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In this paper we study the dimension of splines of mixed smoothness on axis-aligned T-
meshes. This is the setting when different orders of smoothness are required across the 
edges of the mesh. Given a spline space whose dimension is independent of its T-mesh’s 
geometric embedding, we present constructive and sufficient conditions that ensure that 
the smoothness across a subset of the mesh edges can be reduced while maintaining 
stability of the dimension. The conditions have a simple geometric interpretation. Examples 
are presented to show the applicability of the results on both hierarchical and non-
hierarchical T-meshes. For hierarchical T-meshes it is shown that mixed smoothness spline 
spaces that contain the space of PHT-splines (Deng et al., 2008) always have stable 
dimension.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Polynomial splines on polyhedral partitions are ubiquitous in approximation theory, geometric modelling, and computa-
tional analysis. It is customary to ask splines to be Cr smooth across all mesh facets for a fixed choice of r ∈ Z�−1 that 
depends on the intended application. However, certain applications also require working with splines for which smoothness 
can be reduced across an arbitrary subset of the mesh facets; e.g., to model non-smooth or even discontinuous geometric 
features. Such splines will be said to have mixed smoothness, and they constitute the focus of this article.

Example (Application to fluid flows around thin solids). Consider the case of a thin solid immersed in an incompressible fluid 
flow, and a numerical simulation that employs a solid-conforming mesh, i.e., a mesh where the solid is modelled as the 
union of a subset of the facets. In general, we would like to use smooth splines for approximating the fluid pressure 
and velocity fields. However, unless the discrete pressure field is allowed to be discontinuous across the thin solid, the 
simulation results would be meaningless. At the same time, we would like to retain smoothness of the pressure field across 
the remaining facets. See Sauer and Luginsland (2018) for an example of such an application. �

An appealing feature of splines in applications is the flexibility in the choice of the underlying meshes. In particular, 
there is a rich history of the use of simplicial, quadrilateral and cuboidal meshes for uniform polynomial degrees and a 
fixed order of global smoothness, see e.g., Cirak et al. (2000) and Hughes et al. (2005). Univariate spline spaces and the 
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construction of a suitable spline basis for them, called the B-spline basis, are well understood, see de Boor (2001) for 
example. A spline basis for tensor product spline spaces can be easily defined on tensor product quadrilateral meshes 
by taking tensor products of univariate B-splines; this process can be directly extended to higher dimensions for building 
multivariate spline spaces. A comprehensive overview of splines on triangulations can be found in Lai and Schumaker (2007)
and the references therein.

When applications require the resolution of the spline space to be increased on a subset of the mesh faces, the most 
common approach is to employ local subdivision. Spline constructions on such locally subdivided meshes have been pro-
posed in Speleers et al. (2009); Schumaker and Wang (2012b) and Kang et al. (2014) for triangulations and in Sederberg et 
al. (2003); Giannelli et al. (2012) and Dokken et al. (2013) for quadrilateral meshes, among others. We will focus on the case 
of locally subdivided quadrilateral meshes, the so-called T-meshes. Examples of such meshes will be discussed in Section 5.

The study of multivariate splines, and bivariate splines on T-meshes in particular, poses an interesting challenge as the 
spline space dimension can depend on the geometric embedding of the mesh, see for instance Deng et al. (2006); Li et al. 
(2006); Li and Chen (2011); Schumaker and Wang (2012a) and Li and Wang (2019). In practice, identifying meshes where 
the dimension is stable – i.e., free from this dependence – is useful for avoiding cases where spline spaces on combinato-
rially and topologically equivalent meshes have different dimensions. Several techniques have been used for studying the 
dimension of multivariate splines. We will do so for splines of mixed smoothness using the homology-based approach in-
troduced in Billera (1988), and therefore in the following we stick to a brief discussion of the same. It should be noted that 
other approaches such as Bernstein–Bézier methods (Alfeld and Schumaker, 1987) or smoothing cofactor-conformality (Li 
and Deng, 2016) are equally suited to study the problem, and may be alternatively used to achieve the same results that 
we do.

By interpreting splines as the top homology of a chain complex, Billera (1988) used tools from homological algebra for 
studying the dimension of splines. Modifications of the complexes proposed by Schenck and Stillman (1997a) and Schenck 
and Stillman (1997b) have since been used by Mourrain and Villamizar (2013) for bounding the spline space dimension 
on simplicial meshes in two and three dimensions. Schenck and Sorokina (2018) have recently studied the problem on 
simplicial meshes where one maximal face has been subdivided. On T-meshes, Mourrain (2014) provided bounds on the 
dimension of bi-degree (m, m′) splines. Generalizations of the bounds from Mourrain and Villamizar (2013) and Mourrain 
(2014) to splines with local polynomial degree adaptivity been recently provided in Toshniwal and Hughes (2019) and 
Toshniwal et al. (2019). The tools from homology have also been applied to study of non-polynomial splines on T-meshes 
where, in particular, the ring structure of polynomials cannot be used; see Bracco et al. (2016a,b) and Bracco et al. (2019).

Let Rr
mm′ denote the space of bi-degree (m, m′) splines that are r(τ ) smooth across mesh edge τ . As stated above, we 

will use homology-based techniques similar to the ones used in Billera (1988); Schenck and Stillman (1997b) and Mourrain 
(2014) to study the dimension of Rr

mm′ . Then, given that Rr
mm′ has stable dimension, we provide sufficient conditions for 

preservation of this stability when the desired orders of smoothness are decreased across a subset of the mesh edges. Let 
us denote this latter spline space with Rs

mm′ , with s(τ ) � r(τ ) for all edges τ . Note that in general the results proposed in 
Mourrain (2014) cannot be applied to compute the dimension of Rs

mm′ . This is because they require the smoothness across 
all horizontal (resp. vertical) edges that form a connected union to be the same; we do not impose the same restriction here. 
Instead of studying Rs

mm′ from scratch, we use information from Rr
mm′ to considerably simplify the problem. In particular, in 

Section 4 we provide sufficient conditions that ensure that the dimension of Rs
mm′ can be computed combinatorially using 

local information only. The conditions are constructive in nature and have a simple geometric interpretation. Application of 
the results to both hierarchical and non-hierarchical T-meshes are presented in Section 5.

2. Preliminaries: splines, meshes and homology

This section will introduce the relevant notation that we will use for working with polynomial splines on T-meshes.

2.1. Splines on T-meshes

Definition 2.1 (T-mesh). A T-mesh T of R2 is defined as:

• a finite collection T2 of axis-aligned rectangles σ that we consider as open sets of R2 having non-zero measure, called 
2-cells or faces, together with

• a finite set T1 of closed axis-aligned segments τ , called 1-cells, which are edges of the (closure of the) faces σ ∈ T2, 
and

• the set T0, of vertices γ , called 0-cells, of the edges τ ∈ T1,

such that the following properties are satisfied:

• σ ∈ T2 ⇒ the boundary ∂σ of σ is a finite union of edges in T1,
• σ , σ ′ ∈ T2 ⇒ σ ∩ σ ′ = ∂σ ∩ ∂σ ′ is a finite union of edges in T1 ∪ T0, and,
• τ , τ ′ ∈ T1 with τ �= τ ′ ⇒ τ ∩ τ ′ ∈ T0.
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The domain of the T-mesh is assumed to be connected and is defined as � := ∪σ∈T2σ ⊂R2.

Sets of horizontal and vertical edges will be denoted by hT1 and vT1, respectively. Edges of the T-mesh are called interior 
edges if they intersect the interior of the domain of the T-mesh 

◦
�. Otherwise, they are called boundary edges. The set of 

interior edges will be denoted by 
◦
T1; and the sets of interior horizontal and vertical edges will be denoted by h

◦
T1 and v

◦
T1, 

respectively. Similarly, if a vertex is in 
◦
� it will be called an interior vertex, and a boundary vertex otherwise. The set of 

interior vertices will be denoted by 
◦
T0. We will denote the number of i-cells with ti := #Ti .

Assumption 2.2. The domain � is simply connected, and 
◦
� is connected.

A T-mesh which satisfies Assumption 2.2 will be said to be simply connected. We define Pmm′ as the vector space of 
polynomials of bi-degree at most (m, m′) spanned by the monomials sit j , 0 � i �m and 0 � j � m′ . If either of m or m′ are 
negative, then Pmm′ := 0. The final ingredient that we need for defining a spline space on T is a smoothness distribution on 
its edges.

Definition 2.3 (Smoothness distribution). The map r : T1 → Z�−1 is called a smoothness distribution if r(τ ) = −1 for all 
τ /∈ ◦

T1.

Using this notation, we can define the spline space Rr
mm′ that forms the object of our study. From the following definition 

and the definition of r, it will be clear that we are interested in obtaining highly local control over the smoothness of splines 
in Rr

mm′ , a feature that is missing from the existing literature which studies spline on T-meshes.

Definition 2.4 (Spline space). Given mesh T, bi-degree (m, m′) ∈Z2
�0, smoothness distribution r , we define the spline space 

Rr ≡Rr
mm′ (T) as

Rr
mm′(T) :=

{
f : ∀σ ∈ T2 f |σ ∈ Pmm′ , and ∀τ ∈ ◦

T1 f ∈ C r(τ ) smooth across τ

}
. (1)

From the above definition, the pieces of all splines in Rr are constrained to meet with smoothness r(τ ) at an interior 
edge τ ; we will also define

rh(γ ) := min
τ�γ

τ∈vT1

r(τ ) , rv(γ ) := min
τ�γ

τ∈hT1

r(τ ) .

We will use the following algebraic characterization of smoothness in this document. Proofs of this characterization can be 
found in several texts; e.g., see Chui (1988) and Billera (1988).

Lemma 2.5. For σ , σ ′ ∈ T2 , let σ ∩ σ ′ = τ ∈ ◦
T1 . A piecewise polynomial function equalling p and p′ on σ and σ ′ , respectively, is at 

least r times continuously differentiable across τ if and only if

�r+1
τ

∣∣ p − p′ ,

where �τ is a non-zero linear polynomial vanishing on τ .

In line with the above characterization and for each interior edge τ , we define Ir
τ to be the vector subspace of Pmm′ that 

contains all polynomial multiples of �r(τ )+1
τ ; when r(τ ) = −1, Ir

τ is simply defined to be Pmm′ . Similarly, for each interior 
vertex γ , we define Ir

γ := ∑
τ�γ Ir

τ .

Remark 2.6. In the above, we have suppressed the dependence of the different vector spaces on (m, m′) to simplify the 
reading (and writing) of the text.

2.2. Topological chain complexes

Any spline f ∈ Rr is a piecewise polynomial function on T. We can explicitly refer to its piecewise polynomial nature 
by equivalently expressing it 

∑
σ [σ] fσ with fσ := f |σ . This notation makes it clear that the polynomial fσ is attached to 

the face σ of T. Using this notation and Lemma 2.5, the spline space Rr can be equivalently expressed as the kernel of the 
map ∂ ,
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∂ : ⊕
σ∈T2

[σ]Pmm′ → ⊕
τ∈◦

T1

[τ]Pmm′/Ir
τ ,

defined by composing the boundary map ∂ with the natural quotient map.
As a result of this observation, the spline space Rr can be interpreted as the top homology of a suitably defined chain 

complex Qr ,

Qr : ⊕
σ∈T2

[σ]Pmm′
⊕

τ∈◦
T1

[τ]Pmm′/Ir
τ

⊕
γ ∈◦

T0

[γ]Pmm′/Ir
γ 0 .

In other words, we have

Rr ∼= ker
(
∂
) = H2(Q

r) .

As in Billera (1988); Schenck and Stillman (1997a) and Mourrain (2014), we will study Q using the following short exact 
sequence of chain complexes,

0 0

Ir : 0
⊕

τ∈◦
T1

[τ]Ir
τ

⊕
γ ∈◦

T0

[γ]Ir
γ 0

C : ⊕
σ∈T2

[σ]Pmm′
⊕

τ∈◦
T1

[τ]Pmm′
⊕

γ ∈◦
T0

[γ]Pmm′ 0

Qr : ⊕
σ∈T2

[σ]Pmm′
⊕

τ∈◦
T1

[τ]Pmm′/Ir
τ

⊕
γ ∈◦

T0

[γ]Pmm′/Ir
γ 0

0 0

(2)

The following result and its proof can be found in, for instance, Mourrain (2014). We include it here for completeness.

Theorem 2.7. For a simply connected T-mesh T2, the dimension of the spline space of bi-degree (m, m′) and smoothness distribution 
r is given by

dim
(
Rr) = χ

(
Qr) + dim

(
H0(I

r)
)
,

where H0(I
r) is the zeroth homology of the complex Ir and χ

(
Qr

)
is the Euler characteristic of the complex Qr ,

χ
(
Qr) = t2(m + 1)(m′ + 1)

− (m + 1)
∑

τ∈hT1

(min(r(τ ),m′) + 1) − (m′ + 1)
∑

τ∈vT1

(min(r(τ ),m) + 1)

+
∑
γ ∈T0

(min(rh(γ ),m) + 1)(min(rv(γ ),m′) + 1) .

Proof. Following Assumption 2.2, it is clear that H0(C) = 0 = H1(C). Moreover, from the long exact sequence of homology 
implied by the short exact sequence of complexes in Equation (2), we obtain

H0(Q
r) = 0 , H0(I

r) ∼= H1(Q
r) .

Therefore, the claim follows upon recalling Rr ∼= H2(Q
r) and the definition of the Euler characteristic of Qr ,

χ
(
Qr) = dim

(
Qr

2

) − dim
(
Qr

1

) + dim
(
Qr

0

)
,

= dim
(

H2(Q
r)

) − dim
(

H1(Q
r)

) + dim
(

H0(Q
r)

)
. �

Corollary 2.8. If dim
(

H0(I
r)

) = 0, then the dimension is stable and can be computed using the following (combinatorial) formula,

dim
(
Rr) = χ

(
Qr) .
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3. Spline space Rs ⊇ Rr of reduced regularity

In this intermediate section, we will relate the dimension of the spline space Rr to the dimension of a spline space Rs

obtained by relaxing the regularity requirements. That is, for all interior edges τ , it will be assumed that s(τ ) � r(τ ). This 
relationship will be utilized in the next section to present sufficient conditions for the dimension of Rs to be stable.

For the spline space Rs , let the first and last chain complexes in Equation (2) be denoted by Is and Qs , respectively. The 
spline space dimension is therefore given as below,

dim
(
Rs) = dim

(
H2(Q

s)
) = χ

(
Qs) + dim

(
H0(I

s)
)
. (3)

Then, by definition of the smoothness distributions r and s, we have the following inclusion map from Ir to Is ,

Ir ι−→ Is .

Proposition 3.1. If H0(I
r) = 0, then H0(I

s) ∼= H0(I
s/Ir).

Proof. The claim follows from the following short exact sequence of chain complexes (and the long exact sequence of 
homology implied by it),

0 Ir Is Is/Ir 0 . �
The previous result considerably simplifies the task of identifying when H0(Is) will vanish because H0(I

s/Ir) can be a 
simpler object to study. Let Ts

1 be the set of edges τ for which s(τ ) < r(τ ), and let Ts
0 be the set of interior vertices of the 

edges τ ∈ Ts
1. The following result follows.

Lemma 3.2. The complex Is/Ir is supported only on Ts
1 and Ts

0 .

Proof. The claim follows from the definition of the complexes Is and Ir . Indeed, if s(τ ) = r(τ ), then Is
τ = Ir

τ and the 
cokernel of ι is zero on τ ; similarly for the vertices. �
4. Dimension of splines of mixed smoothness

This section contains our main results. Starting from a spline space with stable dimension, we specify sufficient condi-
tions when the dimension can still be computed using Corollary 2.8 after the smoothness requirements are relaxed for a 
subset of the interior edges. We first define the weight of a connected union of horizontal or vertical edges.

Definition 4.1 (Segment and its weight). Let ρ ⊆ ◦
T1 ∪ T0 be a finite set of horizontal (resp., vertical) edges τ ∈ ◦

T1 together 
with their vertices γ ∈ τ , such that 

⋃
τ∈ρ

τ is connected and it contains at least one edge. Then ρ will be called a horizontal 

(resp., vertical) segment. Its weight ωr(ρ) will be defined as

ωr(ρ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
γ ∈ρ

(
m − rh(γ )

)
+ if ρ is horizontal ,

∑
γ ∈ρ

(
m′ − rv(γ )

)
+ if ρ is vertical .

Theorem 4.2. Let r be such that H0(I
r) = 0 and let ρ be a segment of the mesh. Consider the space Rs where the smoothness 

distribution s is defined as follows for some r ∈Z�−1 ,

s(τ ) =
{

r(τ ) for τ /∈ ρ ∩ ◦
T1,

r � r(τ ) for τ ∈ ρ ∩ ◦
T1.

If either one of the following two requirements is satisfied,

(a) ρ is horizontal and ωs(ρ) � m + 1; otherwise, ωs(ρ) � m′ + 1;
(b) ρ � ρ ′ for some segment ρ ′, and s(τ ) � r for all τ ∈ ρ ′

then H0(I
s) = 0 and dim

(
Rs

) = χ
(
Qs

)
.



6 D. Toshniwal, N. Villamizar / Computer Aided Geometric Design 80 (2020) 101880
Proof. By Lemma 3.2, the study of H0(I
s) reduces to the study of H0(I

s/Ir) on the segment ρ — an essentially one 
dimensional problem. We will provide the proof for when ρ is a horizontal segment as shown below; the proof for vertical 
segments is analogous. As shown, ρ contains the edges τ1, . . . , τk ∈ ◦

T1 and the vertices γ0, γ1, . . . , γk . By definition ρ
contains at least two different vertices.

Condition (a). Let us first prove the claim for the setting when ρ satisfies condition (a) above. Let �ρ be a non-zero linear 
polynomial that vanishes on ρ , and let �0, . . . , �k be non-zero linear polynomials that vanish on vertical edges that contain 
the vertices γ0, . . . , γk , respectively. Let r0, . . . , rk be such that ri = rh(γi) = sh(γi).

By definition, Is
τ = {

�r+1
ρ f : f ∈ Pm(m′−r−1)

}
. Since ωs(ρ) � m + 1 and the vertices γi are all different then, for any i �= j, 

there are polynomials f i , i = 0, . . . , k, such that 1 = ∑k
i=0 �

ri+1
i f i (Mourrain, 2014, Proposition 1.8). Thus we can write

Is
τ = �r+1

ρ

k∑
i=0

�
ri+1
i P(m−ri−1)(m′−r−1) .

Then, any element �r+1
ρ f in Is

γi
can be written as the sum of polynomials �r+1

ρ �
ri+1
i f i ∈ Is

γi
for some f i of degree � m −

ri − 1, i = 0, . . . , k. But H0(I
r) = 0 by hypothesis and �r+1

ρ �
ri+1
i f i ∈ Ir

γi
for all i. Hence, in the complex Is/Ir all [γi]Is

γi
/Ir

γi

are in the image of the boundary map. Therefore, H0(I
s/Ir) = 0 and the claim follows from Proposition 3.1.

Condition (b). Let us now look at the case when ρ satisfies condition (b). Without loss of generality, let ρ ′ � ρ be a segment 
such that γ0 lies in the interior of 

⋃
τ∈ρ ′

τ . Then, since s(τ ) � r for all τ ∈ ρ ′ , and since s and r differ only on the edge τ ∈ ρ , 

the vertex γ0 is zeroed out in the quotient Is/Ir . Then, for any 1 � i � k, any element �r+1
ρ f ∈ Is

γi
can be expressed in the 

image of the boundary map as

[γi]�r+1
ρ f = ∂

⎛
⎝ i∑

j=1

[τ j]�r+1
ρ f

⎞
⎠ ,

where �r+1
ρ f ∈ Is

τ j
for all 1 � j � k. This implies that H0(I

s/Ir) = 0 and the claim once again follows from Proposi-
tion 3.1. �
Remark 4.3. Theorem 4.2 discusses the dimension when the smoothness is reduced across a single segment of the mesh. 
Its successive applications can help us compute the dimension of a large class of splines on T with mixed smoothness.

Let us present an example application of Theorem 4.2 to a special space of splines called PHT-splines (Deng et al., 2008). 
Corollary 4.6 helps compute the dimension of PHT-splines of mixed smoothness; alternatively, Bernstein–Bézier techniques 
can be used to obtain the result.

Definition 4.4 ((m + 1, m′ + 1) smoothness distribution). The smoothness distribution r will be called an (m + 1, m′ + 1)

smoothness distribution if for all edges τ ∈ hT1 (resp., vT1), r(τ ) � (m′ − 1)/2 (resp., (m − 1)/2).

Theorem 4.5. Let r be an (m + 1, m′ + 1) smoothness distribution, and let s be any smoothness distribution such that s(τ ) � r(τ ) for 
all edges of T. If H0(I

r) = 0, then H0(I
s) = 0 and dim

(
Rs

) = χ
(
Qs

)
.

Proof. Since each interior edge is intersected by two transversal edges on its boundary, by the definition of r the weight of 
each interior edge satisfies condition (b) from Theorem 4.2. Therefore, we can move from the smoothness distribution r to 
s one edge at a time; at each stage, H0(I) = 0 and Theorem 4.2(b) will be applicable. �
Corollary 4.6 (PHT-splines of mixed smoothness). Let T be a hierarchical T-mesh and let r be an (m + 1, m′ + 1) smoothness distribu-
tion such that r(τ ) = r(τ ′) for all edges τ and τ ′ that belong to the same segment. Then, for any other smoothness distribution s as in 
Theorem 4.5, we have

dim
(
Rs) = χ

(
Qs) .

Proof. From Mourrain (2014), H0(I
r) = 0. Therefore, the claim follows from Theorem 4.5. �
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Fig. 1. The above figures correspond to the PHT-spline setting considered in Example 5.1. The smoothness required across each edge has been annotated 
in parentheses next to the edge label. Figure (a) shows the initial smoothness distribution, while Figure (b) shows the modified initial distributions; the 
modifications are limited to the edges labelled in blue. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this 
article.)

5. Examples

This section presents examples of settings where Theorem 4.2 applies, and also where it does not. In particular, we show 
that H0(I

s) can be non-trivial when the conditions of Theorem 4.2 are not met.

Example 5.1 (PHT-splines of mixed smoothness). Consider the PHT-spline space Rr
33 shown in Fig. 1(a). From Corollary 4.6, we 

can reduce the smoothness across any arbitrary edge and the dimension will still be given by the Euler characteristic of Qr . 
One such modification is shown in Fig. 1(b) where the smoothness across edges τ27, τ34, τ35 and τ36 have been reduced. 
The dimensions of the spaces can be easily computed to be the following,

dim
(
Rr) = 64 , dim

(
Rs) = 66 . �

Example 5.2 (Splines of mixed smoothness; hierarchical T-mesh). Consider the space of bi-cubic splines Rr
33 for the smoothness 

distribution shown in Fig. 2(a). In Figures (b)–(e), we successively reduce the smoothness across the edges labelled in blue 
while ensuring that the conditions of Theorem 4.2 are met. As a result, at each step of smoothness reduction, we have 
H0(I

si ) = 0, i = 0, . . . , 3. The dimensions of the corresponding spline spaces can then be easily computed using the Euler 
characteristics of complexes Qsi ,

dim
(
Rr) = 56 , dim

(
Rs0

) = 57 , dim
(
Rs1

) = 58 ,

dim
(
Rs2

) = 58 , dim
(
Rs3

) = 59 .

On the other hand, reducing the smoothness from Figure (a) to Figure (f) does not satisfy the conditions of Theorem 4.2. 
Indeed, for ρ = {τ30, τ37, γ17, γ20, γ25}, it can be verified that ωs4 (ρ) = 3 < m′ + 1 = 4. In this case, it can also be computed 
(using Macaulay2 (Grayson and Stillman), for instance) that dim

(
H0(I

s4 )
) = 1. �

Example 5.3 (Splines of mixed smoothness; non-hierarchical T-mesh). Consider the space of bi-cubic splines Rr
33 for the smooth-

ness distribution shown in Fig. 3(a). Note that in this case the T-mesh cannot be constructed hierarchically. Nevertheless, 
it is possible to use results from Li and Wang (2019) to verify that H0(I

r) = 0 and dim
(
Rr

) = χ
(
Qr

) = 64. Then, using 
Theorem 4.5, we see that we can reduce the smoothness across any subset of edges and maintain H0(Is) = 0 for the new 
smoothness distribution s. One such case has been shown in Fig. 3(b), and the corresponding dimension of the space is 
given by dim

(
Rs

) = χ
(
Qs

) = 71. �

Remark 5.4. As illustrated in the above examples, our results can be combined with others, e.g., Mourrain (2014) and Li and 
Wang (2019), to compute the dimensions of a very general class of spline spaces. While it is always possible to directly use 
the other methods for this task, one can easily find simple cases where our approach gives superior results.
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Fig. 2. The above figures correspond to the bi-cubic spline space considered in Example 5.2. The smoothness required across each edge has been annotated 
in parentheses next to the edge label. The smoothness distributions in Figures (b)–(f) differ from the one in Figure (a) only on the edges labelled in blue.
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Fig. 3. The above figures correspond to the setting considered in Example 5.3. The smoothness required across each edge has been annotated in parentheses 
next to the edge label. Figure (a) shows the initial smoothness distribution, while Figure (b) shows the modified initial distributions; the modifications are 
limited to the edges labelled in blue.

For instance, as commented earlier, the approach of Mourrain (2014) works best when the smoothness across all con-
nected horizontal (resp. vertical) edges is the same. Using the same terminology as in Mourrain (2014), define maximal 
segments as maximal connected unions of parallel edges with the same smoothness. Let us denote these maximal segments 
with the symbol λ. Then, as shown in Mourrain (2014), the homology term H0(I) can be described solely in terms of max-
imal segments. In fact, only maximal segments that do no intersect the mesh boundary may contribute to the dimension 
of H0(I). Let us apply this approach to the spline space corresponding to Fig. 2(c) — the corresponding interior horizontal, 
interior vertical and boundary maximal segments have been displayed as thick red, blue and black lines, respectively, in the 
figure on the right. The smoothness across each maximal segment has been annotated in parentheses next to its label.

Then, only the red and blue maximal segments λi , 1 � i � 6, will contribute to H0(I); all black maximal segments 
labelled as λ∂ will not contribute as they intersect the boundary (Mourrain, 2014). Therefore, upon ordering the λi in the 
following manner,

λ5 � λ6 � λ3 � λ2 � λ4 � λ1 ,

and following the proof of (Mourrain, 2014, Theorem 3.7), the bounds on the dimension of the spline space simplify to

0 � dim H0(I) � (m′ + 1 − ω(λ1))(m
′ − r(λ1)) = (3 + 1 − 1)(3 − 0) = 9 .

In contrast, as shown in Example 5.2, our approach allowed us to show that dim H0(I) = 0.

6. Conclusions

Smooth polynomial splines are immensely versatile and are routinely utilized for challenging applications in, for in-
stance, geometric modelling and computational analysis. However, certain tasks also require working with splines of reduced 
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smoothness, at least locally; e.g., geometric objects containing C0 feature lines, solutions to physical problems that show 
localized discontinuities. Local control over the smoothness can be very beneficial in such cases and can lead to great im-
provements in the quality of the output. In this paper we have studied the dimension of bi-degree splines on T-meshes 
when different orders of smoothness are required across different mesh edges. Reducing the problem to an essentially uni-
variate problem, we have provided sufficient conditions that ensure that the dimension can be combinatorially computed 
using only local information. The conditions are constructive in nature and have simple geometric interpretation. A forth-
coming paper will focus on the construction of a normalized B-spline-like basis for such spline spaces.
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