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Abstract- With an increasing number of automated vehicles (AV) appearing on roads and interacting 
with conventional traffic, there is a need for improved simulation approaches to replicate and 
forecast the resulting effects. Interactions between AVs and their drivers, and interaction with other 
human drivers involve new types of complex behavioural processes. There is an increasing necessity 
to explicitly incorporate these human factor processes in simulation, which cannot be properly 
accounted for with most current models. In this paper, we present an extended conceptual 
simulation framework based on human factors processes and applicable for automated driving that 
does this. The framework makes use of previously constructed constructs to include the effects of 
driver task demand, situation awareness and fundamental diagrams of task demand to extend to 
automated driving. This is especially considered for the case of transition of control (ToC), as an 
important aspect of vehicle-driver interaction. The framework is demonstrated in two experimental 
cases that consider different ToC situations and is found to be face valid within the applied 
assumptions. Challenges remain in regard to a lack of quantitative evidence from traffic psychology, 
automated vehicle dynamics & control and human-vehicle interaction. With increasing amounts of 
research on-going in these areas, the extended framework will act as a valuable approach to further 
study and quantify the effects of AVs in mixed traffic in the future.  
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1 Introduction  

1.1 Research motivation 
Accurate traffic models are of paramount importance for a wide range of purposes as national and 
local government, authorities and researchers attempt to understand the impacts of many future 
transport developments. A major current development in vehicle technology that will affect future 
traffic is vehicle automation. Many of the main effects of vehicle automation will occur in the 
interaction between human drivers and automated vehicle and the interaction between these 
vehicles with other road users. To be able to forecast and scale up the effects of vehicle automation, 
simulation is required that can reproduce these human driver interactions with the vehicles. This is 
the problem we aim to tackle in this paper, in presenting an extension for automated vehicles to a 
driver behaviour focussed microsimulation framework that will allow realistic human driving 
behaviour and automated vehicles to co-exist and interact in a valid manner.  
 
Traffic flow modelling has existed for well over half a century, with many types of simulation models 
being proposed and developed from stimulus-response, to safe-distance, and psychophysical type 
models to name just a few (van Wageningen-Kessels et al. 2015). Just about all these models have in 
common that there is some kind of control system; i.e. driver-vehicle units react to a certain stimulus 
from specifically annotated state variables. The control rules are different per model and represent 
the main phenomena caused by human drivers, such as congestion waves, capacity drop etc. Much 
of the implemented driving behaviour is implemented at a generic driver-vehicle level, rather than 
individual influences on driver performance from a more human factors perspective (Saifuzzaman et 
al. 2017). In practice, a driver interacts with their vehicle physically, such as pressing the brake and 
steering, but the driving task also includes a cognitive level, such as observing surroundings, 
processing information and making decisions (Endsley 1999; Fuller 2005). These aspects of human 
driving are generally not explicitly considered in most traffic simulation models, and to be honest it is 
normally not required. Proper calibration of a model with the generic behavioural patterns is often 
sufficient to perform simulation based forecasts. However, when considering intermediate levels of 
automation in which a human driver is partially in control, the aspect of real human driving 
behaviour plays a much greater role (Bellet et al. 2012; Gold et al. 2013; Hoogendoorn et al. 2014; 
Saffarian et al. 2012). The main reason for this relates to the increased and divergent interactions 
that drivers have with their partially automated vehicle and the demands that are put on driver’s 
cognitive ability to remain in the loop (Saffarian et al. 2012). These cognitive processes do not have a 
generic description that can easily be included in a traditional simulation model. A good example of 
this is the case of transition of control between AV and driver, although many other situations and 
phenomena exist with vehicle automation (Casner et al. 2016; De Winter et al. 2014; Saffarian et al. 
2012). There are many mechanisms that originate from a driver’s cognitive processing of information 
that are too divergent and seemingly random, unless described in the context of the underlying 
mechanism in greater detail, to be captured in a single distribution of reaction time for example 
(Saffarian et al. 2012). By describing these processes explicitly by including a direct mechanism to 
human factors, the effects on driving can be replicated much more accurately and validly.  
 
Driving behaviour research, and of human behaviour in a broader sense, has continued to develop in 
past decades (Fuller 2005; Pipes 1953; Teh et al. 2014).  While there is a general understanding of 
various parts of human behaviour from a cognitive psychological viewpoint, much of it is still not well 
understood and certainly has little proven generic and generally accepted theory (Wickens et al. 
2015). This adds a further difficulty when attempting to incorporate such a level of human (driving) 
behaviour in a ‘quantitative’ simulation model. Recent work by van Lint et al. (2018), and others such 
as Saifuzzaman et al. (2017), offer frameworks that attempt to explicitly and endogenously consider 
human behaviour from such an approach. They offer a good starting point for further development 
of traffic simulation that can consider human behaviour endogenously in a modelling environment 
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with both AVs and Human Driven Vehicles (HDV), and interactions and transitions between 
automation. Also, further ongoing developments in understanding and gathering evidence on human 
behaviour in and with various types and levels of AVs from Field Operational Tests (FOT) and driving 
simulator experiments, offer opportunities to be able to calibrate and validate traffic simulation 
models that wish to include mixed AV-HDVs scenarios.  

1.2 Objectives and constraints 
We argue that it is imperative that simulation models that consider AVs in mixed automated-human 
traffic must also explicitly and endogenously consider real human driving behaviour. Therefore, 
following these recent developments in traffic flow modelling and the ongoing developments in 
driver psychology and human factors, we propose a novel extension to these models that allows both 
automated and conventionally driven vehicles to be collectively considered in mixed traffic, making 
use of explicit and endogenous human driving behaviour for driving and interaction with AVs. This 
contribution focusses on the interactions in mixed traffic and therefore explicitly considers one of the 
important aspect of initial automated driving, namely that of transition of control.  
 
Throughout this paper, we will describe vehicle automation in two main categories: low and high 
automation. Low automation refers to level of automation in which the driver has an active role and 
aligns to Society of Automotive Engineers (SAE) levels 1-2 (SAE 2018), while high automation refers 
to levels in which a vehicle can drive autonomously under certain conditions and aligns to SAE level 
4-5. SAE 3 lies in between these two descriptions and can be considered as partial automation, as the 
driver has an active and continuous role of monitoring, while the vehicle does drive autonomously on 
the road and conditions that are permitted. Furthermore, we are well aware of the importance of 
vehicle cooperation as a necessary component to achieve many of the traffic flow and safety gains 
that are expected with cooperative and automated driving (Shladover 2009). However, as significant 
levels of cooperative driving are not expected until after the initial implementation of automated 
driving (Calvert et al. 2017; Sanchez et al. 2016; Sjoberg et al. 2017) and as the level of complexity 
from the new approach in this paper to modelling is already high, we aim to first introduce the main 
principles in regard to vehicle automation. The paper is written with the objective to demonstrate a 
proof of concept of the application of the automated driving through cognitive processes in 
microsimulation. We see this as a start of a longer process that will require additional human factors 
and other empirical evidence to further the future modelling developments.  

1.3 Research approach and organisation 
The research approach taken in this paper is as follows. In Section 2, we summarise current practice 
in regard to traffic simulation and vehicle automation, as well as the influence of human factors in 
vehicle automation and how this plays an important role that should be considered in simulation. 
This leads us to conclude the main aspects of traffic simulation that currently lack and are in part 
addressed in this paper. The proposed simulation framework is presented in Section 3. The 
framework is based on earlier work on human factors in traffic flow simulation, and is now extended 
to include AV explicit driving characteristics, such as full automated driving, driver intersections with 
automated systems, transition of control, etc. Each part of the framework is described. To 
demonstrate the workings of the framework, a demonstrative study case considering different types 
of transition of control is presented in Section 4. Thereafter, we perform a discussion of the 
framework and case, and then draw our conclusions.  

2 Microsimulation with automated vehicles 
In this section, we describe the important areas that require attention for the development of traffic 
simulation models involving automated vehicles (AV). This includes an overview of current practice 
and aspects relating to human factor consideration in traffic modelling. We conclude this section 
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with a summary of the main conditions and constraints that we consider necessary when developing 
new simulation models for the consideration of automated driving and human-AV interaction. 

2.1 Traffic simulation and automated driving 
In general, most microscopic models describe the dynamic movements of vehicles by means of 
acceleration and deceleration of each driver-vehicle combination (Kesting et al. 2007) and using rule-
based modelling for lateral movements, such as lane changes. The movements in car following 
behaviour are described by some function that responds to specific stimuli and by different ranges of 
descriptive and (partial) explanatory power for the resulting phenomena (van Lint et al. 2018). 
Examples of these models are: the safe-distance models that assume that drivers maintain suitably 
long enough headway to accommodate braking by leading vehicles, e.g. (Laval et al. 2010; Newell 
2002); the optimal velocity models that assume that drivers maintain a desired speed and always 
incline to that speed, also considering their headway to other vehicles, which could see car following 
at a lower speed (Bando et al. 1998; Davis 2003); stimulus-response models that assume an 
acceleration response to a set combination of different stimuli, such as desired speed, relative speed, 
and time headways (Gazis et al. 1961; Kerner et al. 2006; Treiber et al. 2000). With a realization that 
the traditional method of modelling can be rigid and absent of human heterogeneity, which is 
explicitly present in the way humans drive, advances were made in including some random 
heterogeneousness in driving behaviour to replicate this aspect of human driving. The earliest 
examples included the psycho-spacing models (Fritzsche 1994; Wiedemann 1974), which include 
driver inertia over reactions to a models state variables. Later on, models which included anticipation 
and delayed response aspects to mimic imperfect driving also started to appear, e.g.  (Saifuzzaman et 
al. 2014; Treiber et al. 2000). Even with a greater inclusion of driver heterogeneity in modelling, there 
is a strong case to state that these models still make use of exogenous rules and mechanisms to 
reproduce empirically observable driving behaviour (van Lint et al. 2018).  
 
Simulation of automated vehicles has logically been approached from a similar starting point to 
mainstream traffic simulation. A general assumption is made that AVs can also be captured by 
specific rules and mechanisms, and modelled using existing simulation approaches in which 
behavioural variation is less present (Klunder et al. 2009; Xiao et al. 2017). We would agree with this 
assumption and moreover state that the many current simulations models actually model AVs more 
accurately than they do human drivers. The main differences between HDVs and AVs are often 
depicted by differences in parameter settings of the models (Kesting et al. 2007; Milanés et al. 2014). 
While some characteristics of AVs can indeed be derived to specific differences in vehicles capability, 
such as low reaction times or high acceleration and deceleration rates, their general inherent 
behaviour is not always be the same. Bellet et al. (2012) states that to support human-centred design 
of automation, new simulation tools are required, from realistic AV simulators allowing full-scale 
immersive tests, to traffic flow simulations including realistic human driver models that are able to 
predict the road safety effects of AVs. Such simulation models require an intrinsic understanding and 
representation of the human factor processes to be able to accurately replicate them in models. To 
do that, they must embrace cognitive modelling and simulation of human drivers (Bellet et al. 2012; 
Kyriakidis et al. 2017). Research in the direction of human factor based simulation cautiously started 
at the start of the millennium, as researchers aimed to make a crossover from psychology towards 
driver behaviour in simulation (Hoogendoorn et al. 2014; Kyriakidis et al. 2017; Saifuzzaman et al. 
2014). Some approaches have made of use of prospect theory to include the aspect of risk and 
human perception (Hamdar et al. 2008; Hamdar et al. 2015), while the majority of psychological 
approaches have focussed on reproducing some part of the cognitive processing of information in 
relation to physical performance of tasks through Fullers’ Risk Allostasis Theory (Fuller 2011). These 
describe the process of task processing and as part of the Task Capacity Interface (TCI) (Cacciabue et 
al. 2010; Hoogendoorn et al. 2014; Saifuzzaman et al. 2017) and in some cases expand this further to 
include further aspects of human behaviour (van Lint et al. 2018), such as described through 
Situational Awareness. 
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2.2 Role of Human Factors in vehicle automation 
While attempting to replicate AVs and HDV-AV interaction, there is also a challenge to actually 
identify what many of these processes actually entail. Driver-vehicular differences and differences 
between HDV and AVs have been investigated in various literature (Parasuraman et al. 2000; Calvert 
et al. 2019a). In HDVs, control of a vehicle is fully in the hands of the driver and all dynamic 
movements are directly the consequence of the process of human perception - cognitive processing - 
decision making - and action within the physical limits of the vehicle (Calvert et al. 2019a). In highly 
automated vehicles (SAE 3-5), the entire process is performed by the vehicles perception sensors 
(e.g. LIDAR, RADAR, etc.), automated driving control systems (ADCS), and the vehicles own actuation. 
The behaviour of the vehicles is therefore a direct consequence of the way it is programmed in the 
ADCS and the quality of the sensing equipment and actuation. On their own, the behaviour of both a 
fully HDV and fully AV, can arguably be derived from observing their performance in practice or in 
FOT, in the case of the fully AV (De Winter et al. 2014). However, behaviour of a partial AV (combined 
driver-ADCS control), whatever the level of automation, and of interaction between AVs and AV-AV is 
not readily available, due to the complexity of these interactions and vehicle control. A limited 
number of experiments have been performed on various areas, such as the driver-vehicle interaction 
(Saffarian et al. 2012), or potential AV-HDV interaction (Carsten et al. 2012; Saffarian et al. 2012), but 
still fail to give a generic, complete and acceptable understanding that can be readily applied in 
simulation.  
 
In regard to driver-vehicle interaction, there has been much discussion on a driver’s ability to 
perform interactive tasks together with an AV (Calvert et al. 2019b; Casner et al. 2016; Parasuraman 
et al. 2000; Poulter et al. 2008; Saffarian et al. 2012). There are principally two areas that are of 
direct relevance in this regard, namely the role of the driver in an AV; and the transition of control 
between vehicle and driver (Casner et al. 2016):  

(1) The role of the driver relates to a drivers ability to take on a new role that would require 
more monitoring and less operational actions, while still being able to trust and respond 
adequately to a system that they may not entirely comprehend. This throws up issues in 
regard to inattention, brittleness, trust, quality of feedback, and skill atrophy (Casner et al. 
2016). Some have gone as far as to argue that a driver is not sufficiently able to perform the 
required tasks in an AV and should therefore not be subject to the subsequent threats 
(Axelsson 2017; Casner et al. 2016; Merat et al. 2014). There is an argument that can be 
made that a driver is not able to maintain meaningful human control under these 
circumstances (Calvert et al. 2019b). However, this remains a question to be answered by 
others, for which simulation can possibly aid the discussion.  

(2) The transition of control between driver and AV, in either direction, or also either voluntarily 
or mandatorily, is rightly also a hot topic of discussion (Zhang et al. 2017; Eriksson et al. 
2017b). While voluntary control transition is often less of problem as drivers make a 
conscious decision to retake control, mandatory transitions of control may come about at 
moments in which a driver is not sufficiently ready or able to retake control (Eriksson et al. 
2017a; Merat et al. 2014), even if a properly designed automation system should avoid 
automation surprises, and facilitate proper trust on automation (Merat et al. 2012; Merat et 
al. 2009; Adell et al. 2008).  
 

As the described issues are potential situations that will exist in practice, they should also be able to 
be modelled in simulation. Even if many uncertainties still exist, the current evidence together with 
realistic assumptions is sufficient to make initial estimations and certainly allow further 
methodological development. Assumptions made during this research will be substantiated, but also 
highlight the limitations to the current application, and also challenge the scientific community to 
further pursue increased evidence to calibrate and apply the model.  
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2.3 Summary of automated vehicle modelling 
With the presence of significant challenges to further the state of the art in traffic simulation 
modelling, we summarise the main state of affairs and conditions identified to develop models able 
of considering many of the traffic dynamics that will be found in early automated driving amongst 
current conventional vehicles. Therefore considering that… 

- Human driving behaviour is not ‘robotic’ and includes many stochastic effects related directly 
to cognitive processing, 

- Most current simulation models are based on ‘robotic’ rules and most stochastics are often 
included exogenously, without describing the underlying driving mechanism, 

- Automated vehicles drive, by definition, according to a set of rules and therefore resemble 
current simulation practice, limiting differentiation between AVs and conventional vehicles, 

- Interaction between drivers of AVs with their vehicle (e.g. monitoring, transition of control), 
and with other AVs is not currently sufficiently captured in models, 

- Human cognitive ability plays a significant role in driver behaviour,  
- And, the interactive dynamics of AVs with each other and infrastructure is not yet properly 

understood. 
 
Modelling of… 
Conventional human driven vehicles should include: 

- Real human driving dynamics  
- Human reactions to automated vehicles 

Partially automated vehicles should include: 
- Reduced driver awareness when a driver is only monitoring 
- Endogenous behavioural mechanisms to describe human reactions to transition of control 

(requests), including cognitive loading 
- Consequence of interaction between driver and AV 

Highly automated vehicles should include: 
- AV driving dynamics and rules, for both longitudinal and lateral driving. 
- Driving dynamics for interaction with other (automated) vehicles 
- Additional driving dynamics for connected or cooperative driving 

 
This list gives an initial overview of the main aspects we derive as important. The described 
framework in this contribution will be designed to accommodate them, but will not be able to 
explicitly address all of them due to a current lack of knowledge and data currently available on 
various points. By accommodating those not explicitly applied, allows them to be added later with 
relative ease. An example, is that of lateral driving of a fully automated vehicle, for which insufficient 
empirical evidence exists of how that may be performed in practice in the future. 

3 Automated vehicles in a multi-level modelling simulation 

framework 
In this section, we present the proposed extension of mixed AV-HDV traffic to an underlying multi-
level modelling simulation framework.  

3.1 Automated driving extension to modelling simulation framework 
van Lint et al. (2018) proposed a multi-level modelling framework for microsimulation that explicitly 
includes human cognitive processes, on which the extension for automated vehicles is built. This 
framework models the driving task in a multi-layered fashion, with at the highest level, an ideal (in 
principle collision-free) base driving model for car following and other driving tasks. At the lowest 
level, state variables are defined that control how many tasks drivers execute and what the 
information processing load is of performed tasks, such as the driving task. These two layers are 
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connected by functions that are defined that govern the dynamics of high-level human factor 
parameters in the driver models with these state variables as inputs. The introduction of vehicle 
automation to the initial conceptual framework leads to the inclusion of elements that represent the 
Automated Driving Control System (ADCS) of a vehicle that may inherit some (low automation) or all 
of the driving tasks (high automation) from a human driver. The driving tasks are distributed between 
the driver and the ADCS, but also include connections between the ADCS and human driving, 
especially in the case of low or partial automated driving. A special case of interaction occurs when a 
transition of control (ToC) is carried out or at least when a take-over request (TOR) is made.  

The extended conceptual framework with automation is depicted in Figure 1. The letters given in 
brackets are used to identify various parts of the framework from the Figure to the text and are used 
throughout the text. The human mechanisms from the original framework are still clearly present 
(indicated by a red background), but are now accompanied by the ADCS control (indicated by a blue 
background). The original framework contains the parts indicated by the letters (a)-(f), while the 
parts indicated by (m)-(p) as well as the ADCS Tasks, ADS Situational Awareness and the distribution 
of tasks have been added in the extended framework. Furthermore, the underlying mechanisms 
behind the flows (a)-(f) from the original framework have required adjusting to incorporate the driver 
interaction with automated driving and as detailed in the remainder of this section.  

The main mechanisms are imparted to a reaction of the system using a functional equation that 
describes the collective effect of the human cognitive process in a driver model. Firstly, total task 
demands are computed for each considered (driving) task using (a) so-called fundamental diagrams 
of task demand and (b) task demand aggregation. Then the effect of those accumulated task 
demands is computed on (c) driver state and traits (desired speed, headway, etc.); on (d) situational 
awareness and as a consequence on (e) perception errors and (f) reaction time dynamics. 

 

Figure 1: Conceptual framework for automated vehicle (blue is ADCS; red is human driver)  

In an ADS, driving tasks are distributed over the human driver and the ADCS, depending on the level 
of automation and current driving state. Those tasks that are automated are passed to the ADCS (m) 
and are carried out based on the ADCS ability to perceive the environment, through its (perception) 
sensors (n). These sensors can also convey information to the human driver to assist their task (o), 
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for example through an in-car Human-Machine-Interface (HMI). And similarly to human driving, the 
ADCS perception may also include (small) errors and limitations (p), while physical reaction time is 
presumed to be negligible compared to humans, assuming perfect perception. A transition of control 
between human and ADCS driving is made at (m).  

We will firstly revise on some of the main aspects of the framework and thereafter present the main 
parts regarding automated tasks in sections 3.2 and 3.3 and then focus on the inclusion of vehicle 
automation in 3.4 and 3.5 with explicit consideration of control transition in section 3.6.  

3.2 Human task demand and task capacity (a) (b) 
Each human has a certain task capacity 𝑇𝐶 at any one time, which allows them to undertake various 
tasks with varying levels of 𝑇𝐷 (Endsley 1995). When driving, the most important is the driving task, 
which can also be split into sub-tasks. There may also be secondary tasks that do not (directly) 
contribute to driving, but that may affect perception and response, for example in-vehicle or outside 
distractions. In simple terms, 𝑇𝐷(𝑡) describes the cumulative workload of each cognitive task that a 
driver may be subjected to. The accumulation of all active tasks results in a person’s total task 
demand 𝛴𝑇𝐷. These are summarized as follows:  
 

𝑇𝐶 Nominal Task Capacity Information processing capacity a nominal (standard) driver 
has available to execute tasks safely and efficiently. 
𝑇𝐶 = 1 (𝑜𝑟 100%). 

𝑇𝐶𝑖(𝑡) Driver Task Capacity  Information processing capacity for driver 𝑖 in units of 𝑇𝐶 

𝑇𝐷𝑎
𝑖 (𝑡) Driver Task Demand Variable that describes how much information processing 

effort driver 𝑖 requires performing a particular task 𝑎 (safely 
and/or satisfactorily) in units of 𝑇𝐶 

𝛴𝑇𝐷𝑖(𝑡) Total Driver Task demand Sum of all task demands for driver 𝑖, that is, 

 

 

 

𝑇𝐷𝑖(𝑡) =∑𝑇𝐷𝑎
𝑖 (𝑡)

𝑎

. (1) 

Although 𝑇𝐷 is shown in Equation 1 as a straight aggregation, in practice this will not be the case. 
However for simplicity this is assumed for the time being. The framework further assumes the 
relationship between 𝑇𝐶 and 𝑇𝐷 as a relative relationship, captured in the nominal variable Task 
Saturation 𝑇𝑆: 
 
𝑇𝑆𝑖(𝑡) Driver Task Saturation Variable that expresses total driver task demand  𝑇𝐷𝑖(𝑡) relative 

to 𝑇𝐶𝑖(𝑡), that is, 

 

 

𝑇𝑆𝑖(𝑡) =
𝑇𝐷𝑖(𝑡)

𝑇𝐶𝑖(𝑡)
. 

(2) 

In such a way, drivers with a task saturation 𝑇𝑆𝑖(𝑡) close to (or larger than) 1 may experience 
deterioration in the performance level of tasks or may even be unable to perform certain tasks, as 
their task capacity has been exceeded. This performance deterioration may take the form of changes 
in awareness (larger perception errors, longer reaction times); changes in responses (smaller or 
larger sensitivities) and driver state (changes in other driver traits).  

The level of 𝑇𝐷 is captured through the use of the so-called “Fundamental Diagram of Task Demand” 
(FDTD) van Lint et al. (2018). FDTD is defined as the functional relationship between a task depicted 
by a measurable variable, such as headway, speed, etc, and the cognitive demand that the task has 
on a driver as a function of the presumed variables. An example of such a FDTD is shown in Figure 2. 
It is obvious that many assumptions are required to come to such FDTD and that psychology can 
currently only give indications of relationships, rather than quantitative truths. Nevertheless, the 
concept of FDTD allows one to proceed with describing human behaviour in a tangible way by 
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making such plausible, even if not definitive, assumptions. Further details, argumentation and safe-
guards for the use of FDTD can be found in van Lint et al. (2018). 

 

Figure 2: Fundamental Diagram of Task Demand (FDTD) and Reaction Time (RT) functions 

3.3 Conceptual model for situational awareness (c) (d) 
Following the cognitive demands placed on a driver through the 𝑇𝑆, the influence on the ability of a 
driver in their situational awareness (SA) is considered. 𝑆𝐴(𝑡) describes how well a driver is aware of 
their environment, particularly of those stimuli in the environment that a driver needs to safely and 
efficiently perform the driving task. The manner in which information is processed from perception 
through to the cognitive decision process is caught within the SA construct and depends on a driver's 
traits and current state, however this goes beyond the scope of the framework due to sufficient 
understanding of these processes. If a driver is ‘oversaturated’, then it is well known that their SA 
also suffers (De Winter et al. 2014). While high task saturation may reduce awareness, the same may 
also be true for very low task saturation (e.g. (Thiffault et al. 2003)), which is often described as 
inattention. This is also captured in the framework, as can be seen in Figure 2 by the concave 
function for TS-SA at (d).  
 
Following Endsley’s dynamic situational awareness model (Endsley 1995; Wickens 2008b), three 
levels of SA are considered. These are (1) sensing the relevant objects and information; (2) 
comprehension (i.e. correctly interpreting this information); and (3) anticipation (making short term 
predictions for decision making). These three levels of awareness constitute three stages in the 
perception process. Like task demand, the SA variables may be chosen as continuous values (e.g. 
between 0 and 1), but one may equally argue for categorical, ordinal or fuzzy values (e.g. “bad”, 
“moderate”, “good”), or whatever parameterization works in a particular case. These three aspects 
affect driving performance in different ways and may also be (positively or negatively) influenced in 
different ways.  

In the framework, both 𝑇𝐷(𝑡) and 𝑆𝐴(𝑡) are dynamic (i.e. they change over time and space); and 
they affect driving parameters (reaction time, frequency and magnitude of perception errors) and 
the response of drivers (sensitivities to e.g. distance gaps). A modelling choice can be made to 
simplify various connections or influences where limited empirical evidence is available or validity 
cannot be sufficiently given.  

3.4 Driving tasks for automation (n) (p) 
Contrary to human driving behaviour, an ADCS does not ‘suffer’ from high cognitive load and can 
process its tasks without exceeding a task capacity, presuming the computational power of the 
system is sufficient, which we assume it is. Therefore, all tasks are handled in the software with 
perfect performance according to their design (note that the design may not be perfect though). A 
similar story applies to the vehicle’s perception sensors: these are designed to observe the 
environment objectively, and if we presume these are designed correctly, should be accurate (again, 
reality may be different in some cases). Theoretically, we therefore presume that the ADCS can 
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process tasks using its objective awareness of the direct environment without significant error. For 
Highly Automated Driving (HAD), this would lead to: 

 𝑎𝐻𝐴𝐷
𝑖 (𝑡 + 𝜏𝑖(𝑡)) = 𝑓 (𝑆𝑖(𝑡), 𝜃𝑖(𝑡), 𝜔𝑖(𝑡)) (3) 

in which 𝑎𝑖(𝑡) denotes acceleration of the highly automated vehicle 𝑖; 𝜏𝑖(𝑡) reaction time, which 

approaches 0; 𝑆𝑖(𝑡) a set of available stimuli e.g. speeds, speed differences, distance gaps with 

respect to the ego-vehicle 𝑖 and its leader(s); while 𝜃𝑖  is a set of driver or ADCS preferences (e.g. car 
following parameters), which are still required in an ADCS, and may be selected by the driver or hard-
coded in the ADCS. The sensitivity term to these stimuli; 𝜔𝑖(𝑡), does still exist in an ADCS, however is 
programmed within the ADCS software according to prescribed rules. From this, it is clear that similar 
elements do exist between HAD-ADCS and human driving, such as headway and speed preferences, 
but with the main difference being in the static mechanics that govern that ADCS and make its 
performance rigid, but consistent.  

While the ADCS performs some or all driving tasks, a driver remains present and with a certain level 
of cognitive ability and driving performance. This is especially relevant for low level automation 
where the driver still has tasks to perform or partial automation where a driver may need to retake 
control. Under these conditions, the equations and mechanism, as described in Equations 1-3, still 
hold for the human driver. Low level automation will require a sharing of tasks, as some elements of 
driving are controlled by the ADCS and some by the human driver. This requires a human driver to 
have a certain understanding of how the ADCS works, as separated tasks will influence each other. 
For example, human steering is affected by the automated longitudinal control (e.g. with ACC) and 
must align with the longitudinal movement. This can lead to an increase in TD for the lateral task 
(steering), while the longitudinal task may decrease (note: not disappear, as monitoring is required). 
It is conceivable that a reduction in the total task demand of a driver, may result in their SA dropping 
due to inattention (Zeeb et al. 2015; Young et al. 2013). This process is captured in the concave shape 
of the FDTD (see Figure 2a), which would lead to a reduced performance in driving. For tasks that 
would become monitoring tasks for a human driver, a time- and traffic state dependant TD reduction 
factor 𝜂𝑖  may be applicable: 

 
𝑇𝐷𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔

𝑖 (𝑡) = 𝜂𝑖(𝑡, 𝜔𝑖(𝑡), 𝜃𝑖(𝑡) ). 𝑇𝐷𝑖(𝑡) 

 
(4) 

As well as 𝜂𝑖 being dependant on time and the characteristics of the (traffic) environment 𝜔𝑖, it 

would also depend on the level of automation and a drivers own skills and experience 𝜃𝑖. A higher 
level of automation would require less effort from a driver and would result in a higher task demand 
reduction, therefore a lower factor value of 𝜂𝑖, just as a more experienced and skilled driver may also 
lead to lower 𝜂𝑖 value. 

3.5 Driver reaction and model (e) (f) 
As a consequence of the influence of SA and of a drivers TS on their driver state and of course of the 
surrounding environment (i.e. location, speed, etc of other vehicles and infrastructure), the response 
of a driver is determined for that time instance. The response 𝑅, given as a function of these 
variables and shown in Figure 1, indicates the effect that the environment and the driver behaviour 
has on the dynamics of their vehicle. While in manual driving mode, these dynamics come directly 
from the driver’s decisions and actions. For automated driving, the influence will depend on the 
driver’s role at any given time.  

The response is given by the acceleration of the vehicle, as is common in most simulation models. 
Therefore, the response function is written as: 

 𝑎𝑖 (𝑡 + 𝜏𝑖(𝑡)) = 𝑓 (𝑆𝑖(𝑡), 𝜃𝑖(𝑡), 𝜔𝑖(𝑡)) (5) 
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in which 𝑎𝑖(𝑡) denotes acceleration; 𝜏𝑖(𝑡) reaction time; 𝑆𝑖(𝑡) a set of available stimuli (such as 

speeds, speed differences, distance gaps) with respect to the ego-vehicle 𝑖 and its leader(s); 𝜃𝑖  a set 
of driver preferences (e.g. car following parameters); 𝜔𝑖(𝑡) is a set of characteristics of the 

(perceivable) world 𝑃𝑊𝑖(𝑡) for driver 𝑖 that may affect the response (e.g. control, visibility, etc.). In 
these variables, the subscript 𝑖 denotes driver (𝑖) specifity, and 𝑡 denotes (continuous) time.  

3.6 Transition of control (m) 
Arguably, one of the most relevant and important interactions between human and ADCS driving is 
when control transitions from the one to the other: Transition of Control (ToC). From a human 
driver’s perspective, this involves a change in tasks and TD, while a vehicle is moving and is therefore 
a potentially critical procedure. The focus here is on a transition from ADCS to human, which may be 
voluntary and planned by the human driver, or may be initiated by the ADCS and could be immediate 
or with a required Take-over time. Increasing amounts of research have been performed on ToC in 
automated vehicles, such that good insights exist into the physical (reaction-time and performance) 
and cognitive (task demand and workload) effects of a control transition (Varotto et al. 2018). Based 
on findings from literature (Eriksson et al. 2017b; Zeeb et al. 2015; Merat et al. 2014; De Winter et al. 
2014; Lu et al. 2015; Varotto et al. 2018), we have constructed a hypothesis for the mechanism of 
ToC within the proposed framework, which is shown in Figure 3 and described thereafter. 

 

Figure 3: Transition of Total Task Demand (TTD), Situational Awareness (SA) and Reaction Time 

(RT) during a Transition of Control (ToC) 

Prior to a Take-Over Request (TOR), drivers are often shown to be inattentive or distracted to some 
degree (Louw et al. 2015; Merat et al. 2014), which has a detrimental effect on their situational 
awareness (SA) (Eriksson et al. 2017b; Zeeb et al. 2015; Merat et al. 2009; Stanton et al. 2005) and 
reaction time (RT) (Eriksson et al. 2017b; Merat et al. 2014). At the point that a TOR is made (or the 
necessity arises that a driver initiates one), an increase in the total task demand (TTD) occurs, due to 
a new additional task. The TTD rises to near or, in some cases, above the task capacity (TC) (Eriksson 
et al. 2017b; De Winter et al. 2014). At the point of ToC, a driver may be more alert and have had 
time to refocus their attention to the driving task (Zeeb et al. 2015; Merat et al. 2014). The extent of 
this and required time depends on the Take-over time, the level of potential driver 
distraction/inattention and personal traits and state, among other things (Zhang et al. 2017; Eriksson 
et al. 2017b). This will see an increase in SA and a decrease in RT. Once, the control transition is 
complete and normal driving has resumed, a driver’s TTD will return to normal levels, as well as their 
SA and RT (Merat et al. 2014). This description is purposely generic to allow it to be implemented in 
the framework for a proof of concept. We are well aware that there are a great number of deviations 
to this process and that these mechanisms can work differently, under different circumstances.  

The relationship between the TTD and SA is captured within a concave formulation of the FDTD. The 
RT is expected to be inverse-proportional to SA as long as the TTD<TC, and may increase again 
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slightly when the task demand is saturated to a decreased inability to perform each task to the 
highest level. These functions are illustrated in Figure 2Error! Reference source not found.. 

4 Simulation case experiment 

4.1 Case descriptions and scenarios 
Two experimental cases are chosen that allow us to demonstrate the general validity of our approach 
against qualitative evidence found in literature in regard to human reactions to Transition of Control 
(ToC). There are many empirical experiments that consider the take-over time (many summarized in 
Eriksson et al. (2017b) among others), however there are limited experiments that target and 
quantify the effect on Workload and Situational Awareness to an extent that we can apply it in a case 
here (note: there are experiments that do consider Workload (WL) and Situational Awareness (SA), 
but the results are not or insufficiently quantifiable for simulation validation). One experiment and 
analysis that does consider human reaction time offset versus an indicator of SA is that performed by 
Zeeb et al. (2015), which we use for our case and validation. The case experiment description given 
below is based on the one that can be found in Zeeb et al. (2015), in which three different types of 
drivers were considered: high-, medium- and low-risk drivers, as defined by the frequency that a 
driver performed off-road glances and is used as an indicator of their SA (Zeeb et al. 2015; 
Konstantopoulos et al. 2010; Underwood 2007). For example, a high-risk driver performs relatively 
more off-road glances, which indicates a lower SA. 
 
In the experiment, we consider the following two cases: 

1. An emergency Take-over request (TOR) for a single vehicle, with varying driver traits and 
states 

2. Multiple TOR’s for different automated vehicles at the same location 
 
The first case allows the framework to be validated against empirical data, while the second case 
gives a demonstration of the framework for a broader, more generic situation.  

4.1.1 Case 1: Emergency take-over request 

The first set of scenarios aligns to the experiments analysed by Zeeb et al. (2015). A two-lane freeway 
corridor is considered with free flowing traffic and a speed limit of 120 km/h. Traffic demand is a 
uniform 900, 1200 or 1500 veh/hr. An ego AV, with automated lateral and longitudinal control 
aligned to a SAE level 2 vehicle, driving on the slow lane is in car-following mode behind another 
vehicle. The leading vehicle is large enough to restrict the ego vehicle and driver’s vision beyond the 
leading vehicle. At a certain moment in time, the leading vehicle performs an emergency braking 
manoeuvre for an arbitrary reason. Within 1 second of coming to a full standstill, the leading vehicle 
starts to move again. The ego vehicle, following at a gap of 2.5-3.5 seconds, transitions to the human 
driver with a delay that corresponds to the driver’s level of SA. The human driver does not have the 
opportunity to perform a steering manoeuvre due to a convoy of several vehicles in the fast lane and 
the absence of a hard-shoulder, and therefore can only perform an emergency braking manoeuvre to 
avoid a collision. As the experiment is setup such that lane-changing and lateral avoidance is not 
required, the application in the model with a single lane road and without lane-change model 
suffices. Different scenarios are carried out for different driver characteristics, which are aligned to 
the high-, medium- and low-risk drivers, as described (Zeeb et al. 2015) relating to their level of 
awareness. The corresponding characteristics are given in Section 4.2 and the experimental situation 
is depicted in Figure 4. 
 



13 

 

 

Figure 4: Case 1 emergency braking, graphical overview; white vehicle is the ego-AV 

4.1.2 Case 2: Location triggered take-over request 

The second case considers the same freeway corridor as the first case, however with a greater traffic 
flow of 2200 veh/hr. The traffic composition exists of a mix of partially automated and manual driven 
vehicles. The AVs are assumed to be SAE level 2 vehicles, with both lateral and longitudinal 
automated control. The position of the AVs in the traffic is random. At a certain location along the 
corridor, a TOR is made by the automated vehicles. The location of this request is identical for all 
AVs, and can be presumed to be triggered by an infrastructural characteristic, such as missing lane 
markings on a short stretch of road. The TOR is made immediately upon the vehicles reaching the 
location with control immediately transferred to the human driver. Six different scenarios are 
defined based on the penetration of AVs of 10%, 20%, 40%, 60%, 80% and 100%. The different levels 
of penetration allow us to show what the potential traffic flow effect could be as a consequence of a 
mandatory ToC for multiple vehicles and judge the face validity thereof. The experimental setup is 
shown in Figure 5.  
 

 

Figure 5: Case 2 missing lane-markings, graphical overview; white vehicle is the ego-AV 

4.2 Applied traffic model and automated vehicle dynamics 
The described cases are applied to the framework, which contains a traffic simulation model that 
performs the vehicle spatiotemporal time-stepping and also contains descriptions of human factors 
and further automated vehicle characteristics. The manner in which each of these elements is 
applied in the framework for the scenarios is described here. 
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The basis for vehicle movement is initiated through the applied traffic simulation model, which is 
later influenced by the applied human factors and described in Section 4.3. The base model that we 
use is the Intelligent Driver Model plus (IDM+) (Schakel et al. 2012), which is a car-following model 
based on the original IDM by Treiber et al. (2000). The main difference with the IDM is a separation 
of the free and car-following terms. The car-following acceleration is determined for a vehicle 𝑖 using 
Equations 6 and 7: 
 

 𝑎𝑖(𝑡 + 𝜏𝑖) = 𝑎𝑚𝑎𝑥
𝑖  𝑚𝑖𝑛 (1 − (

𝑣𝑖(𝑡)

𝑣0
𝑖 (𝑡)

)

𝛿

, 1 − (
𝑠𝑖(𝑡)

𝑠𝑖
∗(𝑡)

)

2

 ) (6) 

 
𝑠𝑖
∗(𝑡) = 𝑠0

𝑖 + 𝑣𝑖(𝑡) ∙ 𝑇𝑖(𝑡) +
𝑣𝑖(𝑡) ∙ ∆𝑣𝑖(𝑡)

2√𝑎𝑚𝑎𝑥
𝑖  𝑏𝑐𝑜𝑚𝑓

𝑖  

 
(7) 

Here, the parameter 𝑎𝑚𝑎𝑥
𝑖  is the maximum acceleration, 𝑏𝑐𝑜𝑚𝑓

𝑖  is the maximum comfortable 

deceleration, 𝑣0
𝑖  is the desired speed, 𝑇𝑖  the desired time-gap and 𝑠0

𝑖  is the stopping distance. 

Furthermore we have speed 𝑣𝑖(𝑡), speed difference ∆𝑣𝑖(𝑡) and headway with the leader 𝑠. Finally, 
for parameter 𝛿 we use a standard value of 4, which reduces the maximum acceleration as speed 

increases. For the base case we apply the following values: 𝜏𝑖 = 0; 𝑎𝑚𝑎𝑥
𝑖 = 3m/s2; 𝑏𝑐𝑜𝑚𝑓

𝑖 = 3m/s2; 

𝑣0
𝑖 = 35m/s; 𝑠0

𝑖 = 8m and  𝑇𝑖 = 1.2s. As the considered cases only require longitudinal modelling of 
vehicles, the applied model does not need to contain a lane-changing component and the use of only 
a car following model suffices.  
 
The vehicle dynamics for AVs in the simulation are presumed to be identical to the basic control 
dynamics that follow from the IDM+ as given here. Human drivers on the other hand display both a 
greater randomness in their operational control of vehicle (Kuderer et al. 2015; Lefèvre et al. 2015) 
as well as being cognitively affected in their ‘emotional’ behavior, as has already been highlighted in 
this paper. The influence of the cognitive influence on behavior is included through the elements of a 
driver’s mental workload and situational awareness as described in Section 3. These elements have 

an influence on a driver’s immediate desired speed 𝑣0
𝑖  and their desired time-gap 𝑇𝑖 for each time 

step in the simulation model. A further influence on a human driver’s vehicle movement follows from 
their perception of the environment, which contains errors. This means that for each time step a 

subjective value for the speed 𝑣𝑖(𝑡), speed difference ∆𝑣𝑖(𝑡) and headway with the leader 𝑠, may be 
used that can deviate from the objective values due to an error in perception. Finally, a driver’s 

reaction time 𝜏𝑖  may also be affected by their current state. The manner in which the driver’s 
cognitive processing of their human factors in relation to their driving performance is explained in 
the following sub-section. 

4.3 Human factors setup 
For the application of the influence of human factors in the experiment, we have made a number of 
assumptions. These assumptions are made such that proven or plausible relationships between 
human driving behaviour and performance are considered, while not overcomplicating their 
application in areas for which only constructs rather than quantitative connections exist. As the goal 
of the experimental case is to demonstrate the framework, we will leave the investigation of detailed 
driving tasks for another paper.   

4.3.1 Driver tasks and task demand 

In this experiment, we consider a driver to be affected by two task demands: the driving task, and a 
potential ToC task. The driving task demand follows from all processes that involve longitudinal 

driving of a vehicle. As we only consider car-following (CF), we will refer to this task demand as 𝑇𝐷𝐶𝐹
𝑖  

for a driver 𝑖. Similarly to other literature (van Lint et al. 2018), we make a simplified assumption of 

how the 𝑇𝐷𝐶𝐹
𝑖  is affected by a drivers environment and perception. We assume that a driver has a 
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higher 𝑇𝐷𝐶𝐹
𝑖  in denser traffic, in which they follow a leader at a smaller time headway, while a larger 

gap places less 𝑇𝐷𝐶𝐹
𝑖  on a driver. This very simple assumption also holds with Fullers  description of 

risk and risk limitation (Fuller 2011). The assumed function is a four part piecewise function that 
considers: critical, regular, safe, and non-car-following parts, defined as the time headway from the 

ego vehicle to their leader: ℎ0
𝑖 . The function is shown in Figure 6a and is given by: 

 
 

𝑇𝐷𝐶𝐹
𝑖 (ℎ) = 𝑐𝐶𝐹  .

{
 
 
 
 

 
 
 
 𝑇𝐷𝑚𝑎𝑥,𝐶𝐹

𝑖 −
ℎ − ℎ𝑐𝑟𝑖𝑡

𝑖

ℎmax 
𝑖 (𝑎) − ℎ𝑐𝑟𝑖𝑡

𝑖
(𝑇𝐷𝑚𝑎𝑥,𝐶𝐹

𝑖 − 𝑇𝐷𝑐𝑟𝑖𝑡,𝐶𝐹
𝑖 ) ℎ ≤ ℎ𝑐𝑟𝑖𝑡

𝑖 (𝑎)

𝑇𝐷𝑐𝑟𝑖𝑡,𝐶𝐹
𝑖 −

ℎ − ℎ𝑎
𝑖

ℎ𝑐𝑟𝑖𝑡 
𝑖 (𝑎) − ℎ𝑎

𝑖
(𝑇𝐷𝑐𝑟𝑖𝑡,𝐶𝐹

𝑖 − 𝑇𝐷𝑎,𝐶𝐹
𝑖 ) ℎ𝑐𝑟𝑖𝑡

𝑖 (𝑎) < ℎ ≤ ℎ𝑎
𝑖

𝑇𝐷𝑎,𝐶𝐹
𝑖 −

ℎ − ℎ𝑏
𝑖

ℎ𝑎 
𝑖 (𝑎) − ℎ𝑏

𝑖 (𝑇𝐷𝑎,𝐶𝐹
𝑖 − 𝑇𝐷𝑏,𝐶𝐹

𝑖 )

𝑇𝐷𝑏,𝐶𝐹
𝑖

ℎ𝑎
𝑖 (𝑎) < ℎ ≤ ℎ𝑏

𝑖

ℎ > ℎ𝑏
𝑖

 (8) 

 

Where, 𝑇𝐷𝑚𝑎𝑥,𝐶𝐹
𝑖  is the maximum level of task demand for car-following, 𝑇𝐷𝑐𝑟𝑖𝑡,𝐶𝐹

𝑖  the CF task 

demand at a critical time-headway ℎ𝑐𝑟𝑖𝑡
𝑖 =0.6s,  𝑇𝐷𝑎,𝐶𝐹

𝑖  the CF task demand at ℎ𝑎
𝑖 =2.0s, and 𝑇𝐷𝑏,𝐶𝐹

𝑖  

the lowest CF task demand above ℎ𝑏
𝑖 = 4.0s.  {𝑇𝐷𝑚𝑎𝑥,𝐶𝐹

𝑖   𝑇𝐷𝑐𝑟𝑖𝑡,𝐶𝐹
𝑖  𝑇𝐷𝑎,𝐶𝐹

𝑖  𝑇𝐷𝑏,𝐶𝐹
𝑖 } are set at {1.0 ; 

0.8 ;  0.6 ;  0.4}. The constant 𝑐𝐶𝐹  is a reduction factor for the CF task demand for levels of 
automation, as the CF task operations will demand less from a driver depending on the SAE level.  
Arbitrary values are applied for low (SAE1-2), partial (SAE3) and high (SAE4-5) automation 
of 𝑐𝐶𝐹 = {0.85 ; 0.5 ; 0.25}. 
 

For the ToC task demand 𝑇𝐷𝑇𝑜𝐶
𝑖 , we again make use of (arbitrary) assumptions in regard to the 

cognitive process based on indications of the process from literature (de Waard et al. 2008; Liu et al. 
2006; Wickens 2008a; Wong et al. 2009). This is described as a linearly descending function as a 

function of the time that has elapsed since a TOR. Upon a TOR occurring, the 𝑇𝐷𝑇𝑜𝐶
𝑖  is immediately 

activated and has a high level of demand, which is due to an initial processing of the request being 
made to a driver. As the driver becomes increasingly aware and ‘tuned-into’ which actions they need 

to perform, the level of 𝑇𝐷𝑇𝑜𝐶
𝑖  then decreases. After the ToC has taken place at 𝑡𝑇𝑜𝐶, a driver’s 𝑇𝐷𝑇𝑜𝐶

𝑖  
may still be present as they are still adjusting to the driving task after retaking control. After a certain 

time 𝑇𝑇𝑜𝐶, the 𝑇𝐷𝑇𝑜𝐶
𝑖  will diminish completely. In the case here, the 𝑡𝑇𝑅 =  𝑡𝑇𝑜𝐶 .The shape of the 

function is shown in Figure 6b and given by: 
 

 𝑇𝐷𝑇𝑜𝐶
𝑖 (𝑡) = 𝑇𝐷𝑚𝑎𝑥.𝑇𝑜𝐶 

𝑖 .
𝑡𝑇𝑜𝐶 + 𝑇𝑇𝑜𝐶 − 𝑡

𝑇𝑇𝑜𝐶
    𝑤ℎ𝑒𝑟𝑒 𝑡 = [𝑡𝑇𝑜𝐶: 𝑡𝑇𝑜𝐶 + 𝑇𝑇𝑜𝐶] (9) 

 

Here, the 𝑇𝐷𝑚𝑎𝑥.𝑇𝑜𝐶 
𝑖  is the maximum ToC value of the task demand, which is set at 1.2. A value 

above 1.0 indicates that a task demands more from a driver than they can give, which we assume is 
the case immediately after an unexpected TOR is made. 𝑡𝑇𝑜𝐶 is the time that the ToC is made, while 

𝑇𝑇𝑜𝐶  is the duration of the ToC task.  
 
As part of the task demand, we also deliberated on including an inattention task that may be present 
while a driver is not in operational control before a TOR, as there is plentiful evidence that 
inattention plays a role (Louw et al. 2015; Young et al. 2013). However, we opted against this due to 
a lack of clarity and necessity on how it would influence a driver’s total task demand at and after the 

point of a TOR and ToC. In essence, the function chosen for the 𝑇𝐷𝑇𝑜𝐶
𝑖  inadvertently captures a 

possible consequence of inattention with a high initial value for 𝑇𝐷𝑇𝑜𝐶
𝑖 . Therefore inattention is not 

explicitly considered in this experiment. 
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Figure 6: Applied piecewise functions for: TD car-following, TD ToC, and FDTD 

4.3.2 Driver workload and awareness 

The approach applied for driver workload through TD and SA makes use of the FDTD and has been 
explained in Section 3 of this contribution and was introduced in van Lint et al. (2018). The FDTD 
specifies the relationship between the task saturation (TS) on a driver and their SA. The TS is basically 

the total aggregated task demand in regard to a static task capacity: 𝑇𝑆𝑖(𝑡) = ∑ 𝑇𝐷𝑘
𝑖 (𝑡)𝑘 𝑇𝐶𝑖(𝑡)⁄ . A 

piece-wise representation of the concave form of the function, shown in Figure 3, is given. Therein, a 

low 𝑇𝑆𝑖𝑛𝑎𝑡𝑡
𝑖  results in a lower 𝑆𝐴𝑖 due to potential inattention, while 𝑇𝑆𝑖(𝑡) > 𝑇𝑆𝑐𝑟𝑖𝑡

𝑖 , will result in a 

lower 𝑆𝐴𝑖. The function is given by: 

 

𝑆𝐴(𝑇𝑆(𝑡), 𝑡)𝑖 =

{
  
 

  
 𝑆𝐴𝑚𝑎𝑥

𝑖 −
𝑇𝑆𝑖 − 𝑇𝑆𝑚𝑖𝑛

𝑖

𝑇𝑆𝑖𝑛𝑎𝑡𝑡
𝑖 − 𝑇𝑆𝑚𝑖𝑛

𝑖 (𝑆𝐴𝑖𝑛𝑎𝑡𝑡
𝑖 − 𝑆𝐴𝑚𝑎𝑥

𝑖 )

𝑆𝐴𝑚𝑎𝑥
𝑖

𝑇𝑆𝑖 < 𝑇𝑆𝑖𝑛𝑎𝑡𝑡
𝑖

𝑇𝑆𝑖𝑛𝑎𝑡𝑡
𝑖 ≤ 𝑇𝑆𝑖 < 𝑇𝑆𝑐𝑟𝑖𝑡

𝑖

𝑆𝐴𝑚𝑎𝑥
𝑖 −

𝑇𝑆𝑖 − 𝑇𝑆𝑐𝑟𝑖𝑡
𝑖

𝑇𝑆𝑚𝑎𝑥
𝑖 − 𝑇𝑆𝑐𝑟𝑖𝑡

𝑖
(𝑆𝐴𝑚𝑎𝑥

𝑖 − 𝑆𝐴𝑚𝑖𝑛
𝑖 ) 𝑇𝑆𝑐𝑟𝑖𝑡

𝑖 ≤ 𝑇𝑆𝑖 < 𝑇𝑆𝑚𝑎𝑥
𝑖

𝑆𝐴𝑚𝑖𝑛
𝑖 𝑡𝑠 ≥ 𝑇𝑆𝑚𝑎𝑥

𝑖

 (10) 

The time notation (𝑡) has been omitted from Equation 10.  Furthermore,  𝑇𝑆𝑚
𝑖  with 𝑚 =

{𝑚𝑖𝑛;  𝑖𝑛𝑎𝑡𝑡; 𝑐𝑟𝑖𝑡;𝑚𝑎𝑥} =  {0; 0.5; 0.8; 2.0} and 𝑆𝐴𝑛
𝑖  with 𝑛 = {𝑚𝑖𝑛;  𝑖𝑛𝑎𝑡𝑡;𝑚𝑎𝑥} =  {0.5; 0.5; 1.0}. 

The applied parameters values, are selected here to allow the framework to produce the desired 
behavior that is expected.  

4.3.3 Effect on human driving performance 
The influence of drivers’ human factors, as described in the previous paragraphs, affect the quality of 
their perception of the environment, thus leading to (small) errors, and affects the RT of their 
actions. Both of these processes are easy to understand and are backed up by the previously cited 
literature. The assumption is that reduced awareness exacerbates known perception biases, that is, 
either an under- or overestimation of both distance gaps and (relative) speeds (Lee et al. 2017; 
Nilsson 2000). 

Perception errors are included in the framework through applying a perceived speed difference 

𝛥𝑣𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑
𝑖  and gap 𝑠𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑

𝑖  from the ego vehicle to a leader. The perceived values, which are 

what the driver ‘experiences’, are a function of the objective speed difference Δ𝑣𝑖(𝑡) and gap 
𝑠𝑖(𝑡) and of a divers SA at time 𝑡, and are as also applied in van Lint et al. (2018): 

 𝑠𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑
𝑖 (𝑡) = (1 + 𝛿𝑖𝜖𝑆𝐴

𝑖 (𝑡))𝑠𝑖(𝑡) (11) 

 𝛥𝑣𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑
𝑖 (𝑡) = (1 + 𝛿𝑖𝜖𝑆𝐴

𝑖 (𝑡))Δ𝑣𝑖(𝑡) (12) 

in which 𝜖𝑆𝐴
𝑖 (𝑡) is the error term for reduced SA, the difference between optimal SA and actual SA, 

on perception and is defined as 
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 𝜖𝑆𝐴
𝑖 (𝑡) = 𝑆𝐴𝑚𝑎𝑥

𝑖 − 𝑆𝐴𝑖(𝑡) (13) 

𝛿𝑖 is a term that indicates if there is an over (𝛿𝑖 = 1) or under (𝛿𝑖 = −1) estimation in perception. In 
this experiment, we assume that perceived differences are smaller than the objective differences, 

therefore applying 𝛿𝑖 = −1. 

The RT of a driver 𝑖 is included in the model thought the 𝜏𝑖(𝑡) term found in Equation 13. The extent 

of 𝜏𝑆𝐴
𝑖 (𝑡), which is additional reaction time caused by suboptimal SA at any time 𝑡, is a function of a 

driver’s SA error: 

 𝜏𝑆𝐴
𝑖 (𝑡) = 𝜖𝑆𝐴

𝑖 (𝑡)𝜏𝑆𝐴,𝑚𝑎𝑥
𝑖  (14) 

With the total RT being the sum of this additional reaction time and the physical reaction time, which 
represents the lag from the moment a driver makes a decision until an action starts taking effect on a 
vehicle: 

 𝜏𝑖(𝑡) = 𝜖𝑆𝐴
𝑖 (𝑡)𝜏𝑆𝐴,𝑚𝑎𝑥

𝑖 + 𝜏𝑝
𝑖  (15) 

In this experiment, the maximum SA reaction value 𝜏𝑆𝐴,𝑚𝑎𝑥
𝑖 = 1.4, while we presume the physical lag 

time 𝜏𝑝
𝑖  = 0.6 for manual driven vehicles and 𝜏𝑝

𝑖  = 0.1 for automated controlled vehicles. More details 

on this approach to reaction time can be found in van Lint et al. (2018). 

In such a way, the effects of driver tasks, including ToC, are endogenously applied to driving 
performance through a driver’s WL from the tasks and SA.  

4.4 Performance indicators  
The cases and their scenarios are evaluated using two levels of analysis. The first pertains to the 
global effects on traffic flow to give an indication of the general qualitative effect on traffic in a 
scenario. This is shown by means of trajectory plots of vehicles in a time-space diagram, which show 
the influence on speeds and interactions between vehicles throughout the considered experimental 
corridor and allow face validity check.  

The second level of analysis is quantitative and focusses on the time-specific effects of the scenario 
on pre-selected driver-vehicle combinations in regard to traffic variables and human factor variables. 
The ego-vehicle in each case and a significant other vehicle are considered. The time-profile of the 
driver TD, SA, vehicle speed, vehicle acceleration, driver RT and the time to collision (TTC) are all 
displayed. The considered RT is the reaction time required in the cognitive process and is therefore 
the net RT, which does not include the physical delay in carrying out an action, such as pressing a 
pedal, engine delay, etc. Therefore, the net RT’s that will be found are lower than the often 
considered gross RT, which consider the observable time until response. This is by choice, as we are 
explicitly considering the cognitive process and does not influence the general demonstration of the 
framework. The TTC is defined as the duration of time taken at an instant moment in time before a 
following vehicle would collide with a leading vehicle under the assumption that both vehicles 
current speeds remain constant:  

 𝑇𝑇𝐶𝑖(𝑡) =
𝑠𝑖(𝑡)

Δ𝑣𝑖(𝑡)
, Δ𝑣𝑖(𝑡) > 0 (16) 

TTC is commonly applied as a safety indicator, although it should be noted that it is usually only 
affective in circumstances with fast changing vehicle speeds and does not consider vehicle proximity 
independently. In case 2, the travel time profiles as a function of departure time over the corridor is 
applied as an additional a quantitative macroscopic indicator. 

Finally, the framework was implemented as a custom built model in MATLAB. As such a framework 
does not exist yet, it was not possible to easily use an existing modelling suite. The use of MATLAB 
allowed us to implement the framework in a modular based approach, closely following the scheme 
shown in Figure 1.  
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5 Results 
The results from the experiments, as described in Section 4, are given in this section and are further 
discussed in Section 6. We start with the first case that considers the effect of a Transition of Control 
(ToC) due to an emergency braking manoeuvre ahead of the AV. In Section 5.2, we show the results 
from the second case, in which multiple ToC’s are performed in traffic at an identical location. This 
shows the broader effects under different degrees of AV penetration is a location-bound ToC is made 
using the framework.  

5.1 Case 1: Emergency transition of control  
In the case where a ToC is required for an emergency procedure, we test three different levels of 
traffic flow, namely a uniform traffic demand of 900, 1200 and 1500 vehicles per hour per lane. This 
corresponds to a time-headway between vehicles of 4.0, 3.0 and 2.4 sec, assuming the vehicles are 
driving at the set speed of 35 m/s. The trajectory plots of the three scenarios and of the reference 
scenario, in which all vehicles are manually driven in traffic flow of 1500 veh/hr/lane, are shown in 
Figure 7a-d. The AV (shown in red in Figure 7) is situated directly behind the vehicle that performs 
the emergency stop (shown in blue in Figure 7).  
 

  

  

Figure 7: Case 1 vehicle trajectories with different traffic demand; 

Top-left to bottom-right: a) 900veh/h, b) 1200veh/h, c) 1500veh/h, d) reference 1500veh/h 

From the trajectory plots, a number of things are immediately obvious. In the 900 and 1200 veh/hr 
demand scenarios (Figure 7a-b), the driver of the AV is able to decelerate in time to avoid a collision 
with the leading vehicle. For the 1200 scenario, this causes a slightly greater disturbance in the traffic 
flow behind the vehicle than for the 900 case due to the small time headways between the vehicles. 
In the case of the 1500 scenario (Figure 7c), the driver of the AV is not able to assume control and 
decelerate on time and collides with the leading vehicle, at which time the simulation ceases as 
designed. We will zoom in on the process that preluded the collision event when we review the 
vehicle and HF variables here below. In the reference scenario (Figure 7d), for which no ToC is 
required, we see that the driver is able to perform the emergency braking manoeuvre in time to 
avoid colliding with the leading vehicle.  
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We now explore the underlying processes of the drivers and vehicles leading up to the above events. 
To do this, we review the Human Factors (HF) through the Task Demands (TD) and Situational 
Awareness (SA); The vehicle dynamics through the vehicles speed and acceleration; And finally the 
interaction through the drivers reaction time and Time-to-Collision (TTC). The two vehicles following 
the braking leader are considered. The immediate following vehicle (veh 30), the ego vehicle, is the 
AV for which a ToC is required. The next following vehicle (veh 31) is a manual non-automated 
vehicle and is used for comparison with the AV. The results are shown in Figures 9-12 for each 
scenario and are discussed in order. 

First we consider the 900 scenario. Upon the leading vehicle braking, we see an initial braking 
manoeuvre (Figure 8c) performed by the AV after which the AV transitions control to the human 
driver due to the system reaching a critical level of required deceleration. The TD of the driver during 
automated control is not relevant due to the absence of a driving task. At the point the TR is made, 
the drivers TDtot peaks due to the accumulation of the driving task and the ToC task (see Figure 8a), 
as described in Section 4.3. After a short time, in line with the function defined and shown in Figure 
6, the TDtot starts to decline as the TDToC decreases and the driver becomes more aware. The 
increase in awareness is shown in Figure 8a by the dashed line and is initially is low, but starts to 
increase as the TDtot returns to a lower value. The response of the drivers low SA initially results in a 
higher RT (Figure 8d). As a consequence, an emergency braking manoeuvre is delayed (Figure 8c) and 
the TTC reaches a critical value (Figure 8d) of 1.8 sec. The manually driven vehicle (veh 31) by 
comparison shows a different HF process. Initially, the TDtot is below 0.5 and the SA is below 1.0, as 
the driver maintains a relatively long time headway of 4.0 sec. Upon the leader braking hard, the 
time-headway decreases, but remains above a critical level. The TDtot increases slightly, leading to a 
higher SA and marginally shorter RT (Figure 8e). As a consequence, vehicle 31 is able to reduce speed 
much quicker and only experiences a critical TTC of 3.4 sec.  

 

Figure 8: Vehicle and human factor variables - 900veh/h scenario 

The 1200veh/hr scenario shows a generally similar pattern to that of the 900 scenario. As traffic is 
busier and the time headways shorter, we see that the TTC of the AV and manual vehicle are lower at 
their critical points (Figure 9c+f) due to the reaction times of drivers with TTC-values of 0.9 and 1.7 
seconds respectively.  As the time-headways are shorter, the TD for the human driver is also higher 
compared to the 900 scenario, which also translates to a higher initial SA.  
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Figure 9: Vehicle and human factor variables - 1200veh/h scenario 

In the 1500 scenario, the 2.4 sec time-headway is no longer sufficient for the AV after a ToC to 
decelerate in time and avoid a collision. The mechanism leading up to the collision is very similar to 
that of the 900 scenario that is described above. The driver upon ToC has an initially high 𝑇𝐷𝑇𝑜𝐶 due 
to the CF task and the ToC task, which results in a lower SA and higher RT. The consequence of the RT 
together with the lower time headway did not give the driver of the AV sufficient time to decelerate 
as resulted in a negative TTC (see Figure 8a-c).  

 

Figure 10: Vehicle and human factor variables - 1500veh/h scenario 

A comparison is made with the 1500 scenario and the reference scenario (also 1500 veh/hr), in which 
all vehicles are manually driven, to show the difference in outcome and the effect that the ToC has 
on the driver and AV. Prior to the braking event, the manual driver has a steady 𝑇𝐷𝑇𝑜𝐶 of 0.6 and a 
high level of SA, due to the proximity of a leading vehicle. The braking manoeuvre causes an initial 
increase in 𝑇𝐷𝑇𝑜𝐶  followed by a short decrease, which follows the hard braking by the leader and 
initially a short time-headway and then a higher headway as both vehicles decelerate to a low speed. 
The TTC drops to a critical level of 1.5 seconds and once the leading vehicle starts to move again, all 
variables return to stable values.  
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Figure 11: Vehicle and human factor variables - reference 1500veh/h scenario 

As far as absolute values of the variables are concerned here, we realise these may not completely 
represent reality and are in some cases influences by arbitrary choices. For example, the reaction 
time due to the cognitive process near a value 0.6 sec may be argued to be higher under normal 
conditions (note: the total reaction time that is often reported is higher due to the time required to 
perform physical actions). At the moment, we doubt that accurate and unequitable values and 
functions can be given. As far as the demonstration of the framework is concerned, this is also not 
necessary. The results of the case are further discussed in Section 6. 

5.2 Case 2: Location specific transition of control 
The second case considers multiple ToC’s at a single location over multiple AVs. The traffic demand is 
set at 2200 veh/hr/lane and drops at a certain point in time to 900 veh/hr/lane to let congestion 
disperse. Six scenarios are considered, in which different penetration rates of AVs are used: 10, 20, 
40, 60, 80 & 100%. The sequence of AVs in traffic is selected randomly. The effect on traffic flow is 
shown in the trajectory plots in Figure 12a-f, where the red trajectories indicate an AV.  
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Figure 12: Case 2 vehicle trajectories; 

Top-left to bottom-right AV penetration: a) 10%, b) 20%, c) 40%, d) 60%, e) 80%, f) 100%  

In this case, there is no physical disturbance, but any effect on traffic comes directly from the ToC. In 
Figure 12a, it is clear that the manually driven vehicles can proceed along the corridor without any 
hindrance prior to the first ToC. At the point that the first ToC takes place, we see a small increase in 
the time-headway on front of the AV, which the AV cannot make up thereafter as both vehicle are 
driving at their desired speed and maximum speed limits set in the simulation. We see this same 
increase for all ToC’s. Figure 13 shows the HF and vehicle dynamics of the blue vehicle from Figure 
12a that also makes a ToC. Prior to the ToC, the 𝑇𝐷𝑡𝑜𝑡 is low and when the TOR is made, we see the 
same spike in the 𝑇𝐷𝑡𝑜𝑡 due to the 𝑇𝐷𝑇𝑜𝐶 and 𝑇𝐷𝐶𝐹. The SA is initially low and only starts to rise 
once the 𝑇𝐷𝑡𝑜𝑡 starts to drop again to a stable value. The low SA results in a higher RT (see Figure 
12c), which quickly returns to the default reaction time value once the SA increases. The 
consequence of a low SA, leads to an uncertain or incorrect instantaneous perception of the driver in 
regard to their environment. This leads to compensative measures that veer on the side of risk 
avoidance. As a consequence, the driver initially performs a sharp reactive braking manoeuvre, which 
quickly subsides, as the driver becomes more aware with a higher SA. This exact mechanism is 
assumed, and is known to take place with some drivers, but will definitely vary per driver and with 
other variables. The assumption suffices to demonstrate the working of the framework. In Figure 12, 
the presence of the congestion shockwaves are also visible for the AV (Figure 13a-c) and for an 
arbitrary manual driver (Figure 13d-f). The effect of this process on traffic flow is therefore one that 
leads to a disturbance. In this high volume traffic, such a small disturbance leads to congestion 
shockwaves. In the 10% scenario, this is a single and minor congestion shockwave. While we see for 
increasing penetration of AVs, that multiple and more severe shockwaves are created with more 
expansive congestion. Figure 14 shows the effect that this has on the traffic flow along the corridor. 
The travel time profiles clearly show that the increased level of disturbance with a higher penetration 
rate leads to higher travel times along the corridor as a consequence. We do reiterate though that 
the reaction by the AV driver at the ToC is only one assumed and viable reaction, and that the results 
on traffic flow are purely indicative for the working of the framework and not at all the effects that 
AVs and ToC may have on traffic flow.  
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Figure 13: Vehicle and human factor variables - Case 2 example (10% AV scenario) 

 

Figure 14: Corridor travel times for Case 2, measured from location 0-2000m. 

6 Discussion and conclusions 
In this section, we discuss the potential of the extended framework in regard to the results from the 
two cases that are presented in the previous section. The purpose of the cases is to demonstrate the 
workings of the framework applied to AVs and the feasibility of it for use in practical modelling. 
These are discussed in the first sub-section along with an initial validation of the outcomes against 
other literature and findings elsewhere. Due to the application of constructs from behavioural 
psychology and limited quantitative evidence of the HF mechanisms, many assumptions have had to 
be made. These assumptions do lead to limitations in the use of the model as demonstrated in this 
paper. While all assumptions that were made are feasible and logical, many are arbitrary due to a 
lack of further evidence. These are discussed in the second sub-section. Finally in the last sub-section, 
we consider further avenues for further research that exist.  

6.1 Findings and validation 
The cases are used to demonstrate that the presented framework is capable of simulating the 
interactive effects of humans with AVs for a commonly occurring process for lower level AVs, namely 
that of Transition of Control (ToC). This is the first and main finding from this contribution, that this 
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process can be simulated using this approach. The results from the first case showed the human 
process that may be present when assuming control of an AV, depicted in task demand and 
situational awareness. Although many different processes may be possible, the applied assumptions 
for the applied functions, such as FDTD or reaction times, were feasible and applicable (this was 
shown in Sections 3.2 and 4.3). The results are also feasible and acceptable in line with literature. 
Upon a takeover request, the driver initially requires time to acquire this new task and to become 
aware of the actual driving environment (Eriksson et al. 2017b). The initial reaction by the driver 
leads to a higher TD over TC. In literature, it is broadly accepted that a higher reaction time is initially 
required (Eriksson et al. 2017b; Lu et al. 2015; Varotto et al. 2019), which is found in the simulation 
after the time of ToC. This has also been shown to lead to an initial decrease in speed before full 
control is assumed (Varotto et al. 2019), which we see from the simulation. Once control is obtained 
and maintained, a driver’s TD and SA will generally return to normal values, which we saw during the 
second case. A second finding is that the framework can be applied to evaluate the broader traffic 
flow effects of such human-AV interaction on traffic flow. This is especially visible from case 2, in 
which an infrastructural influence on the AVs was demonstrated and showed the broader traffic 
effects and the occurrence of congestion shock-waves. This was obtained, even without 
consideration of traffic heterogeneity, which may exasperate the effects further. As we mentioned in 
Section 5.2, the quantitative results of case two should not be taken as a truth about the traffic flow 
effects of AVs or ToC’s, as the model was not calibrated against data and was setup with minimal 
stochasticity, contrary to what may be expected in practice. This was required to demonstrate the 
validity of the model, without including too many ‘disturbances’. The extended framework therefore 
has a potentially valuable role to play in the future, in which AVs are going to become more available, 
but are going to have complex interactions with human drivers. By capturing these interactions 
endogenously at their source, the real effects can be produced and analysed more so than by 
exogenous application of parameters that relies on the input it is actually trying to produce.  
 
Therefore, following these recent developments in traffic flow modelling and the ongoing 
developments in driver psychology and human factors, we propose a novel simulation extension that 
allows both automated and conventionally driven vehicles to be collectively considered, making use 
of explicit and endogenous human driving behaviour for driving and interaction with AVs. This 
contribution also includes an explicit consideration of an important aspect of initial automated 
driving, namely that of ToC, which is otherwise difficult to accurately model with other existing 
approaches. 

6.2 Limitations 
While we have given a clear demonstration of the extended frameworks ability to allow simulation of 
AV-human driver interactions, we have done so by making a large number of assumptions. It is 
unavoidable to make these assumptions for a few reasons, which we will now discuss as well as give 
potential implications thereof. The first main reason is the very essence of human psychology that is 
difficult if sometimes impossible to capture in quantitative functions. Many constructs have been 
proposed, such as those by Endsley (1995) and Fuller (2005), which we have used as a basis here. 
These in themselves, give indications of relationships between various aspects of the (traffic) 
environment, a person’s cognitive state and abilities, but rarely can prove explicit functions between 
them. Therefore, applying the functions, as in Equations 8-10, means assuming a specific relationship 
that quantitatively may seem acceptable, when considering evidence from literature, but cannot be 
claimed in any way to be generically valid under all possible variables that influence a human. For this 
reason, we allow these functions to remain as inputs for the framework with the hope that cognitive 
or behavioural psychologists with more understanding of these processes can validate or propose 
other or more suitable functions. The second main reason for applying certain assumptions focusses 
on a lack of ground truths in regard to automated driving, and again in regard to human factors. AVs 
are currently not on our roads in any great numbers and explicit evidence on the wider implications 
on human behaviour and traffic flow in practice are limited. We do however have access to a broad 
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amount of literature regarding experiments that can give indications to these processes. This has 
been used to construct the framework and apply initial parameter values. These give some sort of 
indication, but does not let full practice validation take place. 
 
In regard to the cases, we have also initially kept the setup limited to allow the explicit effects of the 
human factors to be visible. One main assumption there was assuming homogenous driver behaviour 
and traffic flow. This allowed the effects of the HF to be clear and undistorted by potential 
distributions that may occur from heterogeneity.  

6.3 Future research 
With the introduction of this extended framework, a large number of new possibilities are opened 
up. At the same time, there are possibilities to expand and improve on the described limitations. 
These give way to potential avenues for future research. First of all, there is much happening in 
regard to human factors research in the traffic domain (Meyer 2019). This will serve to obtain greater 
certainty and insights into the behavioural process that occur with drivers, both under normal driving 
conditions and in regard to automation. We don’t readily expect that explicit functions of 
behavioural processes will be available, but we do encourage the domain to take up the challenge 
further to give more possibilities to allow quantification of the cognitive processes in human factors. 
On a similar note, continuation of empirical research is required to allow greater ground truths into 
the processes to be derived. Again, this is required for manual driving, but also increasingly for 
human driving with automation. Empirical evidence is not only required from a cognitive point of 
view, but also in regard to vehicle dynamics and intervehicle interactions. Much of this evidence will 
only start to become available with larger scale experiments with AVs and when AVs take up a 
greater penetration rate in existing traffic. In regard to the modelling framework presented here, we 
also make some recommendations for future research. The assumptions that have been made in 
regard to the functions should be tested further and further explored to see how valid they are and 
how they can be improved. Also, the process in the framework that considers how task demand is 
calculated using different tasks should be further elaborated. An assumption that tasks are additive is 
not correct, although not influential in the cases applied here, an improved process is required there. 
Other relationships within the framework should also be further scrutinised for validity and in search 
of improved structure as we do not claim the current framework to be complete, but merely to offer 
a solid begin to AV-human interaction for simulation.  

6.4 Conclusions  
This paper presents a novel approach to modelling automated vehicles, which includes important 
aspects of human driving behaviour. This is based on recent developments in traffic flow modelling 
and the ongoing developments in driver psychology and human factors that opens the door to a 
more endogenous and human factor inclusive way of considering traffic simulation. We argue that 
inclusion of human factors in simulation, which considers mixed automated and conventional traffic, 
is required to capture the interactive effects that govern vehicle dynamics in traffic flow. The 
presented extended framework includes human factors through consideration of driver task 
demands and situation awareness and the use of fundamental diagrams of task demand. The 
framework is demonstrated in two experimental cases that show the face validity of the approach. 
Recommendations are made to further expand the approach and in regard to the applied inputs 
from the domain of driving behaviour. Many of these recommendations relate to the many 
assumptions that are required to be able to effectively apply the approach in practice. However, with 
increasing amount of research ongoing in regard to human factors in driving and vehicle automation, 
and with increasing evidence of automated vehicle dynamics and interactions in mixed traffic 
becoming available, we argue that many of the assumption can be validated or adjusted in the 
coming years.  
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List of Acronyms  
AV Automated Vehicle 

ADCS Automated driving control system 

ADS  Automated Driving System 

CF Car Following 

FDTD 
Fundamental Diagram of Task 
Demand 

FOT Field Operatoinal Test 

HAD Highly Automated Driving 

HDV Human Driven Vehicle 

HF Human Factors 

HMI Human Machine Interface 

IDM(+) Intelligent Driver Model (plus) 
 

RT Reaction Time 

SA Situational Awareness 

SAE Society of Automotive Engineers 

TC Task Capacity 

TCI Task Capacity Interface 

TD Task Demand 

ToC Transition of Control 

TOR Take-over Request 
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