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Subject-specific identification of three dimensional foot

shape deviations using statistical shape analysis

Kristina Stankovića,∗, Toon Huysmansa,b, Femke Danckaersa, Jan Sijbersa,
Brian G. Bootha

aimec - Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
bSection on Applied Ergonomics & Design, Department of Industrial Design, Delft

University of Technology, CE Delft, The Netherlands

Abstract

The high prevalence of foot pain, and its relation to foot shape, indicates
the need for an expert system to identify foot shape abnormalities. Yet,
to date, no such expert system exists that examines the full 3D foot shape
and produces an intuitive explanation of why a foot is abnormal. In this
work, we present the first such expert system that satisfies those goals. The
system is based on the concept of model-based outlier detection: a statistical
shape model (SSM) is generated from 186 3D optical foot scans of healthy
feet. This model acts as a knowledge base which is then parameterized by
one’s demographic characteristics (e.g., age, weight height, shoe size) through
a multivariate regression. This regression introduces model flexibility as it
allows the model to be fine tuned to a specific individual. This fine tuned
model is then used as a baseline to which the individual’s 3D foot scan can be
compared using standard statistical tests (e.g. t-tests). These statistical tests
are performed at each vertex along the foot surface to identify the degree and
location of shape outliers. Our expert system was validated on foot scans
from patients with hallux valgus and abnormal foot arches. As expected,
our results varied per patient, confirming that feet with the same clinical
classification still show high shape variability. Additionally, the foot shape
abnormalities identified by our system not only agreed with the expected
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location and severity of the tested foot deformities, but our analysis of the
full 3D foot shape was able to completely characterize the extent of those
abnormalities for the first time. These results show that the combination
of statistical shape modelling, multivariate regression, and statistical testing
is powerful enough to perform outlier detection for 3D foot shapes. The
resulting insights provided by this system could prove useful in both shoe
design and clinical diagnosis.

Keywords: 3D foot scans, statistical shape modelling, personalized
medicine, outlier detection

1. Introduction1

It is estimated that anywhere between 17-41% of the general population2

experience foot pain and, in roughly half of these cases, the foot pain is dis-3

abling [1, 2, 3]. For some people, this pain is linked to foot deformities, with4

common conditions including hallux valgus [4, 5], collapsed foot arches [6, 7],5

and club feet [8, 9]. For others, foot pain has been associated with improperly6

fitting footwear [10, 11], indicating that a more precise characterization of7

foot shape would be valuable in footwear fitting and design [12, 13, 14, 15].8

Despite a clear link between foot shape and foot pain, one study has re-9

ported that more than half of its participants who experienced debilitating10

foot pain did not seek professional help [2]. These results suggest that either11

foot shape abnormalities are difficult for a non-expert to assess, or that access12

to professional foot care is limited. Either way, this indicates a need for an13

expert system that can assess whether one’s foot shape is abnormal or not.14

Such a system could reduce one’s future foot pain by either identifying foot15

deformities requiring professional care, or by recommending better footwear16

choices [16, 17, 18, 19].17

The development of expert systems for foot assessment remains an open18

research question. Traditionally, experts such as physical therapists and19

podiatrists have classified feet based on visual appraisal [5, 20, 21], with20

foot arch heights, ankle bone curvatures, and toe angles being key shape21

cues [5, 7, 22]. Unfortunately, these visual appraisals introduce a measure of22

subjectivity into the analysis of foot shape, resulting in examinations that23

can vary significantly between clinicians [23].24

In recent years, attempts have been made to develop expert systems based25

on objective measures of foot shape, most notably in the form of outlier de-26
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tection algorithms [24]. These include the arch index measure introduced27

by Cavanagh et al. [25]. Using measurements from 2D footprints and sta-28

tistical thresholds, arch index can classify feet as being high-, normal-, or29

flat-arched. Similar statistical thresholds have also been applied to 1D arch30

height measures [26], center of pressure trajectories [27], and forefoot-rearfoot31

angles [28] in order to identify abnormal arch heights. A full review of such32

techniques can be found in the work of Xiong et al. [6]. Similar statisti-33

cal thresholds have also been defined for hallux valgus based on the hallux34

abductus angle [29, 30], and for club feet based on calcaneus distances [9].35

These approaches can be thought of as expert systems where the user inputs36

a given foot measurement or footprint, the knowledge base is a statistical37

model, and the inference engine performs outlier detection using significance38

thresholds. Other expert systems also exist for foot assessment, but they do39

not consider foot shape [31, 32, 33].40

Despite the benefits these objective techniques provide, they also have41

their limitations. Many studies are based purely on scalar measurements or42

2D images of the foot (e.g. footprints) instead of the full 3D foot shape [25,43

34]. It has been shown that the full 3D foot shape is not only important44

for footwear design [4, 19, 35, 36], but it also cannot be fully recovered from45

lower-dimensional foot measurements [37]. As a result, these expert systems46

do not provide a complete assessment of foot shape.47

Additionally, existing expert systems for foot shape provide only coarse48

groupings, usually only identifying if a foot is normal or abnormal. Several49

studies [38, 39, 40] reported inter-individual differences for width and height50

measures of feet within the same class, such as foot size classes. Similarly,51

different degrees of hallux valgus deformity and toe deformities were associ-52

ated with different shoe needs [41]. These results suggest that foot shapes53

within the same class can still vary significantly and that this variance should54

be further considered in an expert system.55

We propose that an expert system for foot shape analysis should ideally56

satisfy four criteria. First, the system’s knowledge base should contain infor-57

mation on the full 3D foot shape and not simply 2D or 1D foot measurements.58

This criterion would ensure that assessment of the complete foot is possible.59

Second, the system’s inference engine should provide more than simply a60

label of whether a foot is normal or not. If a foot is labelled as abnormally-61

shaped, the system should explain what part of the foot is abnormal and62

to what extent it is abnormal. Third, the system’s user interface should be63

simple enough for a non-expert to use. This criterion aims to eliminate the64
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subjectivity seen in visual assessments as well as ensuring that access to the65

system is not limited by access to a foot care professional. Finally, the system66

should employ methods that are familiar to foot care professionals, thereby67

ensuring that they can confidently recommend such a system and properly68

follow-up on the system’s results.69

To address these criteria, we introduce an expert system based on the70

concepts of outlier detection for the assessment of one’s full 3D foot shape.71

The user interface requires one to simply enter a 3D optical scan of their72

foot and basic demographic information (e.g. age, weight, shoe size), making73

the system usable by an non-expert. The knowledge base of the system is74

centered on the statistical shape modelling, a technique that has shown to75

be a useful tool in a variety of applications [42, 43, 44, 45, 46, 47]. The76

model is constructed from healthy individuals and a regression analysis, like77

those in [48, 49], is used to link the user-entered demographic information to78

a baseline foot shape measurement. Finally, statistical testing is employed79

to compare one’s measurement to this statistical baseline. This testing is80

performed across the foot surface in order to identify the location and extent81

of shape abnormalities [50, 51, 52, 53].82

Our proposed expert system merges together established shape analysis83

and outlier detection techniques, thereby making it a natural extension to84

methods currently used by foot care professionals. We hypothesize the use85

of such techniques can provide sufficient analytical power to become the first86

expert system to simultaneously satisfy the four criteria mentioned earlier.87

2. Methods88

Our proposed expert system for foot shape assessment consists of two89

main parts: the building of a statistical shape model (i.e. the knowledge90

base), and the comparison of an individual’s foot to that model (i.e. the91

inference engine). In both parts of the system, we represent a foot shape, X,92

as a triangulated 3D mesh of the foot surface. Also, let {X1,X2, · · · ,XN}93

be the N foot scans from which a statistical shape model will be computed.94

In order to perform meaningful statistics on such a shape representation,95

an anatomical correspondence needs to be established between all N foot96

meshes and these meshes have to be spatially aligned. In section 2.1, the97

correspondence and alignment procedure is explained after which the model98

building and personalized analysis parts of our pipeline are presented in sec-99

tion 2.2 and 2.3, respectively.100
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2.1. Correspondence establishment and anatomical alignment101

Initially, each 3D foot mesh has a different number and order of vertices.102

These meshes can also vary in their position within the field of view of the103

3D scanner. In order to analyze the shapes represented in 3D foot meshes,104

we must first ensure that each mesh has the same vertices located in the105

same anatomical locations. Second, we must then align the 3D foot meshes106

to remove the influence of pose on the analysis of shape. The first procedure107

is referred to as shape correspondence while the second is referred to as108

anatomical alignment. Fig. 1 shows the effect of these procedures on two109

randomly-chosen feet.

Figure 1: Correspondence establishment and alignment. a) Two randomly chosen
feet with unmatched vertices before correspondence establishment, b) overlapped feet after
correspondence establishment, c) overlapped feet after anatomical alignment.

110

2.1.1. Shape correspondence111

To bring two 3D foot meshes into anatomical correspondence, we employ112

the pairwise registration of Danckaers et al. [54]. To do so, we choose one113

foot mesh, Xref , as our reference foot mesh and deform it to match the other114

foot meshes in our analysis. At a high level, this deformation is described by115

Xtarget = Ψ(T (Xref , β)), (1)

where Xtarget is a foot mesh being analyzed, T is an affine transformation116

and Ψ is a set of displacement vectors. The degree of the deformation op-117

eration is controlled by a user-defined elasticity parameter, β. We solve for118
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T and Ψ using the iterative procedure defined in [54]. Briefly, this itera-119

tive procedure operates by fixing one of the transformations (e.g. Ψ) and120

then solving Eq. (1) for the other transformation (e.g. T ). Subsequently, the121

procedure solves Eq. (1) for the transformation that was fixed in the former122

iteration (Ψ) while now fixing the previously-computed unknown transfor-123

mation (T ). This process is iterated until the magnitude of the observed124

shape changes is below a set threshold (0.01 mm). During the iterations, the125

elasticity parameter, β, is increased to gradually introduce more deformation126

as the alignment improves. Further details can be found in [54]. The final127

result is the reference mesh Xref deformed to have its shape as similar as128

possible to the shape of the target mesh Xtarget. At this point, Xtarget is129

replaced by Ψ(T (Xref )), ensuring that each foot mesh has the same number130

of vertices ordered in the same fashion (Fig. 1b). This pairwise registration131

is applied for all N foot shapes in the database to make sure all shapes are132

in correspondence with each other.133

2.1.2. Procrustes Analysis134

Once the N foot shapes have been brought into correspondence, their135

meshes need to be brought into spatial alignment before statistics can be ac-136

curately performed. We achieve this alignment through a Procrustes Analysis137

as presented by Stegmann and Gomez [55]. This analysis consists of three138

steps that estimate the translation, scale, and rotation of one shape that139

brings it into alignment with another (Fig. 1c). Since the foot scans are140

obtained in a standing position, we further constrain the translation in the141

vertical direction to ensure that all 3D foot meshes remain aligned to the142

ground plane.143

For the personalized analysis step of our pipeline, a single Procrustes144

Analysis is sufficient to bring the individual’s 3D foot mesh into alignment145

with the SSM. However, when building the SSM, all 3D foot meshes need146

to be superimposed. We accomplish this task by performing a Generalized147

Procrustes Analysis [55]. In a Generalized Procrustes Analysis, a single 3D148

foot mesh is chosen as a target and the remaining N−1 meshes are aligned to149

it using the traditional Procrustes Analysis. An initial estimate of the mean150

shape is then obtained. This mean shape is then chosen as the target mesh151

and the process repeats itself until no further changes in the mean shape are152

seen. Further details can be found in [55].153

The shape correspondence and alignment procedures above are followed154

for each individual. In the case of the model building task, the shape cor-155
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respondence is iterated together with Generalized Procrustes Alignment in156

order to avoid any bias from the choice of Xref . In each iteration, the pop-157

ulation mean calculated from the previous iteration is used as the reference158

foot mesh [56]. Convergence is reached if the average distance between cor-159

responding points on the reference mesh from the previous iteration and the160

reference mesh from the current iteration is less than ε = 0.001 mm.161

2.2. Model building162

From our set of N aligned 3D healthy foot scans, we built a 3D statistical163

shape model using Principal Component Analysis (PCA) [57]. This SSM is164

then combined with a multivariate linear regression to fine tune the SSM165

based on different covariates (such as age, shoe size, BMI, etc.). Using this166

fine-tuned model, a maximum-likelihood prediction of one’s foot shape can167

be obtained. Then, residuals are calculated between these predicted surfaces168

and the aligned, measured, foot surfaces. These model-building steps are169

summarized in Fig. 2.170

2.2.1. Principal Component Analysis171

Once all foot scans have been brought into correspondence and aligned to172

an unbiased reference, a statistical shape model is built from the population.173

Let N be the number of 3D foot shapes in our healthy population, with every174

shape consisting of n vertices in 3D. This population is represented by N − 1175

dimensional cloud within 3n-space, where each point represents a foot shape.176

Principal component analysis (PCA) is then used to represent this cloud177

by a mean shape and N − 1 eigenmode vectors, where the first eigenmode178

describes the largest variance in the population, the second eigenmode the179

second largest variance orthogonal to the first, etc. The resulting statistical180

shape model consists of the mean shape x̄ ∈ R3n and the main shape modes:181

the principal components (PC) P ∈ R3n×(N−1). Under this PCA model182

representation, a new shape y ∈ R3n can be formed by a linear combination183

of the PCs:184

y = x̄ + Pb, (2)

with b ∈ R(N−1) being the PC weight vector mapping the shape to the sta-185

tistical model parameters [58]. In the context of our work, x̄ is the average186

foot shape, the principal components P can be interpreted as a set of defor-187

mations, and the PC weights, b, are computed to weight each deformation188

such that the average foot shape gets warped into the specific foot shape y189

(see the upper-right, yellow, box in Fig. 2)190
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Figure 2: Model building. a) Once all feet are brought into correspondence and aligned
(blue box), a 3D foot SSM is built using Principal Component Analysis. b) Metadata is
combined with the 3D SSM to develop a tunable shape model (yellow box) c) Residuals for
each vertex are computed between every aligned foot and its corresponding SSM prediction
(red box).

2.2.2. Incorporation of subject characteristics191

While PCA allows us to build a 3D SSM, it has no natural way to han-192

dle covariates that can impact foot shape (e.g. weight, sex, shoe size).193

To account for these covariates, we link them to the SSM using multi-194

variate multiple linear regression [59]Suppose we have a covariate vector195

f = [f1, f2, · · · , fk, 1]T ∈ Rk+1 that contains information of an individual’s196

age, shoe size, etc. as well as a 1 at its end to allow for a constant offset in197

regression. We can define the relationship between this covariate vector and198

the PCA weight vector bi ∈ RN−1 of each shape Xi from the dataset using a199

linear model. A mapping matrix M ∈ R(N−1)×(k+1), describing the relation-200

ship between the PCA weight matrix B = [b1, b2, · · · , bN ] ∈ R(N−1)×N and201
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the feature matrix F = [f1,f2, · · · ,fN ] ∈ R(k+1)×N is calculated by202

M = BF+, (3)

where F+ is the pseudoinverse of F [60]. With this mapping matrix, a new203

PC weight vector b can be generated from given features f as follows:204

b = Mf . (4)

Through this linear regression, we link the shape deformations represented205

by the principal components P to the demographic characteristics of the206

individual. In this way, the matrix M effectively captures how much each207

demographic feature influences the foot shape.By substituting Eq. (4) into208

Eq. (2), we obtain the statistical shape model which incorporates the shape209

variation influenced by an individual’s covariates:210

y = x̄ + PMf . (5)

By providing an individual’s demographic characteristics, the most plausible211

corresponding healthy foot shape can then be simulated using Eq. (5).212

2.2.3. Residual calculation213

Our SSM defined by Eq. (5) provides us with a model of the foot shape as214

a whole. To further localize our subsequent analysis, we augment our SSM215

with residual distributions at each mesh vertex. For each 3D mesh used in216

building our model, we calculated residuals between it and the corresponding217

foot shape prediction given by Eq. (5). Each vertex thus obtains the residual218

vector r:219

r = vr − vp, (6)

where vr is the vertex of the measured foot mesh and vp is the corresponding220

vertex of the predicted foot mesh.221

Since the variations in vertex position along tangential directions do not222

induce shape variations, and since we are only interested in shape variations,223

we further restrict our analysis to variations in vertex position along the224

direction normal to the foot surface. For this reason, the vector r is projected225

onto the vertex normal np of the predicted foot mesh as follows:226

rn = r · np, (7)

where rn is the normal component of r [61, 62].227
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Residuals are calculated using Eq. (7) for each vertex of each 3D mesh228

used in the model-building procedure. Normal distributions are then fit to229

the residuals at each vertex to summarize local shape variations that are not230

otherwise captured by the SSM.231

2.3. Personalized foot shape analysis232

To evaluate the 3D foot shape of a new individual, we detect shape anoma-233

lies based on the 3D foot SSM built earlier (Fig. 2). To do this, we first predict234

the healthy foot shape of the new individual using Eq. (5). Then, we estab-235

lish a correspondence between the predicted foot shape and the individual’s236

foot shape using the algorithm described in Eq. (1). The individual’s foot237

mesh is then brought into alignment with the predicted foot mesh using the238

Procrustes alignment algorithm described earlier. Finally, we compute, and239

statistically test, residuals between the aligned mesh and the predicted mesh240

as described below. The full procedure is displayed in Fig. 3.241

2.3.1. Statistical inference242

To identify outliers in 3D foot shape, we performed single-sample t-tests243

for each residual projection of the test mesh. To achieve this, we computed244

the residual between each vertex on the individual’s aligned foot mesh and245

its corresponding predicted mesh using Eq. (6). Since we are interested in246

variations present in the mesh along the direction normal to the foot sur-247

face, we projected vector r onto the surface normal using Eq. (7). Finally,248

we tested whether there was a significant difference (p < 0.05) for this in-249

dividual’s shape residuals by comparing them to the corresponding Normal250

distributions generated in the model-building. We conducted multiple com-251

parisons correction with False Discovery Rate (FDR) for a given threshold252

α = 0.05 [63].253

3. Experiments254

3.1. Dataset255

To evaluate our shape analysis technique, we collected 3D optical scans256

of the feet of 204 Belgian adults: 132 men and 72 women. Participation in257

the study was entirely voluntary and demographic information (age, BMI,258

height, weight, and shoe size) was collected for the whole cohort (Table 1).259

All factors except shoe size were self-reported, while shoe size was measured260

using a Brannock device. Additional factors such as race and ethnicity were261
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Figure 3: Procedure for the personalized analysis of an individual’s foot shape.
a) The predicted healthy shape for the individual’s foot is obtained using the SSM from the
model-building (yellow box) and metadata of the individual b) Residuals for each vertex
are computed between the aligned, measured foot shape and its corresponding prediction
c) Calculated residuals are compared to residuals obtained in the model-building (red box)
using statistical significance tests (green box).

not noted. The Ethics Committee of the Antwerp University Hospital ap-262

proved the study and all subjects gave their written informed consent before263

participating.264

The 3D optical scans of the participant’s feet were acquired with an Elin-265

vision Tiger 3D laser scanner (rs scan, Paal, Belgium). The accuracy of the266

3D scanner was 0.3 mm. A total of two scans were made per person: one of267

the left foot and one of the right foot. Both left and right feet were scanned268

while standing in a relaxed pose on both feet. Prior to the analysis, the scans269

of left feet were flipped along the medial-lateral axis so as to orient them in270

the same fashion as the right feet. Also, all 3D scans were cropped 2.0 cm271

above the average of the lateral and medial malleolus to decrease the effect272

of different lower leg poses on subsequent analysis. The obtained 3D meshes273

were used for further analysis.274
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Table 1: Metadata for the whole cohort, divided between the model-building
and testing phases

Age Shoe size Weight Height BMI

[years] [European [kg] [cm] [ kg
m2 ]

(Mondopoint)]
Model-building µ 36.5 41.7(265/101) 72.6 176.0 23.4

phase σ 12.5 2.8(18.3/7.1) 11.4 8.3 3.1
33 females & min 18 36.0(225/90) 49.0 150.0 17.9

60 males max 62 47.0(300/114) 100.0 196.0 32.7

Test phase
µ 43.0 41.4(263/100) 77.3 174.8 25.2
σ 12.8 2.5(18/7) 15.1 9.1 4.3

39 females & min 19 36.0(225/90) 47.0 156.0 18.4
72 males max 68 47.5(304/116) 144.0 198.0 41.6

3.2. Inclusion-Exclusion Criteria275

For evaluation purposes, all individuals were categorized into one of four276

groups: healthy individuals with a normal foot arch, healthy individuals277

with a high foot arch, healthy individuals with flat feet, and individuals with278

hallux valgus. Each of these four groups are described further in Table 2.279

Individuals were considered healthy if they had no foot or leg complaints280

at the time of measurement. For the individuals with hallux valgus, we281

measured the hallux abductus angle (HAA) of each individual using the 3D282

anatomical annotation approach described in [29]. A foot is considered as283

having a hallux valgus if its HAA is larger than 14 degrees, a threshold which284

is in line with the previous study of Menz et al. [41]. These feet were also285

assessed using the Manchester Scale [5], with the majority of cases being286

scored as of mild (45.65%) or moderate (47.8%). Only a few severe hallux287

valgus cases were present (6.55%).288

To classify individuals based on their foot arch height, we employed the289

standard approach of thresholding based on the arch index measure of Ca-290

vanaugh and Rodgers [25]. This measure was applied to plantar pressure291

measurements taken from each participant as they walked at their preferred292

walking speed. The plantar pressure measurements were collected using an293

rs scan 2 m Hi-End footscan R© system (rs scan, Paal, Belgium) with a fre-294

quency of 200 Hz and sensor dimensions of 7.62 mm x 5.08 mm. A total of295

10 measurements were collected per foot, then spatiotemporally aligned and296

averaged using STAPP [64]. The average measurement was then upsampled297
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Table 2: Exclusion and inclusion criteria for each group as well as the number
of 3D foot meshes used for model-building and testing phases.

AI HAA
Number of

individuals/feet

(training)

Number of

individuals/feet

(testing)

Total number

of individuals/feet

High
arch

< 0.24 < 14◦ 0/0 21/40 21/40

Flat
arch

> 0.33 < 14◦ 0/0 26/40 26/40

Normal
arch

[0.24, 0.33] < 14◦ 93/186 34/40 127/226

Hallux
valgus

any > 14◦ 0/0 30/46 30/46

The number of feet is not always equal to twice the number
of individuals, due to differences in AI and HAA between

left and right feet.

to 3 mm x 3 mm to obtain a correct foot geometry from the pressure plate298

with anisotropic sensor dimensions. The arch index was then calculated from299

the peak pressure image (i.e. the image that contains the maximum pres-300

sure at each pixel over the time of the footstep) and the corresponding foot301

was classified as high, normal, or flat arch as described by Cavanaugh and302

Rodgers [25]. Note that the larger the arch index, the flatter the foot.303

3.3. Experimental setup304

To evaluate our technique, we built a model from 93 healthy individuals305

with a normal foot arch (186 feet). Individuals in the remaining three groups306

- high arch, flat foot, and hallux valgus - were used for testing purposes.307

Each test consisted of taking a 3D foot scan from one of the test groups308

and comparing it to the shape distribution in the SSM. Given the number309

of scans in our model, and a 5% tolerance of an incorrect test result, we310

calculated that a comparison with our SSM should be able to detect effects311

with a Cohen’s d value of 0.24. This result corresponds to effects in the312

small-to-moderate range (0.2 < d < 0.5).313

In the case of the two arch height groups, we hypothesized that these314

groups would show abnormalities in similar areas around the midfoot. In315

the case of hallux valgus patients, we hypothesized that shape abnormalities316
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would appear around the hallux (i.e. big toe) and corresponding metatarsal.317

Additionally, we set aside 40 foot scans of healthy individuals with a normal318

foot arch in order to validate that our technique shows no abnormalities for319

feet similar to those in the model. A further description of the groups used320

in model building and testing are shown in Table 2.321

4. Results322

For each individual’s foot, we tested, with FDR correction, how the foot323

shape deviates from the healthy population. Fig. 4 shows the examples of324

6 test subjects (2 subjects per test group) where different regions of shape325

abnormalities are detected on different subjects. These abnormalities are not326

only localized in different foot areas for different groups, but the degree of327

shape abnormality for feet within same group also differs between each other.328

In addition, we calculated the outlier histograms to test whether areas of329

abnormal shape deviations were grouping in specific foot regions for the feet330

within the same clinical group. At each vertex, we counted the percentage331

of feet that detected the vertex as a shape outlier. These histograms are332

shown in Fig. 5. When we tested each foot, we noticed that the outliers333

were grouping in different foot regions depending on the clinical group to334

which the foot belongs. For 30% of flat feet, we detected the medial side335

of plantar midfoot and the upper part of the midfoot as the main regions336

of deviation. For 60% of high arched feet, we detected the lateral plantar337

midfoot as the main region of deviation. For 55% of feet with hallux valgus,338

we detected the biggest toe and head of the first metatarsal bone as the main339

regions of deviation, which are expected regions for this deformity. From the340

normal arched feet we tested, less than 5% showed outliers and these outliers341

were not concentrated in any specific region. For each foot, we measured342

the size of detected regions and compared them to the clinical measures343

used to define the groups: arch index and hallux abductus angle (HAA). In344

experiments performed with high arched and flat arched feet, we did not find345

a significant correlation between arch indexes and the size of outlier regions346

(ρ = 0.08, p = 0.61 for flat, ρ = 0.18, p = 0.25 for high arched). However, we347

found a significant correlation (ρ = 0.76, p < 0.001) between HAA and size348

of the outlier regions for the individuals with hallux valgus feet. Fig. 6 shows349

the size of the outlier regions within the area of shape deviations typical for350

hallux valgus deformity.351
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(a) Flat arch (b) High arch (c) Hallux valgus (d) p-value

Figure 4: Example results for 6 individuals within our test groups (2 individuals
per group). The detected outlier regions for the 6 test subjects differ not only across
groups but also within groups.

5. Discussion352

We proposed an expert system for objective and personalized identifica-353

tion of 3D foot shape abnormalities through the use of 3D statistical shape354

modelling. Our system’s user interface centered around easy-to-input subject355

characteristics (e.g. gender, age), allowing for its use by non-experts. Addi-356

tionally, our system’s inference engine relies on established statistical testing357

procedures, leading to results that are straightforward to interpret. This ap-358

proach further enables the identification of local regions on the individual’s359

foot that significantly deviate from those of a healthy, normal-arched foot.360

Considering arch height variability, we hypothesized that groups with361

high arched and flat feet would show abnormalities in similar areas around362

the midfoot. Our results indeed showed significant shape deviations in the363

midfoot, but interestingly, these shape deviations differed between flat- and364
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(a) High arch (b) Flat arch (c) Hallux valgus

Figure 5: Histograms of detected outliers (p < 0.05) obtained for: a) 40 high arched
feet b) 40 flat feet c) 46 feet with hallux valgus.

high-arched feet. While high-arched feet had outliers concentrated at the365

lateral plantar midfoot, flat feet showed a decreased concentration of outliers,366

with abnormalities appearing most prominently at the medial side of the367

plantar midfoot and at the upper part of the midfoot (Fig. 5). The location368

of detected regions, along all three dimensions, can be beneficial for footwear369

manufacturers and can show in which part of the shoe manufacturers should370

adapt their design to ensure better fitting and more comfortable footwear.371

For example, the shape deviations found in the plantar midfoot for high-372

arched individuals could suggest shoe insoles be adapted to enable more373

comfortable footwear for this group.374

Besides the tests related to arch height, we also tested feet with hallux375

valgus. We found that the detected shape abnormalities around the hallux376

and corresponding metatarsal matched our hypothesis. Here, we observed377

a significant correlation between the hallux abductus angle and the size of378

the detected regions (Fig. 6). This information can be used to ensure proper379

footwear width and guarantee that enough space is provided along all three380

dimensions in the forefoot of a patient’s shoe. Given that one of the causes381

of hallux valgus is poor-fitting footwear, the insights shown by our method382

could help prevent further development of hallux valgus deformity [41].383

Along with the information on how 3D foot shapes deviate for differ-384

ent groups, our method detected and highlighted whether, and where, the385

individual’s foot deviates from a given healthy population. These personal-386
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Figure 6: A significant correlation was found between the size of detected shape
abnormalities (in cm2) and the HAA for the feet with hallux valgus (ρ = 0.76, p <
0.001).

ized foot shape tests showed a variety of abnormal shape regions for the feet387

within the same clinical group (Fig. 4). This confirms the inter-individual388

differences found within feet with similar characteristics [38, 39, 40]. These389

results are particularly striking given that existing expert systems were used390

to classify the foot scans analyzed in this study [25, 29]. This indicates that391

the usual foot examination, based on classifying feet into groups, does not392

provide a complete picture of foot shape variability. Instead, our method393

for a personalized and objective analysis of 3D foot shapes shows promise394

in providing a more complete analysis of foot shape, and analysis that could395

prove useful for the evaluation of foot deformities.396

In comparison to previous expert systems for foot analysis, our approach397

also employs statistical techniques, thereby increasing the likelihood that foot398

care professionals will be able to work in tandem with such a system. In ad-399

dition, our work expands on existing techniques in two key ways. First, our400

expert system analyzes the entire 3D foot shape instead of lower-dimensional401

shape features. This contribution not only simplifies the user interface but402
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also allows the system to produce a more descriptive explanation for why a403

foot is identified as abnormally shaped. Second, our expert system incorpo-404

rates demographic measures such as age and weight, measures that allow us405

to fine tune the inference to a particular individual. Previous systems relied406

on statistical thresholds that were constant for all individuals, a limitation407

that impacts the effect sizes that such systems could identify.408

At its heart, our proposed foot shape analysis system effectively per-409

forms outlier detection, and therefore shares similarities with other outlier410

detection systems in medicine, economics, data mining, and manufactur-411

ing [24, 65]. Traditionally, outlier detection algorithms have followed one412

of two approaches. The first, and the one used here, is to build a statistical413

model of what is considered normal. This model can then be compared to us-414

ing established statistical tests in order to find outliers [52, 53, 56]. By taking415

this approach, our system has a strong theoretical foundation for justifying416

why an exemplar is an outlier [66].417

An alternative approach to outlier detection is model-free and seeks to418

identify outliers based on their similarity to existing data points [67], specific419

prototypes [68], or clusters [69]. A strength of these model-free approaches420

is that they do not require that the data follow a particular statistical distri-421

bution, or that a single normative statistical model be considered. Recently,422

hierarchical approaches have also been proposed for outlier detection in or-423

der to achieve this same model-free flexibility [70]. In this work, we have424

attempted to duplicate this flexibility through a regression between the sta-425

tistical model and subject demographics. This regression allows us to main-426

tain a strong statistical foundation for our system while also personalizing427

the model to some degree to the foot under examination.428

Overall, our expert system produced results consistent with known foot429

shape abnormalities while also providing more descriptive and personalized430

results than previous approaches. Nevertheless, some individuals classified as431

having an abnormal foot arch or a hallux valgus showed no shape abnormali-432

ties in our system (see Fig. 5 and Fig. 6). These results suggest that there are433

limitations to this study or its proposed methods. For example, the 3D scans434

used in testing were initially classified using the established measures of arch435

index and hallux abductus angle. Since these measures are an incomplete436

representation of foot shape, it is possible that feet described as abnormal437

by those measures may not be statistical outliers when considering the shape438

as a whole. Additionally, the statistical modelling and regression used in our439

system also has limitations, specifically that the model assumes the data is440
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normally distributed and that the relationship between foot shape and de-441

mographics is linear. These limitations may introduce additional variance442

into our modelling, thereby reducing its ability to identify foot shape abnor-443

malities. Finally, our choice of demographic features may not be complete.444

It may be possible to reduce variance in the model if additional information445

like ethnicity [71], leg dominance [72], and footwear choices [73] is included446

in the regression.447

Despite the advantages of our approach to detect outliers in 3D foot448

shapes, it also has some practical limitations. Detection of 3D foot deviations449

requires the input of 3D foot scans and, thus, the availability of an optical 3D450

scanner. The high cost of a quality 3D scanner is a notable disadvantage for451

our approach over traditional foot examination methods. The use of existing,452

cheaper, low-resolution scanners (e.g. Kinect 2, Fuel3D) can be a possible453

solution. However, our approach would need further evaluation to see if its454

behaviour changes with the input of lower quality scans. Additionally, the455

findings presented herein were observed on high resolution scans collected in456

a standing pose. Many foot deformities have a more noticeable impact on457

gait than foot shape [74]. As a result of this constraint, foot deformities that458

affect only foot motion are unlikely to be detected using our framework. It is459

for this reason that we tested individuals who have feet with hallux valgus, a460

deformity which is visible on static 3D foot scans. Despite this limitation, we461

showed the possibility of automatic, objective, and personalized detection of462

the hallux valgus deformity, as well as subtle foot arch deviations present in463

healthy foot shape.464

6. Conclusion465

In summary, our expert system for assessing 3D foot shape provides an466

automatic and objective procedure to examine whether, and where, a single467

foot shape differs from a healthy foot population. We validated our technique468

on four groups of feet with different known shape deviations and the results469

generally matched our hypotheses. However, our analysis technique provided470

additional insights into how arch height influences foot shape as well as cap-471

turing individual variability within each foot group. This information has472

the potential to be used for various purposes within several biomedical dis-473

ciplines, including facilitation of more objective clinical diagnosis techniques474

as well as more accurate footwear design.475
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6.1. Implications and Future Work476

While our proposed expert system showed promising results, these re-477

sults also showed that our proposed system would benefit from additional478

research. First, we observed that the choice of demographics used to fine479

tune the statistical model can impact the variance within the model and,480

in turn, its ability to identify abnormalities. It also influences how well the481

system generalizes to different individuals. Choosing the right demographic482

features remains an open research question and is effectively the feature se-483

lection problem commonly seen in other statistical modelling and machine484

learning problems [75]. Second, the statistical modelling used in our system485

assumes (a) that foot shapes are normally distributed, and (b) that the rela-486

tionship been demographics and foot shape is a linear one. While our results487

seem to agree with those assumptions, it remains to be shown whether those488

assumptions truly hold. Third, the promise seen in our results may be due489

in part to our use of a high-quality 3D laser scanner to measure foot shape.490

It is unclear how this measurement quality impacts our expert system.491

Based on this study, we clearly see four areas in which future work would492

be beneficial: feature selection, model flexibility, model sensitivity, and model493

completeness. With respect to feature selection, it would be beneficial to494

explore what features - demographic, environmental, or otherwise - impact495

foot shape. The evaluation and choice of such features would depend not only496

on their ability to reduce model variance, but also on user privacy and ease-of-497

use concerns [76, 77]. With respect to model flexibility, conditional generative498

adversarial networks [78] and permutation testing [79] may provide model-499

free options for the type of outlier detection we perform here. It remains to500

be seen if such methods can provide the intuitive explanation of their results501

that an expert system requires.502

Additionally, we aim in the future to extend this study to address both503

model sensitivity and model completeness. With regards to the former point,504

we intend to evaluate the proposed system on more accessible, but lower505

quality, 3D optical scanners. Such an extension may require the consideration506

of mesh denoising [80] or other data enhancement techniques. With regards507

to the latter point, we further intend to extend this approach to dynamic 4D508

data [81]. Such an extension could give insights into foot abnormalities that509

are visible only when an individual is moving.510
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