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A B S T R A C T

In order to overcome the shortcomings of crash data a number of surrogate measures of safety have been de-
veloped and proposed by various researchers. One of the most widely used temporal indicators is time-to-col-
lision (TTC) which requires the road users to be on a collision course. Road users that are strictly speaking not on
a collision course actually might behave and take evasive actions as if they were, thus indicating that such near-
miss situations might also be relevant for safety analysis. Taking that into account, a more flexible indicator T2,
which does not require the two vehicles to be on a collision course, describes the expected time for the second
road user to arrive at the conflict point.

Recently extreme value theory (EVT) offering two approaches, block maxima (BM) and Peak over Threshold
(POT), has been applied in combination with surrogate indicators to estimate crash probabilities. Most of this
research has focused on testing BM and POT as well as validating various surrogate safety indicators by com-
paring model estimates to actual crash frequencies. The comparison of collision course indicators with indicators
including crossing course interactions and their performance using EVT has not been investigated yet. In this
study we are seeking answers to under what conditions these indicators perform better and whether they are
transferable. Using data gathered at a signalized intersection focusing on left-turning and straight moving ve-
hicle interactions our analysis concluded that the two indicators are transferable with stricter threshold values
for T2 and that POT gives more reasonable results.

1. Introduction

In this section we provide a literature review on surrogate measures
of safety focusing on two particular indicators time-to-collision (TTC)
and T2, give an introduction to extreme value theory as well as specify
the research gap and questions.

1.1. Role of surrogate measures of safety

To improve traffic safety and to make sure that it is done in an
efficient way, one has to be able to quantify safety in order to support
evidence-based policy making. The most plausible way to evaluate
safety is investigating the occurrence and severity of crashes using
historical data. This approach however has a number of limitations
(Tarko et al., 2009): accidents are rare events (Hauer, 1997) associated
with the random variation inherent in small numbers (Svensson and

Hydén, 2006), at least 3 years of observations are needed (Nicholson,
1985) and thus safety analysis based on crash records is a reactive
approach, accident records are prone to underreporting, and finally
data quality is not always sufficient.

In order to overcome the above limitations the use of non-crash
events have gained a lot of attention especially due to the rapid im-
provement of sensing technologies facilitating the collection of trajec-
tory data. Already 30 years ago Hydén (1987) pointed out that the
interaction between road users can be described as a continuum of
safety related events. In Hyden's safety pyramid crashes as the rarest
events are followed by conflicts of different levels of severity (serious,
slight and potential). These are critical events that do not result in a
crash but are very close to that and can be used as surrogate safety
measures (Tarko et al., 2009). Below the conflicts the majority of events
are undisturbed passages or normal traffic processes (Laureshyn et al.,
2010). This pyramid also shows how few and exceptional accidents are
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that we usually base our safety estimates on Svensson and Hydén
(2006).

With regard to the shape of the severity hierarchy Svensson (1998)
made an important suggestion that it is not necessarily a pyramid. She
proposed a diamond-shape based on the frequency of pedes-
trian–vehicle conflicts observed at signalized and unsignalized inter-
sections. The idea behind the diamond shape is that at a particular site
the majority of the interactions will be of moderate severity. Tarko
(2012) also noted that this was the first evidence proving that there is a
heterogeneity in the frequency-severity relationship due to the type of
road facility influencing traffic conflicts. Other conditions, such as ve-
hicle type, road users, collision angle and speed (Laureshyn et al., 2010)
but also weather may affect this relationship.

It has to be noted, however, that Svensson limited the events in the
hierarchy only to interactions with a collision course (Svensson, 1998;
Svensson and Hydén, 2006). A very important implication of this is that
even low-severity interactions should be utilized because they may
carry useful safety information (Tarko, 2012). This statement is highly
relevant as interactions with severe conflicts usually come with low
frequencies.

In an attempt to apply Svensson's reasoning later on a few re-
searchers tried to adapt it by broadening the concept of traditional
approaches. In Canada St-Aubin et al. (2015) for instance developed an
approach called probabilistic surrogate measures of safety (PSMS) with
a more general framework for safety analysis considering all possible
paths that may lead two road users to collide. The novelty of this ap-
proach is relaxing the traffic conflict by allowing a non-zero risk of
collision for road users who are not on a collision course (Tarko, 2012).

Following the same reasoning Laureshyn et al. (2010) suggested a
new indicator called T2 broadening the concept of the most common
nearness-to-collision surrogate measure of safety, time-to-collision
(TTC). TTC can be calculated for any moment as long as the road users
are on a collision course and defined as “the time until a collision be-
tween the vehicles would occur if they continued on their present
course at the present rates” (Hayward, 1972). The lowest TTC value
during the interaction, abbreviated as TTCmin, is the most commonly
used indicator. The supplementary indicator proposed by Laureshyn
et al. (2010) measures the expected time that it takes for the second
road user to arrive at the potential collision point, hence it is called T2.
The logic behind this indicator is that TTC assumes the two road users
to be on a collision course, which however sets a limitation to the si-
tuations to be considered in safety analysis. Laureshyn et al. (2017)
argued that encounters without a collision course might have crash
potential as well due to the possibility of minor changes in the spatial or
temporal relationship between road users.

T2 tells more about safety since the arrival at the potential collision
point is the very last necessary condition for a collision to occur and it
provides a smooth transfer between the collision course and crossing
course situations (Laureshyn et al., 2017). T2 assumes unchanged
speeds and planned trajectories. If the road users are on a collision
course, T2 equals TTC. In the event that the two road users pass the
conflict point with a time margin, T2 reflects the maximum time
available to take evasive actions and alleviate the severity of the si-
tuation. T2 is no longer calculated after the first road user has left the
conflict zone (since the crash is no longer possible) (Laureshyn et al.,
2017). T2 is a similar indicator to TTC in the sense that it is also con-
tinuous, therefore can be calculated for any time instance. The last
possible value is when the first road user leaves the potential conflict
area (the same as post encroachment time – PET). An alternative value
is T2min which shows the moment when the two vehicles are closest in
time. These two values can be different in case of significant speed
changes.

Researchers testing the validity of traffic conflicts have tried to link
historical crash data with conflict frequencies. These analyses lead to
inconclusive results, as some studies could confirm a relationship, some
could not.

Tarek and Sany (1999) for instance arrived at the conclusion that
there is statistically significant relationship between crashes and con-
flicts. They identified a determination coefficient (R2) in the range of
0.70–0.77 at signalized intersections. Notwithstanding, this approach is
still hampered by the fact that accident data are inaccurate, thus finding
a good correlation has a limited power. Zheng et al. (2014) also em-
phasized that the application of regression models is limited due to
three reasons:

• the incorporation of crash counts suffers from the same quality is-
sues as traditional road safety analysis;

• the stability of crash-to-surrogate ratio is difficult to ensure espe-
cially when mixing surrogates of varied severity levels;

• the statistical relationship between counts of crashes and surrogates
hardly reflects the physical nature of crash occurrence.

An alternative approach to the traditional regression analysis
without using observed crash counts was first proposed by
Songchitruksa and Tarko (2006) based on the extreme value theory
(EVT). An important feature of the EVT is that it enables the researcher
to model the stochastic behavior of unusually large or small processes.
This extreme behavior is typically very rare and unobservable within a
reasonable data collection time period. It often involves estimating the
probability of extreme events over an extended period of time given
very short and limited historical data (Songchitruksa and Tarko, 2006).
The key assumption of EVT is that the underlying stochastic behavior of
the process being modeled is sufficiently smooth to enable extrapola-
tions to unobserved levels (Coles, 2001). A general introduction to EVT
can be found in the next subsection.

1.2. Extreme value theory

Extreme value theory offers two approaches to sample extreme
events, in this case near-crashes, the block maxima (BM) (or minima)
using Generalized extreme value distribution (GEV) and the Peak over
Threshold (POT) using Generalized Pareto distribution (GPD). In the
former case the method divides the sample time into blocks of a certain
length and samples the largest value (or r largest values) in each block,
whereas in the latter case all peak values are sampled and the values
over a certain threshold are used to model the extremes.

EVT models based on the block maxima approach focus on the be-
havior of

= …M X Xmax{ , , },n n1 (1)

where X1,…,Xn is a sequence of independent random variables having a
common distribution function F, Mn represents the maximum of the
process over n time units of observation. The distribution of Mn can be
derived as Pr{Mn⩽ z}= {F(z)}n. The function of F is unknown and to
look for Fn a similar approach to the central limit theorem can be used,
by allowing a linear renormalization of the variable Mn (Eq. (2)):

= −M M b
a

* ,n
n n

n (2)

where {an > 0} and {bn} are constants for which the appropriate va-
lues have to be found.

According to the extremal types theorem

⎧
⎨⎩

− ⩽ ⎫
⎬⎭

→ → ∞M b
a

z G z nPr ( ) as ,n n

n (3)

where G belongs to one of the three families: Gumbel, Frechet or
Weibull.

The rescaled sample maxima M*n converge to a variable having a
distribution within one of the above three families. All the three types
have both a location (b) and a scale (a) parameter. The Frechet and
Weibull distributions also have a shape (α) parameter. These distribu-
tions can be generalized into a single distribution function (Eq. (4)):
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defined on the set {z : 1+ ξ(z− μ)/σ > 0}, where −∞ < μ < ∞,
σ > 0 and −∞ < ξ <∞. The three parameters that have been al-
ready mentioned before are the location parameter (μ), the scale
parameter (σ), and the shape parameter (ξ). The distribution function
itself determines the value of the shape parameter and vice versa. If
ξ > 0, the model corresponds to a Frechet distribution; if ξ < 0, a
Weibull distribution; and if ξ=0, a Gumbel distribution.

Block maxima is criticized to be a wasteful approach as only the
maximum value is used from each block, thus not considering other, but
possibly still extreme values. Possible solutions to solve this issue is
using the so-called r largest order statistic model (e.g. using the largest
5 observations) or by modeling threshold excesses. The latter one is the
Peak over Threshold approach, in which observations over a certain
threshold are selected and treated as extremes.

Using the GEV distribution for large enough threshold u, the dis-
tribution function of (X− u), conditional on X > u (Eq. (5)), is ap-
proximately

⎜ ⎟= − ⎡
⎣⎢

+ ⎛
⎝

− ⎞
⎠

⎤
⎦⎥

−

H x ξ x u
σ

( ) 1 1 ,
u

ξ1/

(5)

where u is a high threshold, x > u, scale parameter σu > 0 (depending
on threshold u), and shape parameter −∞ < ξ <∞.

The distribution family given in Eq. (5) is called the generalized
Pareto family, in other words, threshold excesses have a generalized
Pareto distribution (GPD) with two parameters, the shape ξ and the
scale σ parameters (using the same notation as in GEV). Just like with
GEV, the shape parameter ξ determines the behavior of the GPD. If
ξ < 0 the distribution has an upper bound of u− σ/ξ; if ξ > 0 there is
no upper limit. If ξ=0, then Eq. (5) simplifies to an exponential dis-
tribution function.

1.3. Research gap and questions

Extreme value theory is a promising tool to evaluate safety using
surrogate safety measures. Most of the research that has been done so
far focused on testing the method and validating various surrogate
safety indicators by comparing model estimates to actual crash fre-
quencies (Songchitruksa and Tarko, 2006; Farah and Azevedo, 2015;
Zheng et al., 2014; Jonasson and Rootzén, 2014; Cavadas et al., 2017;
Åsljung et al., 2016; Wang et al., 2018). However, less or no attention
was paid to the comparison of various conflict indicators and their
performance using EVT, especially the comparison of collision course
indicators with indicators including crossing course interactions as
well. In this research we investigated under what conditions these in-
dicators perform better and whether they are transferable. To that end
two research questions were formulated as follows:

1. What difference is there between the two indicators TTCmin and
T2min when analyzing safety using EVT and are these indicators
transferable?

2. Which EVT approach (BM or POT) under what circumstances per-
forms better for TTCmin and T2min (e.g. sensitivity to sample size)?

2. Data

In this section data collection is briefly described as well as de-
scriptive statistics is provided.

2.1. Data collection

A regular signalized intersection with two-phases in Minsk (Belarus)
was analyzed (53°54′39. 1″N; 27°35′44. 4″ E). The intersection was

recorded for two days (from 6 AM till 9 PM). The video footages of two
cameras set on rooftops were then analyzed in the software T-Analyst
(2016) allowing the manual tracking of vehicles as well as the calcu-
lation of various surrogate measures of safety such as TTC, T2, PET. The
dataset was provided by Lund University and has already been used in
other publications such as in Laureshyn et al. (2017).

Accident data were gathered for 11 years (1999–2009) before the
video recordings were made. Altogether 32 accidents were recorded,
out of which 5 were due to the collision of left turning and straight
going vehicles. The severity of all the recorded accidents were property
damage only. As this type of severity is the most heavily prone to un-
derreporting, unfortunately this historical accident dataset can be used
for validation with certain limitations. In the course of video recordings
no accidents were observed.

2.2. Descriptive statistics

Altogether 2749 interactions were detected. A subset of situations
involving a vehicle making a left turn in front of an oncoming vehicle
from the opposite direction was created (n=792). Whenever an in-
dicator cannot be calculated the software indicates −1 as entry (e.g. if
the two vehicles are not on a collision course there is no value for
TTCmin). These entries were not considered when compiling the de-
scriptive statistics. All the statistical analyses were done in R (R Core
Team, 2013).

Table 1 shows the descriptive statistics for the two indicators TTCmin

and T2min.
Cumulative distribution functions of T2min and TTCmin are shown in

Fig. 1 for values smaller than 20 s. This figure reveals that the cumu-
lative distribution function for TTCmin is less steeper than that of T2min

showing that the observed TTCmin values are more spread out and that
the share of observations in the lower range (between 0 and 5 s) is
smaller than for T2min.

The underrepresentation of TTCmin compared to T2min is due to the
nature of these indicators, as TTCmin can be measured only for collision
course interactions, whereas T2min can be measured for both collision as
well as crossing course interactions.

3. Models and results

In this study both EVT approaches are applied to the above pre-
sented dataset. As for the block maxima approach each interaction can
be considered as a block in which the minimum values of T2 and TTC
are used. In the Peak over Threshold approach a threshold has to be
selected over which all the values are considered. In order to study the
extreme events in both cases the negated values of observations are
used (i.e. the minima instead of maxima).

3.1. Block maxima approach

Since the minimum values are determined per interaction for both
indicators, they can also be high and therefore irrelevant occurrences
(e.g. a TTCmin value of 10 seconds cannot be considered as a near-crash,
hence an extreme value). Therefore a preliminary step of selecting the

Table 1
Descriptive statistics.

Indicator TTCmin T2min

Sample size 194 792
Min 0.79 0.06
Max 182.50 35.12
Mean 6.45 3.61
Stdev 14.25 2.22
Skewness 10.83 5.49
Kurtosis 123.76 61.25
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near-crash events is needed, which can be considered as “subsampling
of maxima” (Jonasson and Rootzén, 2014).

Mahmud et al. (2017) gave an overview of minimum and desirable
TTC threshold values from a selection of studies for different condi-
tions. As far as signalized intersections are concerned Mahmud et al.
(2017) did not indicate any minimum values, however he cited two
references (Huang et al., 2013; Sayed et al., 2013) where desired values
of 1.6 and 3 s were given.

Taking 3 s as a threshold value for near-crashes would only result in
15 observations for TTCmin. Based on what the literature suggests and
the observed values near-crashes were selected using a threshold value
of 3.5 s for the first run. The above problem does not hold for T2min

thanks to its bigger sample size, but for the sake of comparability the
same threshold value was applied for the first run. The results of these
two model runs were evaluated in detail and followed by several other
runs using different threshold values for near-crash situations.

Table 2 gives a summary of the model results of the fitted GEV
models.

As for a value of TTCmin < 3.5 s the 95% confidence intervals of the
shape parameter does not include zero, thus we can accept the Frechet
distribution as the shape parameter is greater than zero.
Notwithstanding, a greater accuracy for the confidence intervals is
usually attained by the profile likelihood, which yielded similar results.

Substituting the model estimates into the GEV function (Eq. (4))
using a given value for z one can calculate its probability. We are in-
terested in the probability of crash occurrence, that is, when
TTCmin < 0 (z=0 in Eq. (4)). As for a near-crash value of
TTCmin < 3.5 s this calculation yields the probability of 0.0733
(1−G(z)).

Using a given return level z one can also obtain the return period,
which is 1/p. This means that the level z is expected to be exceeded on
average once every 1/p. If each block corresponds to one year, then the

Fig. 1. Cumulative distribution functions of T2min and TTCmin (< 20 s).

Table 2
Results of GEV for TTCmin and T2min with different thresholds for near-crash situations.

Indicator TTCmin < 3.5 s TTCmin < 4 s TTCmin < 4.5 s TTCmin < 5 s

Sample size 31 48 76 100
Location parameter μ −3.336 −3.552 −3.977 −4.277
Scale parameter σ 0.230 0.378 0.466 0.605
Shape parameter ξ 1.099 0.327 0.244 0.087
Shape p. lower bound of conf. int. 95% 0.193 0.010 −0.024 −0.109
Shape p. upper bound of conf. int. 95% 2.004 0.644 0.513 0.284
Probability of crash TTCmin < 0 0.073 0.014 0.010 0.004
Return period TTCmin < 0 13.65 73.92 101.04 246.57
Kolmogorov–Smirnov test p-value 0.826 1 0.974 0.994

Indicator T2min < 3.5 s T2min < 3 s T2min < 2.5 s T2min < 2 s

Sample size 443 341 232 130
Location parameter μ −2.674 −2.382 −2.050 −1.712
Scale parameter σ 0.615 0.473 0.352 0.246
Shape parameter ξ −0.130 −0.045 0.026 0.166
Shape p. lower bound of conf. int. 95% −0.211 −0.150 −0.098 −0.031
Shape p. upper bound of conf. int. 95% −0.047 0.059 0.150 0.364
Probability of crash T2min < 0 0.002 0.003 0.004 0.010
Return period T2min < 0 596.02 302.40 226.10 101.96
Kolmogorov–Smirnov test p-value 0.589 0.537 0.982 0.992
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return period can be interpreted in years; in this particular case each
block is an individual near-crash interaction. Using the previously
calculated probability of crash occurrence (0.0733) one can calculate
the return period, which is 1/0.0733=13.65. In other words one out of
every 14 near-crash interactions (with a TTCmin smaller than 3.5 s) will
result in a crash.

The analysis revealed that the 3.5 s as a threshold value for near-
crash situations lead to unsatisfactory model results and irrationally
high crash probability. This is due to the combined effect of practical as
well as statistical reasons. The initially small sample size of TTCmin is
due to the fact that we are looking at left turning and straight moving
vehicle interactions, where in many cases TTC cannot be interpreted
due to stopped left-turning vehicles waiting for straight moving ones to
pass. From a statistical point of view the small sample size results in
unreliable extrapolation and large variance.

For the above reasons several models were tested using different
threshold levels for the pre-selection of near-crash situations. The
threshold was gradually increased with a 0.5 s increment. Diagnostic
plots revealed that by increasing the near-crash threshold the model fit
improves gradually, Fig. 2 shows the results using 5 s as a threshold for
near-crash situations.

With the help of these diagnostic plots – probability, quantile, re-
turn level and density plots – one can check the goodness of the model.
The probability plot is a comparison of the empirical and fitted dis-
tribution functions, in the quantile plot their quantiles against each
other are plotted. Both can be visually checked, if in both cases the
points are sufficiently close to linearity, the model can be accepted. An
example of a good fit is shown for TTCmin (near-crash threshold<5 s)
in Fig. 2. The density plot is a comparison of the probability density
function of the fitted model with the histogram of the data; in this case
this plot also shows consistency. The return level plot (return periods
vs. return levels) also shows observed values (dots) as well as model-
based estimation (line) along with confidence bounds. What we are
interested in is the return period associated with the return level when a
temporal indicator is equal to zero. The shape of the curve also in-
dicates the type of distribution, which is Frechet since ξ > 0.

In order to further investigate the probability plot and to compare
the fitted and the empirical distributions, a Kolmogorov–Smirnov test
was used, of which the null hypothesis is that the sample is drawn from
the fitted distribution. As the p-values are greater than 0.05 we cannot
reject the null hypothesis that our sample deviates from the GEV dis-
tribution.

From Table 2 it can also be seen that as the near-crash threshold
increases (resulting in bigger sample size) the shape parameter con-
verges to zero. With 4.5 s threshold the 95% confidence intervals in-
clude zero. Setting the shape parameter to zero the Gumbel distribution
can be fitted and an analysis of deviance between the two models can
reveal whether it is more appropriate (Penalva et al., 2013). The results
obtained for 3.5, 4, and 4.5 s showed significant differences between
the two models, however, for 5 s there was no significant difference so
the Gumbel model with two parameters is a good choice for modeling
these data.

As for T2min further steps in model checking are just the opposite as
compared to those of TTCmin. As previously noted, for a critical value of
near-crash situations the literature actually suggests a lower threshold
than 3.5 s, as low as 1.5 s. Thus, it is interesting to check how the model
fit and output values change as we gradually decrease the near-crash
threshold level. In Table 2 the shape of the distribution changes from a
Weibull (ξ<0) to a Frechet (ξ > 0) as the near-crash threshold levels
as well as the sample sizes decrease. Crash probability is gradually in-
creasing by decreasing near-crash thresholds. At a near-crash threshold
of 2 s a crash probability of 0.0098 is calculated associated with a re-
turn level of 101.96 meaning that one crash would happen out of 102
near-crash interactions. The model fit associated with the 2 s near-crash
threshold still gave acceptable results. The Kolmogorov–Smirnov tests
gave the same results as for TTCmin for all the thresholds.

3.2. Peak over Threshold

The POT approach offers a different solution to modeling extreme
events. It is necessary to choose a threshold over which extreme events
are considered. “It is important to choose a sufficiently high threshold

Fig. 2. Diagnostic plots for GEV fit to TTCmin (near-crash threshold< 5 s).
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in order that the theoretical justification applies thereby reducing bias.
However, the higher the threshold, the fewer available data remain.
Thus, it is important to choose the threshold low enough in order to
reduce the variance of the estimates.” (Gilleland and Katz, 2016).

There are basically two methods for selecting the appropriate
threshold:

• Mean residual plot: this plot shows the mean of the excesses de-
pending on the value of the chosen threshold level u. Above a cer-
tain value the GPD provides a valid approximation to the excess
distribution (Coles, 2001). Here a threshold has to be selected where
the graph is linear within uncertainty bounds. This is, however, not
always straightforward, and based on a subjective choice.

• Model estimation: the model is estimated at a range of threshold
values with the intention to find stable model parameters. Again,
above a certain level of u the GPD is valid, if estimates of the shape
parameter ξ are constant, while estimates of the scale parameter σ is
linear in u. This point can be read from the plot by checking line-
arity, in other words estimates will not change much within un-
certainty bounds, as the threshold increases.

As for negated TTCmin the lowest threshold where the mean residual
plot becomes linear within uncertainty bounds is a value around −4 s
(Fig. 3). The parameter estimates against thresholds also show rela-
tively stable results for the selected value (Fig. 4). The GPD model re-
sults are given in Table 3. The shape parameter ξ is below zero resulting
in a convex return level plot with a finite upper bound. To check the
goodness of the model the same diagnostic plots as for the block
maxima approach (probability, quantile, return level and density plots)
as well as the Kolmogorov–Smirnov tests were used.

The probability of crash occurrence, namely when TTCmin is smaller
than zero, can be calculated using Eq. (6) substituting the model
parameters ξ and σ, as well as the threshold u=−4 and x=0. This
calculation yields a crash probability of 0.00017. The return period
associated with TTCmin < 0 is 5884.8 (1/0.00017), meaning that one
out of 5885 near-crash interactions results in a crash:

> > = ⎡
⎣

+ ⎛
⎝

− ⎞
⎠

⎤
⎦

−
X x X u ξ x u

σ
Pr{ | } 1

ξ1/

(6)

As for negated T2min a different threshold was chosen, both the mean
residual plot and the plots of parameter estimates against thresholds
(these are not presented here) suggest a threshold of −2 s to be used.
The crash probability associated with this model (T2min < 0) is
0.00055 and the return period is 1807.3 (1/0.00055), meaning that one
out of 1807 near-crash interactions results in a crash.

The GPD diagnostic plots suggested a reasonable model fit in both

cases, also the Kolmogorov–Smirnov tests were not significant and thus
we could not reject that the samples deviate from the GPD distribution.
However the return level plot showed that as the return period in-
creases the return level confidence bounds tend to be wider for TTCmin

than for T2min meaning that the prediction of unobserved extreme va-
lues comes with less uncertainty for the latter.

4. Discussion and limitations

Modeling results are summarized in Table 4. Applying the POT
approach seems to give more reasonable results in terms of crash
probabilities and return periods, which were in the hundreds with BM
but in the thousands with POT. If we accept a few assumptions we can
attempt to validate these probabilities. These assumptions are as fol-
lows:

• the number of interactions used in the analysis (194 for TTCmin and
792 for T2min) was all the interactions observed in the 2-day period
between 6 AM and 9 PM, and no interactions were left out;

• the observation period (6 AM–9 PM) is a good representation of the
entire day and accidents did not happen outside this time period;

• accident data provided are accurate, namely 5 crashes due to the
collision of left turning and straight going vehicles in a 11-year
period, which is approximately 800 days/accident occurrence (one
accident happened in 800 days on average).

Accepting the above assumptions and comparing the model results
we can actually state that indeed the POT results are much closer to the
actual crash frequency. The POT model for TTCmin (245.20 days/acci-
dent) gives the best prediction, especially if we accept the assumption
that property damage accidents are in general underreported.
Validation results also show that T2min tends to overestimate crash
frequencies, e.g. for POT T2min estimated one crash in every 28 days,
which value was more realistic (245) for TTCmin.

The above results also illustrate that the near-crash threshold value
affecting sample size is a critical issue, especially with the BM ap-
proach. Fig. 5 illustrates this by further refining near-crash threshold
values. Here the block maxima approach was used and sub-samples
were created using near-crash threshold values by using a 0.05 incre-
ment. As for T2min 75 models were fitted for near-crash values ranging
from 1.3 to 5 s and for TTCmin 31 models were fitted for near-crash
values ranging from 3.5 to 5 s. Crash probabilities were calculated for
all the models. As the sub-sampling near-crash threshold increases,
sample sizes become bigger resulting in better model fits, even though
with less pragmatic near-crash thresholds.

Fig. 5 also illustrates that for different near-crash thresholds dif-
ferent crash probabilities are predicted for the two indicators. As we are

Fig. 3. Mean residual plot for TTCmin.
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analyzing two indicators of different nature (a collision course (TTCmin)
and a crossing course (T2min) indicator), it is worth investigating for
what near-crash threshold values would they predict similar crash

probabilities, in other words whether there is transferability in between
them. This would provide further insight into the applicability of col-
lision and crossing course indicators. Based on the results shown in
Fig. 5 threshold values were selected for which both indicators yielded
the most similar crash probability (i.e. the difference between the
predicted crash probabilities was marginal). This plot (Fig. 6) actually
describes the relationship between these two indicators, saying under
what near-crash thresholds we receive almost the same crash prob-
ability. There is some fluctuation in the graph, but the pattern clearly
shows that for T2min lower near-crash thresholds than compared to
TTCmin would yield the same crash probability (e.g. 5 s for TTCmin and
2.5 s for T2min). A Pearson correlation test was used to determine how
strong the relationship is. This test was highly significant (p-
value= 8.96e−14) and indicated a strong correlation (0.93).

As every research, this one also comes with certain limitations, the
most important of those are summarized below.

The basis of the analysis was a dataset collected in Minsk, Belarus.
All the data came from one location, thus cross comparison in between
different locations was not possible. Using several locations can actually
give an added value, Zheng et al. (2018) for instance used 16 merging
areas and could also provide a comparison of models across these

Fig. 4. Parameter estimates against threshold for TTCmin.

Table 3
Results of GPD for TTCmin and T2min.

Indicator Scale σ Shape ξ

TTCmin Sample size 48
Estimated parameter 0.970 −0.199
Standard error 0.180 0.120
Lower bound of confidence interval 95% 0.617 −0.436
Upper bound of confidence interval 95% 1.323 0.036
Log-likelihood 36.953
Kolmogorov–Smirnov test p-value 0.997

T2min Sample size 130
Estimated parameter 0.585 −0.246
Standard error 0.060 0.058
Lower bound of confidence interval 95% 0.467 −0.360
Upper bound of confidence interval 95% 0.703 −0.132
Log-likelihood 28.244
Kolmogorov–Smirnov test p-value 0.992
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locations. The observation periods at these locations were quite short
(56-88 minutes) and the authors admitted that this short time frame can
hardly claimed to be representative for a five-year period for which
accident data was gathered for validation. Nevertheless, similar to
Zheng et al. (2018) the authors argue that “the estimated number of
crashes can still provide some reference for model evaluation”. In the
current research one location with data for two days was used
(6 AM–9 PM), which is in some sense more representative, even though
estimated results were compared with accident data gathered for an
eleven-year period.

Besides being representative in terms of the length of time period
analyzed it can also be questioned whether the results based on ob-
servations in Minsk can be generalized or they are location specific. The
transferability of these results to other locations depends on many
factors, such as geometric features of intersections (e.g. size, channe-
lization) and road user behavior (e.g. priority giving or surrendering
attitude, gap acceptance).

The type of interaction analyzed was exclusively left-turning vs.
straight moving vehicle to vehicle interactions. The results gained in
this research are therefore restricted and applicable to this interaction
type only.

Probably the most important limitation was the uncertainty of va-
lidation, which was possible along with certain assumptions. Even if
accident data are available one has to be cautious about its accuracy,
especially if mostly low severity or property damage accidents are
present (underreporting).

Table 4
Summary of results of GEV and GPD for TTCmin and T2min.

Method Indicator (threshold) Probability Probability of crash Return period Sample (2 days) Days per accident

BM TTC (< 3.5 s) Pr{TTC < 0|TTC< 3.5} 0.0733 13.65 31 0.88
TTC (< 4 s) Pr{TTC < 0|TTC < 4} 0.0135 73.92 48 3.08
TTC (< 4.5 s) Pr{TTC < 0|TTC < 4.5} 0.0098 101.04 76 2.66
TTC (< 5 s) Pr{TTC < 0|TTC < 5} 0.0040 246.57 100 4.93
T2 (< 2 s) Pr{T2 < 0|T2 < 2} 0.0098 101.96 130 1.57
T2 (< 2.5 s) Pr{T2 < 0|T2 < 2.5} 0.0044 226.10 232 1.95
T2 (< 3 s) Pr{T2 < 0|T2 < 3} 0.0033 302.40 341 1.77
T2 (< 3.5 s) Pr{T2 < 0|T2 < 3.5} 0.0016 596.02 443 2.69

POT TTC (< 4 s) Pr{TTC < 0|TTC < 4} 0.00017 5884.80 48 245.20
T2 (< 2 s) Pr{T2 < 0|T2 < 2} 0.00055 1807.26 130 27.80

Fig. 5. Results of block maxima approach for a sequence of threshold values.

Fig. 6. Temporal indicators with similar crash probabilities.
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5. Conclusions

As for the two EVT approaches it can be concluded that overall
applying the POT approach seemed to give more reliable and pragmatic
results. When applying the block maxima approach the selection of
near-crash situations as a sub-sampling step proved to be a critical
issue. As for TTCmin the question was to which level the near-crash
threshold should be increased to have a reasonable model fit, whereas
for T2min to which – from a traffic a safety point of view – more rea-
sonable level can we decrease the near-crash threshold in such a way
that we still have a good model fit.

In the former case with TTCmin increasing the near-crash threshold
resulted in better model fits, however from a traffic safety point of view
these high thresholds cannot actually be considered as near-crash
events. In the latter case with T2min the threshold value could be further
decreased with the disadvantage of slightly less well performing
models. Obviously there is a trade-off between a good model fit and
reasonable threshold values.

Judging which indicator is better could be done by validation using
a proper accident dataset which was unfortunately not at hand for this
study, which is a limitation. Notwithstanding, it has to be noted that
this is not an exceptional case, and even with available historical data
its applicability can be questioned in general (for reasons associated
with the drawbacks of accident records already outlined previously). A
judgment can only be done by considering the rationalism of crash
probabilities, return periods, goodness of the models and by using the
available accident data for validation along with a few assumptions.
Overall we found that using the POT approach TTCmin yielded more
pragmatic results with wider confidence intervals (more accurate but
less precise), whereas T2min showed better model fits but overestimated
crash probabilities (more precise but less accurate).

Having compared the estimated crash probabilities for different
near-crash thresholds and by checking the correlation between them we
can conclude that collision and crossing course indicators are trans-
ferable. Crash probabilities calculated using EVT showed that one has
to be “stricter” against crossing course interactions, as compared to
collision course interactions, lower near-crash values would yield si-
milar probabilities. The analysis revealed that for straight moving and
left-turning vehicle-vehicle interactions, in comparison with a crossing
course indicator T2min, the limitation in using the collision course in-
dicator TTCmin is due to its smaller sample size that can be gathered in a
given time period.

A possible step to refine the models is using motion prediction. As
the above investigated indicators both assume constant speeds and
unchanged paths, which is not realistic, it is worthwhile considering a
probabilistic approach to predict trajectories and speeds of interacting
vehicles. This approach would result in different values with different
probabilities for a single interaction, thus providing an increased
sample size for both indicators. St-Aubin et al. (2015) developed an
approach called Probabilistic Surrogate Measures of Safety (PSMS)
considering all possible paths that may lead to two road users to collide.
At the time of writing there are also initiatives at Lund University to
apply a probabilistic framework.

Another aspect that of relevant interest is modeling the severity of
conflicts using surrogate safety indicators. Even though the above in-
vestigated temporal indicators may be used on their own to capture the
severity of an interaction for instance by applying a threshold value in
case of TTC, they are not sufficient to fully describe the severity of
consequences. As Laureshyn et al. (2010) stated there is a need for the
time-based indicators to be complemented with some speed-related
indicator. To that end a number of researchers (Zheng et al., 2018,
2019; Jonasson and Rootzén, 2014; Cavadas et al., 2017; Farah and
Azevedo, 2017; Wang et al., 2019) have applied bivariate extreme
value models. Currently the authors are also working on bivariate
models trying to capture the severity dimension of interactions and
intend to publish the results in a separate paper.
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