al., 2000)). These targets can often be attributed to a single physical object
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Fig. 3.6. Interferogram before (left) and after (right) subtraction of the reference
phase. The temporal and perpendicular baseline are 140 days and 166 m respectively.
The repetitive line pattern (left) depicts the phase contribution due to the ellipsoidal
shape of the earth. After subtraction of the reference phase, only urban areas appear
coherent in the interferogram (right). Large parts of the image are noisy due to temporal
decorrelation.

(’man-made feature’) that acts as a dominant scatterer within the resolution cell.
Many of them behave like point scatterers, and can be observed from a wide range
of viewing angles. These point scatterer observations are therefore less sensitive
for the effective (perpendicular) baseline between the master and slave acquisition.
A Persistent Scatterer does not necessarily have to be a dominant point scatterer
within the resolution cell. Distribute scatterers, such as rocks, can act as PS as well,
although with a different dependency on the viewing geometry, i.e. the perpendicular
baselines.

This section addresses the selection of PS candidates. It explains the methodologies
to select targets with a high likelihood of coherent phase behavior from a time series
of SAR acquisitions.

3.2.1 Identification methods of PS candidates

In order to estimate all interferometric phase contributions (surface deformation,
topographic heights, atmospheric disturbances etc.) and maintain an efficient al-
gorithmic approach, a first order network is constructed from the potentially most
reliable PS candidates. Since the interferometric phase observations are wrapped
and the phase contribution due to the unknown deformation is contaminated by
several ’error sources’, the amplitude observations of the PS candidates are utilized.
Existing methodologies can be subdivided into three groups that use the following
parameterization to select PS candidates:

1. Signal-to-Clutter Ratio (SCR) (SCR, 1993),

2. normalized amplitude dispersion (Da) (Ferretti et al., 2001), and
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3. supervised classification (Humme, 2007).

SCR estimation is based on the assumption that a PS observation consists of a de-
terministic signal that is disturbed by random circular Gaussian distributed clutter,
see Fig. 3.7. The deterministic signal stems from the dominant scatterer within the
resolution cell. The clutter reflects the distributed scatterers in the surroundings of

Fig. 3.7. Complex PS observation that consists of a deterministic signal with superposed
Gaussian distributed clutter (solid arrow lines). The deterministic signal represents the
dominant scatterer within the resolution cell. The small dashed arrow line indicates the
resultant of the clutter signal, which imposes the uncertainty on the phase observation
of the dominant scatterer.

the point scatterer. The relation between SCR and the phase variance is defined
as (SCR, 1993):

SCR =
s2

c2
; σ2

ψ =
1

2 · SCR
(rad), (3.1)

where σ2
ψ is the phase variance of a single SAR observation, s represents the ampli-

tude of the dominant scatterer and c the clutter in the surroundings.

A scatterer with a high SCR through time is labeled as a PS candidate. SCR assumes
stationary stochastic behavior of the surroundings of the scatterer, which may not be
valid, especially in urban areas that contain multiple scatterers at a short distance
that are likely to interfere. Practical implementation of SCR estimation is therefore
not straightforward. Automatic distinction of two nearby PS candidates requires
high flexibility of SCR estimation windows and signal edge detectors.

The normalized amplitude dispersion method (Ferretti et al., 2001) performs an
amplitude time series analysis, in stead of a spatial analysis. Each pixel is quantified
by the ratio between the dispersion of the amplitude σa and the mean µa of the
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amplitudes through time:

Da =
σa
µa
. (3.2)

Point scatterers with a low normalized amplitude dispersion have a low phase dis-
persion. Hence, they are selected as PS candidates. A direct relation exists between
the normalized amplitude dispersion Da and SCR (SCR, 1993):

Da =
1√

2·SCR
. (3.3)

A typical threshold for the normalized amplitude dispersion is 0.25 (Ferretti et al.,
2001), which corresponds with a SCR of 8.

PS candidate selection based on SCR and normalized amplitude dispersion are using
the amplitude observations. Phase stability as a selection criterium for PS candi-
dates has been investigated as well (Hooper et al., 2004). The phase stability is
analyzed under the assumption that deformation is spatially correlated. The phase
observations of neighboring PS candidates are averaged, and those with the lowest
residual noise are selected. However, with the typical land use in the Netherlands
(scattered cities and villages separated by agricultural and vegetated areas) only
a small percentage of the pixels in an interferogram contains Persistent Scatterers.
Hence, also for this method, a pre-selection is made based on the amplitude obser-
vations.

Recently, supervised classification to select PS candidates has been investigated as
well (Humme, 2007). In areas where the distribution of PS is crucial for the estima-
tion of the signal of interest, the possibility of omitting a PS candidate is reduced
by manual selection of pixels that contain the reflection of man-made features.

For the selection of PS candidates, it is essential that the amplitude observations are
not affected by satellite system characteristics and viewing geometry. To obtain the
amplitude observations that represent solely the physical characteristics of the PS
candidates, SAR amplitude calibration is performed. The next section introduces a
new method that does not perform the amplitude calibration explicitly, and hence
saves a considerable amount of computation time.

3.2.2 Pseudo-calibration

For an unbiased selection of PS candidates based on amplitude, SAR calibration
is performed to isolate the amplitude observations corresponding with physical PS
properties from amplitude variations due to viewing geometry and sensor characteris-
tics. A method to perform SAR calibration is the ESA ERS SAR calibration (Laur et
al., 2002). This SAR calibration method quantifies the satellite system characteris-
tics. The amplitude observations are corrected for the varying system characteristics
by means of a multiplication factor. This multiplication factor is built up from con-
stant factors per acquisition (calibration constant, antenna pattern gain, replica
pulse power); factors that depend on viewing geometry (range, incidence angle) and
a factor that varies over the entire image (power loss).
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The ESA SAR calibration method is useful for thematic interpretation purposes,
where amplitude values have to be compared over the entire SAR image. The
variation of the location of a Persistent Scatterer within a time series of SAR images
is nevertheless limited. For PS selection, there is no need to be able to compare
amplitude values between near and far range. It is sufficient to determine calibration
factors that are valid in the near surroundings of the PS. Moreover, uncalibrated
amplitude observations of potential PS candidates themselves can be utilized for the
estimation of the calibration factors, since they correspond with man-made features
that are not affected by temporal decorrelation. This has resulted in the development
of empirical calibration methods, that are sensor independent (Bovenga et al., 2002;
Cassee, 2004).

The newly developed calibration method that is described in this section goes one
step further: it does not perform empirical calibration explicitly but evaluates if
the PS candidate would have been selected if calibration would have been per-
formed. It is referred to as pseudo-calibration. This method has the advantage
that it saves computation time and storage space for calibrated images, especially
since the amount of PS is generally a small percentage of the full image (1–2% or
lower) and only their interferometric phase observations are used for the estimation
of the deformation signal. In this section, the mathematical framework for pseudo-
calibration is described and its application to real data.

Mathematical model

Empirical SAR calibration is implemented as a Gauss-Markov model that consists of
a functional and stochastic model. The observations are the amplitudes of potential
PS candidates; the unknowns are the amplitude multiplication factors per image
(the calibration factors).

Since the sensor characteristics and viewing geometry vary smoothly over a SAR
image, the image is subdivided into patches where the amplitude multiplication
factors are assumed to be constant. In each of these patches, potential PS candidates
are selected based on the normalized amplitude dispersion that is computed from
the stack of uncalibrated images. For a selection of P neighboring potential PS
candidates, a multiplication factor ck is estimated with respect to a reference image
for all K SAR acquisitions. The functional and stochastic model read:

E{y} = E{akp} = cka
ref
p ; D{y} =

P
∑

p=1

σ2
ap
Qp, (3.4)

where akp is the amplitude observation for PS candidate p in image k with its variance

σ2
ap

. The unknown amplitude for PS candidate p free from variations due to sensor

characteristics and viewing geometry is represented by aref
p . As the calibration factors

can only be estimated relatively, one calibration factor is fixed at the value 1. Solving
the system of equations from Eq. (3.4) results in a set of calibration factors that are
utilized for pseudo-calibration.

The stochastic model from Eq. (3.4) is not very well known a-priori. It is assumed
that the amplitude variance reflects the physical properties of the PS candidates
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superposed on random noise due to viewing geometry (incidence and squint angle).
Its initial value is derived from the amplitude dispersion (amplitude variance) in the
uncalibrated stack.

Based on the adjustment residuals, variance factor(s) to update the stochastic model
are estimated by variance component estimation (VCE) (Teunissen, 1988), see sec-
tion 2.3.1. In the SAR calibration validation either one variance factor σ̂2 for the
entire variance matrix can be estimated, or a variance factor per PS candidate:
σ̂2

1 . . . σ̂
2
P . Due to the redundancy that is required for a precise estimation of vari-

ance factors, it is chosen to update the variance-covariance matrix with one variance
factor. The relative weights between the PS candidates stem from the amplitude
dispersion in the uncalibrated stack.

Testing observational errors

Erroneous observations, such as amplitudes of non-stable potential PS candidates,
influence the estimation of the calibration factors. Hence, tests are performed to
trace these erroneous measurement points and remove them from the dataset. A
null hypothesis H0 is compared to an alternative hypothesis HA (Teunissen, 2000b):

H0 : E{y} = cka
ref
p versus HA : E{y} = cka

ref
p + Cy∇. (3.5)

The point test is applied to trace false potential PS candidates in the estimation
of the calibration factors. The point test is an integrated test on all amplitude
observations of a single PS candidate. Its C matrix reads:

Cp =
[

0 . . . 0 Ip 0 . . . 0
]T
, (3.6)

where Ip assumes errors on all amplitude observations of PS p.

Threshold tuning

By application of the calibration factors, a time series of calibrated images can be
obtained. Subsequently, one of the identification methods from section 3.2.1 can be
chosen to perform the selection of PS candidates. This requires the computation
and storage of adapted amplitude observations. Pseudo-calibration omits this step:
it tests if the PS candidates would have been selected if the images would have been
calibrated.

Pseudo-calibration adapts the normalized amplitude dispersion threshold for the
ideal situation (no amplitude variations due to sensor characteristics) to the equiva-
lent threshold for a stack of non-calibrated images. We refer to this as threshold tun-
ing. It is based on a monte-carlo simulation of random samples with the normalized
amplitude dispersion threshold. These samples are multiplied with the calibration
factors and a new normalized amplitude dispersion threshold is estimated for the
non-calibrated situation. Fig. 3.8 depicts the modified threshold as a function of
normalized amplitude dispersion for a stack of SAR images.

Since the PS amplitudes are only used for PS selection, this is a simplified but fast
method for PS candidate detection. Subsequently, based on the phase difference
observations, it is determined if a PS candidate is accepted or rejected.
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Fig. 3.8. Threshold tuning for pseudo-calibration: based on the estimated calibration
factors, a corresponding threshold is computed for the non-calibrated stack (solid). The
dashed line represents the true normalized amplitude dispersion.

Application of pseudo-calibration

Performance analysis of pseudo-calibration and comparison to other methods has
been done based on the phase history of the selected potential PS. The phase resi-
duals per arc between two potential PS have been parameterized in a phase coherence
measure (Ferretti et al., 2001):

γ =

∣

∣

∣

∣

∣

∑N
i=1 e

j∆wi

N

∣

∣

∣

∣

∣

, (3.7)

where N is the number of interferograms and ∆wi are the phase residuals between
two PS. A PS candidate is accepted if it is part of at least two arcs that exceed the
phase coherence threshold.

For a test area of 8×6 kilometers, the ESA ERS SAR calibration method has been
compared to pseudo-calibration. A stack of 73 ERS-1 and ERS-2 images were ana-
lyzed in the selection of a sparse grid of PS candidates for the estimation of (residual)
topography and deformation. For each grid cell of 200×200 meters, the best poten-
tial PS with the lowest normalized amplitude dispersion below the threshold of 0.25
were selected. Fig. 3.9 shows the detected potential PS for both ESA ERS SAR
calibration and pseudo-calibration. Table 3.1 lists the number of detected poten-
tial PS, the percentage of rejected potential PS based on phase behavior (coherence
threshold 0.75), and the accepted potential PS in common.
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Fig. 3.9. Detected PS candidates for ESA ERS SAR calibration (squares) and pseudo-
calibration (circles). Rejected points based on phase coherence are marked with a black
cross. Pseudo-calibration, that does not perform amplitude calibration explicitly, can
replace calibration based on sensor characteristics.

Table 3.1. Comparison of ESA ERS SAR calibration and pseudo calibration.

# PS Rejected Common PS

ESA calibration 58 35% 81%
Empirical validation 93 21% 81%

These results show that for PSI, pseudo-calibration is an alternative for the cali-
bration of full images based on physical sensor parameters. Pseudo-calibration de-
tects more PS candidates, while the false detection rate based on the phase obser-
vations is lower.
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3.3 Persistent Scatterer phase observations

Now the PS candidates have been selected, their interferometric phase observations
are utilized for the confirmation of the current PS selection and the estimation
of the deformation signal of interest. This section focuses on the interferometric
combinations and the network design. The functional model will be addressed in
section 3.4.

3.3.1 Master selection

An interferogram results from complex multiplication of a master and a slave image.
For K SAR acquisitions, (K−1) independent interferometric combinations between
two images can be formed. Common practice is to create a stack of interferograms
that have a common master. However, in fact the interferometric combinations can
be chosen in an arbitrary way (for example by minimizing the perpendicular baselines
between the combinations). For the same set of PS, the deformation estimates should
be invariant of the choice of the interferometric combinations.

For a single master stack, the master image is selected based on the stack cohe-
rence (Kampes, 2005). The stack coherence is a function of perpendicular baseline
B⊥, temporal baseline T and Doppler centroid frequency fdc:

γm =
1

K

K
∑

k=1

g(Bk,m⊥ , B⊥max
) · g(T k,m, Tmax) · g(fk,mdc , fdcmax

), (3.8)

where

g(x, c) =

{

1 − |x|/c for |x| ≤ c
0 for |x| > c

, (3.9)

and m refers to the master acquisition and k to the slave acquisitions. Plausible
values for B⊥max , Tmax and fdcmax are respectively 1500 meters, 15 years and 1380
Hz (the azimuth bandwidth). As point scatterer reflections are consistent over a
wide range of viewing angles, the maximum perpendicular baseline can be chosen
larger than the critical baseline B⊥,crit, which is the baseline causing a spectral shift
equal to the range bandwidth (for ERS 1.1 km). PS refer to features that exhibit
minimal temporal decorrelation. Hence, the temporal window can be set in order to
cover the temporal range of the entire stack.

3.3.2 Double-difference observations

A PSI measurement ϕms
p

is an interferometric phase difference in time between

master m and slave s, for PS p. Only the fractional phase is measured and not the
integer number of cycles from satellite to the earth surface: the phase observations
are ’wrapped’. The first ’interpretable’ PSI observation is the double-difference
ϕms
pq

, between master and slave and between PS p and q (Hanssen, 2004). The

double-difference is both a temporal and a spatial difference. This implies that PSI
observations require a spatial and a temporal reference (basis): one acquisition time
and one PS. For the same set of PS, the deformation estimates should be invariant
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Fig. 3.10. Spatial PS network configurations: star network (left) and the network
based on Delaunay triangulation (right). The spatial differences in the star network are
linearly independent. The network based on Delaunay triangulation contains dependent
spatial differences. Although the dependent combinations do not add information in the
estimation of the deformation signal, they are used to detect erroneous PS candidates.

of the choice of the spatial and temporal reference. The number of independent
double-differences that can be formed from the original phase observations is equal
to (K − 1) · (P − 1), for K SAR acquisitions and P PS. In this study, double-
differences will be denoted as ϕk

pq
, where k = 1...(K − 1), with (K − 1) the number

of independent interferometric combinations.

The number of SAR acquisitions and PS determine the number of independent
double-differences that can be formed. The interferometric (temporal) combinations
have been discussed in section 3.3.1. An option for the spatial distribution is the star
network that is depicted in Fig. 3.10. In the star network, the spatial differences refer
to one PS. Similar to the interferometric combinations, this is not a requirement.
From P PS, (P−1) arbitrary independent combinations can be formed. For example,
the SBAS methodology (Berardino et al., 2002) could be utilized, optimizing the
perpendicular baselines for the stack of acquisitions to limit spatial decorrelation.
Taking into account that certain targets only act as a Persistent Scatterer in a
limited time window, the PSI estimation can be optimized as a function of both
perpendicular and temporal baseline.

A disadvantage of the star network is that erroneous PS candidates cannot be de-
tected. The star network contains less and longer arcs compared to a network based
on the Delaunay triangulation, see Fig. 3.10. The disadvantage of longer arcs is
that the phase difference observations contain more atmospheric signal and hence
are more sensitive for unwrapping errors. Using the network based on the Delau-
nay triangulation, phase unwrapping and parameter estimation are performed per
arc by the application of the functional model that will be described in section 3.4.
Subsequently, misclosure tests are performed. In this way, PS candidates can be
rejected when the misclosures of the connecting arcs are not all 0. The redundant
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network is used to trace and remove erroneous PS candidates. For estimation of the
deformation signal, only (P − 1) independent spatial combinations can be utilized.

3.4 PSI estimation

This section describes the Delft PSI estimation methodology (DePSI), that is based
on geodetic adjustment and testing techniques. Successively, the functional model,
Integer Least-Squares estimation, and the stochastic model are addressed. The
section concludes with the DePSI estimation sequence that starts with a first order
network that is subsequently densified.

3.4.1 Functional model

Interferometric double-difference observations contain contributions due to deforma-
tion, (residual) topography, atmospheric signal, orbit inaccuracies, the position of
the dominant scatterer within the resolution cell, and measurement noise. The po-
sition of the dominant scatterer within the resolution cell is referred to as sub-pixel
position. The observations are wrapped, meaning that only the fractional phase is
observed and the number of integer cycles from satellite to earth surface is unknown.
The wrapped interferometric phase ϕ relates to the unwrapped interferometric phase
ϕunw as:

ϕunw = ϕ+ 2π · a, (3.10)

where a∈Z is the integer ambiguity. In this thesis, both the wrapped and unwrapped
phase observations will be denoted as ϕ. In the context, it will clearly stated if ϕ
refers to wrapped or unwrapped phase observations.

Taking all phase contributions into account including its wrapped nature, the PSI
system of observation equations reads, see e.g., Kampes (2005):

ϕk
ij

= − 2πakij −
4π

λ

B⊥
i

Rmi sin θmi
Hij −

4π

λ
Dij +

4π

λ

B⊥
i

Rmi tan θmi
ηmij

+
2π

v
(fmdc,i − fsdc,i)ξ

m
ij + fϕorbit

(ξmij , η
m
ij ) + ϕk

ijdefo
+ ϕk

ijatmo
+ nkij ,

(3.11)
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where:
ϕk
ij

double-difference phase observation,

B⊥
i , R

m
i , θ

m
i perpendicular baseline, range and incidence angle for PS i,

akij integer ambiguity between PS i and PS j,
Hij (residual) topographic height between PS i and PS j,
Dij deformation between PS i and PS j,
ξmij sub-pixel position in azimuth direction,
ηmij slant-range sub-pixel position,
η,ξ range and azimuth radar coordinates,
v satellite velocity,
fmdc,i, f

s
dc,i Doppler centroid frequency of master and slave acquisition,

fϕorbit
(ξmij , η

m
ij ) (residual) orbital trend as a function of radar coordinates,

ϕk
ijdefo

residual deformation signal,

ϕk
ijatmo

(residual) atmospheric signal,

nkij measurement noise.

The noise component n, the measurement noise, is partly determined by the physical
PS properties. Furthermore, it will contain components due to processing induced
errors (coregistration, interpolation).

Steady-state subsidence due to gas extraction at a constant production rate can
usually be modeled by a linear displacement rate: T kvij , where T k represents the
temporal baseline and vij a constant velocity. Deviations from the linear model that
have a bounded correlation length can be incorporated in the stochastic model that
is discussed in section 3.4.3.

The system of equations from Eq. (3.11) is underdetermined. Each double-difference
observation has its own unknown ambiguity besides the other unknown parameters
that have to be estimated (topographic height, deformation, etc.). A way to make the
system of equations of full rank is by adding pseudo-observations. Consider a simpli-
fied system of equations in which the unknown parameters are reduced to the topo-
graphic heights H and the deformation parameters D. Adding pseudo-observations
for the unknown parameters leads to the following system of equations (Hanssen,
2004):

E





ϕk
ij

d
h



 =







− 4π
λ − 4π

λ
B⊥

i

Rm
i sin θm

i
−2π

1 0 0
0 1 0











D
H
a



 ; D





ϕk
ij

d
h



 =





Qϕ 0 0
0 σ2

d 0
0 0 σ2

h



 .

(3.12)
The pseudo-observations are the initial values of the unknowns to be estimated.
Their variance in the stochastic model is chosen in such way that the estimates can
cover the entire physical range of values. Note that the variance-covariance matrix
of the double-difference phase observations Qϕ is a full matrix, see section 3.4.3.

Besides the lack of redundancy in Eq. (3.11), there is a clear linear dependency
between the topographic height and the range sub-pixel position. Considering one
arc between two PS i and j, it can be shown that the functional relation with the
phase observation is dependent via multiplication of the height term with the cosine
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of the incidence angle:

−4π

λ

B⊥
i

Rmi sin θmi
· cos θmi +

4π

λ

B⊥
i

Rmi tan θmi
= 0. (3.13)

This implies that the range sub-pixel position highly influences the (residual) height
estimation. The range sub-pixel position can be estimated by Point Target Ana-
lysis (Werner et al., 2003) using the amplitude observations. Another option is to
exclude the range sub-pixel position from the system of equations. The effect of the
accuracy of the range sub-pixel position on the estimation of the deformation signal
is further addressed in section 4.2.1.

3.4.2 Integer Least-Squares estimation

The system of equations from Eq. (3.11) contains integer parameters: the phase
ambiguities. To each fractional phase observation an integer number of phase cycles
can be added or subtracted. Fig. 3.11 shows the ambiguity in the displacement
estimates, which is equal to half of the wavelength.

Fig. 3.11. Simulated example of the ambiguity in the displacement estimates. The
squares depict the actual displacements; the triangles show the ambiguity in the dis-
placements.

A system of equations that contains both integer and real-valued (float) unknowns
can be solved by Integer Least-Squares estimation (ILS) (Teunissen, 2001b). The
system of observation equations reads:

y = Aa+Bb+ e, (3.14)
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where y is the vector of observations, a are the unknown integer parameters, and
b the unknown float parameters. The residual vector e consists of model imperfec-
tions s and measurement noise n. In PSI, the vector of observations consists of the
interferometric phase double-differences and the pseudo-observations. The integer
valued parameters are the ambiguities; the real-valued unknowns the topographic
heights and the deformation parameters. The solution of Eq. (3.14) is obtained in 3
steps:

1. integral float solution, obtaining the real-valued estimates â and b̂ with the
corresponding variance-covariance matrix Q,

2. mapping the float estimates â to the integer space: ǎ = S(â),

3. computation of the fixed solution of b̂: b̌ = b̂−Qb̂âQ
−1
â (â− ǎ).

The pull in region of an integer vector z is denoted by Sz. It contains all real-valued
ambiguity vectors that are mapped to the same integer vector z. The probability
that â is mapped to z is computed by the integration of the probability density
function of â over the pull-in region:

P (ǎ = z) =

∫

Sz

pâ(x)dx z ∈ Zn, (3.15)

where:

pâ(x) =
1

√

det(Qâ)(2π)
1
2n
e−

1
2‖x−a‖

2
Qâ . (3.16)

The probability of correct integer ambiguity estimation P (ǎ = a) is called the suc-
cess rate. The probability density function of the fixed solution b̌ of the real-valued
parameters is a weighted sum of the integer mapping probabilities and the condi-
tional probability density function of the float solution. Hence, it is a multi-modal
distribution, not a normal distribution:

pb̌(x) =
∑

z∈Zn

pb̂|â(x|z)P (ǎ = z). (3.17)

Two methodologies for integer estimation are now discussed in more detail regar-
ding computation time effectiveness and their estimation properties, i.e. integer
bootstrapping and integer least-squares.

Integer bootstrapping uses a combination of integer rounding and sequential condi-
tional least-squares adjustment techniques. The first float estimate is rounded to
its nearest integer, and all subsequent float estimates are rounded taking the corre-
lation with the previous estimate into account. The bootstrapped estimator is not
unique and depends on the order of the ambiguities. In practice a decorrelating
Z-transformation is applied that reduces the sequential conditional variances (Teu-
nissen, 1995). Qâ is decomposed as:

Qâ = LDLT , (3.18)
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where L is a lower triangular matrix and D a diagonal matrix containing the con-
ditional variances σ2

âi|I
. Ambiguity decorrelation increases the success rate of the

bootstrapped solution ǎB , which can be considered as a lower bound for the success
rate of ambiguity resolution:

P (ǎB = a) =
n
∏

i=1

[2Φ(
1

2σâi|I

) − 1], (3.19)

where:

Φ(x) =

∫ x

−∞

1√
2π
e−

1
2 v

2

dv. (3.20)

Integer Least-Squares minimizes Eq. (3.14) in the metric of the variance-covariance
matrix:

min
a,b

= ‖y −Aa−Bb‖2
Qy
, a ∈ Zn, b ∈ Rp, (3.21)

which can be decomposed into three orthogonal terms:

‖y −Aa−Bb‖2
Qy

= ‖ê‖2
Qy

+ ‖â− a‖2
Qâ

+ ‖b̂(a) − b‖2
Q

b̂|â
. (3.22)

The mapping of â to the integer space is performed by minimizing the second term.
Again the the Z-transform is applied to minimize the search space. Although the
required computation time for ILS is significantly larger than for integer bootstrap-
ping, the ILS estimator maximizes the probability of correct integer estimation.

In this study, integer bootstrapping is applied to restrict computation time as the
more optimal ILS method is time consuming. A lower bound for the success rate
of ambiguity resolution is given by (3.19). An upper bound for the success rate of
ambiguity resolution can be determined using the Ambiguity Dilution of Precision
(ADOP). It represents the geometric mean of the conditional variances:

ADOP =
√

detQâ
1
n . (3.23)

3.4.3 Stochastic model

The stochastic model of PSI is a superposition of contributions due to measure-
ment noise and model imperfections (residual deformation, atmospheric signal). The
variance-covariance matrix of the double-difference phase observations y = ϕk

ij
reads:

Qy = W (Qn +Qdefo +Qatmo)W
T , (3.24)

where the matrix W specifies the conversion from single SAR phase observations to
double-differences:

W =







1 −1 −1 1
...

...
. . .

1 −1 −1 1






. (3.25)
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The measurement noise is represented by Qn, while Qdefo and Qatmo represent model
imperfections for respectively unmodeled deformation and atmospheric signal.

An alternative construction of the variance-covariance matrix for PSI is given by Rocca
(2007) and De Zan and Rocca (2005), which is based on PS coherence measures and
focuses on the temporal and geometrical (de)correlation of PS targets within the
interferometric stacks.

Measurement precision

The SLC phase precision is specified in Qn, which is determined by measurement
precision and physical PS properties; hence it varies per PS.
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Fig. 3.12. Goodness-of-Fit teststatistics of points scatterer phase observations for the
normal distribution. Only for a phase standard deviation lower than 0.3 radians, the
observations can be considered normally distributed.

If the target exhibits a low phase dispersion, the probability density function of the
phase observations can be approximated by a normal distribution. This has been
evaluated by means of Goodness-of-Fit tests that indicate whether a dataset consis-
ting of a number of realizations stems from a certain distribution. The Kolmogorov-
Smirnov test is such a Goodness-of-Fit test. Its teststatistic is defined as the maxi-
mum absolute difference between the cumulative distribution of the dataset and the
cumulative hypothesized distribution, which is in this case the normal distribution.
The Lilliefors Goodness-of-Fit test (Lilliefors, 1967) defines its teststatistic similar
to the Kolmogorov-Smirnov teststatistic, but also estimates the parameters of the
normal distribution from the dataset. The values of the Lilliefors teststatistic have
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been computed for both the point scatterer phase residuals and an equal number
of independent samples from the normal distribution, see Fig. 3.12. From the devi-
ation of the reference normal distribution, indicated by the horizontal lines, it can
be concluded that the phase residuals are approximately normally distributed if the
phase standard deviation is lower than 0.3 rad (∼ 2–3 mm).

In fact, the wrapped phase observations have a multi-modal probability density
distribution, that has been introduced by Adam et al. (2004):

pdf(ψ) =

√
SCR · | cos(ψ)|
√

(π)
· e−SCR sin2 ψ, (3.26)

where ψ is the phase observation in a single SAR acquisition. The probability density
function of the phase observations is a function of SCR (or the normalized amplitude
dispersion, see Eq. (3.3)).
Another commonly used precision measure is the multi-interferogram complex cohe-
rence (Colesanti et al., 2003). However, since it can only be determined after pa-
rameter estimation, it is mixed with model imperfections and therefore not suitable
for an objective description of observational precision.

Model imperfections

Unmodeled deformation can be described in the stochastic model in Qdefo. PSI
displacements can represent deformation due to different mechanisms. Since the
knowledge on the presence and functional modeling of deformation mechanisms is
often not sufficient a-priori, model imperfections can be modeled stochastically. This
can be performed by means of covariance functions representing a certain spatio-
temporal behavior, depending on the displacement causes, see section 2.3.3. To
apply these covariance functions in an operational way, a PS classification may be
required, which will be addressed in section 4.5.

Since it is complicated to describe (residual) atmospheric disturbances in a linear(ized)
relation with the phase observations, they are often modeled stochastically. The
spectral behavior of atmospheric signal allows to model it using a Matern class co-
variance function (Grebenitcharsky and Hanssen, 2005). Due to the high spatial
resolution of an interferogram, it is possible to estimate the parameters of this co-
variance function. A simplified strategy implements an empirical covariance function
that is parameterized by a variance factor and correlation length per SAR acquisi-
tion (Kampes, 2005).

Following Eq. (3.24), an example of a stochastic model for the estimation of subsi-
dence due to hydrocarbon production could read:

Qy = W (

P
∑

p=1

σ2
pQp+σ2

defoe
(−

lij
Ldefo

)2
e
(−

tij
Tdefo

)2
+

K
∑

k=1

σ2
k,atmo exp(−l2k,ijω

2))WT , (3.27)
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where:
σ2
p variance phase observation PS p,
lij , tij spatial and temporal difference between PS i and j,
Ldefo, Tdefo spatial and temporal correlation length residual deformation,
σ2

defo variance residual deformation signal,
σ2

atmo variance (residual) atmospheric signal,
w parameter related to the fractal dimension of atmospheric signal,

Latmo correlation length atmospheric signal: w2 = ln(2)
L2

atmo
.

3.4.4 DePSI estimation strategy

The Delft PSI (DePSI) methodology applies parameter estimation in a nested way,
because of computational restrictions and the demand for observations with a high
precision that can be unwrapped in the presence of atmospheric disturbances. This
nested approach starts with a first order network of the PS candidates (PSC1) with
the lowest amplitude dispersion, which implies a high likelihood of precise phase
observations. The first order points form the initial (sparse) network. This network
is used for initial ambiguity estimation and the initial estimation of phase screens
(atmospheric and/or orbital). The first order points should be evenly distributed
over the scene to result in an accurate estimation of the phase screens.

Since the system of equations is not redundant and moreover uncertainties exist in
the stochastic model of the observations, observations and model errors cannot be
tested. Although for P PS candidates only (P − 1) independent double-differences
can be formed, multiple spatial configurations are evaluated to determine which PS
candidates should be accepted. These spatial configurations can have the shape of a
Delaunay or ’spider’ network (Kampes, 2005). The subset of accepted PS candidates
in the first order network is denoted as PS1.

The second order PS candidates (PSC2) are selected relative to the first order net-
work, and serve as a densification of the PS distribution. The subset of accepted
second order points is denoted by PS2. To avoid that errors in the first order network
will propagate undetected in the second order network, additional test procedures
are applied. The densification of the PS network can be repeated to infinity.

3.5 Conclusions

The selection of Persistent Scatterer candidates is performed using the amplitude
observations. In has been shown that the time and storage space consuming ampli-
tude calibration can be replaced by a pseudo-calibration. Pseudo-calibration does
not explicitly perform calibration, but adapts the normalized amplitude dispersion
threshold to match the uncalibrated stack. This is done by a monte-carlo simulation
utilizing the calibration factors that have been estimated from uncalibrated patches.

The unknown parameters (deformation, topographic heights, etc.) are estimated
from double-difference phase observations. The mathematical framework of the Delft
PSI estimation methodology has been introduced. Parameter estimation is first
performed in a sparse first order network. After the first order network has been
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tested and erroneous PS candidates have been removed, further densification steps
are performed.

Limitations in the PSI estimation, such as lack of redundancy and uncertainties in
the stochastic model have been pointed out. In chapter 4 we will further analyze the
effect of shortcomings in the functional and stochastic model on the estimation of
the unknown (deformation) parameters. Besides accuracy of the PSI measurement
technique itself, it will focus on the feasibility of PSI for the estimation of the
deformation signal of interest.



Chapter 4

Quality control

In chapter 3, the mathematical framework for the estimation of earth surface defor-
mation has been explained. The application of PSI for deformation monitoring is
nowadays moving towards deformation phenomena that have a small magnitude in
areas that suffer from temporal decorrelation. Hence, the precision and the reliabi-
lity of the deformation estimates become increasingly important. Therefore, this
chapter is dedicated to quality control.

Regardless of the measurement technique, quality control for deformation monitoring
has intrinsically two components:

• precision and reliability of the estimated parameters, and

• the relation of the estimated parameters to the signal of interest.

For subsidence monitoring due to gas extraction in the Netherlands both aspects are
equally important. Related to the first component, a quantification of precision and
reliability of PSI is required to evaluate the potential of the technique in comparison
to the leveling measurements. While the deformation signal of interest is subsidence
due to gas extraction, InSAR observes movements of scatterers regardless of the
deformation mechanism. The challenge is therefore to discriminate subsidence due
to gas extraction in the possible presence of multiple deformation causes (shallow
compaction, instability of buildings, etc.).

Chapter 4 consists of two parts. The sections 4.1 to 4.4 will address the uncertainties
in the functional and stochastic model. The effect of possible model errors on the
deformation estimates is evaluated by means of the mathematical framework of
chapter 3. The precision of PSI observations is assessed empirically by means of
the Delft corner reflector experiment. Section 4.5 investigates the information that
can be exploited to increase the idealization precision for the estimation of the
deformation signal of interest. This section focuses further on the characterization
of Persistent Scatterers and the use of a-priori knowledge on the spatio-temporal
behavior of the signal of interest.
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4.1 Precision and reliability in PSI

Precision is the dispersion of a stochastic variable around its mean. In this thesis,
the precision refers to the square root of the variance, i.e. the standard deviation
(1-sigma criterium) of a stochastic variable, if not indicated otherwise. In PSI,
the precision of an observation is determined by both the measurement precision
and the physical properties of the measurement target. These two components of
the precision cannot easily be separated. Hence, it is complicated to construct
the variance-covariance matrix of InSAR observations. Therefore, a validation of
the stochastic model of InSAR has been performed in a controlled corner reflector
experiment using independent leveling measurements, see section 4.4.

Reliability is defined as the sensitivity for and detectability of model imperfec-
tions (Teunissen, 2000b). In the PSI system of observation equations (Eq. (3.11)),
there is no redundancy. Hence, testing on model errors and outliers in the observa-
tions is not possible. However, if the success rate of ambiguity resolution equals 1,
the ambiguities can be considered to be deterministic. As a result, the PSI system
of observation equations becomes redundant and geodetic testing techniques can
be applied to assess the reliability (ibid.). In the following paragraphs, the effect
of uncertainties in the functional and stochastic model on the parameter estimates
are evaluated based on the assumption of correct phase unwrapping. It gives an
indication of sensitivity of the deformation estimates for errors in the different com-
ponents in the mathematical framework. However, it is stressed that this is the most
optimistic scenario, since correct phase unwrapping has been assumed.

If the success rates of phase unwrapping can not be assumed equal to 1—which is not
unlikely in rural areas—reliability cannot be assessed in the mathematical framework
of PSI estimation. However, in this thesis it will be shown that by utilizing multiple
independent satellite tracks that observe the same deformation signal, redundancy is
introduced and hence a statement about the reliability of the deformation estimates
can be made. This method is referred to as multi-track PSI and will be discussed in
chapter 5.

4.2 Influence of imperfections in the functional model

In this section, the influence of shortcomings in the functional model of Eq. (3.11)
on the unknown parameters is investigated. An example is the possible bias in the
PS height and displacement rate estimates that is caused by an inaccurate sub-pixel
position. The effect of model errors on the unknown parameters can be determined
as:

∇x̂ = (ATQ−1
y A)−1ATQ−1

y ∇y, (4.1)

whereA specifies the functional relation from Eq. (3.11),Qy is the variance-covariance
matrix of the double-differences, ∇y is the model error, and ∇x̂ its influence on the
parameter estimates (Teunissen, 2000b).

The unknown parameters of interest in deformation monitoring are the displacement
estimates. For a further characterization of the PS targets, the topographic height
estimates are valuable as well. From the topographic height it can for example be de-
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termined if the PS reflection stems from a roof top or ground level. Hence, the effect
of model errors on the displacement and topographic height estimates is addressed
in this section. The potential model errors that are investigated are inaccurate sub-
pixel positions, sidelobe observations, and orbital inaccuracies. Furthermore, the
phase unwrapping success rates are addressed.

All results in this section are based on simulations. To obtain a realistic acquisition
geometry (distribution of perpendicular and temporal baselines), samples have been
taken from the configurations of six existing ERS tracks that cover the northern
part of the Netherlands. Furthermore, it has been chosen to model deformation as a
constant displacement rate (velocity). In this way, the redundancy in the functional
model is optimally exploited. Moreover, subsidence above gas fields that are in
production during the entire monitoring period can be unwrapped in time by using
a model of linear displacements (see section 3.4.2, Fig. 3.11).

The success rate of phase unwrapping in the evaluation of model errors is considered
to be 1. This implies that a quantification of the sensitivity of deformation and height
estimates for different model errors is obtained in the most optimistic scenario. In
section 4.2.4 it will be shown that success rates of 1 cannot be guaranteed in areas
with low PS densities. It has already been pointed out in the introduction of this
chapter that additional methods are required to assess the reliability of the results.
In this thesis, multi-track PSI has been developed as a methodology for reliability
assessment and will be discussed separately in chapter 5.

4.2.1 Sub-pixel position

Inaccuracies in the sub-pixel position cause inaccuracies in the PS height and velocity
estimates (Perissin, 2006). The phase contribution due to the sub-pixel position
ϕobj,ij can be deduced from Eq. (3.11):

ϕkobj,ij =
4π

λ

B⊥
i

Rmi tan θmi
ηmij +

2π

v
(fmdc,i − fkdc,i)ξ

m
ij . (4.2)

It is a function of the slant-range (η) and azimuth (ξ) sub-pixel coordinates. The
model error ∇y is the error that is introduced by errors in the range and azimuth
sub-pixel position ∆ηmij and ∆ξmij . Model error samples have been computed using
the acquisition geometries of six ERS tracks in the northern part of the Netherlands.
Subsequently, the effect on the PS height and velocity estimates for a single arc have
been computed using Eq. (4.1). The correlation between the double-differences has
been taken into account in Qy, see section 3.4.3. The design matrix contains the
functional relation between the phase observations and the unknown PS height and
velocity:

A = −4π

λ

[

B⊥
i

Rm
i sin θm

i
T k
]

, (4.3)

where T k is the temporal baseline that relates to the unknown PS velocity.

From Fig. 4.1 it can be deduced that the effect of errors in the range sub-pixel
position results in errors of ∼0–4 meters on the PS heights, while they do not
affect the PS velocities (a standard oversampling factor of 2 is assumed). The error
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Fig. 4.1. The effect of sub-pixel position errors in range (dashed) and azimuth (solid)
on PS height (left) and velocity (right) estimates (oversampling factor 2). The dotted
lines represent the situation where acquisitions with high Doppler deviations (> 500 Hz)
have been included.

in the PS height estimates directly affects the horizontal location of the PS (see
section 4.5.2).

Errors in the azimuth sub-pixel position lead to small errors (< 0.25 m) in the PS
heights (again assuming an oversampling factor of 2). The velocities are affected
∼0–0.5 mm/year. The effect of these systematic errors increase when images with a
higher Doppler deviation than 500 Hz with respect to the master are included: up
to 3 mm/year for the PS velocities.

In the implementation of the DePSI concept for monitoring subsidence due to gas
extraction, the sub-pixel position has not been incorporated in the functional model,
see chapter 6. The reason behind this is to avoid a decrease in redundancy for para-
meter estimation. Moreover, there is a correlation between range sub-pixel position
and the PS heights (see section 3.4), which complicates their joint estimation. If all
acquisitions in a PSI stack are oversampled by a factor 2 and if scenes with high
Doppler deviations are excluded, PS velocity errors of maximum ∼0.5 mm/year can
be expected for particular scatterers. However, when including high Doppler images
for subsidence monitoring in areas like Groningen (displacement rates < 1 cm/year),
the estimation of the azimuth sub-pixel position should be included in the functional
model.

4.2.2 Sidelobe observations

The spatial signature of PS targets that behave as distinct point scatterers is a sinc
pattern (Oppenheim et al., 1983; Cumming and Wong, 2005). The sinc function
reads:

sinc(x) =
sin(πx)

πx
. (4.4)

The sidelobes of this sinc pattern are located in other resolution cells than the main
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Fig. 4.2. Sinc function (left) and the corresponding phase angles (right).

lobe of the scatterer. The phase in every second sidelobe is equal to the phase in
the main lobe, while phases in the interleaved sidelobes are π radians reversed, see
Fig. 4.2. As the phase observations of all sidelobes refer to the same physical target,
they are not independent. Since the phase behavior of sidelobes is coherent, there
is a likelihood that they are detected as PS candidates. The effect of the different
range and azimuth location compared to the PS they refer to is investigated in this
section.

The influence of sidelobe observations on the PS height and velocity estimates is
assessed. The model errors in the sidelobe observations comprise of:

• errors in B⊥
i , Rmi , and θmi , and

• errors in the reference phase 4π
λ B sin(θmi − α).

Because the baseline B and its orientation α depend on the satellite positions only,
they have been not been changed for the sidelobe observations. The variation in
incidence angle was computed by means of the flat earth approximation:

θmi = arccos(
Hsat

Rmi
) ;

dθmi
dR

=
Hsat

(Rmi )2
√

1 − (Hsat/Rmi )2
, (4.5)

where Hsat is the satellite height.

From Fig. 4.3 it can be concluded that the PS height estimates are significantly
affected: almost 20 meters at a four pixels’ range distance from the target location.
The velocity estimates are equal to the velocity estimates of sidelobes’ PS target.
Hence, the estimation of the displacement rates is not biased by including sidelobe
observations. However, it has to be realized that sidelobe observations are duplicates
of the phase observation of one physical scatterer. They are not independent and
do not contribute to the redundancy in the estimation of the deformation signal of
interest.
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Fig. 4.3. Influence of sidelobe observations on the height (left) and velocity (right)
estimates. The heights are significantly affected, whereas the velocity estimates of the
sidelobes are the same as the estimates for the PS they refer to.

Due to the impact on the height estimates, the geocoding of sidelobes that are
incorrectly detected as PS is erroneous. The range coordinate and the height of the
sidelobe have been varied according to the ratio depicted in Fig 4.3. From Fig. 4.4
it can be deduced that the geographic coordinates change in the same way for an
incorrect range coordinate as for an incorrect height estimate. Consequently, the
geolocation of a sidelobe would coincide with the geolocation of the actual PS target
if its height estimate compensates for the different range location. From Fig. 4.3, it
follows that a negative change in range coordinate with respect to the position of
the main lobe (the actual target) results in a positive change of the sidelobe’s height
estimate. Therefore, the effect on the geocoding of the sidelobe’s height estimate is
canceled by its range coordinate. Hence, the geographic position of the sidelobe will
be exactly the position of the PS it refers to. This will result in several estimates
plotted on top of eachother in a point-wise visualization.

4.2.3 Orbital inaccuracies

Due to the wide spatial extent of the deformation signal of interest, the influence of
residual orbital components has to be investigated. Orbit errors can be decomposed
into errors in along-track, across-track and radial direction. Since along-track errors
are sufficiently corrected for in the coregistration step, the analysis of systematic
phase errors restricts to the across-track and radial direction (Hanssen, 2001). The
effect of orbit errors is the incorrect estimation of the reference phase that will
propagate systematically from near to far range, and errors in the computation of
the perpendicular baseline.

To investigate the effect of orbit errors, the effect of residual across-track and radial
errors has been investigated for six existing ERS tracks. The simulation consists of
the following steps:
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Fig. 4.4. The effect of range coordinate and height deviations on the geolocation:
latitude (solid) and longitude (dashed). The difference in geographic coordinates is in
the order of several seconds (1” is ∼30 meters).

1. generation of random across-track and radial errors with a standard deviation
of respectively 8 and 5 cm for all acquisitions,

2. adaptation of the baseline sizes and orientations,

3. computation of the model errors induced in the reference phase between near
and far range, and

4. adaptation of the design matrix with the adapted perpendicular baselines.

Fig. 4.5 and 4.6 show the effect of random orbit errors on the velocity and height
estimates. Radial orbital errors have the largest effect on the velocity estimates:
up to 1 mm/year. Across-track errors result in maximum velocity deviations of 0.5
mm/year. Deviations in the height estimates due to radial orbit errors are up to 2
meters, whereas the height deviations are less than 0.5 meter for across-track errors.
Regarding the velocity estimates for areas with a large spatial extent, this implies
that a small spatial trend can be present. The presence and elimination of spatial
trends will be further discussed in the multi-track approach in chapter 5.

4.2.4 Phase unwrapping in the presence of atmospheric disturbances

For the application of PSI in rural areas with a relatively low PS density, the es-
timation of atmospheric signal plays an important role in quality assessment. In
the first order network of PS candidates, the atmospheric disturbance is increasing
with arc length and therefore decreasing the success rate of correctly unwrapping
the fractional phase difference observations. After temporal unwrapping per arc,
a spatial network check is performed tracing and removing PS candidates that are
responsible for spatial unwrapping misclosures. However, this procedure does not
guarantee protection against type II errors: PS candidates that are not rejected even
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Fig. 4.5. Uncertainty in PS height and velocity estimates between near and far range
(100 km) due to random across-track orbit errors (σ 8 cm) for six tracks. For each
simulation of random across-track errors per track, the corresponding phase observation
errors have been computed, which are induced by errors in the reference phase between
near and far range. Subsequently, the effect on the velocity and height estimates have
been computed. The histograms show the results of 50 simulations per track.
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Fig. 4.6. Uncertainty in PS height and velocity estimates between near and far range
(100 km) due to random radial orbit errors (σ 5 cm) for six tracks. For each simulation
of random radial errors per track, the corresponding phase observation errors have been
computed, which are induced by errors in the reference phase between near and far range.
Subsequently, the effect on the velocity and height estimates have been computed. The
histograms show the results of 50 simulations per track.

though the spatial unwrapping is erroneous. After estimation and subtraction of the
atmospheric phase screens (APS) for every acquisition, the unwrapping success rate
increases. Optimization of the unwrapping success rates is dependent on:
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• the measurement precision of the interferometric phase differences,

• the magnitude (power) of the atmospheric regimes (dependent on the weather
conditions),

• the PS density: the spatial sampling of the APS, and

• the number of acquisitions: the master APS can be estimated with a higher
accuracy when more acquisitions are available.

This section investigates the dependence of the success rates on observational preci-
sion and PS density in the presence of atmospheric disturbances. The success rates
of integer bootstrapping (see Eq. (3.19)) have been used, which serve as a lower
bound (Teunissen, 2001b). The number of interferograms in a stack has been set to
25, which serves as a minimum for PSI (Colesanti et al., 2003). Thus, the resulting
success rates will be a lower bound regarding the number of acquisitions for APS
estimation.

A series of APS have been simulated, consisting of scaled regimes with their fractal
dimension (Hanssen, 2001). Three regimes are distinguished: regime I that covers
large scale variations, regime II that covers scales from resolution level to the thick-
ness of the turbulent layer, and regime III representing small scale variability. Since
regime III is probably not caused by atmosphere, it has been excluded from the
simulations. The transition between regimes I and II has been set at 2 kilometers
distance. Regimes I and II have a power law exponent of −5/3 and −8/3 respectively.

Table 4.1. Bootstrapping success rates for phase unwrapping in stacks of 25 interfero-
grams with simulated phase observations and atmospheric phase screens. The percen-
tage of arcs with a success rate higher than 0.5, 0.8 and 0.99 respectively is listed. This
table shows the influence of observational precision and the PS density on the success
rates. The observational precision is expressed in cycles: 1/20 cycle corresponds with a
precision of 2.8 mm, 1/10 cycle corresponds with a precision of 5.6 mm.

100 PS/km2 before APS estimation after APS estimation
success rate success rate

acquisitions σφ (cycles) >0.5 >0.8 >0.99 >0.5 >0.8 >0.99
25 1/20 100(%) 100 99 100(%) 100 100
25 1/10 71 34 18 75 40 21

5 PS/km2

acquisitions σφ (cycles) >0.5 >0.8 >0.99 >0.5 >0.8 >0.99
25 1/20 100(%) 98 95 100(%) 100 100
25 1/10 38 8 3 40 20 7

Tab. 4.1 shows that high success rates can be achieved at a lower PS density, provided
that the observational precision is high. For low PS densities, the increase in success
rate before and after APS estimation is more significant, since arcs lengths are larger
and will benefit more from APS removal. Compared to success rates in areas with
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an urban PS density, similar success rates can be achieved in rural areas, provided
that arcs exist with a phase dispersion lower than 1/20 cycle (< 3 mm). However,
Fig. 6.20 in chapter 6 shows that this requirement on the precision is not necessarily
met. Tab. 4.1 also shows that success rates of 1 cannot be guaranteed, especially
not in areas with a PS density of ∼5 PS/km2. This implies that the ambiguities
cannot considered to be deterministic, therefore a direct reliability assessment using
the functional model of Eq. (3.11) is not possible due the lack of redundancy. In this
situation other tools for reliability assessment have to be applied, such as multi-track
PSI, see chapter 5.

4.3 Imperfections in the stochastic model

This section gives an overview of the uncertainties in the components of the stochas-
tic model: measurement noise and model imperfections. Furthermore, it introduces
a precision parameterization of the variance-covariance matrix that is independent
of the spatial and temporal reference, i.e. reference PS and master acquisition.

4.3.1 Measurement precision

Contrary to other geodetic measurement techniques, the stochastic model of the
PSI observables is poorly known a-priori. This is caused by the dependence of the
measurement precision on the physical PS properties. Due to the uncertainty in
geocoding, it is complicated to identify the origin of the reflection. Moreover, the re-
flection pattern of surrounding scatterers may interfere, which introduces additional
noise in the phase observations.

Section 3.2.1 has shown that the phase variance is a function of the Signal-to-Clutter
Ratio, which is directly related to the normalized amplitude dispersion, see Eq. (3.3).
Phase variances as a function of SCR can be used as a-priori variances indicating the
relative weights of different PS. This would imply only one unknown variance factor
(a scaling factor): Qn = σ2Q, where Q represents the a-priori variance-covariance
matrix. This procedure has been followed in the Delft corner reflector experiment,
which will be separately explained in section 4.4.

Another option is to estimate a variance factor for each PS p:
∑P
p=1 σ

2
pQp. This

implies that significantly more variance factors have to be estimated while the re-
dundancy in the system of equations remains unchanged. As a result, the estimation
of the variance factor per PS will be less precise. The possibilities and limitations
of variance component estimation will be addressed in section 4.3.3.

4.3.2 Separation of unmodeled deformation and atmospheric signal

As knowledge about the functional model of the deformation signal is generally
limited, a spatio-temporal filtering approach is used to address the phase residuals to
unmodeled (non-linear) deformation and atmospheric signal. Based on the assump-
tion that atmospheric signal is uncorrelated in time whereas unmodeled deformation
is not, the residuals are separated (Ferretti et al., 2001).
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If the functional model of the deformation signal is correct, all residuals should be ad-
dressed to atmospheric signal (and measurement noise). The presence of unmodeled
deformation signal is however not known beforehand. To preserve all possible un-
modeled deformation regimes, all residuals are addressed to deformation signal. As
a result, the estimated time series appears noisier and seems to be of lower quality.
However, when addressing high variability in the observations to atmospheric signal
followed by subsequent subtraction, there is a risk of subtracting unmodeled defor-
mation as well. This implies a loss of the signal of interest and hence unrecoverable
model errors.

In the DePSI estimation procedure (see section 6.1.3), the phase residuals are sep-
arated into atmospheric signal and unmodeled deformation by the application of a
moving average filter in time that has the characteristics of a low pass filter (ibid.).
The larger the window size of the moving average filter, the more high frequency
signals with be removed from the phase residuals. Thus, the risk of incorrectly iden-
tifying unmodeled deformation as atmospheric signal increases with the window size
of the moving average filter.

Fig. 4.7. Separation of unmodeled deformation (left) and atmospheric signal (right).
The correlation length of the deformation signal corresponds with the window size of the
temporal moving average filter. For small values of the correlation length, phase residuals
are identified as unmodeled deformation. The larger the size of the correlation length
of the deformation signal, the more residual components are identified as atmospheric
signal.

Fig. 4.7 shows a simulated example of the division of the residuals in time into at-
mospheric signal and unmodeled deformation. The simulated stack consists of 30
acquisitions that span a 15 years’ period. The simulated acquisitions only contain
atmospheric signal. Unmodeled deformation is absent, as well as measurement noise.
Hence, all residuals should be addressed to atmospheric signal. The size of the tem-
poral moving average filter is expressed as the correlation length of the deformation
signal. A large correlation length corresponds with the absence of unmodeled de-
formation: all high frequency signals in the phase residuals can be filtered out and
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identified as atmospheric signal. From Fig. 4.7 it can be deduced that for temporal
correlation lengths above 6 years, indeed the residuals are attributed to atmospheric
signal. Furthermore, it can be seen that part of the atmospheric signal will be in-
correctly interpreted as deformation signal if the correlation length is set to values
lower than 6 years.

The separation of non-linear deformation and atmospheric signal is a trade-off be-
tween preservation of possible unmodeled deformation and precision of the displace-
ment estimates. Hence, a high precision of the displacement estimates can be at the
expense of the leaking of unmodeled deformation into the atmospheric signal.

In stead of filtering unmodeled deformation by means of a low pass filter, it is
recommended to incorporate both atmospheric signal and unmodeled deformation
in the stochastic model of the PSI system of equations. This would integrate the
uncertainties in the quality description. The next section addresses possibilities
and limitations of the estimation of stochastic parameters in the PSI estimation
procedure.

4.3.3 Possibilities and limitations of variance component estimation

Variance component estimation (VCE) (Teunissen, 1988) performs the estimation
of stochastically modeled parameters. Examples of stochastic model parameters are
the variance factor for the measurement noise and the spatial correlation length of
atmospheric disturbances. Three things have to be kept in mind when considering
the application of VCE:

1. VCE can only be applied if there is redundancy in the mathematical model,

2. only independent stochastic model parameters can be estimated, i.e. there is
no rank deficiency in the VCE system of equations, and

3. the precision of the estimation of stochastic model parameters decreases with
the number of stochastic parameters to be estimated.

In section 2.3.1 it is pointed out that the variance components are computed using
the adjustment residuals. Hence, redundancy is required. As a result, VCE can
only be applied in PSI if the ambiguities are considered deterministic. Another
condition for the application of VCE is the independence of the variance components.
This implies that model imperfections that are modeled with the same covariance
function but with different magnitudes and correlation lengths cannot be estimated
independently.

The elementary stochastic modeling of residual signal is by means of an (empirical)
covariance function as a function of variance, spatial and/or temporal correlation
length or power (if model deviations are unbounded). The usage of more advanced
covariance functions depends on the a-priori knowledge of the signal. For atmo-
spheric disturbances, which are spatially but not temporally correlated, more ad-
vanced covariance functions are described by Grebenitcharsky and Hanssen (2005).

If the conditions on redundancy and the independence of the variance components
are fulfilled, the achievable precision of the variance component estimates has to be
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evaluated. The more variance components are estimated, the less precise they will
be. Additionally, the correlation between different variance components has to be
considered. This correlation determines the possible leakage of one stochastically
modeled signal into the other.

In the VCE procedure that has been described in section 2.3.1, only variance factors
have been considered as variance components. Qy could be decomposed as a linear
combination of variance factors and cofactor matrices. For spatio-temporally cor-
related signal however, the relation between the cofactor matrices Q and (some of)
the variance components is usually non-linear. Therefore, the variance-covariance
matrix of the observations is developed in a Taylor series. For the stochastic model
of PSI observations, consisting of a superposition of measurement noise and noise
due to atmospheric signal and unmodeled deformation (see Eq. (3.24)), this decom-
position would read:

Qy = Q0 +W (
δQn
δσ2
n

dσ2
n +

δQdefo

δσ2
defo

dσ2
defo +

δQdefo

δLdefo
dLdefo +

δQdefo

δTdefo
dTdefo

+
δQatmo

δσ2
atmo

dσ2
atmo +

δQatmo

δLatmo
dLatmo)W

T ,

(4.6)

where the matrix W converts the phase observations from single acquisitions to
spatio-temporal double-differences. In total, six variance components are estimated
using Eq. (4.6):

• one variance factor for the measurement precision (σ2
n),

• one variance factor, spatial correlation length and temporal correlation length
for unmodeled deformation signal (σ2

defo, Ldefo, and Tdefo), and

• one variance factor and spatial correlation length of unmodeled atmospheric
signal (σ2

atmo and Latmo).

The variance components are obtained in an iterative way. Due to the decomposition
of Qy into a known part (Q0) and an unknown part, the VCE system of equations
differs slightly from section 2.3.1:

lk = êTQ−1
y QkQ

−1
y ê− tr(Q−1

y P⊥
AQk). (4.7)

To illustrate the dependency of the variance component precision (see Eq. (2.14)) on
the redundancy and the number of stochastic parameters, consider the following sim-
ulated example of residual deformation signal. The simulated residual deformation
signal only contains measurement noise and spatially correlated noise:

Qy = W (σ2
nI + σ2

defoe
(−

Ql
L

2
))WT , (4.8)

and its Taylor expansion:

Qy = Q0 +WWT dσ2
n +W (e(−

Ql
L

2
))WT dσ2

defo + 2σ2
defoW (

Q2
l

L3
e(−

Ql
L

2
))WT dL, (4.9)
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Fig. 4.8. Network configurations: (left) shortest distance and (right) star network. The
observations are the spatial differences.

where Ql is the PS distance matrix. The observations are distributed over an area
of 5×5 km. Their expectation value is 0, their correlation length is 2.5 km, and
the variance of measurement and model noise is 1 and 4 mm2 respectively. The
observations have been simulated using the Cholesky decomposition Qy = RTR.
Based on this decomposition, the observations can be computed as y = RTn, with
n a vector of standard normal distributed variables.

Fig. 4.9 shows the variance component estimates divided by their standard deviation
(σ̂/σσ̂) for the joint estimation of three variance components and for the estimation
of the measurement variance factor only. It is clear that the precision of the variance
component estimates increases with increasing redundancy and that the precision of
the variance component estimates is higher when less variance components have to
be estimated. Furthermore, it can be noticed that the model noise component is not
very well estimable; the standard deviation of its estimation is approximately equal
to model noise variance itself.

Finally, the influence of the network configuration on the precision of VCE has been
investigated. Hence, simulations have been performed both for a star network and a
’shortest distance’ network, see Fig. 4.8. The results for both network configurations
are depicted in Fig. 4.9: the precision of the estimated variance components is the
same. This can be explained from the fact that the linear combinations in both
network configurations have been constructed from the same observations.

4.3.4 Dilution of Precision

The stochastic model in the PSI estimation procedure is represented by the variance-
covariance matrix. Regardless if VCE is applied or not, there is a need of a quality
measure for the variance-covariance matrix of both the observations and the para-
meter estimates. Due to the correlation induced by the double-differences and spatio-
temporal correlation of model imperfections, the variance-covariance matrices of
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Fig. 4.9. Left: variance component estimate (σ̂) divided by its standard deviation (σσ̂)
for the estimation of both measurement and spatially correlated noise. Right: variance
component estimate (σ̂) divided by its standard deviation (σσ̂) for the estimation of
measurement noise only. The precision of the variance components increases if less
components are included in the estimation. The stars and squares represent variance
component estimates obtained from network designs that are based on different spa-
tial combinations of the same observations: star and path network, see Fig. 4.8. The
precision of the variance components is independent of the network type.

both the observations and the parameter estimates are full matrices. Restricting the
precision assessment to the variances on the main diagonal results in a precision mea-
sure that is dependent on the spatio-temporal reference for the double-differences,
see section 3.3.2. However, double-differences that are created using different spatio-
temporal references originate from the same set of phase observations. Hence, the
information in their variance-covariance matrix is the same.

In this section, it is shown that a scalar precision measure exists that describes the
quality of the variance-covariance matrix independent of the spatio-temporal refe-
rence: the Dilution of Precision. In analogy with the theory of ambiguity resolution
for GPS, where it is shown that the Ambiguity Dilution of Precision (ADOP) (Teu-
nissen and Odijk, 1997) is independent of the chosen reference satellite, the inde-
pendence of PSI double-differences on the chosen spatio-temporal reference will be
demonstrated. It is based on the theory on admissible ambiguity transformations
(ibid.), which states that transformations to other references are admissible if their
determinant equals ±1. This follows from the property that the transformation
matrices and their inverses only contain integer entries.

Consider a set of P PS that are observed in K acquisitions. The double-difference
phase observations relative to reference PS 1 and acquisition time k = 1 are denoted
as ϕk1p1 for p = 2. . .P and k = 2. . .K. The double-differences can be transformed to
reference PS 2 by means of the transformation matrix T :

ϕk1
p2

= Tϕk1
p1
. (4.10)
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The new variance-covariance matrix is computed by applying the propagation law:

Qϕk1
p2

= TQϕk1
p1
TT . (4.11)

The transformation matrix T has the following shape for P PS:
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Similarly, the transformation of the PSI double-differences from master acquisition
time k = 1 to k = 2 reads:
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. (4.13)

The transformation matrices and their inverses have all integer entries, and their
determinant equals 1. Therefore the precision measure defined by the determinant
is invariant for the PSI reference system:

detQϕk1
p2

= (detT )2detQϕk1
p1

= detQϕk1
p1
. (4.14)

The precision of the variance-covariance matrix in PSI can therefore be described
by the Dilution of Precision for PSI:

DOPPSI =
√

detQϕ
1
n . (4.15)

If the double-difference phase observations would be uncorrelated, DOPPSI would
describes the geometric mean of the standard deviations, see Fig. 4.10.

Similarly, it can be shown that the precision of double-difference displacement es-
timates can be parameterized by DOPPSI independent of the spatio-temporal refe-
rence. The same type of transformation matrix T is applied to transform to another
spatio-temporal difference, and hence the determinant of the variance-covariance
matrix of the displacement estimates Qd̂ will be invariant as well. An example
of the application of DOPPSI as a precision measure can be found in section 7.1.3.
Here, it is applied to assess the impact of temporal sampling of a deformation signal,
independent of the spatio-temporal reference.

4.4 Measurement precision

Knowledge about the observation statistics of PSI is essential for the quality de-
scription of the deformation parameters of the signal of interest. In section 4.3.1
it has already been noted that the stochastic model of InSAR is not well known
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Fig. 4.10. DOPPSI for PSI double-difference phase observations (solid) as a function of
standard deviation of a phase observation in a single SAR acquisition (expressed in mm).
The dashed line depicts DOPPSI if the double-difference phase observations would have
been uncorrelated (the geometric mean). The DOP value decreases with a lower standard
deviation of the observations (higher precision), both for correlated double-difference
observations and the geometric mean. The DOP value is a scalar that represents the
precision of the variance-covariance matrix. This precision is independent of the spatio-
temporal reference. However, it is one specific function of the variance-covariance matrix.
A complete comparison of two variance-covariance matrices is performed through the
generalized eigenvalue problem, see Eq. (7.11), which indicates the precision contained
in the variance-covariance matrix for different eigenvectors.

a-priori. Hence, this section is dedicated to the validation of the InSAR phase
observation statistics, which is one of the objectives of the Delft corner reflector
experiment (Marinkovic et al., 2004; Ketelaar et al., 2004a; van Leijen et al., 2006b;
Marinkovic et al., 2006). This is a controlled experiment with leveling as an inde-
pendent validation technique. Since March 2003, five corner reflectors (see Fig 4.11)
have been monitored by leveling and repeat-pass InSAR (ERS-2 and Envisat), of
which three have survived until 2008. They have all been deployed in a meadow near
Delft University of Technology, at 200 meters distance from each other. Besides vali-
dation of the measurement precision of PSI, the other objectives are to demonstrate
the continuity between ERS-2 and Envisat and to monitor shallow compaction.

This section starts with the set up of the leveling network and addresses the In-
SAR and leveling double-difference observations. Subsequently, the VCE strategy is
explained, which leads to the estimation results for the PSI measurement precision.
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Fig. 4.11. Location and amplitude observations of the five corner reflectors that have
been deployed in a meadow near Delft University of Technology.

4.4.1 Leveling precision

For each satellite pass, a leveling of the corner reflectors has been performed with a
maximum time difference of one day. The heights of the corner reflectors were com-
puted from leveling height difference observations in a redundant network. Using
this survey strategy, observational outliers could be detected and removed from the
dataset. Two well founded benchmarks were included in this network, see Fig. 4.12:
one in a bridge (rp6) and one on the foundation of a highway traffic frame (rp7).
Since heights cannot be estimated from height differences, the height of one bench-
mark has been fixed (rp6). All corner reflector heights have therefore been estimated
relative to benchmark rp6.

The measurement precision of leveling height differences is defined as a function of
distance. The measurement precision in the corner reflector leveling campaigns is
∼1mm/

√
km. The precision of the estimated heights is dependent on the measure-

ment precision and the network design. Fig. 4.13 depicts the average precision of
the corner reflector heights relative to the fixed benchmark rp6. In general, leveling
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Fig. 4.12. Redundant leveling network for five corner reflectors (triangles). Circles
indicate the two reference benchmarks. Arrows indicate the leveling sequence.

height standard deviations are between 0.5 and 1 mm. The height precision in the
first three levelings is slightly worse since no repetitive observations have been taken
for each measured rod height. The precision decreases again after July 2006, be-
cause the leveling instrument was replaced by a less precise one. Although Fig. 4.13
only depicts the standard deviation of the heights obtained from leveling, the entire
variance-covariance matrix is utilized in the validation of the stochastic model of
InSAR.
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Fig. 4.13. Average standard deviation corner reflector heights in time relative to the
fixed benchmark rp6. The measurement precision of the observed height differences is
∼1mm/

√
km. The precision of the corner reflector heights is ∼0.5–1 mm. The height

precision in the first three levelings is lower since no repetitive observations have been
taken for each measured rod height. The precision decreases again after July 2006,
because the leveling instrument has been replaced by a less precise one.
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4.4.2 InSAR a-priori measurement precision

The goal of the corner reflector validation experiment is to validate the stochastic
model of InSAR observations. Hence, an a-priori stochastic model is constructed that
is validated using VCE (resulting in the a-posteriori stochastic model). The a-priori
precision of InSAR observations can be computed as a function of Signal-to-Clutter
Ratio (SCR, see Eq. (3.1)). The clutter is comprised of both the clutter within the
resolution cell of the dominant scatterer and the clutter outside the resolution cell
that interferes with the dominant scatterer. Since the SCR is computed from the
amplitude observations, amplitude calibration might be required. However, as the
location of the corner reflectors and the surrounding clutter can be considered equal,
the calibration factors (see section 3.2.2) cancel in the ratio between the signal and
the clutter.

SCR estimation has been performed for all five corner reflectors. The corner reflec-
tors behave as point scatterers. Their signature in the spatial domain is a sinc pat-
tern. The signal amplitude value s— the reflection strength of the corner reflector—
is the maximum amplitude value of the sinc pattern, see Fig. 4.14. The higher the
oversampling factor, the more precise s can be measured.
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Fig. 4.14. Windows used for SCR estimation. Boundaries are set in range and azimuth
direction around the reflection pattern of the corner reflector, to avoid interference of
sidelobes in the clutter estimation. Clutter samples are taken in the four quadrants
around the corner reflector signal. The oversampling factor is 16.

Since the spatial signature of a corner reflector is a sinc pattern, the interference
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with sidelobes in range and azimuth direction has to be avoided in the clutter esti-
mation (Hanssen, 2001). Hence, boundaries are set around the signal pattern of the
corner reflectors by means of an edge detector. This results in four areas around the
corner reflector that are not affected by the point scatterer signal, see Fig. 4.14. The
clutter estimation is based on the assumption of ergodicity. As the corner reflec-
tors have been placed in a large homogeneous field, this assumption is reasonable.
To obtain conservative estimates of the phase precision, the mean of the maximum
clutter estimates in the four sampling areas is used.
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Fig. 4.15. Left: SCR values for corner reflectors 1–5 in time, for ERS-2 (circles) and
Envisat (triangles). The SCR values correspond with an observation precision of 0.3–0.6
mm (1-sigma). Right: distribution of the SCR values. The maximum is obtained at a
SCR value of ∼200.

Fig. 4.15 shows SCR estimates for the five corner reflectors in time. There is a small
seasonal signal visible, which may be caused by clutter changes due to vegetation
changes in the surrounding field. The magnitude of the SCR values is of the same
order for ERS-2 and Envisat. The majority of the SCR values are between 100 and
500 (20–27 dB), corresponding with SLC phase standard deviations σψ of 0.3–0.6
millimeter (1-sigma). The relation between the displacement estimate D and the
double-difference phase observation ϕ in mm reads: ϕ = −2D. Hence, for double-
difference line-of-sight displacements this implies a standard deviation of 0.3–0.6

millimeter as well (σD =
√

4σ2
ψ/2

2).

4.4.3 InSAR and leveling double-difference displacements

In interferometry, spatial phase differences between reflectors are also differences be-
tween two epochs. These double-difference phase observations (in time and space)
are the first variates that bear interpretable information. One master has been cho-
sen for both the ERS-2 and Envisat stack (October 2005), and all spatial differences
have been referenced to corner reflector 4, which minimizes the spatial distances. As
the maximum distance to the reference corner reflector is 200 meters, atmospheric
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effects are assumed negligible.
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θ θ

Fig. 4.16. InSAR double-difference observations are in the satellite line of sight; leveling
measurements refer to the vertical.

Leveling double-differences are orthometric heights along the vertical whereas In-
SAR double-differences are ellipsoidal heights along the satellite’s line of sight, see
Fig. 4.16. Assuming that the geoid height does not change in time, the difference
between orthometric and ellipsoidal heights cancels in the double-difference, which
is further explained in section 7.1.1. Furthermore, it is assumed that the corner
reflector displacements only have a component in the vertical direction. Hence, the
InSAR double-differences are converted to the vertical as a function of the incidence
angle.

The leveling double-differences are a linear combination of the leveling height esti-
mates h:

dtmtsij =
[

1 −1 −1 1
]
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htmj
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, (4.16)

where tm and ts are master and slave time respectively, and i and j are two leveling
points. The double-difference variance is computed by application of the propagation
law of variances:
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. (4.17)

The leveling height estimates do not correlate between epochs, but correlation will be
caused by the spatio-temporal combinations of the double-differences. The structure
of the variance-covariance matrix of the leveling heights per epoch depends on the
leveling network design.
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The InSAR double-difference phase observations are corrected for sub-pixel posi-
tion (Marinkovic et al., 2006) and topographic height difference and subsequently
converted to double-difference displacements in mm along the vertical:

dkij = − 4π

λ cos θmi
(ϕk
ij

+
4π

λ

B⊥
i

Rmi sin θmi
Hij−

4π

λ

B⊥
i

Rmi tan θmi
ξ0ij −

2π

v
(f0

dc,i − fkdc,i)η
0
ij), (4.18)

see section 3.4.1 for the definition of the parameters. In this validation experiment,
the InSAR double-differences have been unwrapped with respect to the leveling
double-differences.

The variance-covariance matrix of InSAR double-differences is a full matrix due
to the spatio-temporal combination, see Eq. (3.25). If the phase observations in a
single SAR acquisition have a variance of σ2

ψ, the variance-covariance matrix of the
double-differences ϕ between two corner reflectors has the following structure:

Qϕ = σ2
ψ
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. . .
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. (4.19)

Note that decorrelation between SLC phase observations due to atmospheric signal
has been ignored here, due to the short distance between the corner reflectors. The
variance-covariance matrices of both the InSAR and leveling double-differences serve
as input for the variance component estimation procedure.

4.4.4 Validation of the stochastic model

Leveling is a well established measurement technique of which the precision and
reliability can be validated in a redundant network set up. For each leveling epoch,
erroneous observations have been detected and removed by means of datasnooping.
Furthermore, the measurement precision has been estimated from the adjustment
residuals, resulting in an update of the initial variance-covariance matrix of the
leveling observations Q0

h with a variance factor (Qh = σ2Q0
h). In the validation of

the stochastic model, the leveling variance-covariance matrix is therefore fixed. In
this way, the a-priori stochastic model for the InSAR observations can be validated
with respect to the independent leveling results.

The a-posteriori precision estimation for InSAR double-differences is performed by
means of variance component estimation with the disjunctive group model (Tiberius
and Kenselaar, 2003). The observations are partitioned into three uncorrelated
groups: leveling, ERS-2, and Envisat double-differences. The variance-covariance
matrix of the leveling double-differences remains unchanged, whereas the dispersion
of the InSAR double-differences is described by a variance-covariance matrixQk with
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an unknown variance factor σ2
k. The variance-covariance matrix of the observations

reads:

Qy =





Qlev 0 0
0 σ2

E2QE2 0
0 0 σ2

EvQEv



 , (4.20)

where Qlev is the variance-covariance matrix of the leveling double-differences, E2
refers to the ERS-2 double-differences, and Ev to the Envisat double-differences.
Qlev, QE2, and QEv are full matrices, due to the covariances induced by the double-
difference combinations.

The functional model that relates the leveling and the InSAR double-difference dis-
placements is set up as a model of condition equations. The conditions that are im-
posed state that the misclosures between the leveling and InSAR double-difference
displacements should be equal to 0:

BTE{y} =

[

−I I 0
−I 0 I

]





dij
tmts

dij
E2

dij
Ev



 = 0, (4.21)

where B is the condition equation design matrix, i, j are corner reflector indices,
tm, ts represent master and slave acquisition times, and E2 and Ev indicate the
interferometric combinations (ERS-2, Envisat). The condition equations combined
with the stochastic model from Eq. (4.20) are the input for the variance component
estimation.

4.4.5 InSAR a-posteriori precision

The a-posteriori precision of the InSAR observations, i.e. the variance factors in
Eq. (4.20), has been estimated from the double-difference displacements of the three
corner reflectors that have survived from March 2003 to the end of 2007: corner
reflector 3, 4 and 5. These corner reflectors have been deployed in one line, with
200 m distance between the subsequent reflectors. The middle one, corner reflec-
tor 4, has been appointed as spatial reference. The time series of double-difference
displacements of the corner reflectors 3 and 5 with respect to corner reflector 4 is
depicted in Fig. 4.17 (37 ERS-2 and 43 Envisat acquisitions). Clearly, the leve-
ling, ERS-2, and Envisat double-difference displacements are in good agreement.
Fig. 4.18 shows a scatterplot of the leveling and InSAR double-difference displace-
ments. It is obvious that some outliers are present in the ERS-2 double-difference
displacements. It has been chosen to remove these outliers, if the misclosures exceed
the standard deviation of double-differences for distributed scatterers, with respect
to the displacement time series. This standard deviation follows from the uniform
distribution, depending on the effective wavelength:

σ2
dms

ij
= (

λ

4 cos(θinc)
)2/3, (4.22)

and is set at 8.8 mm for ERS-2 and Envisat double-differences. This standard
deviation is the upper limit for correctly unwrapped double-difference displacements.
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Fig. 4.17. Time series of double-difference displacements for ERS-2 (37 acquisitions),
Envisat (43 acquisitions) and leveling (mm, vertical). The time series at the top shows
the double-differences between corner reflector 3 and 4; the time series at the bottom
shows the double-differences between corner reflector 5 and 4. The outlier in the ERS-2
double-difference displacements has been marked with a cross.

As a result, one ERS-2 double-difference displacement is rejected and removed from
the dataset, which is depicted with a cross in Fig. 4.17. The correlation between
leveling and ERS-2 double-difference displacements is 79% before outlier removal
and 84% after outlier removal. The correlation between leveling and Envisat double-
difference displacements is 94%.

The distribution of the misclosures between leveling and InSAR is shown in Fig. 4.19.
The a-posteriori precision of InSAR double-differences is obtained from VCE as de-
scribed in section 4.4.4. It has resulted in an average double-difference displacement
precision of 3.0 and 1.6 mm for ERS-2 and Envisat respectively, see Tab. 4.2.

Table 4.2. Average standard deviation of double-difference displacements after VCE for
ERS-2 and Envisat. The standard deviation of the estimates obtained from VCE is 0.2
mm.

leveling ERS-2 Envisat

σd (mm) 1.5 3.0 1.6
σσd

VCE (mm) - 0.2 0.2

Although it can be concluded that the a-priori InSAR precision based on SCR (see



76 Chapter 4: Quality control

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

leveling double−differences (mm)

In
S

A
R

 d
ou

bl
e−

di
ffe

re
nc

es
 (

m
m

)

 

 
ERS−2
Envisat

Fig. 4.18. Scatterplot of leveling and ERS-2 (circles) and Envisat (squares) double-
difference displacements (37 ERS-2 and 43 Envisat acquisitions). The ERS-2 data
suffered from the degraded attitude control of the satellite after 2000. The correla-
tion between leveling and ERS-2 double-difference displacements is 79% before outlier
removal and 84% after outlier removal. The correlation between leveling and Envisat
double-difference displacements is 94%.

Fig. 4.15) is overestimated, the standard deviation of InSAR double-difference dis-
placements is in the order of several millimeters. The precision of Envisat double-
difference displacements is equal to the leveling precision, which shows that InSAR
can be applied for deformation monitoring. This is strengthened by the correlation
coefficient of 0.94 between the leveling and Envisat double-difference displacements.
A likely cause for the lower precision of ERS-2 are the large Doppler deviations
in the time series (from −1700 to +3600 Hz). Hence, the phase observations are
very sensitive to the sub-pixel position. The influence of the sub-pixel position has
been investigated by Perissin (2006) and Marinkovic et al. (2006). Another vali-
dation experiment that uses dihedral reflectors and GPS measurements is described
by Ferretti et al. (2007), which claims submillimeter precision of InSAR displacement
estimates, both in vertical and horizontal direction.

4.5 Idealization precision for deformation monitoring

In the introduction of this chapter, it has been explained that quality control for
deformation monitoring consists of two components: precision and reliability of the
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Fig. 4.19. Double-difference misclosures between ERS-2 (left), and leveling and Envisat
(right) and leveling in mm converted to the vertical. The a-posteriori double-difference
displacement precision is 3.0 and 1.6 mm for ERS-2 and Envisat respectively.

measurement technique, and the relation of the deformation estimates to the signal
of interest.

The precision and reliability of PSI as a measurement technique has been addressed
in the sections 4.1 to 4.4. The influence of model errors on the PS height and velocity
estimates has been investigated. Velocity errors in the order of 0.5 mm/year can be
expected if the azimuth sub-pixel position is not estimated. Orbit errors can result
in velocity errors of ∼1 mm/year over a full SLC extent. Although these results are
based on the optimistic scenario of correct phase unwrapping, and the reliability of
the deformation estimates needs to be further investigated (see chapter 5), it can be
stated that the precision of PSI as a measurement technique is at mm level. In a
controlled corner reflector experiment, it has been shown that the double-difference
displacement precision for Envisat is 1.6 mm, similar to the precision of leveling
double-difference displacements (1.5 mm).

The availability of precise geodetic measurements from techniques such as PSI and
leveling is not necessarily sufficient for a precise and reliable estimation of the de-
formation signal of interest. Hence, this section focuses on the relation between the
deformation estimates and the signal of interest. It gives an overview of the available
tools in PSI to enhance the estimation of the deformation signal of interest. In this
context, the concept of idealization precision is used as a measure for the match
between the measurements and the displacements that are caused by the signal of
interest.

In classical geodesy, the idealization precision gives an indication of the identification
precision of a point in the terrain. Points with a high idealization precision, such
as the corner of a house, can be sharply identified. Compared to the corner of a
house, the middle of a canal has a lower idealization precision. The same concept is
applicable to deformation parameter estimation from geodetic measurements. For
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example: if the signal of interest, subsidence due to gas extraction, is contaminated
by shallow subsurface deformation of a similar magnitude, it has a low idealization
precision.

Although idealization precision in deformation estimation plays a role in each geode-
tic measurement technique, it is more prominent in PSI than in traditional tech-
niques such as leveling or GPS, due to the physical properties of the measurement
points. Leveling uses well defined benchmarks that are for example established in
a building founded on a stable subsurface layer. In case of SAR reflections, it is
complicated to identify the physical measurement target(s) and the type of the re-
flection due to the limited precision of height estimates and geocoding (in the order
of meters, see Perissin (2006)). Furthermore, the earth surface can be affected by
spatial and temporal changes that originate from multiple deformation causes. Since
earth surface deformation is observed regardless of the deformation mechanism by a
remote sensing technique such as InSAR, it may be a challenge to discriminate the
deformation signal of interest.

After the explanation of deformation causes in section 4.5.1, section 4.5.2 will address
the tools that are available in PSI to increase knowledge on the physical PS properties
and the reflection type. Subsequently, section 4.5.3 will exploit idealization preci-
sion in the deformation parameter space. Here, knowledge on the spatio-temporal
correlation of the deformation signal of interest is utilized to perform a PS selection
according to the deformation regime.

4.5.1 Deformation regimes

Since radar satellites monitor movements of scatterers from space, the interfero-
metric phase differences may represent deformation caused by a variety of defor-
mation mechanisms. The signal of interest, subsidence due to gas extraction, may
be contaminated by other spatio-temporal displacements. Thus, the deformation
contribution in a PS phase observation can be a superposition of displacements due
to several deformation regimes, such as:

• structural instabilities (including foundation),

• shallow mass displacements (ground water level variation and compaction),

• deep mass displacements (gas, oil and mineral extraction).

All three deformation regimes are present in the Netherlands, and more specific in
the subsiding area above the Groningen gas field, see section 6.5.

To be able to relate the movement of a PS to its driving mechanisms it is important to
consider the possible scattering characteristics. A PS can be a dominantly specular
(single-bounce) reflection from a building, but it might as well be a dihedral reflection
(double-bounce, curb-to-wall), comparable to a dihedral corner reflector. This can
be extended to multiple bounce effects, for example triple-bounce, comparable to
a trihedral corner reflector. Fig. 4.20 shows possible deformation causes and the
difference between a single-bounce and a double-bounce reflection. If the physical
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Fig. 4.20. Deformation regimes and their effect on single and double-bounce reflections:
(left) structural instabilities (foundation), affecting only the single-bounce reflection;
(middle) shallow mass displacement (compaction), affecting only the double-bounce
reflection; (right) deep mass displacement (gas extraction), affecting both the single-
bounce and the double-bounce reflection.

nature of the PS is unknown, soil compaction can easily be incorrectly interpreted
as gas extraction.

4.5.2 PS characterization

This section addresses the techniques in PSI to enhance the identification of the
physical PS properties and the reflection type. A PS displacement may be caused by
(a superposition of) several deformation regimes. For the separation of deformation
regimes, knowledge about the reflection type is required. If the signal of interest is
subsidence due to deep subsurface displacements, it is essential to know if the PS
displacement represents a direct reflection from a well founded building on a deep
subsurface layer, or a double-bounce reflection with the surroundings affected by
shallow compaction.

The precision of the horizontal location of a PS is not sufficient to determine whether
a PS stems from ground level or roof. PS 3D positioning accuracy in the order of
1 meter can be obtained, see Perissin (2006). If the PS radar coordinates are only
provided at pixel level, the accuracy depends on the ground resolution and the
precision of the PS height estimates. For an oversampling factor of 2, the ground
resolution of a pixel is 2×10 meters in azimuth and range direction (ERS, Envisat).
The precision of the height estimates determines the precision of the geolocation.
The relation between height H and horizontal position x can be approximated by:

δx =
δH

tan(θi)
, (4.23)

where θi is the incidence angle. The factor between the deviation in the height
estimate and the horizontal location is ∼2.5. Hence, the horizontal location can be
easily more than 10 meters off, if the sub-pixel position is not taken into account.
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Fig. 4.21. A possible double-bounce reflection (PS velocity -9 mm/year). Since the
pavement around the building is subsiding, the SAR reflection is likely to be a curb-
to-wall reflection. The orientation of the building towards the satellite look direction
confirms that a double-bounce reflection is possible.

Fig. 4.22. PS targets in the Netherlands: roofs that are aligned perpendicular to the
satellite look direction. These targets are most likely represented by a direct specular
reflection.
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For better PS identification, several techniques exists in PSI. The first one has al-
ready been mentioned: the PS height estimates. Although its precision may be
limited to 1 meter, it can be sufficient to determine whether the PS reflection stems
from ground level or from a roof top. The other two techniques use respectively
the PS reflectivity pattern as a function of viewing geometry, and polarimetric En-
visat observations. The common goal of these methods is to distinguish between
direct specular reflections and multiple bounce (mainly dihedral) reflections. The
application of PS characterization in this thesis is based on the assumption that
specular reflections from settled buildings founded on a deep subsurface layer are
the most suitable targets for the estimation of subsidence due to deep subsurface
displacements, see section 6.5.

Fig. 4.23. More PS targets in the Netherlands: (left) dike covered with basalt blocks
that is a distributed PS, (right) sluice that is most likely represented by a multi-bounce
reflection.

PS heights

PS heights can be used to estimate whether a reflection stems from the top of a buil-
ding or ground level. The PS heights are incorporated as unknown parameters in the
functional model of PSI, see Eq. (3.11). Their precision depends on the precision of
the double-difference phase observations, number of acquisitions (redundancy), and
the acquisition geometry (distribution of perpendicular baselines). Perissin (2006)
has shown that a height precision of several decimeters can be achieved, provided
that the sub-pixel location of the target is known.

The accuracy of the sub-pixel location, especially the range coordinate, has never-
theless a significant impact on the height estimates, see section 4.2.1. The phase
contribution due to the PS height reads:

ϕk
H,ij

= −4π

λ

B⊥
i

Rmi sin θmi
Hij , (4.24)
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whereas the phase contribution due to the slant-range sub-pixel position reads:

ϕk
η,ij

= +
4π

λ

B⊥
i

Rmi tan θmi
ηmij . (4.25)

Since there is a direct linear relation between the PS height and the range sub-pixel
position, the deviation in PS height due to an incorrect range coordinate can be
expressed as:

δH = −cos θi · δη. (4.26)

For a slant-range pixel spacing of 7.9 meters (ERS), this implies a PS height deviation
of -7.3 meter. If a stack of SAR acquisitions is oversampled by a factor of 2 and
no additional range sub-pixel position estimation is performed, height deviations
of ∼3.5 m can be expected, which is confirmed by Fig. 4.1 in section 4.2.1. For a
decrease of the height deviations, the sub-pixel position of the PS targets needs to
be estimated more accurately. However, this is not straightforward. Because of the
linear dependency between the PS height and the range sub-pixel position, the range
sub-pixel position cannot be incorporated as an additional unknown parameter in
the functional model. This leaves only the option of estimation of the range sub-
pixel position based on the (oversampled) amplitude observations, like it has been
performed for the corner reflectors, see section 4.4 and Fig. 4.14.
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Fig. 4.24. PS height estimations including sidelobe observations. The height deviations
of the sidelobes are dependent on their range location.

It is essential that sidelobes are removed from the PSI results, prior to PS charac-
terization based on PS height estimates. The phase observations of sidelobes are
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duplicates of the phase observations of the actual target, but they have been as-
signed to the wrong range bin, and hence their height estimates are incorrect, see
section 4.3. Fig 4.24 shows an example of height variations of sidelobes: they are in
the range of -20 to +20 meters.

Sidelobe removal procedures can be subdivided into two groups:

1. sidelobe removal based on amplitude observations (convolution with a sinc
pattern), and

2. removal of dependent pixels based on the differential phase observations (Perissin,
2006).

Ideal point targets appear as a sinc pattern in space. Therefore they can be detected
by convolution with a sinc kernel. The full time series of acquisitions can be utilized
by complex multiplication of oversampled PS patches for the entire stack. In this
way, clutter is suppressed and point targets become more prominent. A refined esti-
mation of the sub-pixel location of the point target can be determined by additional
oversampling. This procedure has been applied for the study described in Ketelaar
et al. (2005).

Perissin (2006) has developed a method to detect and remove dependent pixels that
is based on the reversal of the phase observations between subsequent sidelobes.
It is based on a correlation measure of phase observations between pixels in range
and azimuth direction. By using a stack of acquisitions, the detection accuracy of
dependent pixels can be increased.

Sidelobe removal based on amplitude observations has the disadvantage that the
spatial pattern of natural targets deviates from the sinc pattern of an ideal point
target. Hence, sidelobes with strong reflections can still be detected as PS targets,
dependent on the threshold for the similarity between the amplitude pattern and
the sinc pattern. Sidelobe removal based on phase correlation of dependent pixels is
influenced by the phase correlation threshold, see Fig. 4.25. Perissin (2006) shows
however that the likelihood of erroneously rejecting an independent pixel is extremely
low for PS targets with a correlation threshold of 0.8. Hence, sidelobe removal based
on phase observations is preferred. Optionally, an initial selection is performed by
choosing pixels that correspond with local amplitude maxima.

Summarizing: PS heights can be used for PS characterization after removal of side-
lobes. Besides that, the precision of the height estimates needs to be quantified as a
function of the precision of the phase observations, the number of acquisitions, the
acquisition geometry, and the accuracy of the range sub-pixel position.

PS reflectivity as a function of viewing geometry

Another method for PS characterization is based on reflectivity as a function of
acquisition geometry (Ferretti et al., 2005). This method relies on the assumption
that specular reflections are observed from a smaller range of viewing angles than
dihedral reflections. It exploits the variations in incidence angle (perpendicular
baseline) and squint angle (Doppler centroid frequency) to identify the PS reflectivity
behavior.
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Fig. 4.25. Sidelobe removal based on the differential phase observations. The number
of independent pixels is dependent on the correlation threshold. Left: a correlation
threshold of 0.2. Right: a correlation threshold of 0.8. The higher the threshold, the
less targets are incorrectly identified as independent targets.

Ferretti et al. (2005) model the PS amplitude observations as a sinc that is a function
of perpendicular baseline and Doppler centroid frequency. The unknown parameters
are (i) the target extension, and (ii) the perpendicular baseline and Doppler cen-
troid frequency of maximum reflection (the position of the main lobe). The target
extension is the target size across-track and along-track in meters, and is inversely
proportional to the sinc width.

Fig. 4.27 shows the reflectivity of a target in the Groningen area as a function of
incidence and squint angle. The observed amplitudes have first been converted to
backscatter coefficients following the calibration procedure of Laur et al. (2002),
but omitting the corrections for a different viewing geometry. These backscatter
coefficients can be considered as normalized intensity (reflectivity) observations, that
are the input for the estimation procedure to obtain the best fit for the reflectivity
pattern. The best fit of the reflectivity pattern is detected in a pre-defined search
space of the unknown parameters. The target depicted in Fig. 4.27 is most likely a
dihedral, since its reflection stays strong over the entire range of incidence angles.
The position of the main lobe as a function of squint angle deviates from 0, which
indicates that the orientation of the target differs from the satellite ground track of
the master.

Alternating Polarization

Polarimetry can be used to distinguish between even and odd bounce scatterers (van
Zyl, 1989; Hoekman and Quinones, 1998). In case of an odd number of bounces, the
phase angle between HH and VV polarization is 180◦, whereas for an even number
of bounces it equals to 0◦. Hence, polarimetric data can enhance the classification
of PS into specular (or trihedral) and dihedral scatterers.

Contrary to ERS-1 and ERS-2, Envisat is able to acquire dual polarization data.
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Fig. 4.26. Left: the location of the scatterer from Fig. 4.27 in the multi-image reflectivity
map. Right: the corresponding geographic location (source: Google Earth).

The SAR data is acquired in bursts of alternating polarization (HH/VV, HH/HV or
VV/VH), which is referred to as the Alternating Polarization (AP) mode. In this
way, two scenes that cover the same area are acquired simultaneously in different
polarization modes. Inglada et al. (2004) explain how the azimuth spectrum is
subdivided between the two polarimetric modes. It is also shown that the HH and
VV spectra are shifted by a quarter of the bandwidth, and hence the phase difference
maxima will be located around 0.5π and 1.5π, in stead of 0 and π.

The information in an Envisat AP acquisition (HH/VV) is depicted in Fig. 4.28.
From the coregistered HH and VV scenes, the auto-interferogram can be computed.
From this auto-interferogram the HH/VV phase difference can be obtained for PS
candidates. Fig. 4.28 shows an increase of distinctive behavior of HH-VV phase
differences for pixels with higher amplitudes (potential PS candidates) in the auto-
interferogram.

The target information obtained from the Envisat AP acquisitions can be core-
gistered with the ERS PSI results. Although PS are less sensitive for changes in
viewing angle, the information in the AP data is optimally used if the number of
PS targets that are viewed by both ERS and Envisat is optimized. The number of
targets that are observed by both sensors is dependent on the perpendicular baseline
of the ERS–Envisat combination. The optimal ERS–Envisat baseline compensates
for the frequency difference ∆f of 31 MHz between the two sensors (Perissin, 2006):

B⊥ =
∆f

f0
R0 tan(θ − α), (4.27)

where ∆f = fEnvisat − fERS. The baseline that results in the same viewing angle is
∼2 kilometers, where the ERS image is considered as the master image. The orbital
track of Envisat is located to the left of ERS.
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Fig. 4.27. Reflectivity pattern fit: normalized intensity observations as a function of
incidence and squint angle, reflectivity pattern fit and its profiles in range (incidence
angle) and azimuth (squint angle) direction.

4.5.3 The use of a-priori knowledge on the deformation signal

Besides increasing the knowledge on the physical PS properties, the idealization
precision for deformation monitoring can also be improved by identification of the
observed deformation regime(s). Subsequently, the functional or stochastic model
can be adapted to incorporate multiple deformation regimes. If there is a specific
signal of interest, such as subsidence due to gas extraction, selection of a subset of
PS that is likely to represent that deformation regime, may be sufficient. Another
option is to decompose the PS displacements into components due to different de-
formation regimes. This section will address these strategies and comment on their
applicability.
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Fig. 4.28. HH-VV phase difference histograms for pixel selection based on amplitude.
The higher the amplitude, the more distinctive the histogram peaks at 0.5π and 1.5π.
This demonstrates the information on reflection type that is contained by polarimetric
data.

PS selection based on spatio-temporal behavior of the signal of interest

Depending on the signal of interest, PS can be selected based on spatial correlation
with their neighboring targets. In fact, such a selection is often already performed
when selecting PS based on the residual phase coherence (Ferretti et al., 2001) in
the PSI estimation. The PS that have a phase behavior in time according to the
modeled deformation (for example a linear displacement), are likely to have a higher
coherence than a PS that deviates from the modeled deformation. This section starts
however from the PSI results in which all deformation regimes are still present. PS
will subsequently be selected based on the a-priori knowledge of the spatio-temporal
behavior of the signal of interest. Two methods are addressed:

1. outlier removal in grid cells where the displacements are assumed constant,

2. Kriging cross-validation using the covariance function of the deformation signal
of interest.

The first method utilizes a quadtree decomposition of (a prognosis of) the signal
of interest, see Fig. 4.29. Within each quadtree cell, the deformation estimates are
considered constant. A datasnooping procedure is applied to remove outliers, and
PS that are spatially correlated remain. The teststatistic for datasnooping is the
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Fig. 4.29. Quadtree decomposition of interpolated PS velocities. At the slopes of the
subsidence signal, the quadtree grid cells are smaller to capture the characteristics of
the subsidence pattern.

w-teststatistic (Teunissen, 2000b):

w =
cTyQ

−1
y ê

√

cTyQ
−1
y QêQ

−1
y cy

, (4.28)

where Qy is the variance-covariance matrix of the observations, and ê is the vec-
tor of least-squares residuals with the corresponding variance-covariance matrix Qê.
The vector cy selects one observation for which the w-teststatistic is computed, see
section 2.3.1. If the observations are uncorrelated, then the w-teststatistic for the
ith observation simplifies to:

wi =
êi
σêi

=
y
i
− ŷ

i

σêi

, (4.29)

where ŷ
i

is the least-squares estimate of the ith observation.

The second method uses the Kriging cross-validation teststatistic (Wackernagel,
1998):

Z∗
OK(x0) =

n
∑

k=1

wkZ(xk) Ti =
Z(xi) − Z∗

OK(xi)
√

σ2
i + σ2

y

, (4.30)
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where:

Z∗
OK(x0) Ordinary Kriging value on location x0, based on n neighboring points,

wk Kriging weight for a neighboring point k based on the covariance
function,

Z(xi) observation for point i,
Z∗
OK(xi) Kriging estimate for point i, based on n neighboring points excluding

i,
Ti cross-validation teststatistic for point i,
σ2
i Kriging variance,
σ2
y measurement variance.

For each PS, a least-squares interpolated (Ordinary Kriging) displacement or ve-
locity is calculated, based on the surrounding PS estimates, using the covariance
function of the deformation signal to determine the weights. The discrepancy of
this interpolated displacement or velocity with the actual estimate divided by the
measurement and Kriging standard deviation forms the cross-validation teststatis-
tic, which has a standard normal distribution. The Ordinary Kriging estimator is
unbiased, as the condition is applied that the sum of the Kriging weights should be
equal to 1. Only PS with a cross-validation teststatistic that is lower than a certain
threshold are selected: their deformation behavior in agreement with neighboring
targets and the signal of interest.

In fact, datasnooping in quadtree grid cells and Ordinary Kriging are similar. Ordi-
nary Kriging is based on a constant, but unknown mean, similar to the assumption
of constant deformation within the quadtree grid cells. Moreover, the covariance
function that describes the spatio-temporal behavior of the signal of interest can be
easily incorporated in the variance-covariance matrix of the deformation estimates
that are the input for datasnooping. The system of equations for the estimation of
the deformation signal then can be formulated as:

y = Ax+ e = Ax+ s+ n ; Qy = Qss +Qnn, (4.31)

where the design matrix A describes the functional relation between the observations
y and the unknown deformation parameters x. The part of the deformation signal
that is stochastically modeled is denoted by s. Measurement noise is represented
by n. Besides the relation between Kriging cross-validation teststatistics and w-
teststatistics, Kriging methodologies are related to the yR variates theory (Teunissen,
2000a) and Best Linear Unbiased Prediction (BLUP) (Teunissen, 2007). The Best
Linear Unbiased Predictor of the stochastically modeled deformation in Eq. 4.31
reads:

ŝ = QssQ
−1
y (y −Ax̂), (4.32)

which is a weighted linear function of the observables. The BLUP is unbiased and
has minimum variance.

In stead of using a model-driven approach (spatio-temporal behavior of the defor-
mation regime) different deformation patterns can also be distinguished in a data-
driven way. The data-driven method clusters PS that have similar displacement time
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series (Ketelaar and Hanssen, 2003). The deformation regimes that drive the dis-
placements for each cluster have to be identified afterwards. Although this method
may not be efficient for the estimation of a single deformation signal of interest, it
has the advantage that is does not utilize any a-priori assumptions on the underlying
deformation models.

Decomposition of PS displacements according to deformation regime

In the selection of PS based on the spatio-temporal correlation of the signal of
interest, one rejects PS that do contain useful information, but are likely to be
contaminated by other deformation regimes. If it would be possible to estimate
deformation regime components, one would optimally benefit from all PSI displace-
ment estimates. However, such a procedure requires knowledge about the functional
model of all superposed deformation regimes, which behavior can be very complex.
The number of parameters needed to characterize them in the functional model may
exceed the number of observations and lead to an unsolvable system. Therefore, de-
formation regimes are often modeled stochastically based on their spatio-temporal
behavior.

Modeling deformation regimes stochastically using covariance functions to construct
a variance-covariance matrix for the observations is strongly related to techniques
such as factorial Kriging and Principal Component Analysis (PCA) (van Meirvenne
and Goovaerts, 2002). In case of factorial Kriging, multiple variograms are con-
structed to map each spatial component separately. The total variogram is a super-
position of variograms with different correlation lengths. To use factorial Kriging,
knowledge of the different correlation lengths of the deformation regimes is required.
In PCA, the eigenvalues and eigenvectors of the variance-covariance matrix specify
the magnitude and direction of the stochastic processes. A disadvantage of PCA is
that physical interpretation of the eigenvalues and eigenvectors is often not straight-
forward. Other methodologies for the determination of the contribution of diffe-
rent deformation regimes are described by Langbein and Johnson (1997), where the
presence of time-correlated noise besides white noise in geodetic time series is distin-
guished. Spectral estimation of the noise components in a signal is investigated here.
Since spectral estimation has the disadvantage that regular sampling is required, a
maximum likelihood technique that optimizes the magnitudes of the noise types is
investigated (ibid.).

To investigate if the limitations of the above mentioned methods can be overcome,
the applicability of variance component estimation (VCE) (Teunissen, 1988) is consi-
dered in this section. The starting point is the variance-covariance matrix in the
PSI estimation, see Eq. (3.24):

Qy = W (Qn +Qdefo +Qatmo)W
T , (4.33)

and its Taylor series decomposition with respect to the stochastic parameters in
section 4.3.3. In the presence of multiple deformation regimes, Qdefo is further
subdivided:

Qdefo =

D
∑

d=1

Qsd
, (4.34)
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where D is the number of deformation regimes. As is pointed out in section 4.3.3, the
stochastic parameters of the covariance functions of the different deformation regimes
should be independently estimable. This is a major limitation, since it implies that
deformation regimes with a similar spatio-temporal behavior, but with different
correlation lengths, cannot be estimated independently. Another requirement is
imposed on the spatial and temporal sampling of a deformation regime. Correlation
lengths smaller than twice the distance between PS cannot be estimated.

To verify the estimability of the variance factors, simulations have been carried out
in the same way as described in section 4.3.3 but with additional focus on spatio-
temporal sampling and multiple deformation regimes. The VCE simulations focus
on the precision of the variance component estimates. The ratio between the preci-
sion and the estimated value of a variance factor determines its level of significance
and subsequently the separability of the deformation regime it describes. The vary-
ing elements in the simulations are:

• spatial and temporal sampling frequency (number of measurement points
and epochs),

• measurement noise and number of deformation regime parameters.

As most of the cofactor matrices of the deformation regimes are full matrices, VCE
requires a lot of processing time. The simulations have therefore been restricted to
small networks.

Fig. 4.30. Precision of a stochastic model parameter in the estimation of four (left)
stochastic model parameters (measurement noise and spatio-temporal model imperfec-
tions) and six (right) stochastic model parameters (measurement noise, autonomous
temporal movements, and spatio-temporal model imperfections). The precision is vary-
ing with the number of measurement points and the number of epochs (redundancy).

If the number of variance components to be estimated increases while the network
redundancy stays the same, the precision of the estimated variance components
decreases, as can be deduced from Fig. 4.30. The higher the spatial and temporal
sampling frequency, the higher the redundancy and the higher the level of significance
of the variance factor estimates.
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The variance components can only be estimated if they are independent. If two
deformation regimes with the same covariance function are incorporated in VCE,
the matrix N in Eq. (2.12) will not be of full rank, and therefore the solution of the
stochastic parameters can not be uniquely obtained.

Hence, to conclude, the use of a search space of correlation lengths for deformation
regimes with a similar covariance function is investigated. The deformation signal is
in this situation considered as a superposition of signals of fixed correlation lengths
L with unknown magnitudes σ2:

Qdefo =

D
∑

d=1

(σ2
dQLd

). (4.35)

By means of VCE, the magnitudes of the signals of different correlation lengths can
be estimated. If a signal is not present, its magnitude should be 0. Fig. 4.31 shows a
simulation of superposed signals with correlation lengths of 0, 3 and 10 kilometer and
variances 42, 32, and 72 mm2 respectively. Fig. 4.31 shows the estimated variance
factors of the three regimes if these correlation lengths would have been known a-
priori. They match approximately the input variances of the superposed signals.
When the correlation lengths are not known and VCE is performed in a search
space of correlation lengths (0,3,6,9,12 km), it can be seen that the three regimes
are less prominent. The search space regimes are correlating, and moreover since
no positiveness constraints are imposed on the variance factors, the original regimes
cannot be unambiguously distinguished.

This clearly indicates the limitation of the separation of displacement components
using VCE. Components due to different deformation regimes can be separated,
provided that their stochastic model parameters are independent. An example will
be shown in section 6.5.4. The separation of deformation regimes with a similar
covariance function however relies on the geophysical interpretation of the total sum
of all spatially correlated deformation signals.

4.6 Conclusions

This chapter has shown the achievable precision and reliability of PSI as a measure-
ment technique. Furthermore, the concept of idealization precision for the estimation
of the deformation signal of interest has been introduced. Subsequently, the appli-
cability of available techniques to increase the idealization precision for deformation
monitoring within PSI have been described.

Since the accuracy of a measurement technique is not only determined by its preci-
sion, the effect of model errors on the PSI parameter estimates has been investigated.
Shortcomings in the functional model have been evaluated by the propagation of
realistic model errors to the parameter estimates. Sub-pixel position, sidelobe ob-
servations, orbital inaccuracies and ambiguity success rates have been successively
addressed. Inaccurate azimuth sub-pixel position can lead to systematic errors in
the PS velocities of 0–0.5 mm/year. If acquisitions with high Doppler centroid
frequency deviations are included, this error increases to 3 mm/year. Orbital inac-
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Fig. 4.31. Variance factor (magnitude) estimation of superposed deformation regimes
with spatial correlation lengths of 0, 3, and 10 kilometer (left). A search space of
spatial correlation lengths is defined. If the correlation lengths in the search space are
restricted to the correlation lengths that are present in the signal, the magnitudes of the
deformation regimes are correctly estimated (middle). This does not hold for an arbitrary
search space of correlation lengths (right). Hence, the unknown correlation lengths of
the deformation regimes cannot be estimated by an arbitrary pre-defined search space
of correlation lengths.

curacies can lead to a systematic errors as well. Deviations in the PS velocities of
up to 1 mm/year over 100 kilometers have been shown. Sidelobe observations affect
the topographic height estimates and are not independent: they need to be removed
if the PS heights are used for PS characterization. Finally, it has been shown that
unwrapping success rates of 1 cannot be guaranteed, certainly not in the presence of
atmospheric disturbances in areas with a low PS density in the order of 5 PS/km2.

By means of external validation in the Delft corner reflector experiment, it has been
shown that the achievable precision of Envisat double-difference displacements is
∼1.6 mm. The precision of leveling double-difference displacements is similar: ∼1.5
mm. Moreover, the correlation of Envisat and leveling double-difference displace-
ments is 94%. A slightly lower correlation is obtained between ERS-2 and leveling
double-differences (84%), most likely due to the high Doppler centroid frequency
deviations in the ERS-2 stack. From this controlled experiment, it can be con-
cluded that the achievable precision of InSAR is in the order of millimeters, which
is comparable to the leveling technique.

The estimation of stochastic model parameters is dependent on the redundancy in
the system of equations, and can therefore only be performed on the condition that
the success rates equal 1, which is not necessarily fulfilled. In the estimation of
stochastic model parameters there is a trade-off between the number of stochastic
parameters that are estimated and their precision. Furthermore, they need to be
independent. The Dilution of Precision for PSI has been introduced as a reference
independent scalar quality measure for the variance-covariance matrix.

Quality control in PSI does not restrict to a precision and reliability assessment of the
technique itself. The concept of idealization precision for deformation modeling has
been introduced to describe how well the deformation estimates represent the signal
of interest. Different deformation regimes are distinguished: structural instabilities,
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shallow mass displacements and deep mass displacements. Contrary to traditional
geodetic techniques, measurement points in PSI are less well defined. Moreover,
the type of reflection (specular, dihedral, trihedral) determines which deformation
regimes are present in the measured displacements.

To improve the idealization precision of PSI for deformation monitoring two metho-
dologies have been explained:

• PS characterization by utilizing the topographic height estimates, polarimetric
observations and the reflectivity pattern as a function of viewing geometry, and

• statistical methods that either select PS that represent a certain deformation
regime (Kriging cross-validation, datasnooping), or decomposition of the PS
displacements into components due to different deformation regimes (variance
component estimation).

Since it has been shown in section 4.2.4 that ambiguity success rates of 1 cannot be
guaranteed, the sensitivity analysis of the PSI parameter estimates for model errors
in this chapter represents the most optimistic scenario. It is however possible to cre-
ate redundancy in PSI deformation monitoring, despite of ambiguity success rates
that are not equal to 1. This is achieved by utilizing multiple overlapping indepen-
dent satellite tracks, which observe the same deformation signal. Hence, redundancy
in deformation monitoring is introduced which enables a reliability assessment. The
implementation of this multi-track procedure will now be explained in chapter 5.



Chapter 5

Multi-track PSI

In chapter 4 it has been demonstrated that the achievable precision of PSI double-
difference displacements is the order of several millimeters. Since a precise deforma-
tion estimate does not imply a reliable estimate, the influence of model errors has
been investigated as well, under the assumption of correct phase unwrapping, see
section 4.2. However, ambiguity success rates of 1 cannot be guaranteed, especially
not in areas with a low PS density of <5 PS/km2. Hence, an additional assessment
of the reliability of the PSI deformation estimates is required.

This chapter introduces multi-track PSI: the same deformation signal is observed
from independent overlapping satellite tracks and hence redundancy is introduced
in the PSI estimates. The independent overlapping tracks can be formed from diffe-
rent viewing modes (ascending, descending) or from different sensors. Moreover,
depending on the latitude of the area of interest, adjacent tracks can be utilized. In
the Netherlands, adjacent tracks are overlapping more than 50%. This implies that
when combining ascending and descending tracks, the deformation signal of interest
is monitored by four independent stacks of observations. Due to the redundancy
that is introduced, multiple overlapping tracks can be exploited for a reliability
assessment of the PSI deformation estimates.

The PSI estimates of each track have their own coordinate system (datum) that is
defined by the acquisition geometry of the master scene. Hence, the multi-track PSI
estimates need to be referenced to a common datum, before they can be integrated.
In this chapter, a mathematical framework is introduced for the datum connection
of multiple tracks, which is simultaneously used to evaluate the reliability of the PSI
technique itself. The datum connection procedure consists of two steps:

1. the definition of a unified coordinate system (Ketelaar et al., 2007a),

2. connection of the PSI parameter estimates (Ketelaar et al., 2007b, 2008b).

The datum connection procedure starts with the definition of a unified radar coor-
dinate system that is defined by the viewing geometry of the so-called master track.
Subsequently, the transformation between the PSI estimates of different tracks (with
a different reference PS) is estimated based on the misclosures between the PSI es-
timates. Due to different viewing geometries, many of the detected PS of different
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tracks will be physically different. The integration and validation of multi-track PSI
estimates is therefore based on the fact that they independently monitor a common
deformation signal, although the actual targets may be different.

This chapter starts with the datum connection of PS estimates within a single track
in section 5.1. Due to computer memory limitations, the Delft PSI processing is per-
formed using multiple PS networks within a track, and hence requires single-track
datum connection. Subsequently, section 5.2 focuses on multi-track datum connec-
tion and the reliability assessment of the PSI deformation and height estimates.
Finally, section 5.3 shows how the PSI deformation estimates along the satellite line
of sight can be spatially decomposed by utilizing the different viewing geometries of
the overlapping tracks.

5.1 Single-track datum connection

Depending on the coherence characteristics of the area of interest, the first order PS
network can easily contain several tens of thousands of PS candidates. Multiplied
by the number of interferometric combinations, this leads to memory problems in
solving the system of equations. Therefore, the estimation of the parameters of inte-
rest is performed in smaller spatially overlapping PS networks, that are subsequently
connected.

In geodesy, datum connection is commonly used for the integration of overlapping
point fields, with the purpose to obtain consistent coordinates in the same da-
tum (Teunissen et al., 1987; Baarda, 1981). The transition between two datums
can be parameterized as a geometrical transformation, for example as a similarity,
orthogonal or affine transformation. To estimate the transformation parameters,
identical points are required that are present in both datums.

Datum connection starts with the adjustment of the common points. Subsequently
the points outside the overlap (the free points) are corrected based on their corre-
lation with the points in the overlap. As an example, the basic equation for the
estimation of a transformation between two point fields reads:

E{
[

z
w

]

} =

[

I 0
I At

] [

z
t

]

, (5.1)

where z and w are the coordinates of the common points in the overlap, and t is
the transformation parameter. This model of equations can be reformulated into a
system of equations that is based on coordinate differences:

E{w − Iz} = Att. (5.2)

If one of the point fields is restricted to remain unchanged, for example in the
integration of new observations with benchmarks in an established datum, specific
types of connection procedures are applied, such as pseudo least-squares adjustment
(ibid.).

A testing procedure can be integrated to indicate the precision and reliability of
the point field connection. The procedure can focus on single observations, observa-
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tions per point, choice and significance of transformation parameters, the variance-
covariance matrix and the distribution of the residuals. The free points are observed
in only one datum, and can therefore not be tested.

In PSI, the datum connection procedure comprises of both the conversion to a unified
coordinate system, and the connection of the PSI parameter estimates. Since the
PS in the overlapping networks already refer to the same coordinate system defined
by the master scene, the first step in the datum connection procedure (definition of
a unified coordinate system) can be omitted. Hence, single-track datum connection
is restricted to the connection of PSI estimates of the overlapping networks. These
PS networks may all have a different reference PS.

The input in the connection of PSI estimates are the PS displacement (or velo-
city) and height estimates of the overlapping PS networks, including their variance-
covariance matrix. The transformation between the PSI estimates of the different
networks is parameterized as a translation. This should be sufficient, since the over-
lapping area contains the same PSI estimates, that only refer to a different reference
PS.

The connection of PS networks is independent of the choice of the reference PS.
The relative velocity estimates and their precision remain unchanged. This also
holds, when the reference point exhibits non-linear displacements. To demonstrate
this, consider overlapping PS networks with displacements d. The reference PS of
the displacement networks are a and b, and PS i and j are two common PS in the
overlapping part. Reference PS a exhibits non-linear behavior and can be modeled
as a second order polynomial, where v is the unknown PS velocity, u the unknown
second order component and T k is the temporal baseline for the kth interferometric
combination (the design matrix):

E{dka} = T kva + (T k)2ua, (5.3)

for k = 1...K, where K is the number of interferometric combinations. Reference
PS b and PS i and j are behaving linear:

E{dkb} = T kvb ; E{dki } = T kvi ; E{dkj } = T kvj . (5.4)

The displacements of PS i with reference to a and b can be computed as:

E{dki(a)} = T kvi − T kva − (T k)2ua ; E{dki(b)} = T kvi − T kvb. (5.5)

Similarly holds for PS j:

E{dkj(a)} = T kvj − T kva − (T k)2ua ; E{dkj(b)} = T kvj − T kvb. (5.6)

The relative displacements between PS i and PS j are the same in both networks,
regardless of the reference PS:

E{dkij(a)} = E{dkj(a)} − E{dki(a)} = T kvj − T kvi,

E{dkij(b)} = E{dkj(b)} − E{dki(b)} = T kvj − T kvi.
(5.7)

If the displacement series are correctly unwrapped, the nonlinear part of the refe-
rence point will cancel in the relative velocities between the common points in the
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overlap. This means that the relative velocity differences in the overlap are the same
irrespective of the displacement behavior of the reference points.

For the overlapping PS networks within a single track, PSI parameter estimation
including the estimation of atmospheric phase screens and phase unwrapping are
performed independently. After application of the datum connection, the PSI esti-
mates should agree within the limits that are defined by the precision of the PSI
parameter estimates and the potential model errors, see chapter 4. The application
of single-track datum connection for the tracks that cover the Groningen area is
addressed in section 6.3. There, the misclosures are evaluated in the overlap of four
PS networks that cover the entire scene.

5.2 Multi-track datum connection

Systematic effects in the PSI parameter estimates due to residual errors that propa-
gate over a large spatial extent are difficult to identify within a single stack, certainly
when the success rates of phase unwrapping and the APS accuracy decrease in rural
areas with a low PS density. The combination of multiple independent tracks intro-
duces redundancy in the estimation of the deformation signal and hence enables a
reliability assessment.

The integration of PSI estimates from multiple tracks is considered as a datum
connection problem. The PSI estimates of independent tracks are located in their
own local radar coordinate datum and refer to their own reference PS. As a conse-
quence, a datum connection between all tracks needs to be established. This datum
connection consists of two steps:

1. the definition of a unified coordinate system,

2. connection of the PSI parameter estimates (displacements, heights).

In the datum connection procedure, the deformation estimates from multiple in-
dependent tracks are integrated. Therefore, the likelihood that PS from different
tracks refer to the same physical target or deformation regime should be optimized.
In other words, the multi-track PS coordinates should be unambiguous. The location
of a PS can either be expressed in the radar coordinate system or in a geographic
coordinate system. Georeferencing each track independently does not resolve for
the range and azimuth timing error per track and the uncertainty in the reference
PS height. Hence, it is proposed to define a common radar coordinate datum: the
acquisition geometry of one of the tracks that is appointed as master track . All
other tracks are referred to as slave tracks.

The conversion of multiple overlapping tracks to a common radar coordinate datum
leads to a consistent PS localization. Furthermore, it reduces the degrees of freedom
in the georeferencing to one range and azimuth timing error. Moreover, the uncer-
tainty in reference PS heights decreases in the comparison of multiple tracks, prior
to georeferencing.
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5.2.1 Unified radar datum

This section describes the transformation of the local radar coordinates per track to
a unified radar datum. It starts with the estimation of transformation parameters
based on precise orbits, that are subsequently refined by utilizing the PS point fields
or the multi-image reflectivity maps.

Orbit based radar coordinate transformation

Based on the precise orbits of the master scenes for each track, an approximate radar
coordinate transformation between the tracks can be estimated. For T tracks, T −1
independent transformations can be defined. If the ground level height differences
are limited (< 50 meters), relative pixel location errors are in the order of 0.1 pixel
for a baseline of 50 kilometers (between adjacent tracks). This falls within the
coregistration precision. Hence, uniformly spaced subsets of radar coordinates in the
master track reference datum are transformed to geographical WGS84 coordinates
on the ellipsoid (see Fig. 5.1), that are subsequently projected to the radar datum
of a neighboring (overlapping) track. This results in two sets of radar coordinates
that refer to the same geographical locations.

Fig. 5.1. A different incidence angle of adjacent tracks results in a different ground
resolution (left). The effect of this difference in resolution is visible in the projection of
a set of equally spaced radar coordinates in the slave track to the radar datum of the
master track (right).

If the ground level height differences in the area of interest exceed ∼50 meters, the
same procedure can be followed, but the ellipsoidal heights have to be utilized in
the transformation to and from the geographic locations. One option is to obtain
the heights from an external DEM. The other option is to utilize the estimated PS
heights. Since PS height estimates are relative to a reference PS, the ellipsoidal
height of this reference PS needs to be obtained.
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The offsets between the radar coordinates in the master and slave track of the points
on the ellipsoid are regarded as the observations in the system of equations for the
estimation of the radar coordinate transformation between the tracks. The radar
coordinate transformation is parameterized as a pth degree polynomial:

∆ξ(ξ, η) =
∑p
i=0

∑i
j=0 αi−j,jξ

i−jηj ,

∆η(ξ, η) =
∑p
i=0

∑i
j=0 βi−j,jξ

i−jηj ,
(5.8)

where ∆ξ and ∆η are the offsets in respectively azimuth and range direction. The
parameters α and β describe the transformation from the radar datum of the slave
track to the radar datum of the master track. This transformation can be esti-
mated for any pair of overlapping tracks, both adjacent and cross-heading tracks,
see Fig. 5.2.

Fig. 5.2. The input for the radar coordinate transformation are two set of radar coor-
dinates in the datum of respectively the master and the slave track (left). The satellite
direction is normal to the plane of the paper. The different viewing geometry of over-
lapping tracks can be visualized in the radar datum of the master track (right). Here,
the relative distortion of cross-heading tracks is depicted

.

The estimation procedure of the radar coordinate transformation parameters is fol-
lowed by a testing procedure that evaluates the residuals over the full overlap be-
tween two tracks. Depending on the precise orbits and the relative distortion of
the radar coordinate system, the degree of the polynomial has to be increased to
ensure that the transformation is at sub-pixel level. Tab. 5.1 shows the results of a
case study for the Groningen area (see section 6.4) that indicates that a polynomial
degree of 5 was required to ensure a radar coordinate transformation at sub-pixel
level both for adjacent and cross-heading tracks.
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Table 5.1. Precision of the transformation from slave track radar datum to master
track radar datum for different polynomial degrees. The maximum range coordinate
residuals (pixels, oversampling factor 2) are listed for the points that have been used in
the estimation of the transformation parameters.

polynomial degree adjacent cross-heading

2 3 40
3 0.3 6
4 0.15 1.5
5 0.1 0.25

Matching using PS point fields

The orbit based multi-track radar coordinate transformations do not account for
timing errors in range and azimuth direction. These have to be estimated based on
the image contents. Under the null hypothesis, timing errors are parameterized as
an offset in range and azimuth direction.
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Fig. 5.3. PS point fields of six tracks in a unified radar datum: the PS locations
correspond with the buildings and structures in the terrain.

PS targets are mainly located at man-made features and structures in the terrain
that do not suffer from temporal decorrelation. Hence, PS in overlapping tracks
are located in the same urban(ized) areas, although the reflection origin and type
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Fig. 5.4. Datum connection based on PS point fields: search space for the optimal range
and azimuth shift for (a) two cross-heading tracks and (b) two adjacent tracks. The
optimal range and azimuth shift correspond with the shifts that maximize the number
of corresponding PS locations.

may not be the same. Since similar PS point fields are available for each track, the
optimal shift between their location fields can be estimated, even for cross-heading
tracks, see Fig. 5.3. Fig. 5.4 shows the search space of range and azimuth shifts
for the optimal match between PS point fields of different tracks. Compared to the
situation for cross-heading tracks, the maximum of corresponding PS that indicates
the optimal range and azimuth shift is more evident for adjacent tracks. Still, the
estimation of the range and azimuth shift is sub-optimal, due to the presence of local
maxima. Hence, additional information will be exploited for the estimation of the
range and azimuth shift: the multi-reflectivity maps.

Matching using multi-image reflectivity maps

Besides the PS locations, the multi-image reflectivity maps per track can be utilized
to estimate a refined radar coordinate transformation between tracks. As the viewing
geometry from different tracks is not the same, the ground resolution and orientation
of the overlapping multi-image reflectivity patches vary, see Fig. 5.5. Hence, the
following procedure is applied:

1. selection of evenly distributed multi-image reflectivity windows at locations of
high amplitude,

2. resampling of the selected windows to the master track radar coordinate system
using the initial orbit based transformation,

3. estimation of the range and azimuth shift using correlation optimization.

Matching using multi-image reflectivity maps is incoherent matching, contrary to
the coregistration of SAR scenes, which is based on the complex coherence of the
coregistration windows.
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In stead of using a search space for the determination of the range and azimuth
shift, the application of an image matching technique that is used in digital pho-
togrammetry has been investigated (Gruen and Baltsavias, 1985). The multi-image
reflectivity windows of different tracks can be seen as geometrically transformed
patches of amplitude observations, see Fig 5.5. If the height differences in multi-
track multi-image reflectivity windows are less than ∼50 meters, the transformation
between the patches can be locally approximated by a similarity or affine transfor-
mation, see Fig. 5.2.

Fig. 5.5. Cross-heading multi-image reflectivity windows. Due to the different viewing
geometry, the windows are rotated with respect to each other and the ground resolution
is slightly different. Despite of the different viewing geometry, reflections that refer
to the same structure/building can be observed (red points). Furthermore, the spatial
pattern of fields in this rural area can be recognized.

By means of the initial orbit based transformation, the multi-image reflectivity win-
dows of the slave track can already be approximately resampled to the radar datum
of the master track. The range and azimuth shift are the only parameters that are
additionally required to identify common targets in the master track and the slave
track. Hence, the transformation between the multi-image reflectivity window in
the master track and its corresponding resampled window in the slave track is pa-
rameterized as a translation in range and azimuth direction. The equivalent of the
matching equations from photogrammetry (ibid.) would then read:

E{f(ξ, η) − g0(ξ, η)} =
δg0(ξ, η)

δξ
dξ +

δg0(ξ, η)

δη
dη, (5.9)
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where:
ξ azimuth coordinate,
η range coordinate,
f(ξ, η) amplitude observations in the multi-image reflectivity window

of the master track,
g0(ξ, η) amplitude observations in the multi-image reflectivity window

of the slave track,
δg0(ξ,η)
δξ , δg

0(ξ,η)
δη amplitude gradients in azimuth and range direction,

dξ,dη differential azimuth and range coordinates.

dξ and dη can be optionally parameterized as a higher degree polynomial. The
system of equations is linearized and solutions are obtained in an iterative way.
The advantage of this method is that it guides the estimation of the transformation
parameters; it is not necessary to explore the entire search space of potential range
and azimuth shifts. The disadvantage of the application of this method to radar data
is that the sensitivity of the amplitude observations for the radar viewing geometry
decreases the robustness of the image matching technique.

Finally, it has been chosen to estimate the range and azimuth shifts by means of
correlation optimization. Optionally, the image based matching technique has been
additionally applied to further increase the precision of the range and azimuth shifts.
The obtained precision is 0.25 pixel for adjacent tracks, and 0.5 pixel for cross-
heading tracks. This is sufficient to identify multi-track PS within resolution cell
distance.

5.2.2 Connection of PSI estimates

Now the locations of all PS have been defined in the radar datum of the master
track, we can proceed to the second step of the datum connection procedure: the
connection of the multi-track PSI estimates.

Clusters of multi-track identical and neighboring PS

The transformation of PS coordinates to the radar datum of the master track en-
ables the identification of physically identical scatterers and clusters of neighboring
scatterers in adjacent and even cross-heading tracks, see Fig. 5.6. The incidence
angle of adjacent tracks differs only a few degrees, implying that dihedral and trihe-
dral targets that point in the satellite look direction are likely to be observed from
multiple tracks. In contrast, cross-heading tracks have an nearly opposite viewing
direction. Cylindrical poles for example are observed in ascending and descending
mode (Perissin, 2006), but such scatterers do not occur frequently in a rural area.

We assume that physically identical targets represent the same deformation regime,
provided that the reflection type (specular, dihedral) is the same. This does not
imply that only identical scatterers can be used for the datum connection. The
detected PS in overlapping tracks clearly follow man-made structures in the terrain,
as shown in Fig. 5.7. This allows grouping of nearby PS, which displacements are
potentially caused by the same deformation regime(s). The shorter the PS distance,
the higher the likelihood that they represent the same deformation regime(s).
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Fig. 5.6. Figure 7: Schematic overview of PS clusters in overlapping adjacent and
cross-heading tracks. The vertical gray lines represent the PS clusters: groups of PS
from different tracks that have (approximately) the same coordinates in the radar datum
of the master track.

Multi-track system of equations

The multi-track PS clusters are utilized to compute the transformation parame-
ters that perform the integration of the multi-track PSI estimates (displacements,
heights). Since the PS within a cluster refer to identical targets or are at a close
distance, their displacement estimates are assumed to represent the same deforma-
tion regime, apart from a translation due to a different reference PS. One option for
the integration of PSI displacement estimates is a joint estimation of the deforma-
tion signal. However, this requires a-priori knowledge on the functional modeling of
(unknown) deformation regimes. Another option is to utilize the misclosures within
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Fig. 5.7. Distribution of buildings and urban(ized) areas in the northern part of the
Netherlands (left) and geocoded PS from overlapping tracks (middle,right). Middle: PS
from two descending tracks. Right: PS from two ascending tracks. It can be seen that
the PS coincide with man-made structures in the terrain.

a PS cluster as observations in the connection of PSI estimates. Here, it is not
necessary to attribute the PS clusters to a certain deformation regime: the displace-
ments in different tracks only differ due to a different reference PS, irrespective of
the deformation regime(s).

If a PS cluster consist of PS from T tracks, only T − 1 independent observations
can be formed for this cluster. As an example, suppose the area of interest has
been observed by four tracks T1. . .T4. Furthermore, suppose that M clusters of
neighboring PS can be formed that are observed by all four tracks. The multi-track
PS estimates describe the same deformation regime but refer to a different reference
PS. The PSI parameter estimates (displacements, heights) should theoretically only
be subject to an unknown translation (bias) because of a different reference PS.
Hence, under the null hypothesis of a translation between the estimated PS velocities
of the tracks, the functional model reads:

E{t} = Ax, (5.10)
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IM 0 −IM 0
IM 0 0 −IM
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tT13
0

tT14
0



 , (5.11)

where:
t vector of misclosures,
v estimated PS velocity,
t0 translation parameter,
⊗ Kronecker product,
I identity matrix,
eM M×1 vector with all ones.
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The corresponding variance-covariance matrix of the input observations (the PSI
velocity estimates) reads:

Qt =









QT1
v 0 0 0
0 QT2

v 0 0
0 0 QT3

v 0
0 0 0 QT4

v









, (5.12)

where QTi
v is variance-covariance matrix of the velocity estimates for track Ti. Due

to the double-difference combinations, QTi
v is a full matrix. Due to the linear com-

binations in Eq. (5.11), the variance-covariance matrix of the velocity estimate mis-
closures is a full matrix as well, although the PSI estimates from different tracks are
uncorrelated.

If the PSI parameter estimations for a single track are performed per arc, the stochas-
tic model is restricted to the variance-covariance matrix of the parameter estimates
(displacements, heights) per arc. The interpretation of either the coherence or the
displacement variance as an absolute precision measure leads to the misleading con-
clusion that PS further away from the reference PS have a lower precision. A so-
lution in the situation where covariances between the PSI parameter estimates are
not available is to reconstruct a substitute variance-covariance matrix. This is per-
formed based on the variance-covariance matrix of double-differences observations
Qy, see e.g., Eq. (4.19), and the design matrix A, see Eq. (3.12):

Qx̂ = (ATQ−1
y A)−1. (5.13)

The system of observation equations from Eq. (5.11) can be formulated as a system
of condition equation as well (Teunissen, 2000a). The system of condition equations
has the advantage that the variance-covariance matrix of the velocity estimate mis-
closures does not need to be inverted to obtain the translation parameter estimates.
The design matrix of the model of observations equations and the model of condition
equations are denoted as A and B respectively. The multiplication of both design
matrices equals the zero matrix:

BTA = 0. (5.14)

For Eq. (5.11) a the B matrix would read:

BTA =





eM−1 −IM−1 0 0 0 0
0 0 eM−1 −IM−1 0 0
0 0 0 0 eM−1 −IM−1









eM 0 0
0 eM 0
0 0 eM



 = 0,

(5.15)

where B has the dimension (3·M)×(3 ·(M−1)) and A has the dimension (3·M)×3,
for four tracks.

Step-wise estimation based on PS distance

When PS clusters with increasing mutual PS distance (see Fig. 5.8) are included in
the connection of deformation estimates, the dimension of the system of equations of
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Eq. (5.10) grows rapidly. Hence, this section investigates if step-wise (static recur-
sive) estimation of the transformation parameters in the connection procedure can be
applied. Step-wise estimation of the transformation parameters would reduce the di-
mensions of the system of equations, and hence the transformation parameters could
be obtained relatively quick. If both the estimates and their variance-covariance ma-
trix are taken into account in each recursive step, the step-wise solution equals the
solution obtained in batch mode (Teunissen, 2001a). In each step k the following

Fig. 5.8. Step-wise estimation of transformation parameters using clusters of identical
or neighboring PS from multiple tracks. In each recursive step, clusters with a larger
mutual distance are included.

model is solved:

E{
[

x̂(k−1)

y
k

]

} =

[

I
Ak

]

x ; D{
[

x̂(k−1)

y
k

]

} =

[

Qx̂(k−1)
0

0 Qk

]

, (5.16)

where x̂(k−1) are the transformation parameters obtained in the previous step with
variance-covariance matrix Qx̂(k−1)

. The vector y
k

contains the PS cluster misclo-
sures with variance-covariance matrix Qk. The step-wise connection can be per-
formed in two ways:

1. consecutive connecting of (parts of) the tracks, or

2. connection of all track simultaneously using PS clusters of increasing mutual
distance.

Since the connection procedure is based on observations from different tracks that are
assumed to represent the same deformation signal, the second option is chosen. The
step-wise estimation is initialized by the PS clusters within resolution cell distance.
In each subsequent step, the observations of PS clusters with a larger mutual distance
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Fig. 5.9. Multi-track offset (null hypothesis) or offset plus trend (alternative hypothesis).

are added. All PS are uniquely addressed to only one cluster. Datasnooping is
applied to remove PS cluster observations that do not refer to the same deformation
regime.

A condition on the application of the step-wise procedure is that the partitions of
PS observations added in each step should be uncorrelated. Only for the connection
of entire tracks this condition is valid. Hence, strictly spoken, step-wise connection
cannot be applied. Further research will have to address the practical implications
of considering the PS clusters in subsequent steps as uncorrelated.

5.2.3 Spatial trends

If the PS parameter estimates in the individual tracks would be free of model inac-
curacies, it is sufficient to model PSI parameter estimate misclosures between tracks
by a translation (bias). However, due to possible residual orbital, atmospheric and
unwrapping errors, an alternative hypothesis is evaluated that includes a spatial
trend in range and azimuth direction:

HA :
[

I −I
]

[

vT1

vT2

]

=
[

ξ η 1
]





tT12

ξ

tT12
η

tT12
0



 , (5.17)

where tξ and tη are the azimuth and range dependent transformation parameters,
see Fig. 5.9.

The hypotheses are evaluated by means of the overall model test and the indi-
vidual w-teststatistics (Teunissen, 2000b). w-teststatistics are usually applied to
trace outliers in individual observations, but also their distribution can also be used
to trace systematic effects. If the functional and stochastic model are correct, the
w-teststatistics have a standard normal distribution. Consequently, deviations from
this standard normal distribution indicate possible unmodeled effects. Furthermore,
the misclosures after datum connection are evaluated, and should theoretically be
within the range of their precision from the single track estimation.

After datum connection, the PSI results are mutually consistent in the reference sys-
tem of the master track. The precision of the estimated transformation parameters
follows from the least-squares adjustment based on Eq. (5.11). However, although
the transformation parameters may have a high precision, the reference system of
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the master track itself can still contain small systematic components due to possible
residual orbital, atmospheric and unwrapping errors. These cannot be unambigu-
ously addressed to either real deformation signal or unmodeled residual components
in the PSI estimation. By utilizing the large spatial extent that is covered by a track
and a-priori assumptions on non-deforming areas, the spatial trend in the reference
track can be estimated and removed. This is justified, as long as the corrections and
the error bounds are clearly defined.

5.3 Decomposition of line of sight deformation

Because the deformation estimates of independent tracks observe the same deforma-
tion signal from different viewing geometries, the line of sight (LOS) displacement
can be further decomposed into horizontal and vertical displacements. If the de-
formation signal of interest includes a horizontal component and is observed from
only one track, a-priori knowledge on the deformation mechanism is required. It
two tracks are available, preferably an ascending and a descending track, the ver-
tical component and one horizontal component can be directly computed from the
PSI estimates. This would also aid the discrimination between different deformation
regimes: shallow compaction may be dominated by vertical displacements, whereas
subsidence due to gas and oil extraction exhibits horizontal displacements as well.

5.3.1 System of equations

The multi-track PS clusters from the datum connection are utilized for a further
decomposition into horizontal and vertical displacements (Hanssen, 2001). Each PS
cluster should contain at least two and maximum four PS originating from different
viewing geometries (ascending, descending, and adjacent tracks). For a cluster of
two multi-track PS, a decomposition into the vertical component and one horizontal
component along a certain viewing direction is possible. For a cluster of three multi-
track PS theoretically a decomposition into vertical, east and north components is
possible. Finally, if a cluster consists of four multi-track PS, this decomposition
can even be performed redundantly. However, due to the acquisition geometry, the
north component can only be obtained with a low precision for a single PS cluster
(ibid.).

The system of equations for the decomposition of PS deformation estimates into
the vertical component and a horizontal component in the ascending look direction
reads:

E{
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with:
dr displacement along LOS,
du vertical displacement,
dhald

projection of horizontal displacement in azimuth look direction,
(a) adjacent track.

The incidence angle θi is determined from near range to far range with reference
to the WGS84 ellipsoid. The heading of the satellite is computed from the orbits
of the master acquisitions for each track. The satellite heading difference between
ascending and descending mode is denoted by ∆α.

5.3.2 Quadtree decomposition

If the deformation signal of interest covers a large spatial extent and is spatially
correlated (smooth), the redundancy in the displacement decomposition can be in-
creased by merging neighboring multi-track PS clusters. This implies that for a
certain spatial area all multi-track PSI estimates are utilized to estimate one verti-
cal component and one horizontal component. It is based on the assumption that
the vertical and horizontal component can be considered approximately constant
over a certain area within the accuracy range of the multi-track PSI estimates. An
increased redundancy results in a higher precision of the spatial decomposition esti-
mates.

The grouping of multi-track PS clusters for spatial decomposition can be based on
a quadtree decomposition of the deformation signal. The quadtree decomposition
starts with the subdivision of the deformation signal into square blocks of equal size.
Each block can be further subdivided, depending on a teststatistic that represents
the homogeneity of the deformation signal within that block. For example: a block is
further subdivided is the difference between the minimum and maximum PS velocity
exceeds 1 mm/year. Fig. 4.29 shows an example of a quadtree decomposition of a
deformation signal. On the edges of the subsidence bowls, where the displacement
rates change more rapidly, the quadtree decomposition is more detailed. On the
contrary, in stable areas, blocks have not been subdivided.

5.4 Conclusions

A mathematical framework for the datum connection of multiple independent over-
lapping tracks has been newly developed. Based on orbits, PS point fields, and the
multi-image reflectivity maps per track, it has been demonstrated that multi-track
PS locations can be converted into a common radar datum defined by the master
track. Subsequently, clusters of identical or neighboring PS from different tracks
are detected. Based on the multi-track misclosures, transformation parameters are
estimated for the datum connection of PSI estimates. After the datum connection
of multiple independent overlapping tracks, misclosures between the tracks can be
analyzed and hence a statement on the reliability of the results can be given. Fur-
thermore, the deformation estimates can be further decomposed into vertical and
horizontal components based on the different viewing geometry of the tracks. A
quadtree decomposition of the signal of interest can be applied to increase redun-
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dancy in the estimation of the spatial components.

By including the multi-track connection procedure in PSI quality control, both the
precision and the reliability of the PSI technique can be assessed. Chapter 6 will now
demonstrate the applicability of PSI for monitoring subsidence due to hydrocarbon
production in the Groningen area.



Chapter 6

PSI subsidence monitoring in Groningen

In this chapter, the concepts of chapter 3, 4 and 5 are applied for monitoring sub-
sidence due to hydrocarbon production. The focus lies on the gas fields in the
northeastern part of the Netherlands, in particularly on the Groningen gas field. It
has a diameter of ∼30 kilometers and is covered by six ERS and Envisat tracks.
These tracks—each with a footprint of ∼100×100 km—cover together almost the
entire northern part of the Netherlands and a part of Germany, see Fig. 6.1. Due
to the latitude of the Groningen gas field (53◦), the adjacent tracks overlap approx-
imately 50%. The collected ERS SAR images have been acquired in image mode
with VV polarization since 1992. Envisat has started data acquisition in this mode
in 2003.

This chapter starts with the application of InSAR processing and the Delft PSI
parameter estimation (DePSI) for this specific study in section 6.1. Subsequently,
the ERS and Envisat PSI deformation and height estimates will be presented in
section 6.2. The precision of the PSI estimates is investigated in section 6.3. The
overlap between PS networks in single tracks is utilized to cross-check the precision
measures. The effect of unmodeled residual components is addressed as well: a large
scale spatial trend is clearly visible in the Envisat PS velocity estimates. The po-
tential causes of this trend are investigated, and the strategy to remove the trend.
After addressing the precision of the PSI estimates and potential model errors, the
multi-track procedure is applied for a reliability assessment in section 6.4. When the
precision and reliability of PSI as a measurement technique have been quantified,
section 6.5 focuses on increasing the idealization precision of PSI for monitoring sub-
sidence due to hydrocarbon production. A-priori knowledge on the spatio-temporal
behavior of the signal of interest will be utilized. Furthermore, the available tech-
niques for PS characterization are investigated. The purpose of this chapter is to
present PSI deformation estimates for monitoring subsidence due to hydrocarbon
production, including a description of their (idealization) precision and reliability.

6.1 InSAR processing strategy

The PSI analyses over the Groningen area have been performed using the Delft
Object-oriented Radar Interferometric software (Doris, (Kampes and Usai, 1999))
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Fig. 6.1. Spatial coverage of the six ERS tracks that cover the Groningen subsidence
area.

and the Delft implementation of PSI (DePSI). This section explains how these con-
cepts (see section 3.1 and 3.4) have been applied in practice.

6.1.1 Data coverage and master selection

The ERS and Envisat tracks that cover the Groningen area are listed in Tab. 6.1.
Each track has been processed using interferometric combinations that refer to a
common master. The master acquisitions have been selected based on the stack
coherence, see Eq. (3.8). Additionally, since entire scenes have been processed, the
common ground coverage of the acquisitions within a stack has been considered as
well, based on the geographic location the acquisitions. The location of the majority
of the acquisitions in a stack varies within ∼0.02 degrees. Only the scenes with a
deviating Doppler centroid frequency have a significant shift in ground coverage, see
Fig. 6.2.

Before proceeding with the master images that were selected on stack coherence and
ground coverage, it is important to verify if the reflectivity of the earth surface at the
acquisition time was not affected by weather conditions. Hence, the daily weather
conditions of the master acquisitions have been checked on the website of KODAC
(2008). Especially for track 215, which master acquisition took place in January, it
is important to know that the earth surface was not covered with snow or ice.

The acquisition geometries per track (perpendicular baseline and Doppler centroid
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Table 6.1. The six ERS tracks and one Envisat track that cover the Groningen subsi-
dence area. In total, these tracks cover the entire northeastern part of the Netherlands
and a part of Germany. The number of scenes refers to the selection in which acquisi-
tions with a Doppler deviation > 500 Hz from the master’s Doppler centroid frequency
have been excluded. The master has been selected based on the stack coherence and
the geographic ground coverage.

sensor track frame mode location #scenes master

ERS 151 2533 desc Friesland (west) 75 21-03-1997
ERS 380 2533 desc Groningen (main) 73 20-07-1997
ERS 108 2533 desc Germany (east) 63 05-08-1997
ERS 258 1063 asc Friesland (west 32 06-06-1997
ERS 487 1063 asc Groningen (main) 33 27-06-1999
ERS 215 1063 asc Germany (east) 25 14-01-1997
Envisat 380 2533 desc Groningen (main) 41 29-05-2005
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Fig. 6.2. Acquisition geometry of the descending ERS tracks: temporal baseline ver-
sus perpendicular baseline (left), temporal baseline versus Doppler centroid frequency
(middle) and geographic location of the center of the scenes (right).
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Fig. 6.3. Acquisition geometry of the ascending ERS tracks: temporal baseline ver-
sus perpendicular baseline (left), temporal baseline versus Doppler centroid frequency
(middle) and geographic location of the center of the scenes (right).

frequency as a function of temporal baseline) are shown in Figs. 6.2, 6.3, and 6.4. Not
all acquisitions have been included in the PSI processing. The observations of ERS
images with deviating Doppler centroid frequencies need to be corrected for their sub-
pixel position (Marinkovic et al., 2006), which imposes an additional uncertainty on
the investigation of the PSI applicability in a rural area with small subsidence rates.
Moreover, Cassee (2004) has noticed that the amplitude observations of acquisitions
with a deviating Doppler centroid frequency deteriorate the PS selection based on
normalized amplitude dispersion. Since the goal of this research is to prove the
applicability of PSI for subsidence monitoring in the Groningen area, it has been
chosen to exclude the acquisitions with a Doppler frequency difference larger than
500 Hz from the master’s Doppler centroid frequency. The maximum effect on the
estimated displacement of a Doppler difference of 500 Hz can be determined from
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Fig. 6.4. Acquisition geometry of Envisat track 380: temporal baseline versus perpen-
dicular baseline (left), temporal baseline versus Doppler centroid frequency (middle) and
geographic location of the center of the scenes (right).

Eq. (3.11):

∆Dij = − λ

4π

2π

v
(fmdc,i − fsdc,i)ξ

m
ij , (6.1)

which is 4 mm if an oversampling factor of 2 has been applied.

The temporal distribution of the selected ERS and Envisat images is depicted in
Fig. 6.5. The stacks of images per track have been processed throughout the years
2004–2006, and not all ERS-2 acquisitions have been considered from 2004 onwards.
For the main tracks 487 and 380, all acquisitions up to the end of 2003 (start of
Envisat acquisitions) have been considered in the selections. For all other tracks
(151, 108, 258, 215), SAR acquisitions up to medio 2005 have been part of the
image selection procedure. After February 2000, when ERS-2 lost its three gyro
mode, the SAR images have been acquired with highly varying Doppler frequencies.
Consequently, for all three ascending tracks only one SAR acquisition could be used
after 2001. The situation for the descending tracks is slightly better, although the
average acquisition rate does not exceed one per year. Fortunately, an ERS-2 image
with a reasonable Doppler (538 Hz) was acquired on the 21st of December 2003.
This is the start date of the Envisat time series: both ERS-2 and Envisat data have
been acquired with half an hour time difference. Hence, the Groningen study has
extra potential to show the continuity between ERS-2 and Envisat.

Figure 6.5 shows only one Envisat track, 380. Only from this track, sufficient SAR
images for a PSI analysis (> 25) have been acquired in image mode. This was caused
by conflicts of interest with commercial users, who requested data in the vicinity of
the area of interest in Wide Swath ScanSAR mode.

6.1.2 Generation of interferograms

The interferometric processing of the image stacks that are listed in Tab. 6.1 has
been performed according to the procedure that has been described in section 3.1.
This section addresses the specific implementation in the Groningen area.

Due to computational limitations in both the interferometric processing of oversam-
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Fig. 6.5. Selected images of the six ERS tracks and the continuity with Envisat (in
grey). All ERS-2 images with a Doppler frequency deviation > 500 Hz from the master
image have been discarded. Due to conflicts with commercial parties, only from Envisat
track 380 regular acquisitions were taken in image mode.

pled images and the DePSI estimation procedure, the coverage of each track has
been subdivided in four overlapping crops of ∼50×50 km, see Fig. 6.6. Only the
common ground coverage of all images from a track has been processed, to ensure
that each PS is observed in all images. The common area of the four crops has
an extent of 5×5 kilometers, and is preferably located in an urbanized area that
contains potential PS candidates.

Interferometric processing has been performed up to and including the subtraction
of the reference phase. It has already been pointed out in section 3.1.2 that the
distribution of coregistration windows and the precision of the coregistration poly-
nomial is essential for precise phase observations and the detection of PS candidates.
Since the height differences in the area of interest are less then 30 meters (Fig. 6.7),
coregistration has been performed by a 2nd degree polynomial. For all selected
interferometric combinations in each track, it has been verified if the coregistration
residuals were less than 0.1 pixel and if the accepted coregistration windows were
evenly distributed over the area of interest.

The coregistration polynomials of the quarter scenes have been evaluated in the
common overlap. The standard deviation of the range and azimuth locations that
are computed by the four coregistration polynomials are depicted in Fig. 6.8. The
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Fig. 6.6. Subdivision of a scene into four overlapping crops. Due to computational
limitations, the interferometric processing and the PSI estimation have been performed
separately in four overlapping crops.

coregistration differences of 92% of the scenes are below 0.1 pixel in the resolution
of the original image. The outliers in azimuth direction correspond with scenes that
have been acquired after 2000. The correlation with Doppler centroid frequency
is not evident: there are examples of images after 2000 with a small Doppler cen-
troid frequency that have location differences larger than 0.1 pixel. This may have
an impact on the PS candidate selection and the PSI parameter estimation, see
section 6.3.1.

Since the height differences in the area of interest are limited (< 30 m, see Fig. 6.7)
and topographic heights will be estimated anyway in the PSI estimation procedure,
topography has not been subtracted in the interferometric processing of the ERS
images. Initially, the subtraction of the topographic phase contribution was omitted
for Envisat as well. However, a spatial trend appeared to be present in the Envisat
phase observations, which will be discussed in section 6.3.2. It was chosen to esti-
mate and remove this trend prior to PSI estimation, and hence all other possible
phase contributions were subtracted to avoid any bias in the spatial trend estima-
tion. Therefore, the topographic phase contributions have been subtracted in the
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Fig. 6.7. SRTM heights in the northeastern part of the Netherlands (NAVD88 ortho-
metric heights (m)).

interferometric processing of the Envisat scenes. An external DEM from the Shuttle
Radar Topography Mission (SRTM, 2008) was utilized to compute these topographic
phase contributions.

6.1.3 DePSI

The concepts of the Delft PSI estimation have been introduced in section 3.4. An
overview of the implementation in the Groningen study is sketched in Fig. 6.9. PSI
estimation has been performed separately for each of the four crops. The reference
PS has been chosen in the common overlap.

PS candidate selection

PS candidates have been selected based on the normalized amplitude dispersion ob-
tained by threshold tuning using pseudo-calibration, see section 3.2. The amplitude
threshold for the first order network was set to 0.25, corresponding with a phase
standard deviation of 2 mm.

From P PS phase observations, only P − 1 independent spatial differences can be
formed. However, contrary to traditional geodetic techniques, it is not known be-
forehand whether a PS candidate is indeed a reliable measurement point or not.
Therefore, a (redundant) first order network is constructed to be able to identify
falsely selected PS candidates (type II errors). The network construction based on
the Delaunay triangulation has been utilized in the Groningen study.
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Fig. 6.8. Standard deviation range and azimuth locations (oversampling factor 2) in the
common overlap of the four crops, that are independently coregistered. Orbit numbers
have been added to the images for which the standard deviation of the range and azimuth
locations exceeds 0.1 pixel in original resolution.

Parameter estimation in the first order candidate network

Parameter estimation in the initial network is performed per arc, according to
Eqs. (3.11) and (3.12). Several options for deformation parameterization are available:
linear or periodic in time, over the entire observation period or for a selected time
window only. The latter models a breakpoint in the displacement time series. It
can for example be used to model the delayed onset of subsidence in the monitoring
period. If no a-priori information is known about the deformation signal, a constant
velocity is the strongest model in terms of redundancy. Since the majority of the
Groningen area is subsiding with a (near) constant rate (see Fig. 2.5), the system of
equations for an arc between PS i and PS j reads:
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Fig. 6.9. Schematic overview of the DePSI estimation procedure for the Groningen
study.

with the corresponding variance-covariance matrix:
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 , (6.3)

where K is the number of interferograms, v is the relative displacement rate between
PS i and j, T k is the temporal baseline for interferometric combination k, and H is
the topographic height difference between PS i and j.

The variance-covariance matrix Qy is composed of the variance-covariance matrix of
the observations and the variance matrix of the pseudo-observations. The variances
of the pseudo-observations determine the search space in the ambiguity resolution.
For the Groningen study, the standard deviation of the displacement rates and height
differences per arc have been set to 20 mm/year and 30 m respectively.

The variance-covariance matrix of the double-difference phase observations Qϕ is
a superposition of measurement noise and model imperfections due to atmospheric
signal and unmodeled deformation (Hanssen, 2001; van Leijen et al., 2006a). Since
all double-differences are mutually correlated, this is a full matrix. The temporal
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correlation length of unmodeled deformation has been set to one year, which corre-
sponds with the length of the moving average window that has been used to separate
atmosphere and unmodeled deformation. The variance-covariance matrix is not well
known a-priori, and can only be updated after ambiguity resolution due to the lack
of redundancy in Eq. (6.3).

To reduce computation time, integer bootstrapping has been applied to resolve the
integer ambiguities. The success rates depend on the a-priori stochastic model. The
variances of the pseudo-observations are usually set relatively large to guarantee
that the solution is within the search space. Because there is no redundancy in the
system of equations, the a-priori stochastic model cannot be improved by variance
component estimation. Hence, an objective evaluation of the success rates is not
possible.

Unwrapping test procedure and redundant parameter estimation

A spatial unwrapping test procedure is performed to detect and remove arcs that
exhibit ambiguity misclosures (van Leijen et al., 2006b). The first order candidate
network is considered as a leveling type of network with the ambiguity estimates as
the observations. Only the ambiguities of arcs above a temporal coherence thres-
hold (see Eq. (3.7)) of 0.6 are selected in the Groningen study. ’Dead end’ arcs are
removed from the set, since they cannot be tested and are therefore unreliable. Af-
ter the geodetic testing procedure thats detects and removes ambiguity outliers, the
accepted ambiguity estimates are considered deterministic and a redundant para-
meter estimation is performed. All double-difference phase observations are now
unwrapped with respect to one reference point. Eq. (6.3) can be simplified to the
following redundant system:
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where ϕk
ij

are now the unwrapped double-difference phase observations. The redun-

dancy equals (K − 2) per arc, and VCE can be applied to obtain a more realistic
variance-covariance matrix. For a single arc, measurement noise cannot be distin-
guished from atmospheric signal. Hence, only one variance factor per arc is estimated
from Eq. (6.4), that represents both measurement noise and residual atmospheric
disturbances.

Separation of atmospheric signal and unmodeled deformation

The residuals of the parameter estimation of the first order network are separated
into atmospheric signal and unmodeled deformation. This separation is based on
the assumption that atmospheric signal is not correlated in time whereas unmodeled
deformation is. First, the atmospheric phase screen of the master is estimated. It is
present in each interferogram and equal to the average of the residuals in time. After
subtraction of the master APS, the phase residuals are divided into atmospheric
signal and unmodeled deformation as explained in section 4.3.2.
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If the assumption is valid that the deformation signal in the area of interest has
a constant displacement rate over the entire time span, high frequency variations
in time are addressed to atmospheric signal. However, in practice we are more
conservative, since deviations from the linear displacement model should not leak
into the atmospheric signal. Deformation residuals can contain valuable information,
such as settling effects, subsidence delay after start of gas extraction, uplift due to
underground gas storage, and seasonal effects. Hence, only residuals with a temporal
correlation length smaller than one year are attributed to atmospheric signal in the
Groningen study.

Interpolation of atmospheric residuals by means of Kriging

By means of Kriging, the residuals addressed to the atmospheric signal are spatially
interpolated. As explained in section 4.2.4, the atmospheric regimes to be considered
are regime I that covers large scale variations, and regime II that covers scales from
resolution level to the thickness of the turbulent layer. For rural areas, it has to be
taken into consideration that regime II, that covers scales lower than 2 kilometers,
may be undersampled. In the Groningen crops, the number of accepted arcs in the
initial network varies between 2000 and 5000, over an area of ∼2500 km2. On average
that is 1–2 arc/km2, but in practice the density in urban areas will be higher and in
rural areas it will be lower. The Kriging procedure cannot reconstruct undersampled
signals and as a result, atmospheric disturbances in the lower scales will be smoothed,
if present. Consequently, the precision of the PSI parameter estimates will be lower
in rural areas, see section 6.3.1.

PS densification: the second order network

After subtraction of the atmospheric phase contribution estimated from the first
order network, a further densification step is performed by the analysis of the phase
history of PS candidates with a lower normalized amplitude dispersion. Parameter
estimation is performed for each PS candidate with respect to the three closest ac-
cepted PS from the first order network. Subsequently, these estimates are checked on
their consistency. The PS candidate under investigation is accepted if the estimates
of at least two out of three connecting arcs are in agreement.

6.2 ERS and Envisat PSI results

PSI estimation has been applied to six overlapping ERS tracks and one Envisat track
covering the subsiding area above the Groningen gas field (see Tab. 6.1). Here we
discuss the PSI deformation estimates that have been obtained from the interfero-
metric processing and PSI estimation as described in section 6.1.2 and 6.1.3.

6.2.1 ERS deformation estimates

Figure 6.10 shows the obtained deformation estimates for the ascending and descend-
ing main tracks over the Groningen subsidence area. From the double-difference
phase observations, PS velocities have been estimated in the period 1992–2003. The
PS velocity estimates clearly depict the subsiding areas due to gas extraction. Al-
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Fig. 6.10. Persistent Scatterer (triangles) and leveling benchmark (circles) displacement
rates (mm/year) in the period 1992-2003 in the northeastern part of the Netherlands.
The PSI displacement rates stem from the main tracks 380 (descending) and 487 (ascen-
ding).

though the PS density is relatively low in rural areas, the PSI technique is cer-
tainly able to estimate a coherent pattern of earth surface movements. The relative
displacement rates are in agreement with the expected velocities for this type of
subsidence (-7 up to 2 mm/year). For comparison, the leveling heights have been
converted to displacement rates as well. The PSI and leveling estimates are visually
in agreement. A quantitative analysis will be performed in chapter 7.

The average PS density in the area of interest is ∼40 PS/km2, but these PS are
not evenly distributed. The PS density is varying from up to 0–10 PS/km2 in the
rural areas to over 100 PS/km2 in the urbanized areas, see Fig. 6.11. The PS
distribution follows the urbanized areas. Figure 6.12 shows that PS targets in rural
areas coincide with buildings and structures. This implies that when these man-
made features are absent, the PS density drops to 0 PS/km2. In the Groningen
subsidence area, this is the situation in ∼20% of the total area for a single satellite
track, see Tab. 6.2. By means of the combination of multiple tracks, the PS density
can be improved, see section 6.4. Other methodologies that may lead to a higher PS
density are supervised PS selection (Humme, 2007), and the application of adaptive
deformation models (van Leijen and Hanssen, 2007). Moreover, the utilization of
new sensors with a smaller wavelength and higher resolution, such as TerraSAR-X,
may lead to a higher PS density. Still, an average PS density of ∼40 PS/km2 in
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Table 6.2. PS density over the Groningen subsidence area that is characterized by
agricultural fields with scattered farms and small villages.

Track 0 PS/km2 1–5 5–25 25–100 > 100

380 (ERS) 20% 19% 28% 27% 6%
487 (ERS) 18% 13% 32% 29% 9%

a dominantly rural area is high compared to the density of leveling benchmarks
(1–2 per km2). Since these leveling benchmarks are distributed along the existing
infrastructure, the leveling technique will also leave areas with solely agricultural
fields uncovered.
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Fig. 6.11. Typical PS density distributions in the northern part of the Netherlands: track
151 (left) and track 380 (right). The PS density in the rural areas is 0–10 PS/km2,
whereas the PS density in the urbanized areas is > 100 PS/km2

Fig. 6.13 shows the temporal sampling of InSAR. Although deformation is mod-
eled as a linear, constant displacement rate (velocity), the displacement estimates
show the actual behavior of the target. The a-priori modeling of deformation as a
velocity is only used to correctly unwrap the PS phase observations, see Fig. 3.11.
Changes in displacement rate are still captured in the actual unwrapped displace-
ments. However, the likelihood of correct unwrapping is maximized when using
adaptive deformation models (van Leijen and Hanssen, 2007). Here, advanced de-
formation models are validated as alternative hypotheses. The most likely deforma-
tion model is subsequently selected. Adaptive deformation models are not required
a-priori in the Groningen subsidence area. By means of residue analysis of multiple
PS displacement time series, deviations from the constant velocity model can be
detected (Ketelaar et al., 2006). It is recommendable to apply an alternative hy-
pothesis in areas where all PS exhibit the same deviation from the constant velocity
model. Such an area is the Anjum area (see Fig. A.1), where gas production has
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Fig. 6.12. PS targets in a rural area from four overlapping tracks (ascending, descending,
and adjacent). Almost every building serves as a Persistent Scatterer.

started medio 1997. The change in subsidence rate in Fig. 6.13 corresponds with the
onset of gas extraction. Due to the high temporal sampling of PSI displacements, the
delay between the start of gas extraction and start of subsidence can be determined,
which is between several months and one year. This is new valuable information
that can be detected from PSI, which was not possible with periodic levelings each
2–5 years. The application of PSI for monitoring reservoir behavior will be further
addressed in chapter 8.

Not only the deformation estimates of the ERS main tracks capture deformation sig-
nal that coincides with the regions that are subsiding due to gas extraction. Fig. 6.14
shows the PS velocity estimates in the period 1992-2005 for all six tracks covering
the Groningen subsidence area: the main tracks plus the four adjacent tracks. They
all independently detect the areas that are affected by ground movements. Although
each track has a different reference PS, the relative displacement rates are visually
in agreement. A quantification of the misclosures between the tracks is performed
in the multi-track datum connection procedure, see section 6.4.

6.2.2 Envisat deformation estimates

As was pointed out in section 6.1.1, only one Envisat track (380) has been moni-
tored sufficiently in image mode to perform PSI. Its first image has been acquired
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Fig. 6.13. The Anjum gas field (in green) that has been taken into production medio
1997; PS displacement rates in the period 1992-2003; displacement time series and a
potential alternative hypothesis for a single PS target. This PS target shows a trend
change when subsidence due to gas extraction starts. Hence, the depicted average
displacement rates underestimate the actual subsidence due to gas extraction. A possible
explanation of the PS displacement rate before 1997 is shallow compaction.

in December 2003. With only half an hour time difference, an ERS-2 image was ac-
quired as well, with a Doppler centroid frequency of 538 Hz. Hence, the continuity
of satellite deformation monitoring is secured over the area of interest. Contrary to
the ERS-2, the Envisat phase observations have to be corrected for a spatial trend,
which will be explained in section 6.3.2.

Fig. 6.15 shows the Envisat PS velocity estimates of track 380 in the period 2003–
2007. Again, the subsiding areas are clearly depicted. The relative velocities are of
the same magnitude compared to ERS in the period 1992-2003: up to -7 mm/year.
The ERS-2 and Envisat displacement estimates can be connected in the joint esti-
mation of the deformation signal. Fig. 6.16 shows the displacement time series of
two nearby PS that have been merged in the estimation of the displacement rate.
Besides connection of deformation estimates in the parameter of interest space, it
may be possible to identify common PS targets that are monitored by both sensors,
which is recommended to further investigate in the future. A comparison of the En-
visat PS displacements and predicted displacements from historic leveling campaigns
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Fig. 6.14. PSI velocity estimates (mm/year) of all six ERS tracks. All tracks depict
the subsiding areas. Although they refer to a different reference PS, the relative velocity
estimates are similar.

is performed in chapter 7.

6.3 Quality control

This section addresses the precision of the PSI estimates of the tracks that cover
the Groningen area. Furthermore, it will investigate the spatial trend in the Envisat
phase observations. The quantification of the precision of PSI deformation estimates
in this chapter is based on the results of the C-band missions ERS-1, ERS-2 and
Envisat.

6.3.1 Precision of PSI estimates

The estimation of the PS velocities and relative topographic heights have been per-
formed per arc. These arcs are part of a network that has been constructed by
means of a Delaunay triangulation. After the unwrapping test procedure (see sec-
tion 6.1.3), all observations of the rejected arcs have been removed. The unwrapped
phase observations refer to a common reference PS, which has been chosen in the
common overlap of the four crops. Hence, within one track, the PS height and
velocity estimates refer to one reference PS.
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Fig. 6.15. Envisat PS velocity estimates (mm/year) in the period 2003–2007, after
detrending and outlier removal. Coordinates are in the Dutch RD system. The outline
of the gas fields are depicted in black; the country borders are indicated with grey lines.

Fig. 6.17 shows the standard deviation of the velocity and height estimates after vari-
ance component estimation for the tracks with the largest and the smallest number
of interferograms. The standard deviation of the velocity estimates scales with the
distance to the reference PS. For the smallest Groningen stack consisting of 24 inter-
ferograms, the standard deviation is ∼0.1 mm/year per

√
km; for the largest stack of

74 interferograms it is ∼0.04 mm/year per
√

km. Interpretation of the standard de-
viation as an absolute precision measure gives a distorted impression. A PS further
away from the reference PS is not of lower quality. By taking linear combinations
of the parameter estimates of neighboring PS and applying the propagation law of
variances and covariances, it can be shown that the relative precision is location
independent. For example, Fig. 6.19 illustrates the precision within a simulated PS
network. The relative precision in the network is similar for arcs of equal length.

Due to the PS density, the sampling of the atmospheric signal is higher in urban
areas compared to rural areas. Moreover, the arc lengths in rural areas are larger.
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Fig. 6.16. Time series that consists of both ERS (circles) and Envisat (squares) dis-
placement estimates. The displacement estimates have been connected in the joint
estimation of a linear displacement rate.

Here, we investigate if this results in systematically less precise parameter estimates.
Therefore, the standard deviations of the PS displacement residuals with respect to
the nearest PS in the first order network have been computed, see Fig. 6.20. The
displacement precision of the majority of the PS is ∼3 mm (1-sigma). As expected,
the parameter estimates have a higher precision in the urban areas compared to the
rural areas (≤3 mm and 3–7 mm respectively). However, although the precision is
lower, the rural areas are still covered with coherent velocity estimates.

Besides the precision of the displacement errors, the effect of potential model errors,
such as unwrapping errors, is investigated. Since the PSI estimation of each track
has been performed for four overlapping crops independently, the overlapping areas
can be utilized for a reliability check. The differences between the velocity, height
and displacement estimates in the overlap should be within their precision limits.
Fig. 6.21 shows the results for the largest stack (track 151, 74 interferograms) and
the smallest stack (track 215, 24 interferograms).

The standard deviation of the PSI velocity estimates in the overlap of the four
crops (Fig. 6.21) are equal to the standard deviations that are depicted in Fig 6.17.
Fig. 6.22 gives a further insight in the standard deviation of the displacements. It
can be seen that the precision of the displacement estimates from the small stack is
lower than the precision of the large stack. Furthermore, displacement outliers are
visible in the period after 2000, that is only covered by track 151. In track 215, no
acquisitions were available with a low Doppler deviation after 2000, see Fig. 6.5. As
a result, the temporal sampling is high over the the entire monitoring period. Track
151 contains five acquisitions in the years 2001–2005. The low temporal sampling
in this period decreases ambiguity resolution success rates. Since all observations
of a single arc are removed when an ambiguity in a single epoch is rejected, this
leads to a lower PS density in the first order network. Consequently, the APS
estimates may be affected as well. Although track 151 contains significantly more
acquisitions than track 215, the precision of the displacement rates can be slightly
deteriorated by including the sparse acquisitions after 2000. An option would be
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Fig. 6.17. Top: precision of PSI estimates for track 151 (74 interferograms): standard
deviation of PS velocities (left) and standard deviation of topographic heights (right).
Bottom: precision of PSI estimates for track 215 (24 interferograms): standard deviation
of PS velocities (left) and standard deviation of topographic heights (right). The refe-
rence PS is located in the center of the scene for both tracks. The black lines indicate
the overlap of the four crops.

to remove all acquisitions after 2000, but at the same time the sparse observations
in this period can contain valuable information for the continuation of subsidence
monitoring. Hence, they have been included in the PSI estimation for the Groningen
area.

6.3.2 Unmodeled residual components

In section 4.2, the effect of shortcomings in the functional model has been addressed:
the influence of the sub-pixel position, sidelobe observations, and orbital inaccuracies
on the PSI parameter estimates have been investigated. It has been shown that
orbital inaccuracies can lead to a spatial trend in the PS velocity estimates from
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Fig. 6.18. Precision of the Envisat PSI estimates for track 380 (40 interferograms):
standard deviation of PS velocities (left) and standard deviation of topographic heights
(right). The reference PS is located in the center of the scene. The black lines indicate
the overlap of the four crops.
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Fig. 6.19. Simulation of precision PSI velocity estimates (mm/year). If only the vari-
ances are considered, the precision seems to decrease further away from the reference PS
(left). However, the relative precision of nearby PS is similar irrespective of the location
(right).

near to far range. The velocity difference in radial and across-track direction can be
up to respectively ∼1 and ∼0.5 mm/year.

Unmodeled residual components are further investigated in this section, since a spa-
tial trend appeared to be present in the Envisat PSI velocity estimates of ∼15 mm/year
over a distance of 100 kilometers. Since this spatial trend is unlikely to be caused
by any of the model errors that are discussed in section 4.2, the origin of this spatial
trend is now further investigated.
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Fig. 6.20. PSI velocity estimates for Envisat track 380 (left) and standard deviation
of PS displacements with respect to the closest PS in the first order network (right).
The relative displacement precision is independent of the choice of the reference PS, but
decreases with increasing distance between the PS (in rural areas). The displacement
standard deviation in urban areas is ≤3 mm; in rural areas it is 3–7 mm.
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Fig. 6.21. Histograms of the standard deviations of the PS velocity estimates in the
overlap of the four crops for track 151, that spans the period 1992-2005 (left), and for
track 215, that spans the period 1993-2000 (right).

Envisat PSI estimates

The PSI processing of the Envisat descending main track has been performed in a
similar way as for ERS. The master scene has been subdivided in four overlapping
crops that each cover an area of ∼50×50 km. PS candidates have been detected
based on normalized amplitude dispersion using pseudo-calibration. Subsequently,
a first order network was formed, followed by unwrapping and parameter estimation
using integer bootstrapping for ambiguity resolution. After APS estimation and
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Fig. 6.22. Precision of displacement estimates (mm) for track 215 (24 interferograms)
and track 151 (74 interferograms). The precision of the displacement estimates from
track 215 is on average lower. Furthermore, it can be seen that the acquisitions after
2000 (track 151) exhibit large displacement residuals.

subtraction, the PS network was further densified into a second order network.

The results of all four crops demonstrate that Envisat is able to detect coherent
patterns of local subsidence, but that an artificial trend appears to be superposed
on the PS velocity estimates, see Fig. 6.23. This trend is in the order of 15 mm/year
over a distance of 100 kilometers. Since it is not present in the ERS estimates, it is
unlikely that it represents real deformation signal. The spatial trend in the Envisat
velocity estimates appears to be a function of range and azimuth direction. Fig. 6.23
shows the PS velocity estimates after trend removal. After correction, the subsiding
areas are clearly visible, and the velocity rates are in agreement with those estimated
from ERS. Since the maximum subsidence rate in the Groningen subsidence bowl
is −7 mm/year, the potential causes for the systematic spatial trend need to be
identified.
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Fig. 6.23. Original PS velocity estimates (left); estimated spatial trend as a function of
range and azimuth coordinates (middle); PS velocity estimates after subtraction of the
estimated spatial trend (right).

Systematic effects in the parameter estimates can be caused by inaccurate APS
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estimates. However, the PS residuals in the first order network and the APS are
in agreement. Moreover, multiple iterations for atmosphere estimation decrease
the residuals (from several mm to sub-mm level), but hardly affect the velocity
estimates (<0.1 mm/year). Hence, it is concluded that the superposed trend on
the Envisat PSI estimates is not induced by inaccurate estimation of one or more
APS. Furthermore, the velocity estimates are not significantly affected by varying the
temporal correlation length of unmodeled deformation. Consequently, the conclusion
is drawn that the spatial trend is already present in the velocity estimates per arc
in the first order network, prior to APS estimation and the separation of unmodeled
deformation. Since the PS velocities are a function of time, this implies that the
systematic trend has a component in time. It is likely that the spatial trend exhibits
a systematic development in time. The other option is the presence of one or a few
interferograms with a spatial trend in the phase observations. However, Fig. 6.24
shows that the presence of such ’outlier’ interferograms has less effect on the velocity
estimates than a systematic development of the spatial trend in time.
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Fig. 6.24. Simulated phase observations between two PS. These phase observations
are assumed to be representative for each combination of two PS at similar locations
in the radar coordinate system. The PS velocity estimates are affected if the phase
observations exhibit a systematic development in time (left) and to a lesser degree if a
spatial trend is present in one interferogram that acts as an outlier (right).

In order to trace the origin of the spatial trend in the Envisat velocity estimates,
the Envisat interferometric phase observations are inspected. Figure 6.25 shows two
of the interferograms (quarter scenes). The temporal baseline is 35 days, and a
spatial trend is visible. Although the majority of the interferograms appear largely
decorrelated at first glance due to temporal decorrelation, they contain numerous
PS candidates. The phase observations of the PS candidates can be used for the
estimation of a spatial trend per interferometric combination, provided that the
fringe frequency that causes the trend is sufficiently sampled. In other words, the
minimum PS distance should be smaller than half of the spatial fringe frequency.
Since the Envisat spatial trends are relatively small (maximal 1-2 fringes in a quarter
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scene), this condition holds. Hence, the phase observations can easily be unwrapped.
After unwrapping, the spatial trend can be estimated as a plane or polynomial as
a function of the radar coordinates. Subsequently it can be subtracted from the
original phase observations, see Fig. 6.26.

50 km

N

Fig. 6.25. Spatial trends in Envisat interferograms with a temporal baseline of 35 days
(quarter scenes).

In stead of performing spatial trend removal prior to the PSI estimation procedure,
the functional model could be extended with additional unknown parameters that
describe the spatial trends. However, PSI parameter estimation is performed per
arc between neighboring PS using a non-redundant system of equations. Additional
unknown parameters would require additional pseudo observations. Furthermore,
the trend parameter estimates are more precise when using observations over a
large spatial range. Therefore, spatial trend removal is currently implemented as an
independent step prior to the actual PSI estimation procedure.

Since the spatial trend removal is performed prior to the PSI estimation, the phase
observations that are used for the spatial trend estimation contain contributions due
to deformation, topography, atmosphere and noise. To minimize the influence of the
topographic phase contribution in the estimation of the spatial trend, it is subtracted
using an external DEM. The influence of atmosphere and deformation signal can be
minimized by the application of a testing procedure that removes spatially correlated
outliers in the spatial trend estimation. This works, provided that the majority of
the area that is covered in the scene is not affected by deformation. Since this holds
for the Groningen study, this strategy has been applied. Another option for the
reduction of deformation signal in the spatial trend estimation would be the use of
interferometric combinations with minimum temporal baseline.

Summarizing, the PSI procedure for Envisat differs from the ERS procedure in the
following way:



138 Chapter 6: PSI subsidence monitoring in Groningen

Fig. 6.26. Trend estimation for one interferogram based on the phase observations
(in radians) of PS candidates. Top: original wrapped phase observations (left) and
unwrapped phase observations (right). Bottom: estimated spatial trend as wrapped
phase observations (left) and phase observations that have been corrected for the spatial
trend (right).

• topographic signal is subtracted using an external DEM,

• a spatial trend in range and azimuth direction is estimated and removed based
on the phase observations of the PS candidates prior to the actual PSI esti-
mation procedure.

Fig. 6.26 shows the results of this procedure. After the correction of the phase obser-
vations, the spatial trend in the PS velocity estimates is absent, and the subsidence
rates are in the order of those computed from ERS, see Fig. 6.15. The precision of
the PS velocity and height estimates are depicted in Fig. 6.18.
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Now it has been shown that the spatial trends in the Envisat phase observations can
be estimated and removed, the question remains which phenomenon causes the spa-
tial trends. Hence, the temporal development of the spatial trends is investigated.
Figure 6.27 shows the range differences over 100 kilometers in range and azimuth di-
rection, computed from the unwrapped phase observations. These range differences
can be interpreted as deformation along line of sight. From Figure 6.27 can be con-
cluded that the spatial trends in range direction exhibit a systematic development
in time.

Fig. 6.27. Trend estimates from unwrapped PS candidate phase observations at 100
km distance: (left) total error, (middle) error in range direction, (right) error in azimuth
direction. The errors in range direction exhibit a systematic development in time.

The physical causes for the spatial trends that are present in the Envisat phase
observations are subdivided into two groups:

1. orbital inaccuracies,

2. errors in system parameters (e.g., timing errors and range sampling rate).

They will be successively addressed in this section.

Orbits

The precision of the orbits depends on the precision of the tracking system, the
precision of the reference station coordinates and the gravity model. The Envisat
precise orbits (Doornbos and Scharroo, 2004) are determined using both Satellite
Laser Ranging (SLR) and the DORIS system (Doppler Orbitography and Radio-
positioning Integrated by Satellite (DORIS, 2008)). DORIS is a microwave tracking
system that determines the satellite orbit by measuring the Doppler frequency shift
of a radio signal transmitted from ground stations to the satellite. The precision
of the orbits is validated utilizing the altimeter crossovers. The altimeter crossover
differences are on average less than 5 cm, which also constrains the across-track and
along-track satellite positions.

In the PSI procedure, orbital errors that are spatially correlated are removed in
the APS estimation, provided that they are uncorrelated in time. However, from
Fig. 6.27 it is obvious that the phenomenon under investigation has a component
that is correlated in time. The estimated PS velocities deviate ∼15 mm/year over
100 kilometers. Figure 6.28 shows the change in parallel baseline between near and
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Fig. 6.28. Difference in parallel baseline between near range and far range caused by
radial and across-track orbit errors (m). These orbit errors have to be interpreted as the
radial and across-track components of the orbit error vector that is superposed on the
baseline.

far range caused by radial and across-track orbital errors. A spatial trend of ∼15
mm/year between near and far range implies a change in parallel baseline of ∼45
mm in three years. If the radial error stays within the 5 centimeter limit, this
implies that the across-track error has to be ∼30 cm to cause a temporal difference
in parallel baseline of ∼45 mm. This is an unlikely scenario, since the radial orbit
errors of Envisat have been estimated at 3 cm RMS (Doornbos and Scharroo, 2004),
which constrains the across-track and along-track position of Envisat. Moreover, a
correlation between the moments of orbit manoeuvres and the development of the
spatial trend in time in Fig. 6.27 could not be found.

Additionally, the influence of another gravity model for precise orbit determination
has been investigated. The Envisat orbits have been computed using the orbits that
are based on the EIGEN-GRACE01S and the EIGEN-CG03C gravity models in the
period from December 2003 to November 2006. The variation in the radial compo-
nent is below ∼1–2 cm. The across-track component however, shows a systematic
deviation in time of ∼4 cm in 3 years, see Fig. 6.29. This corresponds with a range
difference of ∼4 mm in 3 years. Hence, the difference in gravity model explains the
difference in PS velocity estimates of 1–2 mm/year in Fig. 6.29.

It can be concluded that the characteristics of across-track orbit errors when using
different gravity models correspond with the time development of the spatial trends
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Fig. 6.29. The across-track range difference from near to far range (left) and the diffe-
rence in PS velocity estimates (right), obtained from using the EIGEN-GRACE01S and
EIGEN-CG03C orbits. This shows that the difference in PS velocities (1–2 mm/year) are
of the same order as the range differences imposed by the across-track orbital differences
(∼1.2 mm/year).

in the Envisat phase observations as depicted in Fig. 6.27. However, the magnitude
of across-track errors that are required to explain the spatial trends in the Envisat
observations are unlikely to occur, due to the radial precision (3 cm RMS).

System parameters

Errors in the Envisat system parameters have been investigated as well to explain
the spatial trends. This section addresses the influence of timing errors and an error
in the range sampling rate (RSR).

The range time to the first pixel and the first pixel azimuth time can be tuned
using the coregistration polynomial and the precise orbits. For a grid of radar
coordinates in master and slave the optimal range and azimuth times have been
determined by minimizing the misclosures of the geographic locations on the ellipsoid
(the topographic height differences in the Groningen area are less than 30 meters).
It turned out that two acquisitions have relatively large timing errors. These timing
errors introduce a systematic effect in the reference phase. Fig. 6.30 depicts the
range difference between near and far range that is caused by the timing errors. The
timing errors can introduce 1–2 fringes from near to far range. It can be seen from
Fig. 6.31 that the outlier characteristics (see Fig. 6.24) of the timing errors affect the
PS velocity estimates. However, they are not large enough to create a systematic
trend in the PS velocities of ∼15 mm/year from near to far range.

Furthermore, the effect of a constant error in the range sampling rate (RSR) has
been investigated. The effect of a different RSR causes random changes in the range
distance, see Fig. 6.31. Hence, the RSR error needs to be high in order to cause the
observed trend in the PS velocities: ∼0.2 Mhz.
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Fig. 6.30. Effect of timing errors over the extent of an interferogram: (left) errors in
the parallel baseline (m) and (right) errors in the reference phase (wrapped, in radians).

Summarizing, the cause of the spatial trends in the Envisat phase observations
cannot be unambiguously identified. The spatial trends resemble errors that are
caused by orbital inaccuracies. However, the magnitude of the spatial trends in
the PS velocities (∼15 mm/year from near to far range) cannot be explained by
orbit errors within their precision bounds (Doornbos and Scharroo, 2004). Timing
errors are too small and the RSR has to be adapted significantly to obtain the
observed spatial trend in the PS velocity estimates. Moreover, changing the system
parameters does not lead to the trend in time depicted by Fig. 6.27.

6.4 Multi-track analysis

The precision of the Groningen PSI velocity and height estimates have been eva-
luated in section 6.3. Since the PSI system of equations is not redundant and ambi-
guity resolution success rates of 1 can not be guaranteed (see section 4.2), chapter 5
has proposed multi-track datum connection for reliability assessment. Since six inde-
pendent overlapping ERS tracks observe the Groningen subsidence area in the same
period, redundancy is introduced. Besides a reliability assessment, the multi-track
datum procedure performs the integration of PSI parameter estimates in a unified
radar datum. This section shows the results of the multi-track datum connection of
the ERS tracks that cover the Groningen area.

6.4.1 Datum connection

For the datum connection of the six overlapping ERS tracks, the PS with the highest
velocity estimate precision were selected. For this selection, the covered area was
subdivided in grid cells of 500 meters. Subsequently, a spatial datasnooping proce-
dure was applied to remove outliers. This procedure decreases the computation time
of the datum connection parameters. This does not imply that PS are permanently
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Fig. 6.31. Left: the effect of the Envisat timing errors on the range difference between
near and far range. This implies that timing errors can cause systematic effects in the
PS velocities, but that the magnitude is not large enough to cause the spatial trends
that have been observed. Right: effect of an error of -0.2 Mhz in the Range Sampling
Rate (RSR).

removed from the dataset. The datum transformation estimated from this reduced
set of PS can be applied to the original PSI results.

After conversion to the common radar datum defined by the master track (track
487), the datum connection procedure has been applied to the PSI estimates, see
section 5.2. For the velocity and displacement estimates, the alternative hypothesis
of translation plus trend in range and azimuth directions has been evaluated. The
reason for the need of including range and azimuth dependent transformation pa-
rameters stems from possible unmodeled residual atmospheric or orbital errors and
undetected unwrapping errors that propagate over a large spatial extent.

Datum connection has resulted in a consistent set of PSI estimates in the reference
system of the master track, covering the entire northern part of the Netherlands and
a part of Germany, see Fig. 6.32. All subsiding areas due to gas extraction can be
distinguished. Since standard adjustment and testing techniques have been applied,
quality measures for the estimated transformation parameters can be deduced. Due
to the large redundancy, the precision of the transformation parameters is high: the
translations have a precision of 0.1-0.2 mm/year; the trend parameters in range and
azimuth 0.1-0.3 mm/year over a 100 km distance, see Tab. 6.3. Approximately 70%
of the velocities in a PS cluster have a standard deviation lower than 1 mm/year
after datum connection (see Fig. 6.33), and are spatially consistent.

After datum connection, the PSI results are mutually consistent in the reference
system of the master track. However, the reference system of the master track itself
can still contain a small systematic component due to unmodeled residual effects.
The standard deviation of the five trend estimates in range and azimuth direction
are respectively 2 and 1 mm/year over a full SLC extent (100 km). Therefore, it
can be concluded that a trend of several mm/year over a 100 km distance can be
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Fig. 6.32. ERS PS velocities (mm/year) after datum connection for the entire northern
part of the Netherlands and a part of Germany. Period: 1993-2000.

present in the PSI results after datum connection. Theoretically, this trend cannot
be unambiguously addressed to either real deformation signal or unmodeled residual
components in the PSI estimation. Since the latter is most likely, the deformation
estimates obtained after data connection can be integrally corrected, as long as the
error bounds are clearly defined.

Datum connection not only increases the spatial sampling of the deformation signal

Parameter σt0 (mm/yr) σtξ (mm/yr)/100km σtη (mm/yr)/100km
v258,487 0.09 0.21 0.17
v215,487 0.20 0.25 0.22
v151,487 0.10 0.24 0.20
v380,487 0.08 0.12 0.14
v108,487 0.11 0.18 0.17

Table 6.3. Precision of PS velocity transformation parameters: a translation (t0) plus
azimuth and range dependent factors (tξ, tη). The master track is track 487.
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Fig. 6.33. Standard deviations of PS velocities per multi-track cluster after datum
connection (mm/year). Approximately 70% of the velocities in a PS cluster have a
standard deviation lower than 1 mm/year after datum connection

of interest, but also the temporal sampling is significantly higher. One PS is viewed
by a maximum of 4 tracks, that are distributed over the repeat interval of 35 days,
with intervals of 7-12 days.

In a similar way as demonstrated for the PS velocities, the PS displacements have
been connected in a common radar datum, including corrections for residual com-
ponents in the reference track. A complicating factor are the different acquisition
times per track. To avoid any assumptions on the temporal deformation model,
displacement observations were linearly interpolated. This has resulted in a series
of displacement fields with their corresponding transformation parameters through
time.

Fig. 6.34 shows the displacements of a cluster of neighboring PS (mutual distance
less than 500 meters) that have been observed by four overlapping tracks. The
integration of displacements from multiple tracks increases both the precision and
the reliability. The increase in subsidence rate after 1996 is confirmed by all four
tracks.

Besides the deformation estimates (velocities, displacements), the topographic heights
have been integrated in the datum connection as well. Due to different reflection
types (directly from a roof top, or a double-bounce that refers to ground level), and
the variety of man-made features, the heights of neighboring targets do not necessar-
ily correlate. Therefore, only PS within resolution cell distance have been selected.
Again, outlier detection has been performed to remove targets within resolution cell
distance that refer to a different height level. The precision of the height translation
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Fig. 6.34. Displacement time series after datum connection of nearby PS that are
viewed from four tracks.

parameters is listed in Tab. 6.4.

Table 6.4. Precision of the translation parameters of the PS height estimates in the
datum connection procedure.

Parameter σt0 (m)

∆h258,487 0.64

∆h215,487 0.86

∆h151,487 0.71

∆h380,487 0.58

∆h108,487 0.73

Fig. 6.35 shows the PS heights after datum connection and the topographic height
that have been obtained from SRTM. Although PS heights are ellipsoidal heights
and SRTM heights are orthometric heights, the relative PS heights and the relative
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Fig. 6.35. PS heights (ellipsoidal, WGS84) and SRTM heights (orthometric, NAVD88).

SRTM heights agree visually. The differences are on average below 5 meters. They
are caused by the accuracy of the SRTM heights, the accuracy of the PS heights,
and the spatial differences between heights on the geoid and the ellipsoid. Further-
more, height differences can be caused by sidelobe observations and range sub-pixel
inaccuracies in the PS results, see section 4.2.

6.4.2 Displacement vector decomposition

The deformation estimates of the PS clusters after datum connection can be further
decomposed into horizontal and vertical displacements. Each PS cluster contains
at least two and maximum four PS that originate from different viewing geometries
(ascending, descending, and adjacent). For a cluster of two PS, a decomposition into
a vertical component and one horizontal component along a certain viewing direction
is possible. For a cluster of more than two PS theoretically a decomposition into
vertical, east and north components is possible. However, due to the acquisition
geometry, the precision of the north component is lower than the precision of the
east component (Wright et al., 2004).

In the Groningen study, a quadtree decomposition of the subsidence signal has been
applied to increase redundancy. The PS deformation estimates within each quadtree
grid cell have been decomposed into a vertical and a horizontal component along
ascending look direction (Hanssen, 2001). Figure 6.36 shows that local horizontal
movements for the main Groningen subsidence bowl are 2–3 mm/yr towards the
center of the bowl. This local effect is also visible for some of the smaller subsidence
bowls. Although the reliability of the horizontal components needs to be further
investigated, both magnitude and direction approximately correspond with the the-
oretically predicted values (Geertsma, 1973b). The analytical model from Geertsma
(1973b) has been evaluated on a simplified representation of the Groningen gas field
as a disc shaped reservoir with a diameter of 30 kilometers at 3 kilometers depth.
Average values were taken for Poisson’s ratio, reservoir thickness and the compaction
coefficient in the period 1993–2003, see Tab. 6.5.

Fig. 6.37 shows that the maximum expected horizontal movements are around 3 cen-
timeters in a ten year period, which corresponds with the magnitude of the horizontal
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Fig. 6.36. Quadtree decomposition and interpolated horizontal PS velocities (mm/year)
along ascending look direction.

Table 6.5. Approximate Groningen reservoir parameters for the period 1993–2003.

compaction coefficient (bar−1) cm 0.72 · 10−5

Poisson’s ratio ν 0.25
reservoir thickness (m) H 150–220
pressure decrease in 10 years (bar) ∆P 36

PS velocities of 2–3 mm/year. The geophysical background of the spatial subsidence
components and their estimation using PSI is further elaborated in Ketelaar et al.
(2008a).

For Envisat, the PSI estimates of only one track are available. This track covers a
time period that does not overlap with the ERS PSI estimates. Hence, a multi-track
datum connection procedure cannot be performed. This does not imply that the
Envisat results are unreliable for the estimation of subsidence due to gas extraction.
Redundancy is introduced by the spatial sampling of the Groningen subsidence bowl,
that has an extent of 30 kilometers. The spatial density of the Envisat PSI estimates
will be demonstrated in the comparison with leveling displacements along profiles
that cross the subsidence bowl, see section 7.2.

The multi-track datum connection of the six ERS tracks has shown that velocity
and deformation estimates from multiple independent tracks can be integrated. The
standard deviation of multi-track velocity estimates is less than ∼1 mm/year. Both
the precision and the reliability of PSI as a measurement technique have been quan-
tified in section 6.3 and section 6.4. Now, section 6.5 will focus on the estimation of
subsidence due to hydrocarbon production from the PSI estimates. Physical PS pro-
perties and a-priori knowledge on the spatio-temporal behavior of the deformation
signal will be exploited to investigate the idealization precision of PSI for subsidence
monitoring due to hydrocarbon production.
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Fig. 6.37. Predicted horizontal movements in 1993–2003 for the Groningen subsidence
bowl. This shows that horizontal movements are maximum ∼3 mm/year.

6.5 Idealization precision for deformation monitoring

Since subsidence due to hydrocarbon production can be contaminated by other defor-
mation regimes (shallow compaction, structural instabilities), the PSI deformation
estimates require further interpretation, see section 4.5.1. This section starts with
an inventarisation of deformation regimes in the Netherlands. Subsequently, the use
of PS characterization and the spatio-temporal behavior of subsidence due to hydro-
carbon production is investigated to assess the idealization precision for deformation
monitoring.

6.5.1 Identification of deformation regimes

The combination of soft soils in the shallow subsurface and the low subsidence rates
due to gas and oil extraction requires the investigation of deformation regimes in the
Netherlands. Brand (2002) addresses several deformation processes in the Nether-
lands in order to explain leveling benchmark movements. Leveling benchmarks are
subdivided into well-founded underground benchmarks and benchmarks that are
mounted in existing buildings with varying foundation types. Underground bench-
marks are founded on Pleistocene sand layers (Fig. 6.38), which are considered stable.
In the Netherlands there are approximately 500 underground benchmarks, and 30000
benchmarks mounted in buildings. Due to geological activity, also the underground
benchmarks exhibit small movements of maximum ∼0.1 mm/year (ibid.). Fig 6.39
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depicts the geological structure of the shallow subsurface of the northern part of the
Netherlands. The shallow subsurface consists of sand, clay and peat layers.

Fig. 6.38. The Pleistocene layer in the Netherlands (DINO, 2008). The top of the
Pleistocene layer in the Dutch vertical datum (NAP, m) is depicted.

Settlement of foundations

The settlement of foundations is dependent on the type of foundation and the sub-
surface layers. The settlement can be caused by:

• the weight of the structure or building,

• negative pile friction (additional downward force due to settling subsurface
layers),

• peat oxidation below the foundation,
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Fig. 6.39. Geological map of the northern part of the Netherlands (DINO, 2008). The
subsurface consists of sand, peat and clay layers.

• rotten piles.

The settlement of a foundation on sand is rather small and occurs in a short time
period. A foundation on clay or peat causes settlement of a higher magnitude over
a longer time period. The settling velocity decreases logarithmic in time. Special
attention has to be paid to areas where peat oxidation might occur.

Figure 6.40 depicts the building foundation types in the Netherlands. Not all build-
ings have been founded on the stable Pleistocene layer. A common practice in
Friesland and Groningen has been a foundation ’op staal’: a shallow foundation on
the Holocene clay layers. Another type of foundation is ’op kleef’: a collection of
poles in the (shallow) subsurface layers, that connect the building to stable parts of
these layers. The settlement of buildings has been monitored periodically by leveling
the benchmarks that are mounted on these buildings. In Groningen, the majority of
the benchmarks exhibit relative displacement rates within 1 mm/year (NAM, 1991;
Hoefnagels, 1995). Fig. 6.41 depicts a histogram of the benchmark displacement
rates in the Groningen area before the start of gas extraction (NAM, 1991). Al-
though the majority of the benchmark displacement rates are less than 1 mm/year,
it has to be noted that areas can be indicated were all benchmarks exhibit slightly
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Fig. 6.40. Foundations in the Netherlands: (left) ’op staal’ (shallow foundation), (mid-
dle) on poles mounted on the stable Pleistocene layer, (right) ’op kleef’ (poles connected
to stable parts in the shallow subsurface).

larger displacement rates, such as the area around Delfzijl (mideastern part of the
Groningen subsidence bowl). Cheung et al. (2000) has detected maximum rates of
−2.5 mm/year in Friesland, in areas with clay layers that are superposed on peat
layers.

Shallow subsurface movements

Shallow compaction can occur as a result of the weight that is imposed on the
layers, due to a decreasing groundwater level, or due to peat oxidation. The degree
of compaction depends on the soil type: clay and peat layers are more affected than
sand layers. Furthermore it is dependent on the depth of the layer: deeper layers
have already been compacted and an additional pressure increase will have a reduced
effect.

The effect of groundwater level changes is demonstrated in the Delft corner reflector
experiment, see section 4.4. Five corner reflectors have been periodically leveled
since March 2003. The corner reflectors are mounted in the shallow subsurface,
∼40–50 cm deep. The corner reflector heights, that have a precision of 0.5–1 mm,
vary seasonally with an amplitude of 1–2 centimeters. Groundwater tubes have been
established in August 2005 near the four corner reflectors that were left. Measuring
the groundwater heights has been incorporated in the leveling campaigns at the time
of each satellite pass. Fig. 6.43 shows that the seasonal behavior of the groundwater
levels and the corner reflector heights is the same. Furthermore, it can be deduced
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Fig. 6.41. Estimated benchmark displacement rates in the Groningen area before the
start of gas extraction. The majority of the relative displacement rates are within 1
mm/year.

that the amplitude of the groundwater level variations is a factor 10 higher than the
amplitude of the corner reflector heights. If the groundwater level increases, the soil
expands and the corner reflectors move upwards. If the groundwater level decreases
in summer, the pore water pressure drops. This results in an increased effective
stress, leading to compaction of the soil.

Since the magnitude of shallow compaction is potentially larger than the magni-
tude of subsidence due to gas extraction (cm/year versus mm/year), well-founded
benchmarks are required to estimate subsidence due to gas extraction. Regarding
the PSI technique, this implies that only observations with respect to well founded
structures and buildings should be used.

Isostacy and tectonics

Isostacy is the equilibrium of the lithosphere on the asthenosphere (the soft part of
the earth’s upper mantle). Movements to maintain or recover the equilibrium are
very small and affect the entire lithosphere. They may for example be caused by the
melting of a large ice cap. Since the last ice age, Scandinavia is still moving upwards
and the Netherlands downwards.

Tectonics is concerned with the internal deformation of the lithosphere as a result
of dynamics within the earth. Plate movements along faults may cause earth sur-
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Fig. 6.42. Corner reflector heights (mm) since March 2003 and groundwater level
heights (dm) since August 2005. The corner reflector heights show a seasonal amplitude
of 1–2 cm. The corner reflector heights follow the groundwater level variations.

face movements. Earth surface movements due to both isostacy and tectonics are
expected to be maximum 0.1 mm/year (Brand, 2002).

Mineral extraction

Besides gas and oil extraction, there are several salt mining areas in the Netherlands.
Furthermore, until the 1970s, coal mines were operational in the southern province
Limburg.

Subsidence at ground level due to hydrocarbon production has already been ex-
plained in section 2.1.4. Section 6.5.2 will now specifically address shallow subsurface
displacements in the Groningen area, that are superposed on the deep subsurface
displacements.

6.5.2 Shallow and deep subsurface movements in Groningen

Knowledge on shallow and deep subsurface movements in the Groningen area has
been obtained in two ways: by shallow and deep observations wells, and by bench-
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mark stability analyses. Both methods are successively described in this section.

Shallow and deep observation wells

In the Groningen gas extraction area, in situ compaction measurements have been
carried out to discriminate shallow subsurface movements from subsidence due to
gas extraction. Reservoir compaction can be measured at 7 wells (originally 11),
while 14 wells have been established to measure shallow compaction (de Loos, 1973;
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NAM, 2005). These compaction measurements verify the predicted subsidence and
the behavior of the overburden.

Deep observation wells measure compaction due to gas extraction. The measurement
targets for deep compaction are radio-active bullets that have been shot in the
formation at regular distance (NAM, 2005). Their relative displacement is measured
periodically by means of a gamma-ray detector.

Fig. 6.44. Shallow observation well. The cable movement represents the shallow sub-
surface movements (de Loos, 1973; NAM, 2005).

Shallow compaction is measured by a cable installation in a shallow compaction well,
see Fig. 6.44. This cable installation measures the movement of a cable that is held
under constant tension by means of an anchor weight at the bottom of the well and
a counterweight at the surface. The cable movement, that can be measured with
sub-mm precision, represents the deformation in the layers between the bottom of
the well and the surface. Natural compaction rates based on benchmark histories
in Groningen are in the range of 0.5–8 mm/year (de Loos, 1973). The largest com-
paction occurs in the upper 50 m Holocene peat and clay layers. In the shallow
compaction time series, the tidal influence is visible as well (ibid.). The highest
magnitude of the oscillation due to tides is ∼0.25 mm.

Benchmark stability analysis

To estimate subsidence due to gas extraction utilizing second order benchmarks
(benchmarks with a shallow foundation), knowledge about possible benchmark move-
ments due to other causes (natural subsurface movements, foundation instability and
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settlement of the buildings) is required.

Schoustra (2006) performs a benchmark stability analysis in the Groningen area that
is based on geostatistics and physical properties. Benchmark stability analysis based
on geostatistics utilizes the spatial correlation of benchmark movements. It assumes
that benchmark movements due to shallow compaction exhibit a lower or no degree
of spatial correlation. Both the SuRe methodology (see section 2.3.4) and Kriging
cross-validation (see section 4.5.3) using benchmark heights in the Dutch vertical
reference system (NAP) have been applied. In this way, 878 stable benchmarks (out
of 2080) were selected that cover the entire Groningen subsidence area.

6.5.3 PS characterization

To improve the idealization precision of PSI for the estimation of subsidence due to
gas extraction, two options are available:

1. PS selection based on physical properties and reflection type (see section 4.5.2),

2. the use of a-priori knowledge on the spatio-temporal behavior subsidence due
to gas extraction (see section 4.5.3).

This section investigates the methodologies for PS characterization in the Groningen
study: PS heights, reflectivity as a function of viewing geometry, and polarimetric
observations.

Direct reflections from well founded buildings are assumed to be the most suitable
targets to provide observations for the estimation of deep subsurface displacements.
In this section, we try to isolate these PS from PS that originate from double-bounce
reflections that refer to ground level. Subsequently, their deformation estimates
are analyzed. It is expected that the PS that represent solely the deep mass dis-
placements will exhibit the lowest displacement rates, since all deformation regimes
superposed on the deep mass displacements contribute additional subsidence com-
ponents. A selection of PS that represent only deep subsurface displacements should
therefore result in a shift of the velocity estimates towards displacement rates of a
lower magnitude. In this section, we try to quantify this shift to be able to make a
statement on the usage of different PS types for the estimation of subsidence due to
hydrocarbon production.

PS heights

PS that represent direct and indirect reflection from buildings can be distinguished
based on their height with respect to ground level (Perissin, 2006). In the northern
part of the Netherlands, two case study areas have been selected: Groningen city
and a rural area with scattered farms in the onshore part near the Waddenzee, see
Fig. A.1. Sidelobe observations have been removed, since their height estimates are
incorrect, see section 4.2.2. Figure 6.45 shows the PS height histogram before and
after sidelobe removal. It shows that the PS heights have a much smaller distribution
after rejection of these false PS targets. Furthermore, it can be seen that the peak
of the height histogram before sidelobe removal is located at −10 m. Assuming that
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the height histogram peak corresponds with ground level (ibid.), this implies that
the reference PS is located at +10 m above ground level. The height histogram after
sidelobe removal has been shifted; the ground level now corresponds with a height
of 0 m.

Fig. 6.45. PS heights before sidelobe removal (white) and after sidelobe removal,
corrected for the reference PS height (black). Since sidelobes have incorrect height
estimates, the distribution of the PS height after sidelobe removal is smaller.

If the area of interest would be flat, PS heights with respect to ground level can be
determined from the height histogram. However, even in the northern part of the
Netherlands, ground level height variations of several meters cannot be neglected if
ground level reflections have to be discriminated from reflections that refer to the top
of a building. Hence, the following options for the determination of heights above
ground level have been considered:

1. local PS height histograms,

2. SRTM heights,

3. laser altimetry heights.

The first method works if small areas can be considered flat (height differences less
than one meter). It creates height histograms as depicted in Fig. 6.45 for small
areas. In each of these areas, the peak of the histogram is assumed to indicate the
ground level. Subsequently, the PS heights above ground level can be determined.

The second option considers the SRTM heights, that are sampled each 3 arc seconds.
Rodriguez et al. (2005) perform an accuracy assessment of the SRTM data. For
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Europe, the height errors are in the order of 6–8 m. This is not accurate enough
to distinguish reflections from the average building height in the Netherlands from
ground level. Moreover, since the SRTM heights stem from radar interferometry,
they do not necessarily represent ground level.

The last option exploits the Actual Height model of the Netherlands (AHN, 2008).
In the period 1996-2003, airborne laser altimetry data has been acquired covering
the Netherlands. The precision of the heights is 10 centimeters, with a density of 1
point per 16 m2 (ibid.). AHN products can be subdivided in filtered point heights
at original locations, and interpolated point heights at various postings (5, 25, 100
meters). The filtered point heights refer to ground level, except for urbanized areas
larger than 1 km2 (ibid.). This implies that in the areas where most PS are found,
the AHN point heights are not at ground level. The scattered white spots in Fig. 6.46
show that the buildings have been successfully filtered out in the rural area, whereas
in Groningen city, the AHN heights form a Digital Elevation Model of the city, see
Fig. 6.47. The AHN height histograms of the rural area and Groningen city are
depicted in Fig. 6.48.

Fig. 6.46. AHN heights in a rural area (m). This data product aims to represent the
ground level heights and hence the elevated targets, i.e. buildings, have been removed
(white spots).

The first method, that uses the local height histograms, has been chosen as the
preferred method to estimate heights above ground level. This method works for
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Fig. 6.47. AHN heights in Groningen city (m).

Fig. 6.48. AHN height histogram in the case study areas: a rural area (left) and
Groningen city (right).

both rural and urban surroundings, where local areas can be considered flat. After
computation of the PS heights above ground level, all PS with a height larger than
5 meters have been selected. Subsequently, the velocity estimates of the selected PS
have been evaluated. Since the selected PS are likely to represent direct reflections
from (stable) buildings, the magnitude of the displacement rates is expected to
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be lower. This is shown in Fig. 6.49, which depicts the PS velocity histograms
before and after selection on PS height above ground level in both case study areas.
All PS velocities are relative, and stem from PS processing; a selection based on
correlation with neighboring PS has not been performed. As expected, the velocity
histogram shifts to the right after selection. Furthermore, the histogram’s shape
becomes smaller, meaning that the standard deviation of the velocities decreases
(hypothetically due to less additional autonomous components).

Although a change of histogram shape is visible after selection on PS height, the shift
in PS velocity is not more than 0.5 mm/year and the location of the histogram peak
stays the same. A hypothesis to explain this minimal changes after selection on PS
height is that PS reflections are related to well-founded structures, irrespective of the
type of the reflection. Another explanation may be that subsidence due to shallow
compaction and structural instability has a less smooth and less linear behavior
than ongoing subsidence due to deep compaction. As a result, PS representing deep
compaction may have a higher coherence. Furthermore, PSI is a relative technique,
and hence cannot detect shallow displacements if they are equal for the entire area.

Fig. 6.49. PS velocity histograms for all PS and a selection of PS that are more than
5 meters above ground level: (left) Groningen city and (right) Waddenzee.

The same analysis of the velocity histograms has been performed before and after
PS selection based on reflectivity as a function of viewing geometry (Ketelaar et
al., 2006), see section 4.5.2. For the Groningen descending main track, in total 106
acquisitions were available with a Doppler range of 9050 Hz, which corresponds with
a squint angle variation of 5.3 degrees. The range in perpendicular baseline is 2215
m, causing a viewing angle range of 0.13 degrees. The same conclusion was drawn as
for selection based on PS height above ground level: the PS velocity distribution is
more concentrated in the stable domain, but the shift before and after PS selection
is not significant (< 0.5 mm/year).

It has to be stressed that the two case studies do not necessarily represent the entire
area that is affected by subsidence due to gas extraction from the Groningen field.
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It is recommended to verify the effect of PS selection in areas that are classified
according to the shallow geology, as depicted in Fig. 6.39.

Alternating Polarization

Besides PS heights above ground level and PS reflectivity as a function of viewing
geometry, dual polarization observations can be utilized for PS characterization. In
section 4.5.2, it has been shown that pixels with a high amplitude in an HH-VV AP
image have two distinct responses that have a phase difference of π.

Unfortunately, due to conflicts with commercial users, only one AP image has been
acquired over the Groningen subsidence area, from the ascending track 487. The
available AP image from track 487 has been acquired on the 1st of January 2006
and has a baseline of 1070 meters with respect to the ERS master. This means that
the ERS and Envisat spectra do not overlap, and the AP information can only be
successfully linked to Persistent Scatterers that act like ideal point targets.

Coregistration of the Envisat AP images with the ERS master scene has been per-
formed similarly to the multi-track approach. Based on the orbits, an initial co-
registration polynomial has been estimated, which has subsequently been refined
using the point fields. For the Envisat AP image, this point field is reconstructed by
pixels that exceed a certain amplitude threshold. Because of the decreased azimuth
resolution of the AP image, it is complicated to use the amplitude information.

By means of the AP data, it is investigated if PS with a higher height above ground
level are odd-bounce scatterers (most likely specular reflections). The same case
study areas have been used (rural area and Groningen city). The PS heights above
ground level have been determined using local height histograms.
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Fig. 6.50. Rural area: HH-VV phase differences for PS heights below and above ground
level.

Figs. 6.50 and 6.51 show the HH-VV phase differences for targets above and below
ground level. PS targets above ground level have a polarimetric phase difference
that is concentrated around π/2; the uncertainty is considerable. To optimize the
probability that PS targets are indeed located above ground level, the uncertainty
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Fig. 6.51. Groningen city: HH-VV phase differences for PS heights below and above
ground level.

of ground level determination has to be taken into account. Considering ground
level targets and elevated targets as different height regimes, the height distribution
is a multi-modal distribution. Fig. 6.53 shows the histogram fit of the ground level
deduced from the PS height estimates in Groningen city. The standard deviation
of the best fit is approximately 2.5 meters. Translating that into a 95% confidence
interval, the critical height value is 5 meters. Fig. 6.52 shows that most targets
that are classified as 5 meters above ground level are connected to buildings. From
Fig. 6.54 can be deduced that the majority of the PS can be classified as odd-bounce
reflections, most likely specular reflections.

Fig. 6.52. PS targets before (left) and after (right) selection on height above ground
level (5 meters). The selected PS targets correspond with buildings; the PS at lower
heights are deselected.

It can be concluded that AP phase observations can aid the distinction of odd-bounce
reflections from elevated targets (buildings) in the Groningen area. However, when
considering the velocity histograms before and after PS selection based on PS height,
it can be concluded that the effect of PS characterization is not significant in the case
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Fig. 6.53. Groningen city: ground level histogram fit using the PS height estimates.
The best fit corresponds with a standard deviation of ground level heights of 2.5 m.
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Fig. 6.54. HH-VV phase differences for PS height estimates that are more than 5 meters
above ground level for (left) the rural area and (right) Groningen city.

study areas. Here, the majority of the PS seem to refer to well-founded structures
that subside due to the common deformation regime of gas extraction. However, the
PS characterization tools should certainly be considered for interpretation in areas
with considerable (variations in) shallow compaction.
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6.5.4 On the use of a-priori knowledge on the deformation signal

Besides PS characterization, the use of a-priori knowledge on the spatio-temporal
behavior can increase the idealization precision of PSI for deformation monitoring.
This section shows an application of Kriging cross-validation and an application of
the decomposition of PS displacements according to deformation regime (see sec-
tion 4.5.3). Both methodologies are demonstrated for the estimation of subsidence
due to gas extraction from the Rotterdam gas field. The Rotterdam gas field is
situated in the western part of the Netherlands. The subsiding area is small, ∼25
km2 , and displacement rates are only several mm/year. The discrimination between
different deformation regimes is essential due to the low subsidence rates, combined
with natural compaction due to the soft soils in the shallow subsurface.

Kriging cross-validation: the Rotterdam casestudy

The Kriging weights for Kriging cross-validation have been determined based on the
variogram of the subsidence prognosis, see Fig. 6.55. Subsequently, cross-validation
has been applied to select the PS that exhibit similar displacement rates as their
neighboring PS. Figure 6.56 shows the PS velocities before and after PS selection
based on Kriging cross-validation.
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Fig. 6.55. Left: subsidence prognosis of the Rotterdam gas field (mm), including the
leveling trajectories (white). Right: variogram of the subsidence prognosis.

Fig. 6.57 depicts the differences between PS velocities and prognosed subsidence
velocities before and after selection. It shows that the outliers have been suc-
cessfully eliminated after cross-validation. Furthermore, it can be seen that the
skew-symmetric left-hand tail of the original histogram has almost completely dis-
appeared after PS selection. A hypothesis is, that the rejected PS contain additional
autonomous displacement components caused by shallow subsurface movements or
structural instabilities.
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Fig. 6.56. PS velocities before (left) and after (right) Kriging cross-validation in the
Rotterdam subsidence area. The depicted displacement rates have to be interpreted
spatially relative.
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Fig. 6.57. Differences between PS velocities and prognosed velocities (mm/year), before
(a) and after (b) Kriging cross-validation.

Displacement decomposition: the Rotterdam casestudy

This section demonstrates the estimation of displacement components in the Rotter-
dam area to improve the idealization precision of the estimation of subsidence due
to gas extraction. For the estimation of subsidence due to gas extraction from the
Rotterdam field, the separation of deformation regimes is essential due to the soft
soils in the shallow subsurface.

PS selection using Kriging cross-validation removes PS that contain displacements
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due to gas extraction, but are contaminated by autonomous movements due to e.g.,
shallow compaction. Here, variance component estimation is applied to estimate
the displacement components due the gas extraction from all available PS over the
Rotterdam gas field (Ketelaar et al., 2004b). The methodology has been explained
in section 4.5.3.

Both leveling and PS displacements can potentially be subdivided into spatially and
temporally correlated components and components that are temporally correlated
only. The first category refers to the subsidence prognosis and its imperfections: it is
referred to as the model components. The second category refers to individual point
characteristics, such as foundation pressure and pile friction. This category consists
of the autonomous components. For each deformation regime that is responsible for
a part of the total PS displacement, the behavior is characterized by the stochastic
model parameters: variance factor (magnitude) and correlation length.

The area under investigation has an extent of approximately 100 km2, and has
successively been evaluated with leveling and PSI measurements. The stochas-
tic model parameters of spatially and non-spatially correlated deformation regimes
has been estimated using variance component estimation within the SuRe metho-
dology (Houtenbos, 2004), see section 2.3.4. The subsidence prognosis for the ob-
servation period 1992–1999 is depicted in Fig. 6.58. Tab. 6.6 lists the estimated
variance components and their precision for three runs: one for leveling and two
for InSAR with varying temporal sampling. Figs. 6.59 and 6.60 show the estimated
spatially correlated deformation signal and its precision respectively.

Table 6.6. Estimated variance components and their precision in the estimation of the
subsidence signal above the Rotterdam gas field.

Type Leveling InSAR InSAR

Observations 716 1698 2830

Unknowns 244 567 567

σobs(mm) 0.83±0.03 0.89±0.04 0.60±0.01

σstb(mm) 0.70±0.05 0.89±0.06 0.96±0.03

σmod(mm) 0.93±0.13 0.68±0.13 1.25±0.13

L (m) 1933±335 1887±237 2479±240

p 0.89±0.02 0.98±0.02 0.96±0.01

From Fig. 6.59 and Fig. 6.60 it can be deduced that also a contaminated signal
of interest can be precisely estimated (σ ∼2 mm), when taking the displacements
due to benchmark settling and subsidence prognosis imperfections into account in
the stochastic model, together with variance component estimation and a sufficient
spatial and temporal measurement density. Leveling and PSI generally show the
same subsidence pattern. This subsidence pattern is the accumulated subsidence
due to all spatially correlated deformation regimes.

It can be seen that the estimated deformation patterns from both leveling and PSI
deviate from the subsidence prognosis. In this particular case study, the spatially
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Fig. 6.58. Subsidence prognosis above the Rotterdam field (distance in km, surface
displacements in mm).

Fig. 6.59. Estimated spatially correlated deformation (mm) between 1992 and 1999
using (left) leveling, (middle) PSI and (right) PSI with a higher temporal sampling.

Fig. 6.60. Precision (1-sigma, mm) of the displacement component that is spatially
correlated, for (left) leveling, (middle) PSI and (right) PSI with a higher temporal sam-
pling.

correlated deviations from the subsidence prognosis could be explained by physi-
cally ongoing processes in the subsurface: water injection in this period has caused
relatively less subsidence than predicted in the prognosis.



6.6 Conclusions 169

6.6 Conclusions

This chapter has shown that a coherent deformation signal can be estimated using
PSI, even in rural areas that are affected by temporal decorrelation and are subject
to low subsidence rates (<1 cm/year) over a wide spatial extent. The subsiding areas
correspond with the location of the gas fields that are in production. The quality
description of the deformation estimates has been viewed from the perspective of
precision and reliability of the PSI technique itself and the idealization precision for
the estimation of the deformation signal of interest.

The PS density in Groningen follows buildings and other man-made features in the
terrain, and varies from 0–10 PS/km2 in rural areas up to more than 100 PS/km2

in urban areas. The precision of the displacement rates is ∼0.1–0.5 mm/year both
for ERS and Envisat. The precision of the displacement estimates is ≤3 mm in
urban areas, and 3–7 mm in rural areas. The interferometric phase observations
from Envisat contain systematic residual components that have been estimated and
removed prior to the PSI estimation.

A reliability assessment has been performed utilizing six overlapping ERS tracks that
cover the Groningen subsidence bowl. Redundancy is introduced since they monitor
the same deformation signal. The datum connection procedure has integrated the
PSI estimates from the different tracks, that cover together the entire northeastern
part of the Netherlands and a part of Germany. The standard deviation of the PS
velocities is less than 1 mm/year after datum connection for 70% of the multi-track
PS clusters. Moreover, the deformation was decomposed into one horizontal and the
vertical component. The magnitude of the horizontal components (2–3 mm/year)
approximately agrees with the theoretically expected horizontal movement for the
Groningen subsidence bowl (maximal 3 mm/year).

The idealization precision of PSI for monitoring subsidence due to gas extraction can
be improved by PS characterization and the use of a-priori knowledge on the spatio-
temporal behavior of the deformation signal. PS characterization is based on the
assumption that phase observations from direct reflections that refer to well-founded
buildings are most representative for subsidence due hydrocarbon production. PS
characterization methods (Alternating Polarization, PS heights, and reflectivity as
a function of viewing geometry) have been evaluated based on the PS velocity his-
tograms for two case study areas. In these case study areas, PS selection based
on characterization parameters resulted in a shift towards PS velocities of a lower
magnitude, but this shift appeared to be not significant (< 0.5 mm/year). Hence,
in these case study areas, it suffices to apply spatial correlation of subsidence due to
gas extraction for PS selection to increase the idealization precision for deformation
monitoring.
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Chapter 7

Cross-validation and operational

implementation

In chapter 6, the accuracy (precision and reliability) of the PSI technique has been
evaluated. The precision of a displacement estimate varies from ≤3 mm in urban
areas to 3–7 mm in rural areas, see section 6.3.1. The precision of displacement rates
is ∼0.1–0.5 mm/year. The reliability of the PSI results has been demonstrated in the
multi-track datum connection procedure in section 6.4. Moreover, it has been shown
that the idealization precision of PSI for deformation monitoring can be improved
by PS characterization and PS selection based on spatial correlation of the signal of
interest, see section 6.5.

For the acceptance of PSI as an operational deformation monitoring technique, it
has to be demonstrated that the deformation estimates are free of unquantified
systematic effects. Because the majority of the gas fields in the Netherlands were
already in production before the radar satellites were operational, the agreement
with subsidence estimated from historical measurements is essential. Therefore,
this chapter addresses the comparison of PSI deformation estimates with leveling
measurements. The comparison is performed from an integrated perspective: the
uncertainties of both techniques are considered and they should agree within the
error margins.

Since leveling and PSI have complementary characteristics (high precision observa-
tions versus high spatial density), the spatial and temporal observation density and
the precision that can be obtained play an important role. This is addressed from
a theoretical perspective in section 7.1. Section 7.2 contains the comparison of leve-
ling and PSI deformation estimates in the period from 1993 until 2007. To conclude,
section 7.3 proposes a mathematical framework for the integration of geodetic ob-
servations of multiple techniques in the estimation of a common deformation signal.

7.1 Precision and spatio-temporal observation frequency

This section compares PSI and leveling in terms of precision and spatio-temporal
observation frequency. Although PSI and leveling are both used for deformation
monitoring, the type of observations is not the same. This is addressed in the first
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Fig. 7.1. PSI and leveling double-differences: a PSI observation is an interferometric
phase difference in time; the double-difference is formed by a spatial difference between
two PS (left). A leveling observation is a spatial height difference; the double-difference
is formed by a temporal difference between two epochs (right).

part of this section. Subsequently, the performance of both techniques is evaluated
based on precision measures of the deformation estimates.

7.1.1 PSI and leveling deformation estimates

The difference between leveling and PSI observations is depicted in Fig. 7.1. Leveling
heights are estimated from spatial height difference measurements. From subsequent
leveling epochs, leveling benchmarks displacements are deduced. The basic PSI
observation is an interferometric phase difference between two epochs. The first
information-bearing observation, the double-difference, is formed between two PS at
different locations.

Furthermore, leveling and PSI observations differ in the spatial projection of the
measurements. PSI double-differences are measured along the satellite line of sight,
whereas leveling heights are measured in a vertical datum, see section 4.4.3.

Moreover, PSI and leveling displacements are physically not the same: orthometric
and ellipsoidal displacements are distinguished. Orthometric displacements are dis-
placements that are relative to the geoid, which is the equipotential surface of the
earth’s gravity field that follows the global mean sea level. Leveling heights are
orthometric heights. On the other hand, PSI deformation estimates are ellipsoidal
displacements. They refer to a mathematical ellipsoidal shape of the earth. Also
GPS heights are ellipsoidal.

The difference between ellipsoid and geoid can be determined from gravity measure-
ments and results in a geoid model, e.g., EGM96. The difference between ellipsoidal
heights H and orthometric heights h is equal to the geoid height N (geoid undula-
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tion):
N = H − h. (7.1)

The difference in geoid height in Groningen is in the order of 50 centimeters over a
distance of several tens of kilometers. The relative precision of the geoid between
two points i and j over a distance d is (RDNAP, 2008):

σNij
(cm) = 0.35 + 0.003d(km). (7.2)

which is less than a centimeter over a 200 kilometers distance.

Neglecting the geoid in the integration of geometric and orthometric displacements
will result in a systematic effect over a large extent. However, when using double-
differences as basic observations, the difference between geoid and ellipsoid cancels,
assuming that the geoid does not change in time.

7.1.2 Setup for the evaluation of spatio-temporal sampling

For deformation analysis, both leveling and PSI deformation estimates are evaluated
in time and space. Both techniques are relative techniques. To compare them,
deformation estimates from both leveling and PSI are defined as double-difference
displacements:

dt1t2ij , (7.3)

relative in time (between t1 and t2) and space (between points i and j).

To evaluate the performance for deformation monitoring of both PSI and leveling,
the following two strategies are proposed:

1. comparison of double-difference displacements along the vertical: derivation of
double-difference displacements from the leveling height estimates and projec-
tion of PSI displacement estimates along the vertical,

2. evaluation of the precision of deformation estimates using the PSI system of
equations: leveling height estimates are converted to double-difference obser-
vations along the satellite line of sight.

The first option obtains the same projection of the leveling and PSI displacements by
converting the PSI displacement estimates from satellite line of sight to the vertical.
For leveling, the double-difference displacements are constructed from the height
estimates ĥ per epoch:

dt1t2ij = ĥ
t2
j − ĥ

t2
i − ĥ

t1
j + ĥ

t1
i . (7.4)

The second option is based on the PSI system of equations. Because the focus lies
on the spatial and temporal sampling, it is assumed that all PSI phase observations
have been unwrapped correctly. The interferometric phase observations are defined
between master time t1 = tm and slave time t2 = ts. Their functional relation with
the double-difference displacements along the vertical reads:

ϕtmts
ij

= −4π cos θmi
λ

dtmtsij , (7.5)
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where θmi is the incidence angle, and double-difference displacements are defined as:

dtmtsij = dtsij − dtmij , (7.6)

while double-differences phase observations are defined as:

ϕtmtsij = ϕtmij − ϕtsij . (7.7)

Redundancy is introduced in the PSI system of equations by modeling the defor-
mation between two PS as a linear displacement rate under the null hypothesis.
Restricting the unknowns to the linear displacement rates v and the (residual) to-
pographic heights H, the function model reads (see Eq. (6.4)):

ϕk
ij

= −4π

λ
T kvij −

4π

λ

B⊥
i

Rmi sin θmi
Hij + e, (7.8)

where e represents measurement noise, deformation model imperfections, and (resi-
dual) atmospheric signal, and k represents the kth interferometric combination in a
single master stack. The corresponding equation for leveling differs in the following
ways:

• the absence of the (residual) topographic height unknowns,

• the absence of stochastically modeled atmospheric disturbances.

The observations are constructed from the leveling heights in the following way:

ϕt1t2
ij

= −4π cos θmi
λ

(ht2ij − ht1ij ). (7.9)

If prognosis grids z of the deformation signal are available, they can be subtracted
from the double-difference phase observations after conversion to phases along the
satellite line of sight:

ϕk
ij

+
4π cos θmi

λ
zkij = −4π

λ
T kvij −

4π

λ

B⊥
i

Rmi sin θmi
Hij + e. (7.10)

To provide insight in the effect of spatial and temporal sampling on the precision of
deformation estimates and the unknown stochastic model parameters, the redundant
PSI system of equations and the corresponding variant for leveling have been utilized.
It has been assumed that the PSI double-differences have been unwrapped with a
success rate of 1, and that the subsidence rates are linear.

For PSI, (a subsample of) the configuration of the six Groningen tracks has been uti-
lized (temporal baselines, perpendicular baselines, Doppler centroid frequencies). A
series of subsidence prognoses based on geomechanical subsurface modeling has been
available (1964-2007, eight predictions with intervals of ∼5 years). The precision and
the spatio-temporal observation frequency of the PSI and leveling technique have
been evaluated based on the precision of the deformation estimates and the precision
of the stochastic model parameters.
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7.1.3 Temporal sampling

This section addresses the effect of temporal sampling on the precision of the defor-
mation estimates from PSI and leveling. Simulations of leveling and PSI observations
have been performed, based on the assumption that benchmark and PS displace-
ments are linear in time. The mathematical model that is described by Eq. (7.8)
has been used for both PSI and leveling. The precision of the estimated displace-
ment rates are evaluated based on the variance-covariance matrix. The quality of
the variance-covariance matrix is parameterized by the Dilution of Precision for
PSI (DOPPSI). This precision measure has been described in section 4.3.4 and is
independent of the choice of the spatial and temporal reference.

For the evaluation of the temporal sampling, the standard deviation of PSI double-
difference observations has been set to 3 mm (see section 6.3.1), whereas the stan-
dard deviation of a leveling height difference has been set to 1 mm. It has to be
noted however, that the precision of both the leveling and the PSI observations is a
function of distance. The standard deviation of leveling height measurements is ∼1
mm/

√
km (de Bruijne et al., 2005). Fig. 7.2 shows the standard deviation of PSI

displacements between two neighboring PS as a function of the distance between two
PS, for the Envisat PSI deformation estimates in the period 2003-2007, see section
6.2.2. It can be deduced that the precision of relative PS displacements at a distance
of one kilometer is slightly higher than 3 mm. This is partly caused by the choices
that were made for the separation of atmospheric signal and unmodeled deforma-
tion, see section 6.1.3. Since the emphasis in the PSI processing has been set to
the preservation of unmodeled deformation, the displacement time series is slightly
noisier, as it may contain residual atmospheric signal that has not been removed. It
is expected that the standard deviation of the displacements will decrease with fu-
ture improvements on the stochastic modeling of atmospheric signal (Hanssen, 2001;
Grebenitcharsky and Hanssen, 2005; Liu et al., 2008).

Regarding redundancy and network design, the ratio between the number of height
difference observations and measurement points in the leveling network has been
set to 6:5. For PSI, this ratio is ∼1, since only P − 1 spatial differences can be
constructed from P PS.

Fig. 7.3 shows the DOPPSI values for the displacement rate estimates for both PSI
and leveling. Due to the lower observational precision of PSI, a time series of ∼25
images in 10 years is required to result in a similar precision compared to leveling
campaigns each 2–5 years. In fact, for stacks that consist of more than 25 images,
the temporal sampling of PSI can result in a even higher precision compared to
levelings each 5 years, even though the observational precision is lower.

It has to be noted that although the DOP precision measure is independent of the
spatio-temporal reference, it is one specific function of the variance-covariance ma-
trix. The DOP measure is a scalar precision measure that is easy to compare. Never-
theless, a complete analysis of the precision represented by two variance-covariance
matrices is performed through the generalized eigenvalue problem, see e.g., Teunissen
et al. (2005):

det(QPSI − λQlev) = 0, (7.11)
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Fig. 7.2. Left: histogram of mutual PS distances (distance to the closest PS). Right:
standard deviation of the Envisat PSI displacements as a function of distance between
the PS, after outlier removal based on spatial correlation. Although the majority of the
PS displacements have a standard deviation of ∼3 mm, the standard deviation of two
PS at a one kilometer distance is slightly higher.

where QPSI and Qlev are the variance-covariance matrices of the estimated displace-
ment rates for PSI and leveling respectively. Eigenvalues less than one indicate
that the precision of PSI is better than the precision of leveling, while eigenvalues
larger than one indicate that the precision of leveling is better. The best and worst
precision are indicated by the smallest and largest eigenvalue respectively. The cor-
responding eigenvector represents the direction in the parameter space in which the
precision corresponding with a certain eigenvalue is obtained.

The higher temporal sampling of InSAR has a significant advantage: model de-
viations in time can be detected, provided that the temporal sampling frequency
exceeds twice the highest frequency of this model deviation (the Nyquist rate). This
implies that with 6 acquisitions per year, model deviations over periods larger than 4
months can be detected. With an acquisition each 35 days, model deviations with a
period larger than 70 days can be detected. Leveling observations, with a frequency
of 2–5 years, are not able to detect model deviations over a several months’ period.

7.1.4 Spatial sampling

The spatial sampling of leveling and PSI is evaluated in this section with the purpose
to monitor subsidence due to hydrocarbon production. The average PS density in
the Groningen area is ∼40 PS/km2 (see section 6.2.1), which is significantly higher
than the leveling benchmark density of 1–2 per km2. In urban areas, the PS density
even exceeds 100 PS/km2.

For the parameterization of the spatial subsidence pattern, that has the approximate
shape of an ellipsoidal bowl, the following options are considered:
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Fig. 7.3. DOPPSI values for displacement rates (velocities) as a function of temporal
sampling for PSI (circles) and leveling (squares). Although PSI observations have a lower
precision, the higher temporal sampling has the potential to result in a similar or even
better precision of the displacement rate estimates. For leveling campaigns each 2–5
years, approximately 25 satellite acquisitions are required to obtain the same precision
of displacement rates.

1. average displacement estimates within a certain area, e.g., a quadtree grid cell,

2. subsidence prognosis grids, and

3. a point source model.

Average displacement estimates

If the area of interest can be subdivided into grid cells in which the surface dis-
placement is assumed constant, see e.g., Fig. 6.36, average displacement estimates
per grid cell can be computed. We start with the situation in which the displace-
ment estimates within a grid cell can be considered uncorrelated, and subsequently
demonstrate the effect of correlation between the displacement estimates.
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Fig. 7.4. Precision average displacement estimates as a function of number of observa-
tions for an observational precision of 1 (dashed) and 3 (solid) mm. Displacements are
considered to be equal and uncorrelated within a certain spatial radius, and an average
displacement is estimated. Hence the standard deviation of the average displacement
equals σd/

√
m, where m is the number of displacements.

If the displacements are assumed uncorrelated and of equal precision σd, the precision
of the average displacement d̂ equals:

σd̂ =
σd√
m
, (7.12)

where m is the number of displacement estimates. The relationship between para-
meter precision and number of observations is not linear. Fig. 7.4 shows the average
displacement precision as a function of the number of observations with a preci-
sion of 1 and 3 mm respectively. Whether different measurement techniques can
compete, depends on the required precision for the average deformation estimates.
The higher the required precision of the average displacement estimates, the more
additional observations are needed for the measurement technique with the lower
observational precision.

The leveling benchmark density in Groningen is ∼1–2 per km2. Considering mlev

leveling displacement estimates, and variances of σ2
dPSI

and σ2
dlev

, then the required
number of PSI displacements is:

mPSI =
σ2
dPSI

σ2
dlev

mlev, (7.13)
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if the PSI and leveling displacements would be uncorrelated. For a precision ratio of
σlev : σPSI=1:3, the PS density has to be 9 PS/km2. However, in practice both PSI
and leveling displacement estimates are mutually correlated. For leveling and PSI,
it can be demonstrated that the precision of the average displacement estimates
is dependent on respectively the network design and the correlation between the
double-difference observations.

The effect of correlation on the average displacement estimates for leveling is demon-
strated assuming (P − 1) height estimates ĥ from two identical measurement cam-
paigns at time t1 and t2. Benchmark 1 is considered as the reference benchmark.
The height estimates and their variance-covariance matrix read:

x̂ =
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; Qx̂ =

[

Qĥ 0
0 Qĥ

]

, (7.14)

for uncorrelated epochs t1 and t2. The double-difference displacement estimates are
a linear combination of the height estimates:

d =
[
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[

I −I
]
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]

= 2Qĥ. (7.15)

Subsequently, the mathematical model for the estimation of the average displacement
reads:

E{







d2
...
dP






} = emd ; D{







d2
...
dP






} = 2Qĥ. (7.16)

Application of the propagation law of variances and covariances leads to the following
precision of the average displacement estimate d̂:

σ2
d̂

=
2

∑P−1
i=1

∑P−1
j=1 Q

−1

ĥ ij

. (7.17)

Hence, the precision of the average displacement estimate depends on the precision
of the leveling height difference observations σy and the leveling network that is
described in the design matrix A.
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Fig. 7.5. Precision average displacement estimates as a function of number of observa-
tions for uncorrelated (solid) and correlated (dash-dot) PSI displacement estimates. Only
one interferometric combination is considered; the precision of the average displacement
estimates is shown for varying spatial sampling. The precision of the double-difference
phase observations is 3 mm. If the correlation between the displacement estimates is
neglected, the precision of the average deformation estimates is overestimated.

In PSI, the correlation is directly introduced in the construction of double-difference
phase observations, see Eq. (4.19). The relation of each double-difference phase ob-
servation with the displacement estimate is linear, see Eq. (3.11). Hence, the mutual
correlation of PSI displacement estimates is similar to the mutual correlation of the
double-difference phase observations. Fig. 7.5 shows the effect of the correlation of
double-difference phase-observations on the displacement estimates. It can be seen
that the precision improvement of the average displacement is overestimated if the
displacements are considered uncorrelated. Moreover, the precision of the average
PSI displacement estimate does not drop beyond 2 mm for a precision of 3 mm for
double-difference phase observations. This implies that the strength of PSI relies on
both the spatial and the temporal sampling.

Prognosis grids

Apart from the fact that the spatial sampling improves the precision of the defor-
mation estimates, the minimum spatial sampling to estimate the deformation signal
of interest has to be considered as well. In this section, we focus on the spatial
point density that is required to estimate subsidence due to gas extraction from the
Groningen gas field. Since the focus lies on the spatial pattern of the subsidence sig-
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Fig. 7.6. Subsidence prognosis (500×500 meter grid) in the Groningen area (left). The
coordinates are in the Dutch RD system. Four scenario’s of spatial sampling of the
subsidence prognosis are depicted (right).

nal, the correlation between the displacement estimates is neglected in this section.
For the implications of correlation, the reader is referred to the previous section.

Subsidence due to gas extraction is predicted based on the geomechanical modeling
of the subsurface including the reservoir, and is described by the subsidence prog-
nosis, see section 2.3.3. The shape of the subsidence prognosis of the Groningen gas
field and surrounding gas fields is shown in Fig. 7.6. The main subsidence bowl has
an extent of ∼30 km. A series of simulations has been performed where a num-
ber of observations with a certain precision is randomly selected. Subsequently, the
observations were interpolated (linear interpolation) and compared to the original
subsidence prognosis. The match between the subsidence prognosis and the interpo-
lated prognosis is expressed by the standard deviation of the residuals between the
two. These residuals are a superposition of residual components due to the precision
of the observations, the precision of the interpolator, and the spatial variation of the
subsidence pattern. Fig. 7.7 shows the standard deviation of the residuals between
the interpolated prognosis and the subsidence prognosis as a function of the number
of observations. It can be concluded that the standard deviation of the residuals
decreases significantly up to a point density of 1 point per km2. Apparently, a point
density of 1 point per km2 is sufficient to capture the spatial shape of subsidence
due to gas extraction in the Groningen area.

Point source model

Besides the prognosis grids, subsidence due to gas extraction can be characterized
by a limited number of geophysical parameters using the nucleus-of-strain con-
cept (Geertsma, 1973a) or Mogi sources (Anderson, 1936; Mogi, 1958), see sec-
tion 2.3.3. Fig. 7.8 shows an attempt to model the the Groningen subsidence pattern
using a single point source. The parameters that describe the single point source
are:

• a multiplication factor that represents the geophysical reservoir properties
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Fig. 7.7. Standard deviation of the residuals (mm) between the interpolated subsidence
prognosis (linear interpolation) and the original subsidence prognosis for varying spatial
point densities and for different observational precision (squares and circles correspond
with 1 and 3 mm σ respectively). Up to an observation density of 1 point per km2, the
standard deviation of the residuals is a superposition of the precision of the observations,
the precision of the interpolator, and the spatial variation of the subsidence pattern. A
point density of 1 point per km2 is sufficient to sample the spatial variation of the
subsidence pattern.

(compaction coefficient, Poisson’s ratio, pressure drop, and volume change),

• the source depth D, and

• the source location xc, yc.

From Fig. 7.8 it can be deduced that a single point source highly simplifies the actual
subsidence pattern. This is confirmed by Fig. 7.9, which shows the precision of the
source location and depth, that is not much affected by the spatial point density.
The range of the spatial sampling in Fig. 7.9 is 0–0.5 points per km2: this is the
range in which spatial sampling significantly affects the estimation of the subsidence
prognosis, see Fig. 7.7. However, the precision of the source parameters does not
change significantly in this spatial sampling range. Since a single point source is
not sufficient to describe subsidence due to gas extraction, we shift the focus to the
spatial sampling of the residual signal.

To analyze the effect of spatial sampling on the estimation of the residual signal,
realizations of residual signal with different spatial correlation lengths have been
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Fig. 7.8. Subsidence prognosis from start of gas extraction up to 2007 (left); subsidence
prognosis modeled by a point source (middle); residual deformation signal (right). The
single point source model highly simplifies the predicted subsidence pattern: the residuals
cover a range of 15 cm. For comparison: the shape of the interpolated deformation signal
that has been estimated from PSI is depicted in Fig. 6.36.
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Fig. 7.9. Precision of the point source location and depth parameter estimates as a
function of point density. The point density is chosen in the range 0–0.5 points per km2:
the range in which spatial sampling significantly affects the estimation of the subsidence
prognosis, see Fig. 7.7. Since the single point source model highly simplifies the actual
subsidence pattern, the point density does not affect the precision of the parameter
estimates.

simulated. Since the depth of the gas reservoirs in the northern part of the Nether-
lands is ∼3 km, a correlation length of 3 km has been chosen. Moreover, simulations
have been performed with a smaller correlation length of 1 km, which indicates
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the potential identification of irregularities in the subsidence pattern, e.g., due to
disconnected reservoirs. In a similar way as for the prognosis grids (see Fig. 7.7),
the interpolated signal has been compared to the original signal for different point
densities.

Fig. 7.10 shows that measurement techniques with a lower measurement precision
but higher spatial point density can still achieve a similar or even higher precision
level for the estimation of the residual signal. It also shows that the situation
in which the difference between the original and the interpolated signal does not
change significantly anymore, is reached for a relatively lower spatial sampling if the
correlation length is larger. This is explained by the fact that signal with a larger
correlation length requires a lower spatial sampling to fully reconstruct the signal.
Furthermore, it has to be realized that a low precision measurement technique with a
high point density has abilities to detect residual signal patterns that a measurement
technique with a lower point density but higher observational precision would never
be able to detect.

7.2 Comparison of PSI and leveling deformation estimates

In section 7.1 it has been shown by means of simulations that PSI can meet the
precision level of the leveling technique due to its spatial and temporal sampling.
In this section, the actual PSI and leveling deformation estimates in the period
from 1993 to 2007 are compared. For the comparison of leveling and PSI, the PSI
deformation estimates are converted to metric units along the vertical, as explained
in section 7.1.1. Two basic deformation estimates are distinguished:

1. the average displacement rates (velocities) in mm/year, and

2. displacements per epoch in mm.

Both the velocity and the displacements are double-differences. Hence, the difference
between orthometric and ellipsoidal estimates cancels, provided that the geoid does
not change in time.

This section evaluates the similarity between leveling and PSI velocities and displace-
ment estimates by means of the correlation coefficient and geodetic teststatistics. In
the comparison, the uncertainties of both techniques are taken into account. A state-
ment is given on the agreement between both techniques and possible explanations
for deviations are addressed.

7.2.1 Parameterization of the agreement between PSI and leveling

The evaluation of the agreement between PSI and leveling displacement estimates
requires the parameterization of the match between both techniques. In this section,
we address subsequently the correlation coefficient, point-wise teststatistics, and the
overall model test (OMT).
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Fig. 7.10. Average difference (absolute) between the interpolated and the original
residual signal, for different spatial correlation lengths of the residual signal. Solid lines
correspond with a relatively smooth signal (correlation length of 3 km), while dashed
lines represent a more rough signal (correlation length 1 km). Moreover, the residual
signal has been simulated using three different measurement precisions: 1 mm (squares),
3 mm (circles), and 5 mm (triangles). A signal with a larger correlation length requires
a lower spatial sampling density. Hence, the stage in which the difference between the
original and the interpolated signal does not change significantly anymore, is reached
at a lower spatial sampling frequency. Furthermore, it is shown that a measurement
technique with a lower measurement precision, but higher spatial density can potentially
achieve a similar or even higher precision level for the estimation of the residual signal.

Correlation coefficient

The correlation coefficient ρ is the standardized covariance between two variables x1

and x2, see e.g., Chatfield (1989) and Teunissen et al. (2005). It is a measure of the
strength of the linear relationship between two variables. Its definition reads:

ρ(x1, x2) =
C(x1, x2)

σx1
σx2

=
E{(x1 − E{x1})(x2 − E{x2})}

σx1
σx2

, (7.18)

where C indicates the covariance between x1 and x2. Values of the correlation
coefficient are in the range from −1 to +1. A correlation coefficient of 0 indicates
that the variables are uncorrelated.

The correlation coefficient is invariant for a linear transformation (scaling and offset)
of the variables x1 and x2. For example, for a linear transformation of x1 to x′1 =
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a · x1 + b, the offset b cancels in the computation of x′1 − E{x′1}:

x′1 − E{x′1} = a · x1 + b− a·E{x1} − b = a(x1 − E{x1}). (7.19)

Moreover, from σx′
1

= a·σx1
follows that the scaling factor a cancels in the standard-

ization of the covariance with the standard deviation of the variables in Eq. (7.18).

The invariance of the correlation coefficient for a linear transformation implies that
the correlation coefficient as a measure for the agreement between PSI and leveling
displacements is not sensitive for an offset or scaling factor in the displacements.
Since both PSI and leveling are relative techniques and may refer to a different
reference point, the invariance for an offset in the displacements does not affect the
suitability of the correlation coefficient as a measure for the match between PSI and
leveling. However, the invariance for scaling is not desirable. A scaling effect would
introduce a systematic underestimation or overestimation of subsidence due to gas
extraction, compared to the stable areas. Nevertheless, a scaling effect has not been
detected in the datum connection procedure of the six overlapping ERS tracks in
the Groningen area, see section 6.4. A direct physical cause for a scaling effect in
the PSI displacements cannot be indicated, unless when using an erroneous value
for the wavelength. Hence, the correlation coefficient can be used as a measure for
the agreement between PSI and leveling displacements.

There exists a relation between the correlation coefficient and geodetic teststatis-
tics (Teunissen, 2000b). To demonstrate this relationship, we consider the vectors of
displacement estimates x̂1 and x̂2 for PSI and leveling respectively. The teststatistic
for the match between PSI and leveling displacement estimates is defined under the
null hypothesis that states that the misclosures between the displacement estimates
of both techniques are zero:

H0 : BTE{y} =
[

I −I
]

E{
[

x̂1

x̂2

]

} = E{x̂1 − x̂2} = 0. (7.20)

The corresponding teststatistic T is the quadratic form of the misclosures in the
metric of the variance-covariance matrix of the displacement estimates:

T = (x̂1 − x̂2)
T (Qx̂1

+Qx̂2
)−1(x̂1 − x̂2), (7.21)

where the displacement estimates of both measurement techniques are considered
to be uncorrelated. The null hypothesis is rejected if the value of T is larger than
the critical value kα, where α is the size of the type I error (rejecting H0 while in
fact H0 is true). The relation of the teststatistic of Eq. (7.21) with the correlation
coefficient can be seen if we consider the quadratic form (x̂1 − x̂2)

T (x̂1 − x̂2), under
the assumption that both Qx̂1

and Qx̂2
are equal to the identity matrix I:

x̂T1 x̂1 − 2x̂T1 x̂2 + x̂T2 x̂2 = (||x̂1|| − ||x̂2||)2 + 2||x̂1||||x̂2|| − 2x̂T1 x̂2 =

(||x̂1|| − ||x̂2||)2 + 2||x̂1||||x̂2||(1 − x̂T1 x̂2

||x̂1||||x̂2||
),

(7.22)
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where the last term is equal to the estimator of the correlation coefficient if the
expectation of both variables equals 0:

x̂T1 x̂2

||x̂1||||x̂2||
= cosβ, (7.23)

where β is the angle between the displacement vectors of x̂1 and x̂2.

The teststatistic as defined in Eq. (7.21) is invariant for a linear transformation of
both x̂1 and x̂2. A linear transformation with matrix U and offset vector v

x̂′1 = Ux̂1 + v ; x̂′2 = Ux̂2 + v (7.24)

would lead to the teststatistic:

T = (x̂1 − x̂2)
TUT (U(Qx̂1

+Qx̂2
)UT )−1U(x̂1 − x̂2), (7.25)

which is equal to the teststatistic in Eq. (7.21). However, besides the properties of
the teststatistic itself, we focus on the effect of a transformation of x̂1 with respect
to x̂2. This transformation quantifies the agreement between deformation estimates
obtained from InSAR and leveling. It has been shown that the correlation coefficient,
see Eq. (7.18), is invariant for scaling or an offset in x̂1 with respect to x̂2. However,
the teststatistic from Eq. (7.22) does quantify the relative difference between x̂1 and
x̂2. Both an offset and a scaling factor will affect the value of the teststatistic. Al-
though the correlation coefficient is an easily interpretable value that can be applied
to quantify the match between PSI and leveling, geodetic teststatistics will also take
respective scaling effects and offsets between the two techniques into account.

Point-wise teststatistics

Point-wise teststatistics are based on the misclosures between the deformation esti-
mates x̂1 and x̂2 from PSI and leveling respectively for a single evaluation location
(PS or benchmark). A model of condition equations can be constructed, where
estimates from x̂1 and x̂2 for location i are the input in the vector of observations:

BTE{y} =
[

1 −1
]

E{
[

x̂1(i)

x̂2(i)

]

} = 0 ; Qy =

[

σ2
x̂1(i)

0

0 σ2
x̂2(i)

]

. (7.26)

The corresponding teststatistic and its theoretical distribution read:

T q=1 = tTQ−1
t t ∼ χ2(1, 0), (7.27)

where t is the misclosure between the PSI and leveling deformation estimates at
location i.

The point-wise teststatistics from Eq. (7.26) have the disadvantage that they do not
take into account the mutual correlation between the displacement estimates from
both PSI and leveling. Therefore, a general set up is now defined.
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Overall model test

PSI and leveling displacement estimates are uncorrelated. However, within each
technique, all displacement estimates are correlated due the network construction
and the double-differences. To take into account these correlations, a general model
of condition equations is set up in the following way:

BTE{y} =
[

I −I
]

E{
[

x̂1

x̂2

]

} = 0 ; Qy =

[

Qx̂1
0

0 Qx̂2

]

, (7.28)

which is equal to Eq. (7.20). The corresponding teststatistic for the overall model
test with its theoretical distribution reads:

σ̂2 =
T q=m−n

m− n
=
tTQ−1

t t

m− n
∼ F (m− n,∞, 0), (7.29)

where m− n is equal to the number of conditions, and t is the vector of misclosures
between PSI and leveling deformation estimates. The null hypothesis is rejected
if the overall model test exceeds the critical value kα. Not only the overall model
test can be computed using the mathematical model from Eq. (7.28), but also single
point teststatistics, such as the w-teststatistics for datasnooping, see section 2.3.1.

7.2.2 PSI and leveling displacement rates

The comparison and integration of PSI and leveling displacement rates can be per-
formed in two ways, i.e., comparison at benchmark or PS level, and comparison
of the interpolated subsidence signal. The disadvantage of both options find their
origin in the possible existence of multiple deformation regimes, see section 4.5.1.
The first option has the disadvantage that neighboring PS and leveling benchmarks
do not necessarily represent the same deformation regime. The second option can
lead to an inaccurate interpolation because of uncertainties in the stochastic model
parameters that describe the spatio-temporal behavior of the deformation regimes.
In this section, we choose to perform the comparison of the deformation estimates
at benchmark level (point-wise). In this way, outliers can be attributed to specific
benchmarks and PS.

Comparison of PSI and leveling displacement rates

Point-wise comparison of PSI and leveling displacement rates is performed at the
leveling benchmark locations, in the period that is covered by both leveling and
PSI: 1993–2003. For leveling, the displacement estimates from the subsidence ana-
lysis over the period 1964–2003 have been utilized (Schoustra, 2004). The Subsidence
Modeling procedure (Odijk and Kenselaar, 2003) has been followed in this analysis,
that has been applied to a subset of benchmarks that are considered to represent
subsidence due to hydrocarbon production (’stable benchmarks’), see section 6.5.2.
The leveling displacements have been converted to displacement rates for the com-
parison with the PS velocities.

Since datasnooping has been performed on the leveling observations and moreover
stable benchmarks have been selected, outliers have been removed from the PS
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Fig. 7.11. Leveling displacement rates per benchmark (mm/yr) and the average dis-
placement rates of the PS within a 500 meter radius around the benchmarks. For PSI,
gross outliers have been removed by assuming spatial correlation of the displacement
rates. Subsequently, the mean of the PS displacement rates at each benchmark location
has been computed.

results as well. Due to the data dimensions, PS have been grouped into grid cells
of 5×5 km, where a constant PS velocity is assumed. The difference in subsidence
rates within a grid cell has been taken into account in the critical value in the
datasnooping procedure. The maximum deviation of displacement rates within a
grid cell of 5×5 km around their mean has been determined using the subsidence
prognoses in the period 1993–2003, and is 2 mm/year. Adding the uncertainty in the
velocity estimates (see section 4.2), all PS have been removed that exhibit a velocity
difference of more than 3 mm/year with respect to the mean velocity in the grid
cell. Additionally, one constant offset has been applied to all PS velocities, based on
the assumption that the majority of the covered area is not affected by deformation
and can be considered stable (0 mm/year).

The construction of displacement rates does not necessarily imply that subsidence
is linear in time. In the majority of the gas fields in the northern part of the
Netherlands the movements are (near) linear in the period from 1993, but some of
the smaller fields have been taken into production in a later stage. However, PSI and
leveling should result in similar displacement estimates and hence in approximately
similar displacement rates, depending on the temporal sampling. For each leveling
benchmark, PS have been selected within a distance of 500 m. For these selected PS,
an average displacement rate has been computed. Fig. 7.11 shows the displacement
rates for both leveling and PSI. The spatial subsidence pattern is clearly visible for
both techniques.

Fig. 7.12 (left) shows the difference between the PSI and leveling displacement rates.
Although the standard deviation of the differences between leveling and PSI is ∼1
mm/year, it can be seen that a bias is of ∼0.5 mm/year is present between the PSI
and leveling displacement rates. This bias can be explained by a different spatial
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Fig. 7.12. Histograms of the differences between PSI and leveling displacement rates:
PSI − leveling (mm/year). Both before (left) and after correction for a bias and spatial
trend (right). The histograms are slightly skew-symmetric. This may be caused by an
additional component in the PS velocity estimates in the areas with a deviating behavior
in Fig. 7.13. This can for example be caused by superposed deformation regimes (e.g.
shallow compaction), or horizontal PS movements.
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Fig. 7.13. Differences between PSI and leveling displacement rates: PSI − leveling
(mm/year). Both before (left) and after correction of a bias and spatial trend (right),
areas can be identified in which the PSI displacement rates are slightly larger than the
leveling displacement rates.

reference, and can be corrected for. Furthermore, it can be deduced from Fig. 7.13
that the differences between the leveling and PSI displacement rates are spatially
correlated.

Before looking into the physical causes of the differences, the stochastic nature of
both PSI and leveling is considered. In the comparison of the overlapping PSI tracks
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Fig. 7.14. Simulated network of uncorrelated height measurements per arc. Left:
standard deviations of the estimated heights. Right: actual height estimates. The
reference point is depicted as a black star. A larger marker size indicates a higher
standard deviation (left) or height estimate (right). It can be seen that a spatial trend in
the height estimates (right) can be introduced by correlation due to the network design.

in section 6.4, a spatial trend of several mm/year over 100 km was recognized. The
existence of spatial trends in the results is not restricted to PSI: the leveling heights
can exhibit spatial trends as well. This is due to the error propagation in the leveling
network: nearby benchmarks are dependent on the measured height differences of
almost similar network paths. As an example, Fig. 7.14 shows the correlation of the
height estimates in a simulated leveling network. All height differences are 0; the
measurement noise has been set to 1 mm/

√
km. It can be seen that, although the

height difference observations are uncorrelated, the estimated heights are correlated
due to the network design. The heights in the bottom right corner are relatively
larger than the heights in the top left corner. This implies that the spatial trend
from Fig. 7.13 can be caused by both PSI and leveling.

Hence, it is valid to correct for a bias and a spatial trend to determine the correlation
coefficient between leveling and PSI. Fig. 7.15 depicts the correlation between the
leveling and the PSI displacement rates. The correlation coefficient is 0.94. Recall
that in the corner reflector experiment a correlation coefficient of 0.94 was obtained
between leveling and InSAR double-difference displacements. The correlation coef-
ficient between leveling and PSI displacement rates is therefore approximately equal
to the correlation that can be achieved in a controlled experiment. Moreover, the
correlation coefficient of displacement estimates from repeated leveling campaigns is
also lower than 1 (∼0.94–0.97), due to the measurement precision, see section 7.2.3.
Hence, the correlation between PSI and leveling displacement estimates reaches its
maximum.
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Fig. 7.15. Scatterplot of leveling versus detrended PSI displacement rates after correc-
tion for a bias and a spatial trend. The correlation coefficient is 0.94.

Potential causes for the differences between PSI and leveling

Although the correlation is high, it can be seen from Fig. 7.13 that areas can be
indicated that exhibit systematically higher PS displacement rates compared to the
leveling displacement rates. Although the differences are minimal, potential causes
are summarized in this section.

A possible hypothesis is the existence of an additional compaction component in
areas where the majority of the buildings and structures have a shallow founda-
tion (Schroot et al., 2003). In such a situation, the number of PS that refer to
well founded objects are a minor subset of the total amount of PS. Hence they are
considered as outliers, and are subsequently removed. As a result, the average dis-
placement rate of the remaining PS contains an additional compaction component.
In practice, the validation of this hypothesis requires identification of the PS origin
and its foundation with respect to the subsurface layers. Because such a procedure
is labor intensive, it should first be determined if the differences between leveling
and PSI displacements are significant. This will be addressed in section 7.2.3.

Another explanation for the differences between the PSI and leveling displacement
rates can be found in the spatial decomposition. Currently, the PS displacement
rates are converted from satellite line of sight to the vertical. In this conversion,
horizontal components are neglected. The errors that are introduced by disregard-
ing the horizontal components have been evaluated for a simplified representation
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Fig. 7.16. Maximum expected horizontal displacement rates in the Groningen subsi-
dence area (left). If line of sight displacement rates are converted to the vertical without
taking horizontal movements into account, errors are ∼1 mm/year (right).

of the Groningen gas field. Fig. 7.16 shows the expected horizontal and vertical dis-
placement rates for a 170 meters thick disc-shaped reservoir at 3 kilometers depth
with a radius of 15 km (Geertsma, 1973b). The pressure drop in 10 years is ∼36 bar;
the compaction coefficient 0.72·10−5. It can be seen that in the presence of horizon-
tal movements, the vertical and the line of sight displacements differ in the order
of −0.5 up to 1 mm/year. If line of sight displacement rates are converted under
the assumption that PS movements are only vertical, deviations of ∼1 mm/year are
found with respect to the actual vertical movements. The largest errors occur where
the slope of the subsidence bowl is the steepest. Here, the horizontal movements
due to gas extraction reach their maximum.

To conclude, the differences between PSI and leveling displacement rates can be
caused by errors in the PSI estimation, such as unwrapping errors. However, since
the PSI results stem from the datum connection procedure of six independent tracks,
this cause is less likely.

7.2.3 PSI and leveling displacements

This section compares leveling and PSI displacements in a fixed time period. The
first reason for this comparison is the fact that displacement rates are not necessarily
constant in time. If the gas production rates change significantly, the displacement
rates will follow. The second reason is that subsidence due to gas extraction is
reported as the total amount of subsidence since the start of the production. Hence,
the total displacements between subsequent leveling epochs are compared. After
explanation of the comparison set up, the results are discussed.
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Setup of the comparison

The start and end of the periods over which the displacements are compared, coincide
with the leveling epochs. The main leveling epochs that cover the period of PSI
measurements are 1993, 1998 and 2003. Hence, the leveling and PSI displacements
have been compared in the intervals 1993–1998 and 1993–2003 (ERS).

The deformation estimates of both leveling and PSI are spatially relative. Due to
a different reference point, there will be a constant offset between the PSI and the
leveling results. Moreover, as discussed in section 7.2.2, an additional spatial trend
can be present in both the leveling and the PSI results. It has been chosen to
correct the PSI displacement estimates for a bias and a spatial trend. The spatial
trend in the PSI estimates is estimated by utilizing PSI estimates that cover the
non-deforming areas, independent from the leveling displacement estimates.

To benefit from the high temporal sampling of PSI, the displacements between two
dates are estimated assuming linear displacements in a fixed time window (according
to the leveling campaign intervals).

The procedure to prepare PSI estimates for the comparison with leveling starts with
the conversion of PSI displacements to the vertical. Subsequently, the displacement
rates in a fixed time window are estimated. From these displacement rates, the
displacements in the time window are estimated. An additional step corrects the
PSI estimates for one offset and a spatial trend. It has to be noted that ERS-2 lost
its three gyro mode in the beginning of 2000, and the number of useful acquisitions
has significantly dropped afterwards. Therefore, the estimated PSI displacement
rates for 1993–2003 mainly depend on the InSAR observations between 1993 and
1999.

Subsequently, leveling and PSI displacements are compared at evaluation locations
along a certain trajectory (profile). Profiles have been defined along different ori-
entations covering the Groningen subsidence bowl. To benefit from the spatial PS
density, weighted averages of the PS displacements within a radius of one kilometer
with respect to the evaluation locations have been computed.

Due the amount of PSI estimates, the comparison is currently based on the reduced
datasets that consist of a selection of the PS with the highest precision within grid
cells of 100×100 m. Furthermore, a data snooping procedure has been applied to
remove gross outliers.

Results

The results of the PSI and leveling displacement comparison at evaluation locations
along the profiles are depicted in appendix B. Two estimation methodologies for
the leveling displacements have been applied. The first methodology computes the
leveling displacements from the height estimates that are obtained from the free net-
work adjustments per epoch (Teunissen, 2000a). The second methodology uses the
Subsidence Modeling concept (Odijk and Kenselaar, 2003) that estimates the spa-
tially correlated deformation signal. Moreover, SuMo removes outliers, identification
errors and benchmarks that exhibit autonomous movements, due to the integrated
spatio-temporal approach. Identification errors and autonomous movements cannot
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be detected in the free network adjustment of a single epoch, and hence explains the
spikes in the leveling displacement profiles, see Figs. B.5, B.6, B.7, and B.8. This
stresses that also leveling displacement estimates are dependent on the processing
methodology.

The match between the leveling and the PSI displacement estimates can be quanti-
fied using the precision measures of both techniques, that have been defined in the
following way:

• free network adjustments (leveling): propagation law of variances and covari-
ances, considering the epochs mutually uncorrelated,

• SuMo (leveling): 2mm/
√

yr (’model imperfections’),

• PSI: standard deviation of the weighted average of the displacement estimates
per evaluation location, taking the correlation of double-difference observations
into account.

The chosen precision measure for the SuMo displacement estimates represents the
uncertainty in time of the spatially correlated deformation signal.

The leveling and PSI profiles in the periods 1993–1998 and 1993–2003 match within
the PSI and leveling error bounds, see also the distribution of the teststatistics in
Figs. B.3 and B.11. Moreover, it is important to note that the transition to another
sensor appears not to affect the continuity of subsidence monitoring, see Fig. 7.17.
This figure shows the PSI and leveling displacement estimates (extrapolated) in the
period 2003–2007 at equally spaced locations along a profile. Besides the continuity
of subsidence monitoring, it shows the strength of PSI due to the high spatial and
temporal point density: PSI can provide additional displacement estimates in areas
where leveling benchmarks are not present.

Since the teststatistics per evaluation location are not uncorrelated, the overall
model test is performed additionally, using Eq. (7.28). Since leveling epochs can
be considered uncorrelated, Qdlev can be computed by the addition of the variance-
covariance matrices of the height estimates from the leveling epochs that have been
used to compute the displacements. For PSI, QdPSI

is currently constructed as a
substitute matrix, since the PSI deformation estimates are performed per arc. The
substitute variance-covariance matrix takes into account the correlation between the
double-difference displacements and accounts for the different precision (weights) of
the PSI displacement estimates. The variance-covariance matrix that has been used
for the overall model test is depicted in Fig. 7.18. The PSI variance-covariance
matrix can be further refined by incorporating stochastically modeled residual at-
mospheric signal and unmodeled deformation. For the period 1993–1998, the overall
model teststatistic is 4.29 and 1.05 before and after outlier removal (4.5% of the
observations) respectively. The critical value kα is 1.07 and 1.13 for α = 0.05 and
α = 0.001 respectively. Hence, it can be concluded that the PSI and leveling dis-
placement estimates are in agreement, after outlier removal. The outliers can be
present both in the PSI and the leveling displacement estimates. Fig. 7.18 depicts
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Fig. 7.17. Leveling and PSI displacements (mm) in the period 2003-2007 based on
equally spaced locations along the profile (left). Right: Envisat track 380, and SuMo
leveling displacements; PSI search radius 1 km. It can be deduced that the high spatial
density of PSI can be utilized in areas where leveling benchmarks are not present. The
leveling displacements are based on an extrapolation using the leveling displacement
estimates in the period 1993–2003.

the histogram of the w-teststatistics (datasnooping) and their theoretical distribu-
tion. As expected—since the null hypothesis is accepted—there is a good agreement
between the histogram and the theoretical distribution.

Fig. B.2 and Fig. B.10 show the correlation between the PSI and the leveling dis-
placement estimates at the benchmark locations. The obtained correlation coeffi-
cients in the periods 1993–1998 and 1993–2003 are listed in Tab. 7.1. The correlation
coefficients are listed for an evaluation at all benchmark locations, and for a sub-
selection of geostatistically and physically ’stable’ benchmarks (Schoustra, 2006).
The maximum correlation coefficient between the leveling and PSI displacements is
0.93–0.95.

For comparison, the obtainable correlation coefficients for repeated leveling cam-
paigns have been determined by means of simulations. The height difference mea-
surements have been simulated as a superposition of a deterministic part based on
the subsidence prognoses (prediction based on geomechanical modeling), and a ran-
dom part based on the measurement precision (∼1 mm/

√
km), using the network

designs of the existing leveling campaigns. Fig. 7.19 shows the histograms of the
correlation coefficients obtained for simulations of the displacements in the periods
1993–1998 and 1993–2003, in the Groningen subsidence area. The correlation varies
from ∼0.94 for the period 1993–1998 to ∼0.97 for the period 1993–2003. The higher
correlation coefficient for the period 1993–2003 is caused by the larger magnitude
of the deformation signal. Since the leveling measurement precision remains un-
changed, the linear relationship between the estimated displacements in the various
simulations gets stronger when the range of displacements increases.
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Fig. 7.18. Left: variance-covariance matrix of the mathematical model for the overall
model test of Eq. (7.28). The top-left part of the matrix depicts the variance-covariance
matrix of the leveling displacement estimates. The bottom-right part depicts the sub-
stitute matrix for PSI. The substitute matrix for PSI is a full matrix due to the double-
difference combinations and is a simplified representation. Right: the w-teststatistics
and their theoretical distribution. After outlier removal, the overall model teststatistic is
1.05 and hence the null hypothesis is accepted, i.e. PSI and leveling displacements are
in agreement.

The correlation coefficient of 0.94–0.97 for deformation estimates from repeated leve-
ling campaigns only represents the variability due to the measurement precision. In
practice, it is expected that the correlation coefficient will be slightly lower due to
benchmark instabilities. It can be concluded that the correlation between PSI and
leveling displacement estimates is similar to the correlation between displacement
estimates from repeated leveling campaigns. This means that PSI has reached the
maturity to be operationally used for subsidence monitoring in the northern part of
the Netherlands.

7.3 The integration of geodetic measurement techniques

In section 7.1, the application of leveling and PSI has been considered from a the-
oretical perspective taking the spatio-temporal observation frequency and the mea-
surement precision into account. After it has been demonstrated that the spatio-
temporal observation frequency can overcome the disadvantage of a relatively lower
measurement precision, displacement rates and displacements in a fixed time pe-
riod have been compared in section 7.2. The correlation coefficient of leveling and
PSI displacement rates (0.94) is similar to the correlation coefficient of leveling and
InSAR displacements in a controlled corner reflector experiment (0.94). Moreover,
the misclosure teststatistics between leveling and PSI match their theoretical dis-
tribution. This implies that leveling and PSI measurements can be integrated for
subsidence monitoring. Hence, this section proposes a mathematical framework for
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Fig. 7.19. Correlation coefficients between deformation estimates obtained from sim-
ulated leveling campaigns in the period 1993–1998 (left) and 1993–2003 (right). The
leveling height observations have been simulated as a superposition of a deterministic
signal (the subsidence prognosis) and the measurement precision. The correlation coeffi-
cients only represent the variability due to the leveling measurement precision; benchmark
instabilities are not considered. Since the measurement precision stays unchanged and
the magnitude of the subsidence signal in time, the correlation coefficient is larger for
the period 1993–2003 (∼0.97) than for the period 1993–1998 (∼0.94).

Table 7.1. Correlation coefficients in the comparison of PSI and leveling displacement
estimates in the periods 1993–1998 and 1993–2003, at all leveling benchmark locations
and at the subset of geostatistically and physically stable benchmarks only (Schou-
stra, 2006). Correlation coefficients have been computed for the leveling displacements
estimated from both the free network adjustments and the SuMo analysis. The PSI
displacements have been corrected for a spatial trend based on stable areas in the large
coverage of PSI, independent of the leveling displacement estimates. The PSI and
leveling displacements have been corrected for one constant offset, due to a different
reference point.

all benchmarks benchmark selection

SuMo analysis 1993–1998 0.90 0.93
SuMo analysis 1993–2003 0.91 0.95

Free network adjustments 1993–1998 0.74 0.87
Free network adjustments 1993–2003 0.81 0.94

the integration of multiple (geodetic) techniques that observe the same deformation
signal of interest. It introduces theoretical guidelines for deformation monitoring
using multiple techniques. Although similar concepts can be found in chapter 3
and 4, the integrated approach has not yet been applied in practice for monitoring
subsidence due to gas extraction.
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7.3.1 Mathematical model

To develop a unified strategy for the integration of observations from multiple tech-
niques, the following has to be taken into consideration:

1. type of observations,

2. measurement precision,

3. parameterization of deformation signal, and

4. idealization precision for deformation monitoring of the signal of interest.

Prior to addressing these four issues, the mathematical framework for deformation
monitoring using M measurement techniques is introduced:
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where:
y measurement input vector
A design matrix that defines the relation between the measurement input

and the unknown deformation parameters,
x unknown deformation parameters,
sd(x, y, t) signal that describes the discrepancy between modeled and actual de-

formation for deformation regime d with a certain spatial (x, y) and
temporal (t) behavior,

n measurement error.

This system of equations can be reformulated as a combined functional and stochas-
tic model:
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where D is the total number of deformation regimes observed by all measurement
techniques together. The measurement precision that is represented by Qnn is as-
sumed to be uncorrelated between the different measurement techniques.

The measurement input can consist of observations or deformation estimates. The
latter implies an estimation in phases. This occurs for example when PSI and
leveling measurements are integrated for the estimation of subsidence due to gas
extraction. First, deformation is estimated from the interferometric phase difference
observations. These deformation estimates contain displacements due to all super-
posed deformation regimes. Secondly, these deformation estimates are integrated
with leveling observations to estimate the actual deformation due to gas extraction
only. The composition of the measurement input does not affect the outcome of
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the estimation of the deformation signal of interest, provided that the stochastic
information is preserved. This means that the variance-covariance matrix of the
deformation estimates in the first step is required as input for the estimation of the
deformation signal of interest.

Regardless whether the measurement input consists of observations or deformation
estimates, their nature has to be considered for each measurement technique:

• absolute or relative displacements,

• orthometric or ellipsoidal displacements.

Absolute displacements can be measured by gravity (displacements orthogonal to the
potential field) or GPS (coordinates in the International Terrestrial Reference System
(ITRS)). The majority of the measurement techniques, such as leveling and PSI,
provide relative observations. These relative observations can be further subdivided
based on their spatio-temporal contents. An interferometric phase observation is a
temporal difference, whereas a leveling measurement is a spatial height difference
between two benchmarks, see Fig. 7.1. The first interpretable PSI measurement is
the double-difference observation. As explained in section 7.1.1, leveling and PSI
observations can be converted to double-differences for comparison. The number
of independent double-differences that can be formed depends for leveling on the
network design, whereas for PSI always (P − 1) double-differences can be formed
from P PS. Furthermore, orthometric and geometric (ellipsoidal) displacements are
distinguished, as described in section 7.2.2.

The measurement input precision is described by the stochastic model of the ob-
servations or the deformation estimates that are utilized for the estimation of the
deformation signal of interest. The stochastic model comprises all stochastically
modelled error sources of a measurement technique. For leveling, it is restricted
to measurement noise (∼1 mm/

√
km). For space borne techniques such as PSI it

includes stochastically modeled errors, such as atmospheric disturbances.

Parameterization of the deformation signal depends on the signal of interest. The
options for the functional modeling of subsidence due to gas extraction have been
discussed in section 2.3.3. It varies from modeling subsidence due to gas extraction
by a point source to a prognosis grid based on a geomechanical model of the subsur-
face. Here, the multi-disciplinary approach of deformation modeling comes in. The
precision of the prognosis can be optimized by modeling the geophysical properties
of the subsurface.

To conclude, the idealization precision for deformation monitoring describes how
well the deformation signal of interest can be monitored by a certain measurement
technique. It is a combination of the physical identification level of the measurement
points and the knowledge on the behavior of the subsidence signal of interest in the
potential presence of other deformation regimes.
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7.3.2 The integration of leveling and PSI

In this section, the mathematical framework that has been introduced in section 7.3.1
is applied more specifically to the integration of leveling and PSI deformation es-
timates. Because of the different physical properties of the measurement points,
benchmark versus reflection, it is not possible to compare the observations directly.
The deformation estimates of each technique are integrated in the parameter space:
the joint estimation of the deformation signal of interest. The measurement inputs
in this joint estimation are the leveling and PSI deformation estimates.

The PSI deformation estimates are estimated from the PSI system of equations. Re-
call the redundant parameter estimation after unwrapping of the phase observations
from Eq. (6.4):
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The PSI deformation estimates that are the measurement input in the joint esti-
mation of the signal of interest can be determined using the Best Linear Unbiased
Prediction (BLUP) theory, see e.g., (Teunissen et al., 2005). Here, a realization of
the phase contributions due to deformation is predicted, including a corresponding
variance-covariance matrix that only depends on the uncertainty in the deformation
modeling. Hence, the PSI system of equations is extended in the following way:
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with the stochastic model:
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The vector z contains the predicted phase contribution due to deformation:

ẑ = −4π

λ
T kv̂ + ŝdefo, (7.36)

where ŝdefo is the phase contribution due to unmodeled deformation signal. Applying
the propagation law to the predicted deformation vector results in its error variance-
covariance matrix:

Pẑẑ = Qzz −QzyQ
−1
yy Qyz + (Az −QzyQ

−1
yy A)Qx̂x̂(Az −QzyQ

−1
yy A)T , (7.37)
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where:
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k 0],
Qy = Qnn +Qatmo +Qdefo,
Qzz = Qdefo,
Qzy = Qdefo,
Qyz = Qdefo.

The advantage of using the predicted deformation vector instead of the PSI defor-
mation estimates, is that the uncertainty described in its variance-covariance matrix
is only due to the stochastic uncertainty in the deformation signal. The variance-
covariance matrix of the PSI deformation estimates also contains contributions due
to measurement noise and atmospheric disturbances. However, there are also disad-
vantages of using the predicted deformation vector. The main complicating factor
is, that the covariance functions of the measurement noise, (residual) atmospheric
signal, and unmodeled deformation have to be realistic. Otherwise, there is a risk
of incorrectly addressing contributions due to unmodeled deformation to other er-
ror sources. In such a situation, the use of the PSI deformation estimates together
with the variance-covariance matrix containing the contributions of all error sources
should be preferred.

This mathematical framework for the joint estimation of a deformation signal of
interest using multiple measurement techniques has not yet been implemented. For
the estimation of subsidence due to gas extraction, it would certainly require a
multi-disciplinary approach. The geomechanically modelled subsidence prognosis
including its uncertainties has to be included in an iterative procedure to obtain
agreement with the geodetic measurements at surface level.

7.4 Conclusions

This chapter has investigated the operational use of PSI for subsidence monitoring.
Therefore, the PSI results have been compared to the subsidence estimates obtained
from leveling campaigns in the Groningen area. This comparison has been per-
formed from an integrated perspective, taking the uncertainty of both techniques
into account. It has been shown by means of simulations, that the spatio-temporal
point density of PSI can lead to an equal or even higher precision of displacement
rate estimates compared to the leveling technique, although the precision of PSI
double-difference observations is lower, see Fig. 7.3.

The temporal sampling of PSI has been evaluated using the DOP precision mea-
sure for the variance-covariance matrix, which is independent of the spatio-temporal
reference. Both for PSI and leveling, a monitoring period of 10 years has been cho-
sen. Considering PS double-difference displacements with standard deviation of 3
mm, and leveling height difference observations with a precision of 1 mm, ∼25 SAR
acquisitions are required to obtain the same precision for the displacement rates.

In the evaluation of the spatial sampling, both the point density and the smooth-
ness of the deformation signal of interest have been investigated. In the evaluation
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of the spatial point density, it is important that the correlation among both leveling
and InSAR double-difference displacements are taken into account. Otherwise, the
precision of the deformation estimates due to a higher spatial sampling are overes-
timated. Furthermore, the spatial sampling to reconstruct the subsidence signal in
the Groningen area has been investigated, using a cross-validation procedure of the
actual subsidence prognosis and the interpolated deformation signal from samples
with varying point density. It could be concluded that a point density of ∼1 per
km2 is required to reconstruct the subsidence signal in the Groningen area.

After showing that PSI can compete with leveling based on its spatio-temporal den-
sity, the comparison of the actual PSI and leveling displacement estimates has been
performed in the period from 1993–2003. The correlation between the displacement
rates of both techniques is 0.94, which is comparable to the correlation of the leve-
ling and InSAR displacements of the controlled corner reflector experiment (0.94).
This correlation coefficient reaches its maximum, since the correlation coefficient
of displacement estimates from repeated leveling campaigns is also lower than 1
(∼0.94–0.97), due to the measurement precision.

The displacements have been compared in fixed periods (1993–1998 and 1993–2003)
at evaluation locations along profiles that cover the Groningen subsidence bowl. It
has been shown that the misclosure teststatistics agree with the theoretical distribu-
tion. The maximum correlation coefficients between the PSI and leveling displace-
ments are 0.94–0.95. A few areas can be pointed out in which the PSI subsidence
rates are slightly larger than the leveling subsidence rates. Although the causes for
these minor deviations have to be further investigated, it can be stated that PSI is
ready for operational use for monitoring subsidence due to hydrocarbon production,
considering the correlation between leveling and PSI and the multi-track reliability
analysis from chapter 6. To conclude, a mathematical framework has been intro-
duced for a rigorous integration of multiple measurement techniques.
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Chapter 8

Discussion and future subsidence monitoring

In this chapter, the obtained results in the Groningen area from the ERS-1, ERS-
2 and Envisat missions are summarized and discussed. Both the precision and
reliability of PSI as a measurement technique, and the idealization precision for
monitoring subsidence due to gas extraction, are addressed. Additionally, examples
of the use of PSI to increase insight in reservoir behavior are shown. To conclude, a
future scenario for subsidence monitoring is proposed.

8.1 Precision and reliability

PSI observations are double-difference phase observations. They refer to a spatial
and temporal reference: one PS and one acquisition time. The precision of the PS
deformation estimates is independent of the reference PS. Using the variances of
the PS deformation estimates as an absolute precision measure, suggests that PS
at a larger distance from the reference PS have a lower precision. However, the
relative precision, described by the full variance-covariance matrix, is invariant. To
parameterize the precision represented by the variance-covariance matrix indepen-
dent of the reference PS, the Dilution of Precision (DOP) measure can be applied,
see section 4.3.4.

A validation of the stochastic model for InSAR has been performed in a controlled
corner reflector experiment, see section 4.4. Utilizing the independent leveling tech-
nique, the precision of PSI double-difference displacements has been estimated by
means of variance component estimation. The estimated precision (1-sigma) for
ERS-2 and Envisat double-difference displacements is 3.0 and 1.6 mm respectively.
The lower precision of the ERS-2 double-differences is likely to be caused by the
large Doppler centroid frequency deviations in the time series that cover the period
2003–2007. The correlation between the leveling and Envisat double-difference dis-
placements is 94%, which demonstrates the potential of InSAR as a deformation
monitoring technique.

After validation of the measurement precision of InSAR in the controlled corner
reflector experiment, the precision of deformation estimates obtained from natural
PS has been investigated. In the absence of unwrapping errors and other systematic
errors, the precision of the PSI deformation and height estimates is determined by
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the measurement precision, the physical PS properties, and the network design,
i.e. temporal acquisition density and viewing geometry. The precision of the ERS
and Envisat PS velocities show a dependency on the distance between the PS, see
section 6.3.1. The smallest stack, that consists of 24 interferograms over a period of
8 years, has a PS velocity precision of ∼0.1 mm/year per

√
km. The largest stack,

that consists of 74 interferograms that cover a period of 14 years, exhibits a PS
velocity precision of ∼0.04 mm/year per

√
km.

Unmodeled additional error sources and unwrapping errors can lower these precision
values. First of all, neglectance of the azimuth sub-pixel position can lead to an
additional error of ∼0.5 mm/year in the PS velocity estimates, see section 4.2.1.
Furthermore, orbit errors have to be considered, since the Groningen subsidence
area has a large extent. Random orbit errors of 5 and 8 centimeters in radial and
across-track direction can lead to velocity errors up to ∼1 mm/year between near
and far range, see section 4.2.3.

Since the main deformation signal exhibits low subsidence rates (< 7 mm/year) and
the temporal sampling of the near-linear displacements is relatively high (up to 10
acquisitions per year per track), the success rates for phase ambiguity resolution
approach 1 for high PS densities (> 100 PS/km2) and a high phase precision (1/20
cycle, 1.5 mm for displacements), see section 4.2.4. However, since the PS density in
rural areas is limited to 0–10 PS/km2, atmospheric disturbances can deteriorate the
phase unwrapping success rates. From simulations, it could be deduced that when
using a sparse network of arcs with high measurement precision, high success rates
can be obtained (> 0.9), but that the success rates drop with lower measurement
precision (1/10 cycle) and PS density (5 PS/km2), see section 4.2.4. Ambiguity
resolution success rates of 1 can therefore not be guaranteed in the rural Groningen
area, even not after removal of misclosures in the test procedure for spatial unwrap-
ping, see section 6.1.3. Denser PS networks may lead to a better discrimination
in the determination whether a PS candidate should be accepted or not, but does
not solve the problem that the PS parameter estimates cannot be tested due to the
lack of redundancy in the system of equations, see section 3.4.1. One unwrapping
error in the time series for the Groningen acquisition geometry and sampling can
lead to errors in the order of 1 mm/year. The success rate of unwrapping decreases
in case of deformation model imperfections. An example is shown in Fig. 8.3: the
estimation of a linear displacement rate in combination with the data gap around
1994 results in a high likelihood for the displacements in 1992–1993 to have an offset
of −28 mm (half a wavelength).

To introduce redundancy for a reliability assessment, multiple independent over-
lapping tracks have been utilized that monitor the same deformation signal. The
Groningen subsidence bowl is visible in six overlapping tracks. A datum connection
procedure has been developed to integrate these tracks providing a reliability assess-
ment at the same time, see section 5.2. After conversion to a common radar datum,
multi-track PS within limited or even resolution cell distance have been unambigu-
ously detected. The misclosures between PSI estimates (displacements, heights) of
different tracks should theoretically consist of a constant offset due to a different
reference PS. However, it has appeared that small spatial trends of several mm/year
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over a 100 km distance are present in the PSI estimates. These trends can be caused
by unwrapping errors and orbital inaccuracies that propagate over a large spatial
extent. After datum connection, the standard deviation of PS velocity estimates is
less than 1 mm/year for 70 % of the PS clusters, see section 6.4.1. Besides due to the
precision of PSI as a measurement technique, these differences can be due to diffe-
rent deformation regimes (PS are physically not the same) and potential horizontal
deformation components.

PSI deformation estimates along the line of sight from tracks with different viewing
geometries can be further used for a decomposition into horizontal and vertical
movements, see section 6.4.2. It has been shown that the sign and magnitude of the
horizontal components correspond with the theoretically expected horizontal move-
ments for subsidence due to gas extraction. Although these horizontal components
cannot be unambiguously subdivided into geophysical signal and residual systematic
effects, it points out that the existence of horizontal components have to be taken
into account. If one would neglect the horizontal components and convert line of
sight estimates directly into vertical components only, an additional error compo-
nent up to ∼1 mm/year is introduced. This stresses the importance of subsidence
monitoring by an overlapping ascending and descending track.

8.2 Separation of deformation regimes

Deformation of the earth’s surface can be driven by different mechanisms. Defor-
mation causes can be classified into deformation regimes: structural instabilities,
shallow subsurface movements and deep subsurface movements, see section 4.5.1.
Structural instabilities are settling effects of newly built buildings, or autonomous
movements of buildings with an instable foundation. Shallow subsurface movements
are natural compaction and movements due to groundwater level variations. Deep
subsurface movements comprise gas, oil or other mineral extraction. Due to soft
soils in large parts of the Netherlands, shallow subsurface movements cannot be
neglected. Ground level movements due to shallow compaction can be very ir-
regular, depending on the mechanism (groundwater level variations, peat oxidation,
natural compaction). From external studies that have analyzed leveling benchmark
movements in periods and areas that are not affected by gas extraction, it could
be concluded that the majority of the movements are within ± 1 mm/year, with
maximum displacement rates up to 1 cm/year, see section 6.5.1. Corner reflector
movements in the Delft experiment are approximately 1–2 centimeters seasonally,
see section 6.5.1. Since subsidence rates due to gas extraction in Groningen are maxi-
mum ∼7 mm/year, deformation due to shallow causes can potentially contaminate
the deformation signal of interest.

Compared to traditional geodetic techniques, using fixed benchmarks, PSI measure-
ment points are less well defined. Different reflection types (single, double, multiple-
bounce), combined with a limited precision of the geographic location, makes it
impossible to identify the exact physical properties of a Persistent Scatterer. Fur-
thermore, since the radar satellite is monitoring from space, it measures all surface
movements, regardless of the deformation regime. This further complicates the attri-
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bution of a PS displacement to a deformation regime. However, the identification of
deformation regimes is also not straightforward for a land surveying technique such
as leveling. Only few underground benchmarks are mounted on the stable Pleis-
tocene layer, while the majority is mounted in buildings that may be potentially
affected by additional autonomous movements. The measurements of both PSI and
leveling potentially represent multiple deformation regimes. The difference is that
in case of leveling the measurement point selection is performed during the network
design (’filtering a-priori’). For PSI, the point selection in order to estimate the
subsidence signal of interest is done after the estimation of deformation (’filtering
a-posteriori’). However, even for leveling a-posteriori filtering is required, to distin-
guish benchmarks that exhibit autonomous movements from benchmarks that refer
to the stable Pleistocene layer.

For a successful PSI estimation procedure, the PS density has to be sufficient, even
in the rural areas of Groningen. It appeared that Persistent Scatterers in rural
areas coincide with buildings (farms, houses) and other man-made structures, pro-
viding 0–10 PS per km2 in 80% of the area, see section 6.2.1. These Persistent
Scatterers refer either to direct reflections from (the top of) the buildings, or to
double-bounce reflections with respect to the ground level. The latter may possi-
bly contain an additional shallow deformation component. Direct reflections from
well-founded buildings are the most suitable observations to estimate subsidence due
to gas extraction, and additional tools can be applied to select them: PS heights,
Envisat’s Alternating Polarization data, and reflection behavior as a function of
viewing geometry (Perissin, 2006).

If PS heights are used for target characterization, it is important that sidelobe obser-
vations are removed. First of all because sidelobe observations are not independent,
and secondly because sidelobe height estimates are biased because they refer to the
wrong range bin. Furthermore, the PS heights have to be determined with respect
to ground level, see section 6.5.3. Since laser altimetry and SRTM data do not pro-
vide ground level heights in urbanized areas, local PS height histograms have been
created. Based on the assumption that the majority of the PS represent double-
bounce reflections from ground level, the ground level height corresponds with the
location of the histogram peak. The uncertainty in the determination of the ground
level heights is deduced by a histogram fit on the (multi-modal) local PS height
histograms. For a case study, a standard deviation of the ground level heights of
∼2.5 meters was estimated, see section 6.5.3. Subsequently, PS have been selected
with a height above 5 meters, which have a probability of 95% to be elevated tar-
gets. Envisat Alternating Polarization data has confirmed that these reflections have
a high probability to be odd-bounce (most likely specular).

To determine whether the selection of elevated specular PS targets influences the
deformation estimates, the histograms of the PS velocities before and after selection
have been compared. Since direct reflections from well-founded buildings should not
be affected by additional shallow deformation components, it is to be expected that
the PS velocity histogram shifts to displacement rates of a lower magnitude. It has
appeared however, that the histogram shift is not significant in two case study areas,
see section 6.5.3. The histogram is indeed shifted to the stable area (meaning less
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additional autonomous and shallow compaction components), but differences are
below 0.5 mm/year. The selection of direct reflections based on viewing geometry
has resulted in similar PS velocity histogram differences, again not significant. Since
subsidence due to gas extraction is the common deformation regime, the PSI results
represent deep subsurface displacements, provided that the majority of the buildings
does not move with respect to the Pleistocene layer.

For the estimation of subsidence due to gas extraction, PS can be selected based on
the spatial correlation length of the deformation signal of interest, see section 4.5.3
and section 6.5.4. Benefitting from the high spatial PS density and the fact that gas
extraction is the common deformation regime, a datasnooping procedure has been
applied that removes all PS that are not spatially consistent with neighboring PS.
The correlation coefficient between the spatially consistent PSI displacement rates
and leveling displacement rates is 0.94, which approximates the correlation coefficient
of displacements in a controlled corner reflector experiment (0.94), see section 4.4.5.
Considering the fact that the correlation coefficient between displacements estimated
from repeated leveling campaigns is also not equal to 1 (∼0.94–0.97), this suggests
that PSI is ready for operational use for monitoring subsidence due to hydrocarbon
production in the northern part of the Netherlands.

8.3 PSI and reservoir behavior

Acknowledging that subsidence due to gas extraction is successfully estimated by
PSI, the question raises if the higher spatial and temporal observation density, com-
pared to leveling, can be utilized to extend the knowledge on reservoir behavior.
Especially in areas where drilling (additional) wells is considered, but high uncer-
tainties exist about the behavior and connection of reservoir blocks, PSI may provide
additional information. Another reason for the demand of increased reservoir knowl-
edge is the start of subsidence due to gas extraction from the onshore side of the
Waddenzee since February 2007. Since the Waddenzee gas production comprises
several environmental concerns, subsidence due to gas production has to be moni-
tored (near) real-time (NAM, 2006). The more knowledge on reservoir properties,
the better the resulting subsidence can be controlled.

8.3.1 Temporal behavior of subsidence due to gas extraction

Considering ERS and Envisat satellites, the temporal observation density can in-
crease to maximum four observations in 35 days, if the area of interest is monitored
from four independent tracks. Subsidence above the main Groningen gas field is
near-linear in the satellite monitoring period of 1992–2007. However, some smaller
fields have a different production history (NLOG, 2008). For example, the produc-
tion of the Anjum field (see Fig. A.1) has started in the middle of the ERS monitoring
period in 1997 (NAM, 2003b). Another example is the Norg field (see Fig. A.1), from
which gas has been produced in the period 1983–1995 (NAM, 2003a). Successively,
from 1997, it was used for underground gas storage, resulting in an uplift of the
earth’s surface.
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Fig. 8.1. Displacement time series of the Anjum gas field (in green). A change in
displacement rate is observed several months to a year after the onset of gas production
in August 1997. The average displacement rates are in mm/year. These displacement
rates underestimate the subsidence rates after start of gas extraction, since they are
estimated from the monitoring period 1993–2003.

An important reservoir parameter is the so-called subsidence delay: the time diffe-
rence between the start of gas production and the onset of subsidence. The time
delay is closely linked to the shape of the subsidence curve until linear subsidence
rates are reached at constant production rate (Hettema et al., 2002).

To preserve the PSI displacement series that deviate from the linear null hypothesis,
the separation of unmodeled deformation signal and atmosphere (see section 4.3.2)
has been performed in a conservative way. The displacement time series may there-
fore be relatively noisy, but non-linearities in the time series are fully preserved.
This section will demonstrate a method to detect the unmodeled deformation sig-
nal, based on the time series of displacement residuals.

Before investigating the displacement residuals, the uncertainties in the stochas-
tic model of PSI need to be considered. The variance-covariance matrix of the
observations consists of a superposition of measurement noise, atmospheric noise,
and unmodeled deformation, see section 3.4.3. PSI parameter estimation and vari-
ance component estimation have been performed per arc. Hence, atmospheric noise
cannot be distinguished from measurement noise. The estimated variance factor
therefore accounts for both measurement and atmospheric noise, acting as a scaling
factor for different atmospheric disturbances (Hanssen, 2004). Fig. 8.2 shows the
estimated PS velocities and their estimated precision after VCE for a small study
area that contains the Anjum gas field.

In Fig. 8.2, an area can be identified that shows a significantly lower PS velocity
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Fig. 8.2. PS velocity precision (mm/year) and division into blocks (left). The precision
of the PS velocity estimates in the area in the top right corner is systematically lower
compared to the surrounding PS. The reference PS is indicated by a black star. Right:
the eigenvector per block that accounts for the largest variability in the residual PS
displacements (with respect to a linear displacement rate). The blocks in the top right
corner exhibit systematic deviations from the null hypothesis of a linear PS velocity. This
is explained by the PS displacement time series in these areas, see Fig. 8.1.

precision than the surroundings. Possible causes for the lower precision are a higher
PS measurement noise, physical PS instability, or unmodeled deformation, i.e. the
hypothesis of linear velocity is not valid. To trace model deviations, a residual
analysis has been performed based on the least-squares residuals of the PS velocity
estimates. The area is divided into blocks of 3×3 km, assuming a spatially smooth
behavior of the signal of interest. From the residuals of all PS within a block, a
variance-covariance matrix is constructed:

Cê = ê êT , (8.1)

where ê is the matrix of least-squares residuals (number of interferograms × number
of PS) and Cê represents the variance-covariance matrix of the residuals. This
variance-covariance matrix is decomposed into eigenvectors and eigenvalues. For
each block, the eigenvector corresponding to the largest eigenvalue, accounting for
the largest variability within the block, is analyzed. From Fig. 8.2 it can be seen that
the blocks with a lower precision show a systematic residual behavior that deviates
from the linear velocity model. When looking into the PS time series, there is indeed
a breakpoint in the displacement rate, see Fig. 8.1. Using the residual eigenvector
analysis, areas can be traced where model assumptions have to be revised.

Alternative hypotheses can be defined to determine the most likely deformation
pattern. One of the simplest alternative hypothesis consists of two linear displace-
ment rates before and after start of gas extraction. More advanced functions for
the (smooth) temporal development of subsidence due to mineral extraction are
described by Kwinta et al. (1996).
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Alternative hypotheses are evaluated using the overall model test (Teunissen, 2000b).
An example of an alternative hypothesis is the extension of the deformation model
with an additional unknown velocity and offset parameter u from time t:

H0 : E{y} = Ax ; Ha : E{y} = Ax+ Cy∇, (8.2)
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Where v1 and v2 are the PS velocities before and after the start of subsidence due
to gas production. The offset is required to avoid a discontinuity in the time series
at the change of displacement rates. The corresponding teststatistics read:

H0 : T q=m−n = êT0 Q
−1
y ê0 ; Ha : T q=m−n = êTaQ

−1
y êa, (8.4)

where ê are the least-squares residuals and Qy is the variance-covariance matrix of
the observations.

An example of a more complex deformation pattern is the displacement sequence of
the Norg field, see Fig. A.1 and Fig. 8.3. The ground level is first subsiding due to
gas production during the period 1983–1995 (NAM, 2003a). Subsequently, the Norg
reservoir has been used for underground storage from 1997, resulting in an uplift of
four centimeters in approximately four years.

Although the results clearly depict the displacements above the Norg field, it has to
be noted that displacements that deviate from the deformation model are sensitive
for unwrapping errors. It can be deduced from Fig. 8.3 that if half a wavelength
(28 mm) would be subtracted from the displacements in 1992 and 1993, the solution
of a linear displacement rate would have a comparable probability to the current
solution. The time gap in 1994 increases the degrees of freedom for the phase
unwrapping. Similarly, the period after 2000, in which the temporal sampling drops,
is more sensitive to unwrapping errors than the densely sampled period of 1995–2000.
Moreover, if the magnitude of subsidence and uplift would have been larger, the
estimation of subsidence and uplift based on a linear displacement rate would have
been more sensitive for unwrapping errors. The uplift above the Norg field took place
during the highest temporal sampling, and hence it has been fully captured by PSI.
The Norg displacement time series shows the high potential of PSI for monitoring
reservoir behavior, but at the same time it stresses the importance of the a-priori
conditions for successful application of PSI (sampling rate, magnitude and extent of
subsidence signal). Here, continuous GPS monitoring at a representative location
can aid the unwrapping of PSI phase observations. The integration of PSI and GPS
is a powerful combination of the spatial observation density of PSI and the higher
temporal sampling of GPS.
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Fig. 8.3. Average displacement rates in mm/year (left) and PS displacement (mm) time
series (right) in the Norg area (see Fig. A.1). Subsidence due to gas extraction is followed
by uplift due to the use of the reservoir as an underground gas storage from 1997. The
area in which the injection wells are located is marked with a black circle. Note that
the displacements in 1992–1993 and from 2001 are sensitive for unwrapping errors. The
ambiguity in the displacements is equal to half a wavelength, ∼28 mm. The deviation
of the actual ground movements from the null hypothesis of a linear displacement rate
combined with the time gaps, may lead to unwrapping errors.

8.3.2 Spatial behavior of subsidence due to gas extraction

Besides the temporal density, the spatial density of PSI is high, especially in ur-
banized areas (1–2 benchmarks per km2 for leveling versus ∼40 PS/km2 for PSI).
Fig. 8.4 and Fig. 8.5 show the PS density in the Waddenzee region for ascending and
descending tracks only, whereas Fig. 8.6 shows the combined solution. The delayed
onset of gas production in the Anjum field is recognizable in the time series. At
the dike locations it is clearly visible that the ascending and descending acquisitions
monitor complementary scatterers. The Anjum dike, covered with basalt blocks, is
aligned towards the descending viewing geometry. In the ascending track, hardly
any scatterers are found on the dike.

8.4 Future subsidence monitoring

The high correlation coefficient between leveling and PSI displacement rates (0.94)
suggests that PSI is a mature alternative and an independent and reliable com-
plementary technique for future subsidence monitoring in the Groningen region.
Temporal updates each 35 days enable more detailed subsidence monitoring than
leveling measurements each 2–5 years.
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Fig. 8.4. Onshore area near the Waddenzee (see Fig. A.1): PS displacements (mm)
estimated from the ascending tracks 487 and 258. An increase in PS displacements is
visible after new gas fields have been taken into production. The dikes near Anjum are
aligned towards the descending look direction. Hence, no scatterers are found on the
dikes in the ascending mode, contrary to Fig. 8.5.

PSI subsidence monitoring is dependent on satellite missions. All satellite missions
have a limited lifetime (5–10 years). This means that subsidence above the Gronin-
gen gas field, that will be ongoing for at least several decades, needs to be monitored
by multiple satellite missions. For a profound reliability assessment, multiple inde-
pendent overlapping tracks are required. Envisat for example, currently only covers
one track at 35 days intervals in image mode. The availability of only one track
decreases the reliability, but due to the spatial extent of the scenes (100×100 km),
residual errors that propagate over a large spatial extent can still be resolved. Fur-
thermore, the Groningen subsidence pattern is redundantly sampled due its smooth
behavior over a large spatial extent.

An option for increasing the reliability of single-track PSI is integration with another
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Fig. 8.5. Onshore area near the Waddenzee (see Fig. A.1): PS displacements (mm)
estimated from the descending tracks 380 and 151. An increase in PS displacements is
visible after new gas fields have been taken into production, similar to Fig. 8.4. In the
descending mode, the dikes near Anjum serve as Persistent Scatterers.

(complementary) geodetic measurement technique. The existing leveling network
could be reduced, covering only the areas where the PS density is low. Another
option is to deploy several (semi-)continuous GPS monitoring stations, that cover
a large spatial extent to resolve residual large-scale errors in PSI. GPS has the
advantage that horizontal components are measured as well, which contain useful
information regarding reservoir behavior. When establishing a sparse network of
GPS stations, the foundation with reference to the Pleistocene layer should be guar-
anteed, to avoid additional uncertainty on the deformation regime that is monitored.

It is often suggested to establish a network of corner reflector for PSI monitoring,
especially in areas that are poorly covered. Corner reflectors can be useful, but
their effect should not be overestimated. When placing corner reflectors, a new
time series has to be built up. Furthermore, they have to be carefully mounted
(on the Pleistocene layer, or at structures such as bridges that can be incorporated
in the leveling network) and maintained. When explicitly placing corner reflectors,
one could also consider GPS stations, with an even higher temporal sampling and
moreover providing horizontal displacements as well. Corner reflectors have to be
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Fig. 8.6. Onshore area near the Waddenzee (see Fig. A.1): combined PS displacements
(mm) from both the ascending and descending tracks (487, 258, 380 and 151).

precisely aligned towards the satellite, requiring advanced procedures or different re-
flectors for multiple satellites and tracks. Establishing one or several corner reflectors
can be beneficial for the following reasons:

1. establishing a common reference for PSI and other geodetic techniques; how-
ever this does not imply that measurements referring to other benchmarks and
PS can be directly compared since they may represent different deformation
regimes, and

2. for the connection to absolute subsidence measurements (gravity measure-
ments, GPS).

The strength of PSI as a subsidence monitoring technique lies in the availability of
natural targets that act as Persistent Scatterers. The optimal way to integrate PSI
with other geodetic techniques would be by establishing pole type reflectors that are
monitored from all tracks. These pole type reflectors may already exist as natural
scatterers, e.g., wind mills.

Finally, the importance of a backup procedure has to be stressed. Since satellite
missions have a limited lifetime and failures may occur, it should always be possible



8.4 Future subsidence monitoring 217

to restart the leveling campaigns. Therefore, it is essential to maintain all existing
benchmarks.
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Chapter 9

Conclusions and recommendations

In this chapter, the conclusions are summarized. Additionally, the research contri-
butions are listed. To conclude, recommendations for future research are given.

9.1 Conclusions

It can be concluded that the PSI technique can be applied for monitoring subsidence
due to gas extraction in the Groningen area, provided that the quality measures are
clearly defined. These quality measures comprise the precision and reliability of the
PSI technique itself and the idealization precision for the estimation of subsidence
due to hydrocarbon production (chap. 4). The precision of PSI deformation esti-
mates follows from the PSI estimation procedure, and has to be accompanied by an
assessment of the influence of possible model errors on these estimates (sec. 4.2). The
reliability of the PSI estimates are quantified by the misclosures after the datum con-
nection of independent overlapping tracks that observe the same deformation signal
(chap. 5). Moreover, the PS selection method to improve the idealization precision
has to be stated (selection method based on spatial correlation or PS characterization
tools).

The PSI results of both ERS and Envisat clearly depict areas affected by surface
movements in the entire northern part of the Netherlands, which correspond with the
gas production areas (sec. 6.2). The total subsiding area above the Groningen gas
field has a diameter of ∼50 km. Relative subsidence rates up to ∼7 mm/year in the
period 1992–2007 can be deduced. The subsidence pattern is spatially coherent. Ex-
ternal validation with the leveling displacement rates reveals a correlation coefficient
of 0.94 (sec. 7.2), similar to the correlation coefficient of leveling and PSI displace-
ments in the controlled corner reflector experiment, 0.94 (sec. 4.4). Moreover, the
correlation coefficient of displacement estimates from repeated leveling campaigns is
also lower than 1 (∼0.94–0.97), due to the measurement precision. This means that
PSI has reached the maturity to be operationally used for monitoring subsidence
due to gas extraction in the northern part of the Netherlands—stand-alone or, in
specific cases, in concert with significantly reduced leveling campaigns or GPS.
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The central problem statement has been defined as:

Is the InSAR technique able to provide precise and reliable deformation estimates
for the monitoring of subsidence due to hydrocarbon production in the Netherlands,
particularly in the Groningen region?

It has been divided into the following sub-questions that will be subsequently an-
swered.

1. Does the area of interest contain sufficient radar targets with coherent phase
observations?

2. Does InSAR provide a precise estimation of surface displacements in the Gronin-
gen area?

3. How can we assess the reliability of InSAR deformation estimates?

4. Is it possible to estimate subsidence due to hydrocarbon production from In-
SAR measurements in the presence of multiple deformation phenomena?

5. Are the PSI deformation estimates in agreement with the leveling results?

6. Can InSAR aid the understanding of reservoir behavior?

7. Is the continuity of subsidence monitoring using InSAR guaranteed?

In the following sections we will conclude on these questions.

9.1.1 PS density

The density of the accepted PS in the second order network varies from 0–10 PS per
km2 in rural areas to more than 100 PS per km2 in the urbanized areas (sec. 6.2.1).
Approximately 80% of the Groningen subsidence area is covered with more than
one PS per km2 using a single satellite track, with an average density of ∼40 PS
per km2. For comparison, following the guidelines of Duquesnoy (2002), the leveling
benchmark density for subsidence monitoring of the Groningen gas field is 1–1.5
benchmark per km2, to capture the spatial subsidence pattern. Both the leveling
and PSI measurement points are located at buildings and other man-made objects,
mainly located along the existing infrastructure. Although local agricultural areas
may not be covered with measurement points, both leveling and PSI meet the point
density guidelines.

9.1.2 Precision

Precision is defined as the dispersion of the deformation estimates around their
expectation value, and is represented by the variance-covariance matrix. It is a
superposition of observational noise, and noise due to unmodeled deformation, im-
precise APS estimates, processing induced errors and unmodeled systematic errors
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(sub-pixel position, residual orbital errors). Moreover, the precision of the PSI de-
formation estimates depends on the acquisition geometry in space and time, and the
PS density, especially in the first order network. Here, we conclude that:

• The relative precision (1-sigma) of displacement rates depends on the number
of acquisitions and the distance between the PS. For the smallest Groningen
stack consisting of 24 interferograms the relative precision is ∼0.1 mm/year
per

√
km; for the largest stack of 74 interferograms it is ∼0.04 mm/year per√

km (sec. 6.3).

• The precision (1-sigma) of double-difference displacements is on average 3 mm,
with respect to the closest accepted PS in the first order network. Dependent
on the physical properties of the PS and the relative arc length, it is ≤ 3 mm
in urban areas, where PS are generally less than 500 m apart. In rural areas,
where the distance between PS can exceed one kilometer, the precision of
displacements is 3–7 mm (sec. 6.3).

9.1.3 Reliability

Reliability is defined as the sensitivity for, and detectability of, model imperfections.
Reliability can only be assessed in case of redundancy. The PSI system of obser-
vations equations that includes the unknown ambiguities contains more unknowns
than observations. There is no redundancy, even a rank deficiency, that needs to
be resolved by introducing pseudo-observations. Testing on model imperfections is
therefore not possible in the estimation of deformation between two PS.

However, the effect of unmodeled phenomena on the parameter estimates has been
assessed under the assumption of ambiguity resolution success rates of 1 (sec. 4.2).
The model errors comprise sub-pixel position and orbit errors. Simulation have been
performed, using the acquisition geometry of the six Groningen ERS tracks. This
has resulted in the following conclusions:

• The azimuth sub-pixel position has not been taken into account during the PSI
estimation. This can lead to a maximum additional error of ∼0.5 mm/year.
This error is independent of the mutual PS distance and depends on the relative
sub-pixel error and the Doppler centroid frequency difference in time.

• Random (residual) orbital errors of 5 and 8 centimeters in radial and across-
track direction can lead to a PS velocity error of ∼1 mm/year over 100 km.
This error has a systematic character that propagates over a large spatial
extent.

Since the ambiguity resolution success rates have been assumed 1, this is the most
optimistic scenario for the effect of model imperfections. Simulations in section 4.2.4
have shown that unwrapping success rates of 1 can not be guaranteed in rural areas
with a low PS density, i.e. the probability of correct unwrapping is not 100%. For a
strict reliability assessment, redundancy is required, which can be obtained by the
use of independent overlapping tracks.
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For the Groningen subsidence area, six overlapping tracks provide independent ob-
servations of the same subsidence signal. Model errors can be detected through the
integration of these tracks by means of a datum connection procedure (sec. 6.4).
This datum connection consists of two steps, i.e. (1) conversion to the radar coordi-
nate system of the master track, and (2) connection of the PSI parameter estimates
(displacements, heights).

The quality of the datum connection and the reliability of the PSI deformation
estimates have been evaluated by means of multi-track PS clusters. The standard
deviation of the displacement rates in 70% of the PS clusters is less than 1 mm/year
after datum connection. Although the PSI results of all tracks have been merged
into a consistent system defined by the master track, the presence of a small spatial
trend of several mm/year over a 100 km distance has to be taken into account. Due
to the wide coverage of a single scene, this trend can be corrected for, provided that
the majority of the scene is not affected by surface deformation.

PSI deformation estimates are in the satellite line of sight direction. Neglecting
the horizontal displacement component can lead to errors up to ∼1 mm/year in
the vertical displacement rates. Multiple viewing geometries (ascending, descending
and adjacent) can resolve different displacement components. This has resulted in
horizontal displacement rates of ∼2–3 mm/year towards the center of the subsidence
bowls, observed for the first time. The magnitude and direction of the horizontal
displacement rates match with the theoretically predicted.

9.1.4 Deformation regimes

The InSAR deformation estimates are not necessarily related to the deformation
signal of interest. Remote sensing techniques such as InSAR monitor all surface
displacements from space, regardless of the deformation mechanism. The presence
of different deformation regimes (structural instabilities, shallow and deep mass dis-
placements) requires an additional interpretation step for the estimation of the signal
of interest (sec. 4.5). The interpretation of deformation estimates is not unique for
InSAR: leveling benchmarks that are not properly founded on a stable subsurface
layer can exhibit autonomous movements as well.

Compared to traditional geodetic techniques, the physical measurement point is
less well defined for InSAR: it has a lower idealization precision for deformation
monitoring. Different methodologies have been investigated to improve PS charac-
terization (sec. 6.5). Eventually, the differences in the PS velocity histograms before
and after selection have appeared not to be significant (< 0.5 mm/year), in two case
study areas. This implies that the PS reflections (direct and indirect) in these case
study areas refer to buildings and structures that are subject to the same deforma-
tion regime.

Since subsidence due to gas extraction is the common deformation regime, PS can be
selected (and filtered) based on spatial correlation. If the majority of the PS refer to
well-founded buildings, the peak of the velocity histogram refers to the displacement
rate due to gas extraction. However, this does not hold in areas were the majority
of the buildings and structures have a bad foundation (instable subsurface layers,
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peat oxidation in combination with shallow foundations). This may be the cause for
the differences between the leveling and PSI displacement rates in the southeastern
part of the Groningen subsidence bowl, see Fig. 7.13. Here, manual selection of PS
targets, or additional measurements from different geodetic techniques referring to
the stable Pleistocene layer, may be locally required.

Besides PS selection for the estimation of subsidence due to hydrocarbon production,
the displacement decomposition due to different deformation regimes has been in-
vestigated. This method has the advantage that it uses all PS displacements, and is
performed by variance component estimation. Its application is however limited, be-
cause spatio-temporal covariance functions of different deformation regimes need to
be independent and high redundancy is required to be able to estimate the stochastic
model parameters with a reasonable precision.

9.1.5 Cross-validation PSI and leveling

The historical leveling results have been compared with the PSI deformation esti-
mates, which have been converted to displacement rates along the vertical. The
velocity differences have a standard deviation less than 1 mm/year. The displace-
ment rates of leveling benchmarks and the mean of neighboring PS have a correlation
coefficient of 0.94 (sec. 7.2). Considering that the correlation coefficient of displace-
ment estimates from repeated leveling campaigns is also lower than 1 (∼0.94–0.97),
due to the measurement precision, the correlation between PSI and leveling displace-
ment estimates approaches its maximum.

It has been shown that the spatio-temporal observation density of PSI can overcome
a lower observational precision (∼3 mm for displacement estimates between two PS)
compared to the precision of leveling height difference measurements (1 mm/

√
km).

A stack of ∼25 SAR acquisitions is required to obtain the same precision of dis-
placement rates (sec. 7.1). A larger stack however will even provide displacement
rates of a higher precision than the leveling technique. The spatial sampling of PSI
increases the precision of the deformation estimates as well. However, due to the
correlation between PSI double-difference observations, the increase in precision is
lower than for uncorrelated deformation estimates.

A framework for the integration of observations from multiple geodetic techniques
can be defined using the Best Linear Unbiased Prediction methodology (sec. 7.3).
Moreover, this framework can be utilized for the integration of displacement esti-
mates from different sensors, with a possible time gap. However, the application in
PSI is complicated if ambiguity resolution success rates of 1 are not obtained. In
this situation, the probability density function of the PSI estimates is multi-modal.
The evaluation of alternative hypotheses and the definition and interpretation of
precision and reliability measures will not be straightforward, moreover due to the
uncertainties in the stochastic model of PSI.
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9.1.6 Hydrocarbon reservoir behavior

The spatial and temporal sampling of InSAR, and the spatial coverage of an in-
terferogram is significantly higher than conventional monitoring techniques, such as
leveling, can provide. Therefore, the PSI deformation estimates contain information
about the behavior of the hydrocarbon reservoirs that could not be extracted in the
past (sec 8.3).

The subsidence delay is one of the reservoir characteristics that has gained attention
during the preparations for the production below the Waddenzee (NAM, 2006). Due
to the high temporal sampling rate (up to four acquisitions each 35 days versus one
every 2–5 years for leveling), the subsidence delay can be determined more precisely.
For the Anjum gas field, subsidence starts several months to one year after the start
of gas extraction. Another feature that has been captured by PSI is the uplift due
to underground gas storage in Norg. An uplift of four centimeters in four years has
been observed after start of the gas storage in 1997.

9.1.7 Outlook

The period that subsidence monitoring in Groningen is required (in the order of
decades) exceeds the lifetime of a satellite (5–10 years). Continuity in the time
series has been shown in the displacement time series of one track between ERS
and Envisat, see section 6.2.2. The future outlook of satellite missions is posi-
tive (TerraSAR-X, Sentinel-1, ALOS, RADARSAT-2, Cosmo Skymed). Each new
satellite mission will have its own characteristics, and needs to be carefully validated.
The integration of deformation estimates of multiple missions has to be performed
in the parameter space, as the individual measurements cannot be related unam-
biguously. Since the displacement rates due to gas extraction are near-linear, the
displacement observations can be easily connected. To ensure continuity in subsi-
dence monitoring, the leveling benchmarks have to be maintained. They serve as a
backup if a satellite fails or a mission is not continued.

9.2 Contributions

Summarizing, this research has made the following contributions:

1. Pseudo-calibration has been introduced in the PS selection procedure, which
saves computation time and data storage space.

2. It has been demonstrated for the Groningen region that the PS density in rural
areas is sufficient for a precise and reliable estimation of subsidence due to gas
extraction.

3. The influence of model errors (sub-pixel positions, orbit errors, unwrapping
errors, sidelobe observations) on the deformation estimates has been quantified.

4. It has been shown that a reliability assessment of PSI can be performed by the
datum connection of multiple, overlapping, independent satellite tracks.
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5. The applicability of PSI for monitoring deformation that is characterized by
small displacement rates (up to ∼-7 mm/year), over a large spatial extent
(>200 km) has been demonstrated.

6. The different viewing geometry of adjacent and cross-heading tracks has been
utilized to obtain horizontal displacement rates for the Groningen gas field.

7. It has been shown that the correlation coefficient of leveling and PSI displace-
ment rates (0.94) is comparable to the correlation of displacements that have
been obtained in the controlled corner reflector experiment (0.94).

8. The concept of idealization precision for PSI deformation monitoring in the
presence of multiple deformation regimes has been introduced.

9. The application of variance component estimation for the separation of au-
tonomous movements and spatially correlated subsidence signal has revealed
ground movements that could be physically explained (uplift due to the water
injection in the Rotterdam area).

10. It has been shown that PS characterization is not necessarily required for the
estimation of subsidence due to gas extraction (PS selection based on spatial
correlation is sufficient in areas where the majority of the buildings is well-
founded).

11. The application of PSI for monitoring reservoir behavior in time has been
demonstrated (subsidence delay, uplift due to underground gas storage).

9.3 Recommendations

Although the PSI displacement rates of the ERS and Envisat tracks clearly capture
surface movements due to gas extraction, and the correlation with the leveling tech-
nique is satisfactory, it is recommended to investigate if the PSI processing for large
(rural) areas can be further optimized.

• The estimation of error sources, such as atmospheric signal, is dependent on
the density and quality of PS candidates in the first order network. In the
current Groningen results, observations from spatially non-fitting arcs are re-
moved from all interferometric combinations to avoid the acceptance of er-
roneous ambiguity resolutions. The disadvantage is that the resulting first
order network is very sparse. Coherence thresholds to determine the set of
accepted PS should be finetuned, taking the false detection rate as a function
of the number of images into account. The PS density should be optimized by
selection of PS based on a-priori knowledge about the terrain characteristics
(location of buildings and structures). Furthermore, the quality of the indi-
vidual interferograms should be integrated in the estimation procedure. New
sensors, such as TerraSAR-X, that have a higher resolution, can potentially
contribute to a higher PS density.
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• The maximum unwrapping success rates that can be obtained have to be in-
vestigated. This can be done by using small 3D, in space and time, (spider)
networks that are recursively connected. Using 3D networks also has the ad-
vantage that the stochastic model can be improved by variance component
estimation of both spatial and temporal parameters.

• To limit biases in the velocity estimates, the azimuth sub-pixel position has to
be incorporated in the system of equations.

• The estimation of orbit errors should be improved to be able to unambiguously
estimate ground movements of low magnitude (several mm/year or less) over
a large spatial extent (>100 km).

• Continuous time series from multiple sensors and independent overlapping
tracks are essential for continuous and reliable subsidence monitoring. The
time interval between subsequent acquisitions needs to be ∼35 days or less;
the resolution needs to be at ERS/Envisat level or better; and the phase ob-
servations need to result in a precision of displacement estimates of ∼3 mm or
less.

• Alternating Polarization data needs to be further investigated in areas that are
known for shallow subsurface movements combined with shallow foundations
of buildings.

To introduce reliability, it is indispensable that the subsidence signal is monitored by
multiple independent overlapping tracks: at least one ascending and one descending.
For future acquisitions this should be secured. Multiple tracks are also needed for
the estimation of residuals orbital components and the decomposition into horizontal
and vertical displacements.

For future subsidence monitoring, regular updates of the displacement time series
are required. This can be obtained by dynamic PSI processing (Marinkovic and
Hanssen, 2007), which provides recursive updates and hence is more efficient than
the recalculation of batch solutions.

Considering the interpretation of PSI deformation estimates, the validity of the
application of statistical methods (correlation length) has to be carefully judged in
the area of interest. The deformation signal of interest has to be dominant in the
majority of the PS displacements, which does not hold in areas where most of the
buildings and structures have instable foundations in combination with soft shallow
soils.

Future subsidence monitoring using Envisat has to be performed in a controlled way
since only one track has been sufficiently monitored up to 2008 (∼40 acquisitions).
Although it is possible to perform a (limited) reliability assessment due to the redun-
dant spatial sampling of the deformation signal and the large spatial coverage (to
control systematic errors that propagate over a large spatial extent), multiple tracks
enable a much stronger evaluation of the reliability. Although new satellites have
been launched or are in preparation, leveling benchmarks have to be maintained as
backup.
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To conclude, the potential additional information in PSI deformation estimates has
to be further exploited. The temporal sampling frequency has proven to give ad-
ditional insight in reservoir behavior. The spatial sampling frequency and extent
has to be further analyzed with respect to reservoir behavior. The contributions
of new satellite missions, such as TerraSAR-X, with a higher resolution, a higher
repeat interval and the ability to acquire fully polarimetric data, should certainly
be investigated.
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Fig. A.1. Location of Groningen, Anjum, and Norg gas fields, and indication of the gas
fields in the Waddenzee area (onshore and offshore).
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B.1 PSI (track 380,487) and leveling (free network adjustments)
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Fig. B.1. Estimates displacements (mm) in the periods 1993–1998 (left) and 1993–2003
(right) for PSI (triangles) and leveling (circles). The leveling displacement estimates have
been computed from the benchmark heights obtained by free network adjustments of
subsequent epochs. The PSI displacement estimates are from the tracks 380 and 487.
The boundaries of the gas fields are depicted in gray.
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Fig. B.2. Correlation between PSI and leveling displacements (mm) in the periods
1993–1998 (left) and 1993–2003 (right). The leveling displacement estimates have
been computed from the benchmark heights obtained by free network adjustments of
subsequent epochs. The PSI displacement estimates are from the tracks 380 and 487.
The red dots depict the selection of locations of stable benchmarks (Schoustra, 2006).
The correlation before and after selection of stable benchmark locations is 0.74 and 0.87
respectively in the period 1993–1998. In the period 1993–2003 the correlation before
and after selection of stable benchmark locations is 0.81 and 0.94 respectively.
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Fig. B.3. PSI and leveling misclosure teststatistics and their theoretical χ2 distribu-
tion between PSI and leveling displacements (mm) in the periods 1993–1998 (left) and
1993–2003 (right). The leveling displacement estimates have been computed from the
benchmark heights obtained by free network adjustments of subsequent epochs. The
PSI displacement estimates are from the tracks 380 and 487.
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Fig. B.4. Four profiles that depict the PSI and leveling evaluation locations. The
displacements at each evaluation location have been computed as the weighted average
of all displacement estimates within a radius of one kilometer. The profiles 1, 2, 3
and 4 are the top-left, top-right, bottom-left and bottom-right profile respectively. The
depicted displacement estimates are the leveling displacements estimates (mm) in the
period 1993–1998, based on the free network adjustments the 1993 and the 1998 epochs.
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Fig. B.5. PSI and leveling displacement estimates (mm) at the evaluation locations
along profile 1 for the periods 1993–1998 (left) and 1993-2003 (right). The leveling
displacement estimates have been computed from the benchmark heights obtained by
free network adjustments of subsequent epochs. The PSI displacement estimates are
from the tracks 380 and 487.
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Fig. B.6. PSI and leveling displacement estimates (mm) at the evaluation locations
along profile 2 for the periods 1993–1998 (left) and 1993-2003 (right). The leveling
displacement estimates have been computed from the benchmark heights obtained by
free network adjustments of subsequent epochs. The PSI displacement estimates are
from the tracks 380 and 487.
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Fig. B.7. PSI and leveling displacement estimates (mm) at the evaluation locations
along profile 3 for the periods 1993–1998 (left) and 1993-2003 (right). The leveling
displacement estimates have been computed from the benchmark heights obtained by
free network adjustments of subsequent epochs. The PSI displacement estimates are
from the tracks 380 and 487.

0 10 20 30 40 50
−100

−80

−60

−40

−20

0

20

40

Distance from start profile (km)

m
m

 

 
leveling
track 380
track 487

0 10 20 30 40 50 60
−100

−80

−60

−40

−20

0

20

40

Distance from start profile (km)

m
m

 

 
leveling
track 380
track 487

Fig. B.8. PSI and leveling displacement estimates (mm) at the evaluation locations
along profile 4 for the periods 1993–1998 (left) and 1993-2003 (right). The leveling
displacement estimates have been computed from the benchmark heights obtained by
free network adjustments of subsequent epochs. The PSI displacement estimates are
from the tracks 380 and 487.
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B.2 PSI (track 380,487) and leveling (SuMo analysis)
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Fig. B.9. Estimates displacements (mm) in the periods 1993–1998 (left) and 1993–2003
(right) for PSI (triangles) and leveling (circles). The leveling displacement estimates have
been obtained from the SuMo 2003 analysis (Schoustra, 2004). The PSI displacement
estimates are from the tracks 380 and 487. The boundaries of the gas fields are depicted
in gray.
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Fig. B.10. Correlation between PSI and leveling displacements (mm) in the periods
1993–1998 (left) and 1993–2003 (right). The leveling displacement estimates have
been obtained from the SuMo 2003 analysis (Schoustra, 2004). The PSI displacement
estimates are from the tracks 380 and 487. The red dots depict the selection of locations
of stable benchmarks (Schoustra, 2006). The correlation before and after selection of
stable benchmark locations is 0.90 and 0.93 respectively in the period 1993–1998. In
the period 1993–2003 the correlation before and after selection of stable benchmark
locations is 0.91 and 0.95 respectively.
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Fig. B.11. PSI and leveling misclosure teststatistics and their theoretical χ2 distribution
between PSI and leveling displacements (mm) in the periods 1993–1998 (left) and 1993–
2003 (right). The leveling displacement estimates have been obtained from the SuMo
2003 analysis (Schoustra, 2004). The PSI displacement estimates are from the tracks
380 and 487.
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Fig. B.12. Four profiles that depict the PSI and leveling evaluation locations. The
displacements at each evaluation location have been computed as the weighted average
of all displacement estimates within a radius of one kilometer. The profiles 1, 2, 3
and 4 are the top-left, top-right, bottom-left and bottom-right profile respectively. The
depicted displacement estimates are the leveling displacements estimates (mm) in the
period 1993–1998, based on the SuMo 2003 analysis (Schoustra, 2004)
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Fig. B.13. PSI and leveling displacement estimates (mm) at the evaluation locations
along profile 1 for the periods 1993–1998 (left) and 1993-2003 (right). The leveling
displacement estimates have been obtained from the SuMo 2003 analysis (Schoustra,
2004). The PSI displacement estimates are from the tracks 380 and 487.
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Fig. B.14. PSI and leveling displacement estimates (mm) at the evaluation locations
along profile 2 for the periods 1993–1998 (left) and 1993-2003 (right). The leveling
displacement estimates have been obtained from the SuMo 2003 analysis (Schoustra,
2004). The PSI displacement estimates are from the tracks 380 and 487.
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Fig. B.15. PSI and leveling displacement estimates (mm) at the evaluation locations
along profile 3 for the periods 1993–1998 (left) and 1993-2003 (right). The leveling
displacement estimates have been obtained from the SuMo 2003 analysis (Schoustra,
2004). The PSI displacement estimates are from the tracks 380 and 487.
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Fig. B.16. PSI and leveling displacement estimates (mm) at the evaluation locations
along profile 4 for the periods 1993–1998 (left) and 1993-2003 (right). The leveling
displacement estimates have been obtained from the SuMo 2003 analysis (Schoustra,
2004). The PSI displacement estimates are from the tracks 380 and 487.
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Index

Adjustment, 18
Alternating Polarization, 84, 162
Amplitude dispersion
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Aquifer, 13
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Deformation
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Ellipsoidal model, 21
Envisat
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Foundation, 150
Functional model

PSI, 42

Geocoding, 56
Geoid, 72
Grid cell, 22
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Hydrocarbons, 7

Idealization precision, 77, 149
Integer bootstrapping, 45, 123
Integer Least-Squares, 44
Interferometric processing, 29, 117

Kriging, 87, 165
factorial, 90

Laser altimetry, 158
Legislation, 16
Leveling, 15, 68, 171

benchmark stability, 156
benchmarks, 149

Line of sight, 72

Master, 40, 114
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Master track, 98, 143
Matching

MRM, 102
point fields, 101

Model imperfections, 23, 48
Mogi source, 181
MRM, see Multi-image reflectivity map
Multi-image reflectivity map, 102
Multi-modal distribution, 45
Multi-track PSI, 95, 142

Network
second order, 49
first order, 49, 124

Observation well
deep, 156
shallow, 156

Orbits, 139
inaccuracies, 56

Overall model test, 188, 195
Oversampling, 29

Persistent Scatterer
candidate, 33, 120
characterization, 79, 157
cluster, 104
density, 125
height estimate, 81, 157
velocity estimate, 124

Pixel, 28
Point source, 21, 177, 181
Precision, 52

measurement, 60
PSI estimates, 130

Prognosis grid, 21
Pseudo-observations, 122

Quadtree decomposition, 111, 147

Radar coordinate system, 95
Range Sampling Rate, 141
Recursive estimation, 108
Reference, 120
Reflection type

dihedral, 81
specular, 81

Reliability, 52
Research question, 3
Reservoir, 7

behavior, 209
connectivity, 13

Resolution cell, 28
Rotterdam, 165

SAR calibration, 36
Seal, 8
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Signal-to-Clutter Ratio, 34, 60, 70
Spatial decomposition, 110, 147, 192
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SRTM, 158
Stochastic model, 66

PSI, 46
Sub-pixel, 31, 42
Sub-pixel position, 53, 73, 82
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prediction, 13
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Supervised classification, 35

Testing, 18
Teststatistic, 186
Timing errors, 141
Transformation, 100
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