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Phase field-based incompressible two-component
liquid flow simulation

Babak S. Hosseini and Matthias Möller

Abstract In this work, we consider a Cahn–Hilliard phase field-based computa-
tional model for immiscible and incompressible two-component liquid flows with
interfacial phenomena. This diffuse-interface complex-fluid model is given by the
incompressible Navier–Stokes–Cahn–Hilliard (NSCH) equations. The coupling of
the flow and phase field equations is given by an extra phase induced surface ten-
sion force term in the flow equations and a fluid induced transport term in the
Cahn–Hilliard (CH) equations. Galerkin-based isogeometric finite element analy-
sis is applied for space discretization of the coupled system in velocity–pressure–
phase field–chemical potential formulation. For the approximation of the velocity
and pressure fields, LBB compatible non-uniform rational B-spline spaces are used
which can be regarded as smooth generalizations of Taylor–Hood pairs of finite el-
ement spaces. The one-step θ -scheme is used for the discretization in time. For the
validation of the two-phase flow model, we present numerical results for the chal-
lenging Rayleigh-Taylor instability flow problem in two dimensions and compare
them to reference results.

1 Introduction

Multiphase flows comprise flow of materials with different phases (i.e gas, liquid,
etc.), or materials with different chemical properties in the same phase, such as oil
and water. In two-phase flows, being the most common multiphase flow configura-
tion involving two distinct fluids, the fluids are segregated by a very thin interfacial
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region where surface tension effects and mass transfer due to chemical reactions
may appear. Multiphase flows are ubiquitous in nature and industrial systems and
are quite challenging from the point of view of mathematical modeling and simula-
tion due to the complex physical interaction between the involved fluids including
topological changes and the complexity of having to deal with unknown moving
fluid-fluid interfaces. As for methodologies to address the moving interface prob-
lem, there are various methods such as volume-of-fluid, front tracking, immersed
boundary, level-set and phase field methods (cf. [5, 8]).

In this work we use a phase field diffuse interface method based on the Cahn–
Hilliard equation and apply Isogeometric Analysis for the discretization of the in-
volved equations. Particularly for two-phase flows, Diffuse-interface models have
gained a lot of attention due to their ability to easily handle moving contact lines
and topological transitions without any need for reinitialization or advective sta-
bilization. On a general note, diffuse interface models allow the modeling of in-
terfacial forces as continuum forces with the effect that delta-function forces and
discontinuities at the interface are smoothed by smearing them over thin yet numer-
ically resolvable layers. The phase field method – also known as the diffuse interface
model – is based on models of fluid free energy and offers a systematic physical ap-
proach by describing the interface in a physical rather than in a numerical sense.
One principal advantage of diffuse interface models is their ability to describe topo-
logical transitions like droplet coalescence or break-up in a natural way. In the phase
field framework, the interface is modeled by a function ϕ(x, t) which represents the
concentration of the fluids. The function ϕ(x, t), also referred to as the order param-
eter, or the phase field, attains a distinct constant value in each phase and rapidly,
but smoothly, changes in the interface region between the phases. For a binary fluid,
a usual assumption is that ϕ takes values between −1 and 1, or 0 and 1. The relax-
ation of the order parameter is driven by local minimization of the fluid free energy
subject to the phase field conservation. As a result, complex interface dynamics such
as coalescence or segregation can be captured without any special procedures [1, 9].

The outline of this article is as follows: In Section 2 we briefly introduce the
mathematical model used in this work. It serves as a basis for Section 3 that is
dedicated to the presentation of the weak forms and discretization aspects of the
mathematical model with Isogeometric Analysis. We present our numerical results
in Section 4 and conclude the article with a short summary in Section 5.

2 Navier–Stokes–Cahn–Hilliard two-phase flow model

Let Ω = (Ω1 ∪Ω2) ⊂ Rn be an arbitrary open domain, with n = 2 or 3 and let its
boundary ∂Ω be sufficiently smooth (e.g. Lipschitz continuous). Moreover, let Γ

denote the interface between the different fluids or phases occupying the subdo-
mains Ω1 and Ω2 and let n be the outward (Ω1 → Ω2) unit normal at the inter-
face. The NSCH variable density, variable viscosity incompressible two-phase flow
model (1) is obtained by the extension of the Navier–Stokes equations with a surface
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tension force term η∇ϕ , written in its potential form, and a fluid induced transport
term v ·∇ϕ in the Cahn–Hilliard equations (1c + 1d).

ρ(ϕ)

(
∂v
∂ t

+(v ·∇)v
)
−∇ ·σ(ϕ) = ρ(ϕ)g+η∇ϕ in ΩT , (1a)

∇ ·v = 0 in ΩT , (1b)
∂ϕ

∂ t
+v ·∇ϕ−∇ · (m(ϕ)∇η) = 0 in ΩT , (1c)

η−β
dψ(ϕ)

dϕ
+α ∇

2
ϕ = 0 in ΩT , (1d)

ϕ(x,0) = ϕ0(x), v(x,0) = v0(x) in Ω , (1e)
∂ϕ

∂n
=

∂η

∂n
= 0, v = vD on (∂ΩT )D, (1f)(

−pI+µ(ϕ)
(
∇v+(∇v)T )) ·n = t on (∂ΩT )N . (1g)

Above, ΩT = Ω × (0,T ), (∂Ω)D is the Dirichlet part of the domain boundary,
σ(ϕ) = −pI + µ(ϕ)

(
∇v+(∇v)T

)
denotes the (variable viscosity) fluid Cauchy

stress tensor, t is the prescribed traction force on the Neumann boundary (∂Ω)N ,
g is the gravitational force field and p is the pressure variable acting as a Lagrange
multiplier in the course of enforcing the incompressibility condition. This basically
corresponds to the model presented by Ding et al. [2] which can be seen as a gen-
eralization of “Model H” [4, 6] for the case of different densities and viscosities.
In contrast to “Model H”, a surface tension force term in potential form η∇ϕ has
replaced the divergence of the phase induced stress tensor −σ̂ε (∇ϕ⊗∇ϕ). The
latter, that is, −σ̂ε div(∇ϕ⊗∇ϕ), represents the phase induced force. In equation
(1d), α and β are functions of the surface energy density σ̂ and the interfacial region
thickness ε .

In the Cahn–Hilliard equations (1c + 1d), ϕ ∈ [−1,1] is a measure of phase and it
holds ϕ(x) = 1 (respectively ϕ(x) =−1) if and only if fluid 1 (respectively fluid 2)
is present at point x. η represents the chemical potential and the nonlinear functions
m(ϕ) and ψ(ϕ) model the concentration dependent mobility and fluid components’
immiscibility, respectively.

3 Variational formulation and discretization

We use Isogeometric Analysis for the approximation of the solution of the coupled
equation system (1). Inspired by operator splitting techniques, it is solved in two
consecutive stages in order to alleviate numerical treatment. More specifically, given
a flow field v, we first solve the phase field equations (1c + 1d) in order to update
the phase ϕ and chemical potential information η . The second step eventually uses
these information to compute the surface tension force and the phase dependent
values of density ρ(ϕ(x)) and viscosity µ(ϕ(x)) in the course of the solution of
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the Navier–Stokes equations (1a + 1b). As time integrator for both systems, we use
the one-step θ -scheme with θ = 1 or θ = 0.5 yielding the 1st order implicit Euler
or 2nd order Crank-Nicolson scheme, respectively. For the approximation of the
velocity and pressure functions in the Navier–Stokes equations, we use LBB-stable
Taylor–Hood-like B-spline/NURBS1 space pairs V̂T H

h /Q̂T H
h which are defined in

the parametric spline domain Ω̂ as

V̂T H
h ≡ V̂T H

h (p,α) =N p1+1,p2+1
α1,α2 = N p1+1,p2+1

α1,α2 ×N p1+1,p2+1
α1,α2 ,

Q̂T H
h ≡ Q̂T H

h (p,α) = N p1,p2
α1,α2 .

(2)

Above, N p1+1,p2+1
α1,α2 denotes a tensor product bivariate NURBS space of polynomial

degrees pi+1 and continuities αi, i = 1,2, with respect to parametric spline domain
directions ξi. We refer to Hosseini et al. [7] for a detailed description of the above
spline spaces. In all performed computations we used a C 0 N 2,2

0,0 /N
1,1

0,0 NURBS
space pair for the approximation of the velocity and pressure functions. This corre-
sponds to the Isogeometric counterpart of a Q2Q1 Taylor–Hood space which is well
known from the finite element literature. The degree and continuity of the discrete
spaces used for the approximation of the Navier–Stokes velocity and Cahn–Hilliard
phase and chemical potential functions are set to be identical. In the sequel we pic-
ture the individual solution stages and outline the spatial and temporal discretization
of the involved equations.

STEP 1 – CAHN–HILLIARD EQUATION:
For the treatment of the nonlinearity in the advective Cahn–Hilliard equation, we
seek for the current approximation of the solution uk = (ϕk,ηk) small perturbations
δu = (δϕ,δη), such that

ϕ
k+1 = ϕ

k +δϕ,

η
k+1 = η

k +δη
(3)

satisfy the nonlinear partial differential equations (1c + 1d). Under the premise that
δϕ is sufficiently small, we linearize the nonlinear function ψ ′(ϕ) as:

ψ
′(ϕk+1) = ψ

′(ϕk)+ψ
′′(ϕk)δϕ +O((δϕ)2)≈ ψ

′(ϕk)+ψ
′′(ϕk)δϕ. (4)

After the time discretization by the one-step θ -scheme, we arrive at

ϕn+1−ϕn

∆ t
+θ

(
(v ·∇)ϕn+1−∇ ·m∇η

n+1)
+(1−θ)((v ·∇)ϕn−∇ ·m∇η

n) = 0 in ΩT ,

η
n+1−β ψ

′(ϕn+1)+α∇
2
ϕ

n+1 = 0 in ΩT ,

(5)

where the boundary terms have not been displayed for the sake of lucidity. Above,
in the spirit of Picard iteration, the nonlinear mobility function m(ϕ) is evaluated

1 Non-Uniform Rational B-splines (NURBS)
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with respect to the already available values of the phase field, that is, ϕn. This lin-
earization allows us to treat it as a constant which simplifies its numerical treatment.

The variational form of the problem reads: Find ϕ(x, t) and η(x, t) ∈H 1(Ω)×
(0,T ), such that ∀q,v ∈H 1

0 (Ω) it holds:

∫
Ω

ϕn+1−ϕn

∆ t
q dx+θ

(∫
Ω

(v ·∇)ϕn+1 q+m∇η
n+1 ·∇q dx−

∫
∂Ω

n ·m∇η
n+1 qds

)
+(1−θ)

(∫
Ω

(v ·∇)ϕn q+m∇η
n ·∇q dx−

∫
∂Ω

n ·m∇η
n qds

)
= 0,∫

Ω

η
n+1 v dx−

∫
Ω

β
dψ(ϕn+1)

dϕ
v dx−

∫
Ω

α ∇ϕ
n+1 ·∇v dx+

∫
∂Ω

n ·α∇ϕ
n+1 ds = 0.

(6)
The application of (3) and (4) on (6) yields:∫

Ω

(ϕk +δϕ−ϕ
n)q dx+θ∆ t

∫
Ω

(v ·∇)(ϕk +δϕ)q+m∇(ηk +δη) ·∇q dx

+(1−θ)∆ t
∫

Ω

(v ·∇)ϕn q+m∇η
n ·∇q dx = 0,∫

Ω

(ηk +δη)v dx−
∫

Ω

β

(
ψ
′(ϕk)+ψ

′′(ϕk)δϕ

)
v dx−

∫
Ω

α ∇(ϕk +δϕ) ·∇v dx = 0.

(7)
In equation (7), the indices n and k refer to the solution from the last time step and
the current Newton-iterate, respectively. (δϕ,δη) is associated with the Newton-
update.
Gathering all terms with the unknowns δϕ and δη on the left hand side, we obtain
the following expressions

∫
Ω

δϕ q︸︷︷︸
M

+θ∆ t

(v ·∇)δϕ q︸ ︷︷ ︸
C

+m∇δη ·∇q︸ ︷︷ ︸
D

 dx =

∫
Ω

−ϕ
k q︸︷︷︸

M

−θ∆ t

(v ·∇)ϕk q︸ ︷︷ ︸
C

+m ∇η
k ·∇q︸ ︷︷ ︸
D

 dx

+
∫

Ω

ϕ
n q︸︷︷︸
M

−(1−θ)∆ t

(v ·∇)ϕn q︸ ︷︷ ︸
C

+m∇η
n ·∇q︸ ︷︷ ︸
D

 dx,

∫
Ω

δη v︸︷︷︸
M

dx−
∫

Ω

β ψ
′′(ϕk)δϕ v︸ ︷︷ ︸

N

dx−
∫

Ω

α ∇δϕ ·∇v︸ ︷︷ ︸
D

dx =

−
∫

Ω

η
k v︸︷︷︸

M

dx+
∫

Ω

β ψ
′(ϕk)v︸ ︷︷ ︸

n

dx+
∫

Ω

α ∇ϕ
k ·∇v︸ ︷︷ ︸
D

dx.

(8)

The corresponding discrete system for the Newton-iteration may now be written in
matrix form as
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q
v

(
M+θ∆ tC θ∆ tmD
−αD−βN M

)
︸ ︷︷ ︸

J

(
δϕ

δη

)
=

(
−M−θ∆ tC −θ∆ tmD

αD −M

)(
ϕk

ηk

)
+

(
0

βn

)
+

(
M− (1−θ)∆ tC −(1−θ)∆ tmD

0 0

)(
ϕn

ηn

)
︸ ︷︷ ︸

−F

(9)

and solved for δu in order to update the unknowns as (ϕk+1,ηk+1) = (ϕk,ηk)+
(δϕk,δηk).

STEP 2 – NAVIER–STOKES EQUATIONS: This step involves the numerical ap-
proximation of the solution of the unsteady variable density and variable viscos-
ity Navier–Stokes equations extended by a surface tension force term. The initial
condition for the velocity field is required to satisfy ∇ · v0 = 0. With b denoting
the body force term, the variational formulation of the problems (1a + 1b) reads:
Find v(x, t) ∈H 1

0 (Ω)× (0,T ) and p(x, t) ∈ L2(Ω)/R× (0,T ), such that for all
(w,q) ∈H 1

0 (Ω)×L2(Ω)/R it holds{
(w,vt)+a(w,v)+ c(v;w,v)+b(w, p) = (w,b)+(w, t)(∂Ω)N ,

b(q,v) = 0.
(10)

Replacement of the linear-, bilinear- and trilinear forms with their respective defini-
tions and application of integration by parts yields∫

Ω

ρ(ϕ)w ·vt dΩ︸ ︷︷ ︸
(w,vt )

+
∫

Ω

µ(ϕ)∇w :
(
∇v+(∇v)T ) dΩ︸ ︷︷ ︸

a(w,v)

+
∫

Ω

ρ(ϕ)w ·v ·∇v dΩ︸ ︷︷ ︸
c(v;w,v)

=

∫
Ω

∇ ·w p dΩ︸ ︷︷ ︸
b(w,p)

−
∫

Ω

q∇ ·v dΩ︸ ︷︷ ︸
b(q,v)

+
∫

Ω

ρ(ϕ)w ·b+w ·η∇ϕ dΩ︸ ︷︷ ︸
(w,b)

+

∫
(∂Ω)N

µ(ϕ)w ·
((

∇v+(∇v)T ) ·n) d(∂Ω)N−
∫
(∂Ω)N

w ·n p d(∂Ω)N︸ ︷︷ ︸
(w,t)(∂Ω)N

.

(11)
A downcast of the variational formulation (10) to the discrete level gives rise to the
problem statement

Find vh ∈H 1
0 (Ω)∩VT H

h × (0,T ) and ph ∈L2(Ω)/R∩QT H
h × (0,T ),such that

∀(wh,qh) ∈H 1
0 (Ω)∩VT H

h ×L2(Ω)/R∩QT H
h

(wh,vh
t )+a(wh,vh)+ c(vh;wh,vh)+b(wh, ph) = (wh,bh)+(wh, th)(∂Ω)N

b(qh,vh) = 0,
(12)

with superscript h dubbing the mesh family index. Using Isogeometric Taylor-Hood
finite elements and the one-step θ -scheme for the respective discretizations in space
and time, we obtain the following discrete system
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∆ t M(ϕn+1)+θ(D(ϕn+1)+C(vn+1,ϕn+1)) G

GT 0

)
︸ ︷︷ ︸

Sl

(
vn+1

pn+1

)
︸ ︷︷ ︸

un+1

=

( 1
∆ t M(ϕn)− (1−θ)(D(ϕn)+C(vn,ϕn)) 0

0 0

)
︸ ︷︷ ︸

Sr

(
vn

pn

)
︸ ︷︷ ︸

un

+θ fn+1(ηn+1,ϕn+1)︸ ︷︷ ︸
bn+1

+(1−θ)fn(ηn,ϕn)︸ ︷︷ ︸
bn

,

(13)

where M,D,C,G, and GT denote the mass, rate of deformation, advection, gradient,
and divergence matrices, respectively. The body and the surface tension force terms
are discretized altogether into f. For the treatment of the nonlinearity in the Navier–
Stokes equations (1a + 1b), we use the Newton-iteration

J(uk,ϕk)δu =−F(uk,un,ηk,ηn,ϕk,ϕn), (14a)

uk+1 = uk +δu, (14b)

whose right-hand side is set to be the residual of equation (13), that is,

F(un+1,un,ηn+1,ηn,ϕn+1,ϕn) = Sl un+1−Sr un−bn+1−bn. (15)

For a detailed description of the setup of the Jacobian J in equation (14), we refer to
[7]. The linear equation systems arising from the discretization of the Cahn–Hilliard
and Navier–Stokes equations are solved with direct solvers. For the solution of cor-
responding 3D problems involving larger systems, iterative solvers are advisable.

4 Application to the Rayleigh-Taylor instability problem

The Rayleigh-Taylor instability is a two-phase instability which occurs whenever
two fluids of different density are accelerated against each other. Any perturbation
along the interface between a heavy fluid (FH ) on top of a lighter fluid (FL), both
subject to a gravitational field, gives rise to the phenomenon of Rayleigh-Taylor in-
stability. The initial perturbations progress from an initial linear growth phase into
a non-linear one, eventually developing “mushroom head” like structures moving
upwards and thinning “spikes” falling downwards. Assuming negligible viscosity
and surface tension, the instability is characterized by the density disparity, mea-
sured with the Atwood number A = (ρH − ρL)/(ρH + ρL). For the validation of
our results, we will consider the works of Tryggvason [10] and Guermond et al.
[3] as reference. The former investigated the initial growth and long-time evolution
of the instability for incompressible and inviscid flows with zero surface tension at
A = 0.5. Guermond et al., on the other hand, studied this instability problem at the
same Atwood number, however, taking viscous effects additionally into account.

The setup of the problem is described by a rectangular computational domain
[0,d]× [0,4d], where an initial wavy interface segregates a heavier fluid in the upper
domain part from a lighter fluid on the lower part. The initial interface is described
by the function
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y(x) = 2d +0.1d cos(2πx/d)

representing a planar interface superimposed by a perturbation of wave number
k = 1 and amplitude 0.1d. Note that setting the surface tension coefficient σ̂ to
0, effectively downgrades the Cahn–Hilliard equations (1c + 1d) to a pure trans-
port equation well known from the level-set context. This, in turn, implies to pass
on both the physical benefits inherent to phase field models and to the automatic
recreation of the smooth transition of the phase field in the interface region. In or-
der to circumvent these issues, we chose to set the surface tension coefficient to
the small, yet non-zero value 0.01. As for the remaining simulation parameters we
set d = 1,ρH = 3,ρL = 1,µH = µL = 0.0031316 and g = 9.80665, giving rise to
A = 0.5 and Re= ρHd3/2g1/2/µH = 3000. At the top and bottom boundaries we use
the no-slip boundary condition, whereas the free slip boundary condition is imposed
on the vertical walls. Figure 1 depicts our results for the temporal evolution of the
interface computed in the time interval [0,1.5] with ∆ t = 0.001,h = 2−7,ε = 0.005
and D = 0.00004. As anticipated, the heavier fluid on top starts to fall through the
lighter fluid and gradually develops spikes which are subject to strong deformations.
When it comes to the comparison of the vortex structure with the “inviscid” results
of Tryggvason and the “viscous” results of Guermond et al., our viscous solution
exhibits a satisfactory agreement with both, especially with the latter mentioned.
Note that the data provided by the above references are computed with respect to
individual scalings of the involved PDE variables in order to obtain nondimensional
variables. Therefore, comparisons require the time scales of the respective simu-
lations to be mapped to each other. Since, in contrast to the reference results, we
did not perform any rescaling, our time t is mapped to Tryggvason’s time t̃ via the
relation t =

√
d/(A g) t̃.

We continue the validation of our results with a quantitative analysis and con-
duct a comparison of the tip of the rising and falling fluids with the inviscid and
viscous results provided by Tryggvason and Guermond et al., respectively. The re-
sults, depicted in Figure 2, are in good agreement with both references whose data
have individually been translated along the y-axis to facilitate comparisons. The
upper curve referring to the tip of the rising fluid shows a better correlation with
the data provided by Tryggvason while our curve for the falling fluid seems to per-
fectly match the results of Guermond. As for space and time discretization, for the
results depicted in Figure 2, Guermond uses P2−P1 finite elements on a 49577 P2
nodes mesh with a time step size ∆ t̃ = 5× 10−4. Tryggvason on the other hand
uses a Lagrangian-Eulerian vortex method on a 64×128 grid. Our results depicted
in Figures 1, 2 and 3, are obtained using a fully implicit time integration (θ = 1)
in combination with a space discretization based on a C 0 N 2,2

0,0 /N
1,1

0,0 NURBS
space pair for the approximation of the velocity and pressure functions. For mesh re-
finement levels h ∈ {2−5, 2−6, 2−7} the above choice of space discretization yields
{(33410,4257), (132354,16705), (526850,66177)} (velocity, pressure) degrees of
freedom, respectively. Note that with the above mentioned relation between t and t̃,
our time step ∆ t = 0.001 is mapped to ∆ t̃ = 0.0022143.
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Fig. 1: The evolution of a single wavelength initial condition in the
Rayleigh-Taylor instability simulation. Snapshots refer to times t ∈
{0,0.17,0.33,0.5,0.67,0.83,1,1.17,1.33,1.5} from top left to bottom right.

The analysis is finally concluded with the examination of the interface struc-
ture at a randomly selected fixed time t = 0.79031. As shown in Figure 3, the re-
sults are mesh and time converged for three consecutive mesh refinement levels
h ∈ {2−5, 2−6, 2−7} and time step sizes ∆ t ∈ {0.004,0.002,0.001}, respectively.
The main difference between the figures is in the level of detail of the vortices.
Besides, the y-coordinates of the tip of the rising and falling fluids slightly differ
from one mesh refinement level to the other and are thus regarded as weakly reso-
lution dependent. Apart from that no significant differences can be observed.
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Fig. 2: The y-coordinate of the tip of the rising and falling fluid versus time.

Fig. 3: Rayleigh-Taylor instability simulation at time t = 0.79031 with θ = 1,D =
0.00004, σ̂ = 0.01. Left: Mesh converged results for ∆ t = 0.0035,(h = 2−5,ε =
0.02),(h = 2−6,ε = 0.01),(h = 2−7,ε = 0.005). Right: Time converged results for
∆ t ∈ {0.004,0.002,0.001},h = 2−5,ε = 0.02.

5 Summary and conclusions

We presented a phase field-based computational model for immiscible and incom-
pressible two-component liquid flows based on the incompressible Navier–Stokes–
Cahn–Hilliard equations. The Cahn–Hilliard equation was reformulated so as to in-
troduce the chemical potential as an additional unknown handled by an extra equa-
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tion. A weak formulation of the complex-fluid problem together with a derivation
of its analytical Jacobian were presented providing enough information for hassle-
free reproducibility of this work. Numerical results were presented for the Rayleigh-
Taylor instability flow problem, based on Isogeometric finite element analysis of the
weak formulation of the NSCH problem. The Rayleigh-Taylor instability problem
has become a popular test case for numerical methods intended to study multiphase
or multimaterial problems. Using the setup and reference results of Tryggvason [10]
and Guermond et al. [3], we analyzed the evolution of a single wavelength interface
perturbation. Qualitative comparisons of the interface shapes and quantitative anal-
ysis of the positions of the tip of the rising and falling fluid rendered our approxi-
mations to be in good correlation with the above references. Moreover, we showed
our results to be mesh converged, since the produced data associated with different
mesh resolutions are well comparable except for the high resolution features such
as the roll-up spirals emerging at higher mesh refinement levels.
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