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Abstract 31 

Installation and maintenance strategies regarding offshore wind farm operations involve 32 

extensive logistics. The main focus is the right temporal and spatial placement of personnel 33 

and equipment, while taking into account forecasted meteorological and hydrodynamic 34 

conditions. For these operations to be successful, weather windows characterized by certain 35 

permissive wave, wind and current conditions are of enormous importance, whereas unforeseen 36 

events result in high cost and risk in terms of safety. Numerical modelling of waves, water 37 

levels and current related variables has been used extensively in engineering practice to forecast 38 

ocean conditions. To account for the inherited model uncertainty, several error modelling 39 

techniques, such as Artificial Neural Networks (ANN), Copulas, Stochastic Interpolation, and 40 

Linear Regression, can be implemented for the numerical model forecasts to be corrected. In 41 

this study, various Bayesian Network (BN) models are incorporated, in order to enhance the 42 

accuracy of the significant wave height (Hs) predictions and to be compared with the 43 

aforementioned techniques in conditions resembling the real-time nature of the application. 44 

The implemented BN models differ in terms of training and structure and provide overall the 45 

most satisfying performance in comparison to the rest of the techniques, when tested with data 46 

retrieved from stations deployed in the Irish Sea. It is shown that the BN models illustrate 47 

significant advantages as both quantitative and conceptual tools, since they produce estimates 48 

for the underlying uncertainty of the phenomena, in the form of 95% confidence intervals 49 

extracted by the significant wave height (Hs) conditional distribution, while providing 50 

information about the incorporated variables’ dependence relationships through their structure. 51 

Keywords: Bayesian Networks; offshore operations; real-time predictions; statistical 52 
techniques; model coupling 53 

----------------------------------------------------------------------------------------------------------------54 
This research did not receive any specific grant from funding agencies in the public, 55 
commercial, or not-for-profit sectors.  56 
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1. Introduction 57 

Marine structures like offshore wind turbines can ensure safety and serve their main function 58 

adequately, in both reliability and economy terms, when most – if not all – of the variables 59 

involved in their design are modelled as accurately as possible. The specification of the 60 

uncertainties related to the environmental variables describing the ocean conditions is 61 

continuously gaining importance and interest by the offshore, coastal, and the emerging 62 

renewable energy industries. Several studies have been conducted in order to describe, classify, 63 

or quantify the uncertainties and errors related to meteorological and ocean climate variables 64 

(see e.g. Bitner – Gregersen et al., 2014; Haver and Moan, 1983; Bitner – Gregersen and Hagen, 65 

1990). Simplistically, the uncertainty can be classified as: (a) Phenomenon related uncertainty, 66 

which is a product of the natural randomness and stochastic nature of the variables incorporated 67 

and cannot be reduced, (b) data related uncertainty, which surfaces either from the measuring 68 

devices’ accuracy, or the insufficient number or quality of the observations, and (c) model 69 

related uncertainty, which constitutes a product of inaccurate idealisations, crude assumptions, 70 

or even insufficient use of either the meteorological or the hydrodynamic model. It is obvious 71 

that the true nature of any phenomenon cannot be modelled exactly and that even if the 72 

probability distributions of some variables are known a priori, the extreme complexity of the 73 

met-ocean environment makes the distributions of the rest completely unknown. The 74 

estimation of the bias, or systematic error, and the random error evaluation are the first steps 75 

to quantify the uncertainty of any variable. 76 

In the case of offshore wind farms, the installation and maintenance strategies involve 77 

extensive logistics. The main focus is the right placement, in time and space, of both the 78 

personnel and the equipment, while taking into account forecasted meteorological and 79 

hydrodynamic conditions. In order for the aforementioned procedures to be carried out 80 

successfully, weather windows, interwoven with certain permissive wave, wind and current 81 



4 
 

conditions, are of major importance, while unforeseen weather or sea climate events result in 82 

high cost and risk, primarily in terms of safety. Subsequently, successful operations require 83 

accurate and representative data for the wind farm sites, which unfortunately are inadequately 84 

- if at all - provided by surrounding stations. 85 

In order to produce forecasts of the hydrodynamic conditions in a specific area, numerical 86 

models can be used. Wind speeds, as well as the air and water temperatures, resulting from a 87 

meteorological model serve as an input for numerical modelling of waves, water levels and 88 

current related variables. In that regard, SWAN (see Booij et al., 1999a; 1999b) is a third-89 

generation wave model, developed at Delft University of Technology, which computes 90 

random, short-crested wind-generated waves in coastal regions and inland waters and provides 91 

output quantities in numerical files containing tables, maps and timeseries. Comparison of the 92 

wave model forecasts with observations is essential for characterizing the model deficiencies, 93 

identifying systematic and random model errors, thus providing areas for improvement.  94 

Several techniques exist and can be implemented in order for the numerical model forecasts to 95 

be corrected. The Artificial Neural Networks (ANNs), which are information processing 96 

paradigms composed of a large number of highly interconnected processing elements (neurons) 97 

working together, have been used extensively in offshore and coastal applications (see e.g. Deo 98 

et al., 2001; Tsai et al., 2002; Makarynskyy, 2004; Malekmohamadi et al., 2008; Kumar et al., 99 

2017; Deo and Sridhar Naidu, 1999; Makarynskyy et al., 2005; Londhe et al., 2016; Agrawal 100 

and Deo, 2002; Mandal et al., 2005; Londhe and Panchang, 2005; Zhang et al., 2006; 101 

Deshmukh et al., 2016; Makarynskyy, 2007; Londhe and Panchang, 2006; Makarynskyy, 102 

2005). Supplementary, Copulas (see e.g. Genest and Favre, 2007; Embrechts et al., 2001; 103 

Nelsen, 2006; Schmidt, 2006) have been utilized in various occasions to model the dependency 104 

of ocean related variables and predict their behavior, as it has been done in the works of 105 

Leontaris et al. (2016) and Jane et al. (2016).  Simpler but equally effective methods are the 106 
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linear regression and the stochastic interpolation. Both of these techniques have been used 107 

extensively in a variety of engineering applications, including offshore and coastal (see e.g. 108 

Asma et al., 2012; Scotto and Guedes Soares, 2007). They do not require substantial training 109 

and pose serious advantages in terms of computational time and load. 110 

All of the aforementioned techniques constitute soft computing methods and ensure a 111 

reasonable computational load. A number of them require training using historical or present 112 

time data, while others can be incorporated forthwith. Some studies have tried to produce valid 113 

met-ocean climate forecasts using coupled (hybrid) method (e.g. Deshmukh et al., 2016), as 114 

the ones discussed in this paper, or incorporate solely one of the techniques discussed 115 

previously to predict the environmental conditions therewithal. By “coupled” or “hybrid” 116 

methods the use of more than one error modelling techniques, or a combination of a soft 117 

computing method and a numerical model, is implied. Certainly, the use of a single soft 118 

computing method for prediction reduces the computational time significantly, but often at the 119 

expense of accuracy. 120 

In this study, special attention is given to the implementation of the Bayesian Networks (BNs), 121 

graphical models which allow the representation of a probability distribution over more than 122 

one variables and whose use has not been that widespread in offshore applications (an example 123 

can be found in Malekmohamadi et al., 2011), but has been tested effectively in other 124 

engineering problems, such as coastal morphology (see e.g. Poelhekke et al., 2016; Kroon et 125 

al., 2017; Wilson et al., 2015; Plant and Holland, 2011), environmental modelling (see Chen 126 

and Pollino, 2012; Aguilera et al., 2011), construction reliability (Morales-Napoles and 127 

Steenbergen, 2014), traffic prediction (Worm et al., 2011), or flood risk analysis (Sebastian et 128 

al., 2017). Supplementary, many applications of the BNs on dependability, risk analysis and 129 

maintenance can be found in Weber et al. (2012) and Medina Oliva et al. (2009). An overview 130 

of many BN applications is given in the work of Hanea et al. (2015). Many of the applications, 131 
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however, use networks consisting of nodes that represent discrete random variables. Those 132 

networks are characterized as discrete BNs and suffer from serious limitations, since the 133 

provided discrete representation of variables for many important problems is inadequate.  134 

The perspective of this research deviates from providing a forecast, accompanied with a desired 135 

level of accuracy. The aim is to use automated tools to quantify the possible errors present in 136 

numerical model forecasts of the significant wave height (Hs), learn from these errors while 137 

understanding and quantifying the underlying relations induced by certain phenomena to 138 

eventually improve the predictions of the numerical model, which is solely based on 139 

empirically and theoretically derived formulas. The consideration of Bayesian Networks aims 140 

to the description and representation of the underlying uncertainty in nature’s behavior, as 141 

accurately as possible. While most models, such as Copulas or ANNs, would just need past 142 

measurements, numerical model data and/or numerical model forecasts of the significant wave 143 

height, to produce a possible correction, the nature of Bayesian Networks imposes the use of 144 

more variables (e.g. wind velocity, wave period, etc.), whose dependency with the variable of 145 

interest can produce a forecast of enhanced accuracy. 146 

In Section 2 of this paper some information on the data used for the analysis, as well as a 147 

description of the theoretical background and functionality of the BN models, are outlined. To 148 

grant the desired corrections, several models that differ in terms of their training, their structure, 149 

and the incorporated variables were created and tested. A comparison of the performance of all 150 

the implemented statistical and stochastic techniques took place, to ascertain which one 151 

performs better, employing widely used evaluation metrics and more specific indicators created 152 

for the purposes of the application under consideration. Additionally, the ability of the error 153 

correction techniques to perform in operational (real-time) conditions was investigated, to 154 

evaluate their performance even in possible absence of measurements. The results and 155 

comparison of the different techniques can be found in Section 3, along with a discussion on 156 
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the influence of different BN structures on the quality of the outcome. Finally, Section 4 157 

contains the conclusions of this study, supplemented by future research paths.  158 

2. Materials and Methods 159 

 The error correction models described here, are essentially forecasting tools, which attempt to 160 

predict the hydrodynamic conditions in open seas more accurately than a numerical model (in 161 

this case SWAN), while using the results provided by the latter as an input. Hence, they are 162 

referred to as “error correction” models, since their nature and behavior deviates slightly from 163 

a pure predictive tool (see e.g. Emmanouil, 2018). 164 

In general, the models are able to perform both in non-operational (offline) and operational 165 

(online) situations. By operational situations, the continuous flow of the required data in real-166 

time is implied, while in non-operational mode, the model interacts with data stored in the 167 

computer’s memory. Nevertheless, in both cases the nature of the data, and the number of 168 

variables included in each simulation, are the same. The error correction models require three 169 

types of data: (1) on-site measurements (observations), which are processed before used, (2) 170 

numerical model hindcast1 data for a time interval prior to the one under consideration. Instead 171 

of using hindcast data for the analysis, one could alternatively use past forecast data of the 172 

numerical model, which of course will be less accurate, due to the input of wind data produced 173 

also by a numerical model (e.g. HIRLAM; see Cats and Wolters, 1996) incorporating and 174 

transferring uncertainties of its own, and (3) numerical model forecast data for the time interval 175 

under consideration (48 hours ahead of current time). In a real-time scenario, the numerical 176 

model forecasts is produced every 6 hours, so there would be 4 forecasts per day, each one for 177 

                                                 
1 The numerical model hindcast data are produced by incorporation of observational wind data as input to the 
model and a reverse procedure to obtain the results (i.e. the opposite of a forecast procedure).  
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48 hours ahead. Depending on the error correction method some of the above data may or may 178 

not be used. 179 

2.1. Bayesian Networks (BN) Model 180 

2.1.1. Brief Theoretical Background 181 

Bayesian Networks (BNs) are graphical models, which allow the representation of a probability 182 

distribution over a set of random variables (see Jensen and Nielsen, 2007; Morales-Napoles et 183 

al., 2013; Hanea et al., 2015; Weber et al., 2012). They consist of a directed acyclic graph 184 

(DAG) built on discrete (discrete networks), continuous (continuous networks), or both kinds 185 

(hybrid networks) of random variables (X1, X2, …, Xn), and a set of (conditional) distributions. 186 

A DAG is constituted by a set of nodes, that represent random variables, and a set of arcs, in a 187 

way that a directed cycle cannot be created. Within the graph, an ordering of the variables can 188 

be established, given the directionality, which provides information on the sampling order, i.e. 189 

the order which has to be followed so that a sample can be taken from this joint distribution. 190 

As a result, some of the nodes are characterized as “parents” and others as “children”, 191 

depending on whether they precede or success the node of interest. A marginal distribution is 192 

assigned to each node with no parent, and a conditional distribution is associated with each 193 

child node, providing quantitative information about the dependences between the variables, 194 

which can be either retrieved from data or from expert judgment (see e.g. Cooke, 1991).   195 

Denoting the parent nodes of i as 𝑃𝑃𝑃𝑃(𝑖𝑖), the joint density of X1, X2,…, Xn is given by: 196 

𝑓𝑓𝑋𝑋1,…,𝑋𝑋𝑛𝑛 (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = ∏ 𝑓𝑓𝑋𝑋𝑖𝑖�𝑋𝑋𝑃𝑃𝑃𝑃(𝑖𝑖) �𝑥𝑥𝑖𝑖�𝑥𝑥𝑃𝑃𝑃𝑃(𝑖𝑖)�𝑛𝑛
𝑖𝑖=1                                                               (2.1) 197 

where  𝑓𝑓𝑋𝑋𝑖𝑖|𝑋𝑋𝑗𝑗 denotes the conditional densities. The factorization of the joint distribution relies 198 

on the local Markov property of conditional independence. 199 
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BNs are quantitative tools, able to evaluate conditional probabilities between variables, and at 200 

the same time constitute valuable conceptual models, since they visually represent independent 201 

and dependent variables in causation relationships (see Chen and Pollino, 2012; Palmsten et 202 

al., 2014; Stewart-Koster et al., 2010). The principles of BNs as a modelling tool are described 203 

thoroughly in Pearl (1988) and Jensen (1996). The main property of the BNs is inference, which 204 

constitutes their ability to provide updated distributions, given observations, but also 205 

characterization of the relationship between the variables. Generally, the simple visualization 206 

of the complicated relationships between the random variables, as well as their polyvalence, 207 

i.e. the ability to deal with issues such as prediction, diagnosis, optimization, data analysis of 208 

feedback experience, and model updating, makes the use of BNs appealing.  209 

2.1.2. Training Methodology 210 

The Bayesian Networks, as most of the data driven techniques, need a sufficient amount of 211 

data in order to be trained sufficiently and be able to represent the desired relations. When the 212 

BN structure is acquired through the data, then a significant amount of data is needed. In every 213 

application the characterization of a training procedure as “sufficient” depends largely on the 214 

type and behavior of the data. A sensitivity analysis would be in place to determine what 215 

“sufficient amount” actually means for the application. The significant wave height, for 216 

instance, is a variable whose behavior is highly dynamic, i.e. it can change radically in short 217 

time intervals (e.g. hours). As a result, the more training the model has the better, since it can 218 

assimilate to, and later reflect a larger range of behaviors. 219 

Here, the training techniques are divided into two major categories; (1) the long training, which 220 

involves past observational and numerical data, even from 3 years prior to the current date, and 221 

(2) the short training, which only involves measurements and numerical model data from 48 222 

hours prior to the start of the forecast.  223 
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In order to obtain the structure of the Bayesian Network, the bnlearn package of R is used. 224 

In general, there are two broad categories of algorithms to learn the structure of a BN, the score-225 

based and the constraint-based. The constraint-based case employs conditional independence 226 

tests to identify a set of edge constraints for the graph and then finds the best DAG that satisfies 227 

these constraints; see e.g. Scutari (2005). The score-based approach (see Russell and Norvig, 228 

2009; Korb and Nicholson, 2010) first defines a criterion to evaluate how well the BN fits the 229 

data, and then searches over the space of DAGs for a structure with maximal score.  230 

For this study, a hill climbing (HC) score-based structure learning algorithm was used to train 231 

the network, which made use of an AIC criterion. The package also assumes a multivariate 232 

normal distribution for continuous variables (such as the hydrodynamic variables in hand). This 233 

assumption can be considered restricting in many occasions, but as it will become obvious, the 234 

results of such an analysis are quite reasonable. In case the assumption of multivariate 235 

normality is violated, the non-parametric Bayesian Networks could produce a more accurate 236 

conditional distribution and possibly more accurate forecasting results; see e.g Hanea et al. 237 

(2015). Nevertheless, the assumption of multivariate normality was considered sufficient to 238 

test the BN behavior and performance, and the open-source bnlearn package as the most 239 

suitable one for this particular application.  240 

For the case of long training, the training dataset is continuously enriched with new 241 

measurements, as well as with past numerical model data for the variable of interest only. 242 

Certainly, this requires a relatively large part of the computer’s memory. This effect can be 243 

impugned by incorporation of new variables and deletion of older, or with smaller training sets, 244 

i.e. in the order of months instead of years.  245 

In general, the user can impute his/her own structure, by whitelisting or blacklisting certain 246 

relations, i.e. providing a custom fit. This, certainly, creates large differences in the results, 247 
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since in many occasions the whitelisted arc is not supported by the BN structure in representing 248 

the joint density. Thus, it is suggested by the writers that the procedure should be carried out 249 

using data-driven structure learning and fitting techniques, even if a given relation might not 250 

be supported intuitively.  251 

2.1.3. Predictions and Uncertainty Bounds 252 

The predictions provided by the BN models are retrieved from the conditional distribution of 253 

the variable of interest, given the information about certain other variables. 254 

Since it is impossible to have future measurements for the incorporated variables, forecasted 255 

numerical model data for these variables are used to construct the conditional distribution for 256 

every point prediction. In other words, the network is trained and fitted with past observational 257 

data, as well as numerical model data for the variable of interest, subsequently providing a 258 

forecast based on forecasted numerical model data (essentially we are conditionalizing on 259 

forecast numerical model data). The point prediction is the expected value of the conditional 260 

distribution, which is assumed to be normal. Since the significant wave height (Hs) is not 261 

normally distributed (see e.g. Tayfun, 1980), the assumption is in certain occasions not 262 

appropriate. Consequently, this assumption prevents us from retrieving realistic uncertainty 263 

bounds for the significant wave height. Nevertheless, the symmetrical uncertainty intervals can 264 

provide a fairly good coverage of the observations (more information and examples can be 265 

found in the following sections).  266 

The standard 95% are obtained from the 2.5th and 97.5th quantiles of the conditional 267 

distribution, Since the wave heights seemed to follow a log-normal distribution, a log-268 

transformation of the significant wave height (Hs) has been applied. The network was thus 269 

trained with the transformed data. The obtained predictions were transformed back to their 270 
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original form, which yield the log-normal intervals. Again the 2.5th and the 97.5th quantiles 271 

were used.  272 

 273 

2.2. The Data 274 

The data were retrieved from stations deployed in the Irish Sea. The measurement stations, 275 

which are actually wave rider buoys and meteorological masts, are adjacent to the wind farms 276 

of Gwynt-y-Mor2 and Rhyl Flats3, located within the Liverpool Bay. The received datasets 277 

consist of measurements of hydrodynamic and meteorological data, obtained between 01-09-278 

2012 to 31-01-2018. It has to be stressed that the error correction techniques are suitable for 279 

any offshore environment, given the required training, and are not limited in the area of the 280 

Irish Sea. The case presented here serves as an example of the applicability of the models in 281 

real-life applications. The same procedures and techniques would have to be followed in any 282 

similar case, aiming to accurately predict the variables’ behavior in mild offshore 283 

environments. 284 

A fit test was carried out for the significant wave height (Hs) data by means of the FDB tool in 285 

Matlab®, which incorporates certain criteria (AIC, BIC, etc.) to define the best parametric 286 

distribution for the data in hand. As can be seen in Figure 1, the log-normal distribution 287 

provides a good fit for the significant wave height data (Hs), which will be proved really useful 288 

in the simulations to follow. 289 

                                                 
2 Gwynt-y-Mor Offshore Wind Farm (53°27′N 03°35′W) is located off the coast of North Wales and is the 4th 
largest operating wind farm in the world (160 wind turbines). 
3 Rhyl Flats Offshore Wind Farm (53°22′N 03°39′W) is a 25 turbine wind farm, located approximately 8 km 
north-east of Llandudno in North Wales. 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Gwynt_y_M%C3%B4r&params=53_27_N_03_35_W_type:landmark_region:GB
https://tools.wmflabs.org/geohack/geohack.php?pagename=Rhyl_Flats&params=53_22_N_03_39_W_region:GB_type:landmark
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2.2.1. Training and Fitting Datasets 290 

Different error correction techniques require different sets for training, while some of them do 291 

not need substantial training at all. To be more exact, the simple linear regression and the 292 

Bernstein stochastic interpolation (see e.g. Kolibal and Howard, 2006; 2008; Seyfarth et al., 293 

2006) utilized here, take as an input only numerical data and measurements corresponding to a 294 

time interval just 48 hours prior to the forecast. The three-layered, feed forward ANN (see e.g. 295 

Deo and Sridhar Naidu, 1999), which uses a back-propagation algorithm (see e.g. Tsai and Lee, 296 

1999), as well as the bivariate Copula (chosen to be Gumbel based on a simple Cramér-Von 297 

Mises criterion test incorporating numerically modelled and observed data; see Anderson, 1962), were 298 

trained with 6 months of data corresponding to the period March – August 2015, and then used 299 

implementing the same input delineated for the aforementioned techniques. It has to be stressed 300 

that only Hs data were used by all these techniques. 301 

The BN models incorporate three different types of training; (1) long-training with data from 302 

01-01-2014 to 31-12-2016, i.e. 3 years of training, (2) short-training with hourly data 303 

corresponding to 48 hours prior to the forecast, i.e. 2 days of training, and (3) a fixed structure, 304 

produced by 3 years of training (2014 - 2016), and fitted with data tallying to 48 hours prior to 305 

the respective 48-hr forecast, i.e. 3 years for training and 48 hours for fitting and retrieving the 306 

required variable relations, necessary to produce a prediction. The term “fixed” was used to 307 

stress out that, while the power of the underlying relations between the variables constantly 308 

altered due to the dynamic behaviour of hydrodynamic and meteorological variables, the 309 

structure was not changing because of the significant amount of training. 310 

2.2.2. BN Input Data 311 

When producing a prediction with the BN model, there should be an input of the variables 312 

based on which the conditional distribution is being produced (this is often referred to as 313 

conditionalization). The variables were selected to represent nodes in the network based on 314 
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their relation to the significant wave height, their availability, and finally their quality. In order 315 

to simulate a realistic scenario, where measurements and numerical model data exist, the 316 

following variables were selected: (1) the zero-crossing wave period (Tz), (2) the wave 317 

direction (Dirp), (3) the wind velocity 10 m above the sea level (U10), (4) the wind direction 318 

(Udir), and (5) the numerical significant wave height (Hs,num).  As stated before, the numerical 319 

model forecast data (48 hours ahead) for the rest of the selected variables are used as 320 

conditionalizing values to generate accurate predictions for the variable of interest, namely the 321 

significant wave height (Hs). 322 

2.2.3. Model Testing and Validation Datasets 323 

For testing and comparison between the different incorporated techniques, data retrieved for 324 

the year of 2017 were used (01-01-2017 to 31-12-2017). In order to simulate effectively the 325 

real-time nature of the application, a forecast was corrected every 6 hours of each day. Because 326 

SWAN produced 4 forecasts per day, one every 6 hours, each one of the error correction 327 

techniques, generated a potential corrected (potentially more accurate) prediction an equal 328 

number of times. It can be realized that the extremely large amount of information makes it 329 

impossible for all the results to be presented. Thus, a collective set, encapsulating different 330 

types of behaviours, is going to be displayed.   331 

3. Results - Discussion 332 

In this section, the summative results for simulations corresponding to the whole year of 2017 333 

(from 01-01-2017 to 31-12-2017) are presented. As previously stated, the measurement 334 

stations were situated near the Gwynt-y-Mor (GyM) and Rhyl Flats (RF) offshore wind farms.  335 
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3.1. Method Comparison 336 

In order to establish a basis for comparison between the methods, certain well-known 337 

evaluation metrics, namely the Root-Mean-Square-Error (RMSE), the Bias, and the Unbiased-338 

RMSE (URMSE) were employed. For reasons of brevity, only the Gwynt-y-Mor results are 339 

presented here (Table 1).  340 

Both the long-trained and custom-fixed BNs displayed satisfying performance in terms of their 341 

error distribution, which is reflected on their bias values, while introducing an enhancement in 342 

accuracy, larger than any other method, with the exception of linear regression. Yet, even if 343 

the metrics of Table 1 are indicative of the general behavior of the models, it has to be stressed 344 

out that evaluating the techniques’ performance solely based on them is impossible. This issue, 345 

regarding the robust and consistent validation of the predictions, can be resolved with the use 346 

of case specific metrics, i.e. indicators displaying the models’ accuracy within and around the 347 

significant wave height boundaries of this specific application, i.e. 0.5 ≤ 𝐻𝐻𝑠𝑠 ≤ 1.5 m. 348 

Particular interest is given around the upper boundary of 1.5 m, which is certainly the most 349 

crucial for offshore maintenance operations, since it ensures nautical safety (see Table 2). 350 

Consequently, three extra indicators were taken into account: (1) the percentage of the critically 351 

accurate predictions, i.e. the forecasts for which the measurements were higher than 1.5 m and 352 

the respective model managed to predict, (2) the false positive forecast percentage, which 353 

provides information on the amount of predictions above 1.5 m when the measurement was 354 

below, and (3) the percentage of the critically inaccurate forecasts, i.e. the amount of 355 

predictions below the 1.5 m upper boundary, when the measurement was above that limit. 356 

Notice that the percentages were calculated over the whole time interval, i.e. in terms of the 357 

whole dataset, hence their values are small. In any case, they provide the needed means for 358 

comparison in this stage.  359 
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An example of a correction to the numerical model’s 48-hr forecast, given at critical values for 360 

an operation, is shown in Figure 2. The BN model incorporating the so-called fixed structure 361 

managed to predict relatively accurate the offshore conditions while simultaneously prevented 362 

(hypothetically) any operation that might endanger the crews and the equipment.  363 

3.2. Uncertainty Estimates 364 

One major advantage of the BN methods, in comparison to the rest of the techniques is their 365 

ability to provide estimates of the uncertainty governing the variable of interest; in this case 366 

the significant wave height (Hs). The only one of the other techniques able to produce 367 

confidence intervals is the Gumbel Copula. Nevertheless, the assumption of a Gumbel Copula 368 

influences the confidence intervals’ performance significantly. 369 

Regarding the BN methods, the normality assumption for the conditional distribution of Hs 370 

governs the predictions. As a result of the aforementioned supposition, the uncertainty 371 

boundaries given by the BN models are symmetrical. Despite the restrictive nature of this 372 

assumption, the predictions acquired by the BN models in our study are quite satisfying, 373 

providing a correction of the SWAN forecast in most of the cases. That of course might not 374 

influence their performance or their usefulness.  375 

Since the Hs data follow a log-normal distribution (see also Section 2.1.3), a log-transformation 376 

of the data has been considered for the BN methods. Note that the uncertainty bounds are no 377 

longer symmetric.. Table 3 provides the the results of uncertainty quantification from standard 378 

BN methods and BN methods applied to the log-transformation of the data, as well as from the 379 

Copula. The log-normal uncertainty bounds provide smaller coverage percentages (percentage 380 

of measurements in the test data within the confidence interval) with similar or larger average 381 

lengths of the confidence intervals or larger percentages accompanied with unrealistically large 382 

average lengths (approximately 1.18 m). As a result, the normal confidence intervals are more 383 
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efficient and accurate. The most useful uncertainty boundaries seem to be the ones provided 384 

by the BN model incorporating the fixed structure, which have a reasonably high coverage 385 

percentage (86.1%) accompanied by a satisfying average length, in comparison to the bounds 386 

given by the long-trained BN model, which are 10 cm larger but only 3% more accurate.  387 

Considering the overall performance in terms of the given uncertainty, in combination with the 388 

point predictions provided previously, it seems that the BN method incorporating a fixed 389 

structure, alongside with the respective normal confidence intervals, is the most suitable one 390 

for the Gwynt-y-Mor case study. The long-trained BN normal boundaries have also a steady 391 

and robust performance, which makes the corresponding model an attractive and satisfying 392 

alternative.  393 

Finally, is has to be noted that the extremely large coverage percentage given by the log-normal 394 

uncertainty boundaries, for the case of the long-trained BN model, is justified by the similarly 395 

large average length of the intervals, which makes the solution less suitable. The log-normal 396 

boundaries have a more realistic form (i.e. only positive values and a match with the parametric 397 

distribution fitting the Hs), but in case the performance is taken into account the normal 398 

confidence intervals pose many advantages.  399 

3.3. BN Structures and Configurations 400 

Up until now, the incorporated BN structures involved 6 nodes. Figure 3 displays the long-401 

trained structure, which has also been used for the fixed BN model. The simulations were 402 

carried out using data driven structures, i.e. structures acquired by the nature of the data and 403 

not imposed a priori. In general, it was noted that trying to create a structure using general 404 

knowledge on the incorporated variables (i.e. knowledge on the underlying relations procured 405 

by the literature or by experts) only hindered the prediction/correction procedure instead of 406 

enhancing its accuracy (see also Emmanouil, 2018).  407 
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Some of the relations governing the structures are anticipated, when others oppose what would 408 

be expected by the common knowledge on the variables at hand. The most distinctive examples 409 

here are the relations between the observed significant wave height (Hs) and the wind velocity 410 

(U10), as well as the wind (Udir) and wave (Dirp) directions. In a situation represented by the 411 

dependencies described in the literature (see e.g. Hasselmann and Olbers, 1973), one would 412 

expect the wind direction to influence the wave direction, i.e. the arc connecting those two 413 

nodes to have a direction from Udir to Dirp. Nevertheless, the data-driven analysis conducted in 414 

this study implies that the wind direction depends on the wave direction, something which is 415 

certainly not the case. But a reasonable explanation exists, justifying this kind of behaviour. 416 

The wind and wave directions are measured at the same locations, a fact that insinuates that 417 

the variables influence one another in one specific area. Still, waves are created by storms 418 

occurred many kilometres (or miles in the nautical language) away from the location of the 419 

measurement. As a result, the measured wind directions might indeed not have any influence 420 

on the wave directions. Further, the wave direction is influenced by many effects, such as 421 

diffraction due to islands or other obstacles, so it can be totally irrelevant to the values given 422 

by the wind direction. That of course raises the question on whether the wind direction could 423 

be omitted by the analysis, which will be addressed hereupon. 424 

On the other hand, the significant wave height and wave direction relation is a different story. 425 

For the case of the long training (3 years of data), presented in Figure 3, the relation is the one 426 

expected by the descriptions available in the literature, corresponding to the experts’ opinions; 427 

see e.g. Pierson and Moskowitz (1964), Hasselmann and Olbers (1973), as well as Phillips 428 

(2006). To be more exact, the wind velocity influences the significant wave height, a 429 

dependence which is highlighted by the high correlation between the variables (correlation 430 

coefficient equal to 0.795), shown in Table 4. In the same table other relations are also visible, 431 

as for instance between the wind and wave direction, which justifies the structure’s form. Also 432 
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visible is the extremely high dependency between the observed and numerically derived wave 433 

heights, which gives the character of correction instead of pure prediction, since the quality of 434 

the numerical model (SWAN) results influence highly the long-trained models’ accuracy. 435 

Contrarily, the short-trained BN model provides a variety of relations between the wind 436 

velocity and the observed significant wave height, due to the dynamic nature of the offshore 437 

events, which force the data to rapidly change behaviour. There is no clear relation between 438 

the two aforementioned variables, since the direction of the connection changes repeatedly, 439 

and in some occasions becomes even inexistent. That of course is again explained by the wave 440 

creation by distant storms, or secondary effects like diffraction or reflection, since also those 441 

two variables are measured in the same location. 442 

It is interesting to examine how different configurations of the BN structures (see Figure 4), 443 

i.e. a different number of nodes with a selection of variables influence the predictions and the 444 

provided uncertainty. This comparison will shed some light on whether one or more of the 445 

incorporated variables influence the models’ accuracy positively and will reveal if the erratic 446 

behaviour of the models incorporating short-term past data can be casted off. 447 

The exclusion of the meteorological variables, i.e. the wind velocity and direction, only 448 

triggered a reduction of the fixed structure’s accuracy, to a point where it became equal to the 449 

short-trained BN models’ one; hence the presentation of these results was considered needless. 450 

Regarding the percentage of coverage and the average length of the uncertainty bounds, again 451 

a reduction in performance was noticed in the case of the fixed structure, while a small and 452 

insignificant enhancement of accuracy is observed in the short – and long-trained BN models. 453 

As a result, it can be concluded that for the Gwynt-y-Mor case the exclusion of the 454 

meteorological variables had an undesirable effect, and the 6-variable structure would be 455 

generally suggested. Further testing was conducted with a 5-variable BN structure, 456 
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incorporating supplementary the wind velocity (U10). Examples of the arc directions for the 457 

case of Gwynt-y-Mor are shown in Figure 4, where the relations discussed previously between 458 

the meteorological and the hydrodynamic variables are again varying depending on the training 459 

of the BN model (long or short training). The explanation here is quite the same, since for the 460 

largest part of the year the wind velocity can in general influence the significant wave height, 461 

while in certain occasions this might not happen due to the origin of the waves. The 462 

performance of the models is only enhanced slightly (approximately 0.5%), while being more 463 

consistent for the BNs incorporating short-term past data. Even so, the RMSE values were in 464 

general smaller for all BN models, with the one provided by the fixed structure being the 465 

smallest in comparison to the rest of the error correction techniques (0.208). The accuracy in 466 

predictions close to the critical boundary also increased, particularly in terms of the false 467 

positive percentages (nearly 8%; a value of 1.95% for the case of the fixed structure).  468 

Regarding the uncertainty estimates, the coverage percentages and the average lengths were 469 

similar to the 6-variable BN models’ figures, without any improvement to the length of the 470 

long-trained log-normal confidence intervals. It is truly difficult to determine which boundary 471 

is the most suitable and it always depends on the applications needs. Nevertheless, for this case 472 

both kinds of confidence intervals display superiority when compared to the uncertainty 473 

estimates given by the Gumbel Copula.  Of particular interest are the results produced for the 474 

case of Rhyl Flats. As shown in Table 5, there is a significant improvement in terms of all 475 

metrics. Table 6 illustrates that also in terms of critical performance, around the 1.5 m upper 476 

boundary, the fixed structure BN model’s performance is enhanced. Moreover, the behaviour 477 

of the 5-variable structures regarding models which include short-term past data (i.e. 48 hours 478 

prior to the forecast), is quite consistent and robust in comparison to the structures 479 

incorporating 6 variables. Here, the point that the wind direction causes unsteadiness to the 480 

predictions is proved.  481 
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Because the uncertainty estimates display large improvement as well, it seemed fit to present 482 

them here in comparison to the results given by the 6-variable BN structure (see Table 7). The 483 

normal confidence intervals of the fixed-structured BN reach a coverage percentage of nearly 484 

91% of the total observations, with an average length of just 49 cm. Certainly, the form of the 485 

boundaries is not ideal, since they are symmetrical, but still their performance provides a 486 

significant enhancement in accuracy, making the BN models a valuable correction tool for this 487 

application. The long-trained BN model is equally good in terms of accuracy, regardless the 488 

number of incorporated variables, making it also a robust and reliable tool, which with the 489 

inclusion of its uncertainty bounds introduces a significant improvement of the significant 490 

wave height (Hs) predictions. As such, it can be concluded that the 5-variable BN models would 491 

need to be used for the case of Rhyl Flats, due to its robust behaviour, in comparison to similar 492 

techniques incorporating 6 variables. 493 

4. Conclusions 494 

The results provided by the methods under consideration are largely dependent on the data 495 

quality and availability. Due to the topology (Irish Sea) which induces secondary events in 496 

terms of hydrodynamics (reflection, diffraction, etc.), some direct variable relations that would 497 

seem obvious are not so trivial after all. For instance, some dependencies between 498 

meteorological and hydrodynamic variables, as the wind (Udir) and wave directions (Dirp), are 499 

not that obvious when the analysis is data-driven. Thus, data-driven approaches were used and 500 

are recommended when the morphology of the area, or the way the measurements were 501 

collected (e.g. with wave-rider buoys and met-masts), induce many uncertainties.  502 

The BN method incorporating the so-called fixed structure (a long-trained structure in 503 

combination with short-term past data) seems to be the best overall, out-performing any other 504 

error correction technique. In Gwynt-y-Mor the BN models incorporating 6 variables, namely 505 
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the observed significant wave height (Hs), the numerically produced significant wave height 506 

(Hs,num), the wave direction (Dirp), the zero-crossing wave period (Tz), the wind velocity (U10), 507 

and the wind direction (Udir), serves the application equally good to the 5-variable structures, 508 

where the wind direction is excluded. A general comment is that the 6-variable BN structures 509 

behave erratically in certain occasions, when short-term past data (i.e. data retrieved 48 hours 510 

prior to the forecast) are incorporated. On the other hand, for the Rhyl Flats dataset, the 511 

exclusion of the wind direction is imperative in order for all the BN models to be able to 512 

produce results of enhanced accuracy, due to the condition of the aforementioned variable’s 513 

dataset. Certainly, the long-trained BN model, regardless of the number of variables 514 

incorporated, provides robust and consistent results for both stations, and with the inclusion of 515 

the uncertainty estimates provided it becomes also an attractive and equally suitable technique.  516 

In offline mode it is easy to establish and recognise which variable/s reduces the respective 517 

models’ accuracy, but when the models run operationally it is impossible to interfere. The final 518 

goal is to manage to emulate the real-time nature of the application and draw conclusions for 519 

the applicability of the methods under consideration in operational environments. In that 520 

regard, the 5-variable fixed-structured BN model outperforms any other technique. Certainly, 521 

this kind of model has one major disadvantage; the fact that it needs short-term past data (48-522 

hrs prior to the forecast) makes it unable to produce corrected forecasts in the absence of recent 523 

observations. This effect is not an issue with the long-trained BN model, which displays equally 524 

good metrics, but is underperforming in terms of the critical situations (close to the upper 1.5 525 

m boundary), presenting a more conservative behaviour and failing to predict significant wave 526 

height peaks in certain occasions. Consequently, it is really a matter of subject and data 527 

availability to distinguish which model is better in terms of its operational performance. Surely, 528 

the ability of the long-trained BN model to produce forecasts of enhanced accuracy constantly, 529 

even in the absence of recent observations makes it attractive for real-time use. Yet, the 530 
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satisfying performance of the fixed-structured BN cannot be overlooked, especially when 531 

producing critical predictions (close the application’s upper boundary), which constitutes 532 

probably its most important virtue while incorporated.  533 

All in all, it can be concluded that the BN methods provide the most suitable solution in terms 534 

of error correction when compared to the rest of the techniques presented in the preceding 535 

sections. A major benefit is the information acquired by the structures and uncertainty 536 

estimates, which can be either provided in normal or log-normal form and cover nearly 90% 537 

of the total number of measurements in the validation set. The normal confidence intervals 538 

seem to be the most suitable for this application, since they demonstrate good performance, 539 

especially in terms of the higher and most crucial boundary. Moreover, they introduce an 540 

acceptable average length of 50-60 cm, in comparison to their log-normal counterparts. The 541 

log-normal uncertainty boundaries grant behaviours closer to reality, but their average length, 542 

especially the one given by the long-trained technique (≈1.18 m), exhibit high levels of 543 

uncertainty. Nevertheless, it can be generally concluded that the BN methods enhance the 544 

uncertainty estimates’ performance in comparison to the Gumbel Copula model, enhancing the 545 

SWAN forecasts significantly and ensuring nautical and operational safety in most of the 546 

occasions. 547 

The techniques described in this study provide a useful tool for the decision making process of 548 

installation and maintenance operations in offshore wind farms. Further, the applicability of 549 

the models in real-time scenarios could assure the right temporal and spatial placement of the 550 

personnel and the equipment in dynamic circumstances, hence leading to an optimal utilization 551 

of the available resources. Since the success of offshore operations is based on the accurate 552 

prediction of specific weather windows, the improved Hs forecasts provided by the BN models 553 

will lessen the risk of high cost, while ensuring the safety of the crews.  554 
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For the future, extensive real-time testing would provide a more concise and consistent 555 

validation of the models’ performance. Supplementary, some variables (e.g., wind direction) 556 

could be discretized rather than used as an additional continuous variable, leading to a hybrid 557 

network. As such the models’ accuracy could be evaluated based on the type of events (e.g. for 558 

wind coming from NW in comparison to SE). Finally, it could be stated that the differences 559 

between the models are in certain occasions small. An application-based impact assessment 560 

would highlight the importance and contribution of each model, expressed in monetary and 561 

risk terms, showing that these small differences could lead actually to large benefits. 562 
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Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

REG ANN Copula SI 

RMSE 

(m) 
0.231 0.218 0.253 0.209 0.206 0.225 0.246 0.325 

BIAS  

(m) 
-0.046 -0.011 -0.051 0.005 0.004 0.0365 -0.076 -0.016 

URMSE 

(m) 
0.226 0.218 0.248 0.209 0.206 0.222 0.234 0.324 

 762 

Table 2. Application specific metrics for the year of 2017 (Gwynt-y-Mor). 763 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

REG ANN Copula SI 

Critically 

Accurate 

(%) 

19.72 21.16 20.27 22.31 22.00 23.05 16.89 20.83 

Critically 

Inaccurate 

(%) 

2.55 2.82 3.79 2.10 2.34 1.90 4.72 1.96 

False Positive 

(%) 
2.26 1.93 1.50 2.10 1.97 3.01 0.82 3.01 

 764 

Table 3. Uncertainty comparison for the Gwynt-y-Mor case study. 765 

Method 

BN 

Long 

Training 

BN 

Fixed 

Structure 

BN 

Short 

Training 

Copula 

BN 

Long 

Training 

(Log-N) 

BN 

Short 

Training 

(Log-N) 

BN 

Fixed 

Structure 

(Log-N) 

Coverage 

(%) 
89.2 86.1 75.3 68.5 95.4 73.1 76.5 
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Average 

Length 

(m) 

0.630 0.531 0.356 0.375 1.185 0.550 0.594 

 766 

Table 4. Correlation matrix for the long-trained BN models for the Gwynt-y-Mor case. 767 

Variable Dirp Tz U10 Udir Hs,num Hs 

Dirp 1.000 0.381 0.001 0.515 0.245 0.249 

Tz 0.381 1.000 0.596 0.359 0.842 0.874 

U10 0.001 0.596 1.000 0.110 0.820 0.795 

Udir 0.515 0.359 0.110 1.000 0.319 0.329 

Hs,num 0.245 0.842 0.820 0.319 1.000 0.964 

Hs 0.249 0.874 0.795 0.329 0.964 1.000 

 768 

Table 5. Evaluation metrics for the case of the 5-variable BN models (Rhyl Flats). 769 

Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

6 Nodes 5 Nodes 

RMSE 

(m) 
0.203 0.178 0.200 0.201 0.178 0.195 0.163 

BIAS  

(m) 
-0.004 -0.010 -0.037 0.003 -0.013 -0.038 0.003 

URMSE 

(m) 
0.203 0.178 0.196 0.201 0.177 0.191 0.163 

 770 

Table 6. Application-specific evaluation metrics for the case of the 5-variable BN models 771 

(Rhyl Flats). 772 
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Method SWAN 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

BN 

Long 

Training 

BN 

Short 

Training 

BN 

Fixed 

Structure 

6 Nodes 5 Nodes 

Critically 

Accurate 

(%) 

18.02 17.01 16.04 18.82 16.87 16.08 18.03 

Critically 

Inaccurate 

(%) 

1.05 2.28 2.50 1.34 2.30 2.45 1.47 

False 

Positive 

(%) 

2.55 1.16 1.03 1.58 1.14 0.84 1.14 

 773 

Table 7. Uncertainty estimates’ performance for the case of a 5-variable BN structure (Rhyl 774 

Flats). 775 

Method 

BN 

Long 

Training 

BN 

Fixed 

Structure 

BN 

Short 

Training 

Copula 

BN 

Long 

Training 

(Log-N) 

BN 

Short 

Training 

(Log-N) 

BN 

Fixed 

Structure 

(Log-N) 

5 Variables 

Coverage 

(%) 
89.6 90.8 77.2 70.9 95.0 77.1 73.2 

Average 

Length  

(m) 

0.527 0.489 0.430 0.327 1.024 0.505 0.460 

6 Variables 

Coverage 

(%) 
89.7 64.7 69.8 70.9 94.7 68.9 61.0 

Average 

Length  

(m) 

0.527 0.491 0.427 0.327 0.948 0.466 0.425 
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Figures 776 

 777 

Figure 1. Results of the parametric distribution fitting procedure to the significant wave 778 

height (Hs) data of Gwynt-y-Mor. (*colored) 779 
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 780 

Figure 2. Example of a correction to the SWAN forecast under critical conditions given by 781 

the BN models (Gwynt-y-Mor). 782 

 783 

 784 

Figure 3. Structure for the long-trained and fixed BN models, incorporating 6 variables 785 

(Gwynt-y-Mor). 786 
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Figure 4. BN structures incorporating 4 and 5 variables for the long-trained models (Gwynt-787 

t-Mor) 788 
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Figure 1. Results of the parametric distribution fitting procedure to the significant wave 800 

height (Hs) data of Gwynt-y-Mor. 801 
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Figure 2. Example of a correction to the SWAN forecast under critical conditions given by 802 

the BN models (Gwynt-y-Mor). 803 

Figure 3. Structure for the long-trained and fixed BN models, incorporating 6 variables 804 

(Gwynt-y-Mor). 805 

Figure 4. BN structures incorporating 4 and 5 variables for the long-trained models (Gwynt-806 

t-Mor). 807 
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