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ABSTRACT 
The estimation of the free flow speed (FFS) distribution is important for capacity analysis, 
determination of the level-of-service, and setting speed limits. Subjective time headway 
thresholds have been commonly used to identify vehicles travelling under free flow speed 
conditions i.e., vehicles whose speeds are not influenced by the vehicle in front. Since, the 
headway a driver operates under the free flow state is subjective and varies from driver to driver, 
such approaches can introduce biases in the FFS estimation. Therefore, in this paper a 
parametric probabilistic latent approach is proposed based on discrete choice utility theory to 
estimate the FFS distribution on urban roads and simultaneously the probability that drivers 
perceive their state as constrained by the vehicle in front. This methodology is used to estimate 
the impacts of road characteristics and Posted Speed Limit (PSL) changes on the FFS 
distribution using an extensive dataset of speed observations from urban roads with varying 
characteristics. The results show that the simultaneous estimation of the free flow speed 
distribution and the state the driver is in (e.g., free or constrained) is feasible. The analysis 
indicates that the FFS is influenced by several road characteristics such as land use, on-street 
parking and the presence of sidewalks. The PSL change impacts not only the distribution of the 
free flow vehicles but also the speed distribution of the constrained vehicles. The constrained 
probabilities vary depending on the PSL change with higher probabilities for lower speed limits. 

Keywords: free flow speed distribution, urban roads, road characteristics, posted speed limits, 
probability to be constrained, maximum likelihood estimation.  
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1. INTRODUCTION 

Knowledge of the free flow speed (FFS) distribution is important for several reasons: (i) for 
design purposes the 85th percentile of the FFS distribution is used to establish speed limits 
(Deardoff et al., 2011; Elvik, 2010); (ii) in simulation studies it is an important parameter for 
unimpeded vehicles (Caliper, 2008; PTV AG, 2015); (iii) in ‘before-after’ traffic safety studies 
it is used to estimate the impact of a specific countermeasure on road safety (Silvano and Bang, 
2015); and (iv) in traffic performance studies it is used to establish the “ideal” traffic conditions 
(base free flow speed) to be adjusted by road-traffic factors (HCM, 2010; Bang and Carlsson, 
1995). From a design point of view, it is also important to identify the factors which influence 
the FFS distribution, such as road characteristics and traffic regulations, and quantify their 
influence. Normally, studies on speed models investigate the impact of road characteristics on 
the mean free flow speed or speed percentile (e.g., 85th percentile speed). Road characteristics 
influencing the FFS distribution include land use (e.g., suburbs, city center, shopping areas), 
road function (e.g., local, main, collector, and arterial roads), number of lanes per direction, 
carriageway width, lane width, presence of medians, presence and width of shoulder, presence 
of on-street parking, presence of sidewalks, number of pedestrians, access point density, 
intersection density, link length, etc. (Ericsson, 2001; Aronsson and Bang, 2007; Hansen et al., 
2007; Wang et al., 2006; Silvano and Bang, 2015). In addition, road characteristics can be 
modified or introduced to impact the FFS distribution. For instance, on urban roads, introducing 
on-street parking and sidewalks for pedestrians impact the FFS of the vehicles using the facility 
(Trivector AB, 2009; Silvano and Bang, 2015).     

Traffic regulations, such as Posted Speed Limits (PSL), impact the FFS distribution as well. 
However, in the literature, the inclusion of the impact of PSL on speed models is not clear. 
Some authors argue that PSL is highly correlated with road characteristics and difficult to 
capture. Recently, a study by Himes et al., (2013), who conducted extensive statistical analysis, 
recommends that PSL should be included in speed models as exogenous variable due to its 
significant association with the mean speed. To estimate the impact of PSL on the FFS, field 
experiments are normally carried out by changing the existing PSL, typically in steps of 10 
km/h. According to Elvik (2010) a change of ±10 km/h in the PSL results in a change of ± 2.5 
km/h on the mean speed. However, drivers ignoring the PSL are an increasing concern because 
it is becoming a normal driving behavior leading to reduced traffic safety (Mannering, 2009).  

The FFS estimation is not straightforward. It should be based on observations from vehicles 
whose speeds are not influenced by the vehicle in front, or under free flow conditions. At free 
flow conditions, the speed of a driver is only influenced by the road environment and driver 
preferences. However, the state under which a driver operates (i.e. free flow or constrained) is 
not directly observed, i.e., the driver state is latent. For the estimation of the FFS, cut-off 
headway values were typically used in previous studies (Vogel, 2002; Silvano & Bang, 2015). 
However, since the headway a driver operates under the free flow state is subjective and varies 
from driver to driver, such approaches can introduce biases in the FFS estimation. Therefore, a 
new research methodology needs to be developed which releases this limitation. Furthermore, 
the impacts of road geometric characteristics and speed limit changes on the FFS have not been 
thoroughly investigated, particularly in urban roads where road geometry varies greatly.  

The main goal of this paper is to propose a methodology for the estimation of the FFS 
distribution which can: a) evaluate the impact of road geometric characteristics and traffic 
regulations on the FFS; and b) simultaneously estimate the probability that a driver perceives 
his/her state as constrained or not by the vehicle in front, by using a latent formulation. The 
methodology used for the analysis is based on discrete choice utility theory. 
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The remainder of the paper is organized as follows: Section 2 presents previous studies on 
the identification of the FFS distribution based on time headways. Section 3 describes the study 
methodology and model formulation. Section 4 presents the application of the methodology 
with the results of the impact of speed limits and road characteristics. Finally, Section 5 
concludes the study and presents future research directions. 

 

2. BACKGROUND 

Normally, studies aiming to estimate the FFS distribution collect speed data under low flow 
conditions (<1000 veh/h/ln) with large time headways between two successive vehicles in order 
to guarantee that vehicles are not constrained (Dawson and Chimini, 1968; Branston, 1979; 
Dixon et al., 1999; HCM, 2010; Wang et al., 2014). The HCM (2010) is a widely used 
methodology to estimate the FFS for freeways and urban segments. Level of Service (LOS) ‘A’ 
is associated to free flow conditions with vehicles being unimpeded to maneuver in the traffic 
stream. For urban segments, the methodology to estimate the LOS is data intensive including 
factors such as flow rate, number of lanes, segment length, speed limits, access point density, 
capacity, etc. In the HCM (2010) the FFS represents the mean speed of through vehicles at low-
volume conditions. The methodology includes the estimation of the base free flow speed which 
is then adjusted for several factors such as cross section with or without curb presence, access 
point density and adjustment for signal spacing. As a result, with the help of previous tabulated 
values, the mean FFS is estimated in order to compute the LOS. According to the HCM (2010), 
the adjusted free flow speed is given by: 

��� = �� + ��� + �	             (1) 

��� is the adjusted FFS,  �� is the base free flow speed, ��� is the adjustment for cross section 
(with or without curb presence), and �	 is the adjustment for access point density. 

 Several studies have been dedicated to estimate the FFS distribution based on speeds of 
vehicles with time headways larger than a certain threshold, determined from studies in the 
literature (e.g. Silvano and Bang, 2015). Branston (1979) assumed that the FFS distribution was 
normally distributed and used data from motorway M4 in London.  Two criteria were used for 
a vehicle to be in the FFS distribution: (i) time headway larger than some headway threshold 
‘T’ and (ii) relative speed (speed leader minus speed follower) larger than some standard 
deviation criterion (τ). The author tested different values for ‘T’ (3.5 to 5.5 seconds) and τ (2, 
2.5, and 3 standard deviations) to fit a theoretical distribution to the data. The author found that 
the free flow speed distribution was fairly insensitive to the values chosen for ‘T’  and τ  varying 
only 2% in the results. Botma (1999) discussed the use of several methods to estimate the FFS 
distribution. The author introduced the notion of censored observations i.e., vehicles which are 
constrained with a certain probability due to different driver and vehicle characteristics.  

Hoogendoorn (2005a) proposes to estimate the FFS distribution with a non-parametric 
approach using time headway and speed data. The author validates the approach by generating 
synthetic data as follows: i) Constrained headway 
~(� = 2 ���, �� = 0.5 ���); ii) Free flow 
headway exponentially distributed (� = 0.167 ��ℎ/���); iii) Free flow speed 
~(!" =80 $%/ℎ, �!" = 12 $%/ℎ). Thus actual headways ℎ& and speeds �& were classified as follows: 

ℎ& = %'()(& , &*                                                                                                                 (2) 

�& = + �&�                                   (& < &%-./�&�, �&012              (& ≥ &                                                                               (3) 
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Where, (& is the constrained headway, & is the free flow headway, �&� is the free speed, �&01 
is the speed of the leader. At free flow conditions, the speed of the vehicle equals to its desired 
speed; otherwise, the speed of the vehicle is the minimum between its free speed and the speed 
of the lead vehicle. Later on, Hoogendoorn (2005b) applied the non-parametric approach to 
estimate the free flow speed distribution with data from a multilane motorway. Gaps and 
relative speeds were used to establish the separation criteria between the free flow and 
constrained vehicles. The probability of being constrained is given by: 

4(5& , ∆v&) = 41(5&) ∙ 49(∆�&)                                                      (4) 

41(5&) is the probability to be constrained at a distance 5&. 49(∆�&) is the probability of a vehicle 
to be constrained with relative speed ∆�&. (Relative speed between the leader and the subject 
vehicle, �&01 − �&). The author found that the mean FFS for all vehicles and for different vehicle 
classes is higher in the outer lane (left lane) compared to the right lane. Moreover, the author 
found that the mean FFS is lower in the morning compared to the noon and evening mean FFS 
speeds. Traffic congestion might be a possible explanation according to the author since 
congestion makes drivers less willing to speed up. The approach was sequential first estimating 
the regime and then the FFS distribution. 

The literature on the analysis of time headway observations is quite extensive. Early studies 
developed statistical models to fit some probability density function to the time headway data. 
For instance, Dawson and Chimini (1968) developed a probability model for single-lane traffic 
flow on two-lane, two-way roads. Flow rates were stratified from 150 to 1050 veh/h with steps 
of 100 veh/h in each level. The authors established the headway threshold where the logarithmic 
curve became a straight line. Researchers has modeled time headways as a random variable 
with different distributions for the free flow vehicles and constrained vehicles. For instance, 
Buckley (1968) developed a Semi-Poisson model to estimate the proportion of drivers with 
constrained operation. According to the author, constrained vehicles drive at average speeds 
which are equal to the speed of the leader with a preferred tracking headway. Cowan (1974) 
proposed to treat the headways with two random components as well: i) a “tracking” component 
(followers) and ii) a “free” component (leaders). The author proposed several models. In the 
first model, a negative exponential distribution model was introduced only for the free 
component. A second model assumed a shifted negative exponential distribution to account for 
the fact that there is a minimum headway which cannot be “zero”. In a third model, there is a 
proportion of vehicles “tracking” their predecessors (4) at some headway ; and a proportion of 
vehicles travelling freely (1 − 4) with headways greater than ;.  In a fourth model, a 
distribution is introduced for the “tracking” proportion. The author estimated the parameters of 
the fourth model with data from 1324 successive headways observed for two hours and found 
a mean tracking headway ; of 1.70 seconds and the proportion of vehicles tracking their 
predecessor 4 equal to 0.35. Branston (1976) evaluated headway models previously proposed 
by Miller (1961) and Buckley (1968) with data from the M4 motorway in London and a two-
way road in Indiana. He found a mean following headway of 1.3 and 1.6 seconds in the M4 for 
the fast and slow lane respectively. A mean following headway of 2-seconds was found for the 
road in Indiana.  

Luttinen (1996) proposed a four-step methodology to analyze time headway data that 
includes: i) the probability density function; ii) the hazard function; iii) the coefficient of 
variation; and iv) the kurtosis vs. squared skewness plot. The data used in the study were 
collected on low-speed roads (e.g., 50, 60, and 70 km/h) by inductive loops on two-lane two-
way roads in Finland. The author argues that there are three driving regimes: free flow speed 
(leaders), car-following (constrained) and in-transition drivers (i.e., changing state from being 
a leader to becoming a follower). During the in-transition state, vehicles begin to adjust their 
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speed to the leader’s speed when they are 9 – 8 seconds from the vehicle in front. He found that 
at headways greater than 10 seconds the mean relative speed, (∆< = <=>?@>A − <�B==BC>A), is 
negative thus concluding that the vehicle behind is free from the influence of the lead vehicle. 
Moreover, the author points out that the best headway model is the semi-Poisson model 
proposed by Buckley (1968) with the negative exponential distribution to model the proportion 
of free vehicles and the gamma distribution to account for the proportion of constrained 
vehicles.  

A different approach to estimate the threshold between the free flow and constrained 
regime on urban roads with 50 km/hr posted speed limit was carried out by Vogel (2002). The 
data were collected in a 4-leg intersection for 24 hours during 6 consecutive days. Four 
measurement stations were placed at each approach at a distance of 116 m from the intersection. 
The data were collected by means of pneumatic tubes and speeds and time headways were 
derived. The data were classified in groups of one second from 1 to 12 s headway and the author 
estimated correlation factors among the groups. For the 1-s group, the R-value was 0.8 which 
decreased gradually as the headway increased and for headways larger than 6 s the R-value 
leveled out approaching to zero thus the author concluded that all vehicles with headways larger 
than 6 s were in the free flow regime.   

In other studies, headways (time and space headways) have also been investigated using 
Markov process models (Chen et al., 2010; Wang, et al., 2008). Chen et al., (2010) defined 
three Markov processes classified by speed intervals: 0-5 m/s, 5-10 m/s, and 10-15 m/s. 
Afterwards, the authors defined 10 possible states based on observed headways ranging from 0 
to 9 s in 1-s increments. Observations were considered free at headways larger than 10 s. The 
authors claim that the model can generate headway distributions similar to observed headways. 
In Wang et al., (2008) the space headway was investigated by using a Markov-gap Cellular 
Automata (CA) model. The aim was to reproduce by simulation the empirical headway 
distribution. The authors concluded that the model was able to capture the variations of the 
space headway between two consecutives vehicles.        

In conclusion, time headway thresholds are likely to vary due to traffic, and road 
conditions, and driver characteristics. For instance, a threshold of 3 s was used for 2-lane 
highways in the HCM (2000) and a threshold of 6 s was found on urban roads by Vogel (2002). 
Factors such as flow rate, operating speeds, speed limits, weather conditions, and road 
geometric characteristics may influence time headway thresholds (Ayres et al., 2001). 
Moreover, the headway threshold is likely to vary among drivers due to different driving 
experiences, gender, age, etc., and may differ for the same driver as well, e.g. depending on the 
driver’s trip purpose and departure time (Brackstone et al., 2009). Vehicle characteristics may 
also influence the headway threshold due to factors such as vehicle age, power engine, 
maintenance, etc. More importantly, a model that can evaluate the impact of road characteristics 
and changes in traffic regulations (e.g., speed limit changes), on the FFS is missing in the 
literature. Therefore, the estimation of the impact of road characteristics and traffic regulation 
changes on the FFS distribution, while simultaneously estimating the probability to be 
constrained by the vehicle in front, addresses important drawbacks of previous studies.  

3. METHODOLOGY  

Road geometric characteristics impact the FFS in urban roads. Factors increasing the FFS 
include wider lanes, higher number of lanes, presence of shoulder and median. On the other 
hand, factors such as the presence of sidewalks, on-street parking, presence of vulnerable road 
users (e.g., cyclists, pedestrians, mopeds), and vehicle composition reduce the FFS (Silvano 
and Bang, 2015; Bang and Carlsson, 1995; Aronsson and Bang, 2007; Wang et al., 2006; 
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Brundell-Freij and Ericsson, 2005; Ericsson, 2001; Hansen et al., 2007; Wang et al., 2014; 
Balakrishnan and Sivanandan, 2015). Therefore, the mean FFS is dependent on the geometric 
layout factors of urban roads which may imply as well that the headway threshold, which 
distinguishes free flow vehicles from constrained vehicles, varies as well. This section 
introduces a probabilistic approach, to estimate the FFS distribution in urban roads while taking 
into account the potential impact of road geometric characteristics and traffic regulation.  

From a behavioral perspective, traffic flow is composed of two states: (i) free flow drivers 
and (ii) constrained drivers (Luttinen, 1996; Michael et al., 2010; Vogel, 2002). Free flow 
moving drivers can attain their desired speed. Drivers in the constrained state are expected to 
drive on average at speeds which are equal to the speed of the vehicle in front (Buckley, 1968). 
Therefore, under constrained conditions the speed of a vehicle follows closely the speed of the 
lead vehicle while in the free flow state drivers most likely follow their desired speed. For 
estimation purposes, it is assumed that the available data include point measurements of 
individual vehicle speeds on a road, along with headways, and characteristics of the road and 
surrounding environment. The state, e.g., constrained or free flow is not observed. Hence, the 
underlying state the driver is in, is latent and the estimation methodology explicitly recognizes 
this. Figure 1 illustrates the model structure showing the driving states as latent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Model structure 

 

�D is the speed of a vehicle. ��� is the free flow speed of the driver. �E� is the speed of the 

vehicle when it is influenced by the speed of the vehicle in front. ��� is the free flow speed 

distribution. �E� is the constrained speed distribution. F�� is the probability to be free and  FE� 
is the probability to be constrained. 
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3.1 The probability to be constrained 

Time headway thresholds, often deterministic (fixed threshold), have been used extensively in 
the literature to determine the traffic state. If the time headway is less than the specified 
threshold, the driver is assumed to be in the constrained state; otherwise, the appropriate free 
flow state applies. However, the selection of the threshold is not a trivial task. For example, 
Luttinen (1996) conducted extensive studies on time headways on low-speed rural and urban 
roads (e.g., 50 km/h and 70 km/h) and found that at headways larger than 10 s the mean relative 
speed is negative (�&01 − �& < 0) pointing out that the subject vehicle is free from the influence 
of the leader. In another study, Vogel (2002) found that the speed correlation between the 
subject vehicle and its leader levels out (approaches to zero) at headways larger than 6 s on 
urban roads. The author also pointed out that at lower speeds, constrained vehicles need longer 
headways to reduce the influence of the vehicle in front. On the other hand, the constrained 
state takes place at shorter time headways. For example, on freeways, the car-following regime 
is assumed at headways shorter than 4 s (Bando et al., 1995; Ahmed, 1999; Toledo, 2003).  

In this paper, the state the driver is in (constrained or not) is treated as a latent state, and the 
model assumes that a driver makes decisions based on how they perceive their individual state. 
Thus, the model captures how drivers perceive their driving state, as being influenced by the 
vehicle in front or not. The probability of a driver to be in the constrained state, FE�, is modeled 
as a binary discrete choice problem with linear utility functions. In the literature, discrete choice 
models have been frequently used to model drivers’ decisions and behavior. For example, Farah 
and Toledo (2010) estimated the probability of a driver to overtake on two-lane rural roads 
using binary choice model, Koutsopoulos and Farah (2012) modeled drivers’ decisions to 
accelerate, decelerate, or do-nothing under constrained conditions as a discrete choice problem, 
Singh and Li (2012) investigated lane changing decisions as a discrete choice problem, and 
Silvano et al., (2016) modeled drivers’ decisions to yield to cyclists using a similar framework. 
In this study, the probability of the driver to be in the constrained or free flow state is also 
modelled as a binary discrete choice problem. It is assumed that the utility, <E�, of being in the 
constrained state, is a function of explanatory variables (e.g., time headway, relative speed). 
The specification of the utility depends on the available data. The utility of the free flow state, <��, is set to 0. Thus, the probability that driver . is in the constrained state, assuming a Gumbel 
distribution for the error terms, can be given by: 

FE� = >GHI
>GHIJ>GII =  >GHI

1J>GHI                                           (5) 

 F�� = 1 −  FE�            (6) 
 <E� is the systematic utility of the constrained state:  
 <E� = K� + ∑ KM ∙ NMM                                   (7) 
 NM are explanatory variables (depending on available data) and KM are the corresponding 
parameters to be estimated.  
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3.2 Free flow speed distribution 

A vehicle whose speed is not influenced by the vehicle in front is considered to travel at the 
desired speed. Hence, the speed represents an observation from the FFS distribution, ���(�). 
For estimation purposes and consistent with the literature (Branston, 1979; Dixon et al., 1999), 
we assume that the FFS follows a normal distribution, ���(�) ~ 
(��, ���); 

���(�) = 1
OII P Q�0RII

OII S                                                                                         (8) 

� is the free flow speed of a vehicle. �� and ��� are the mean and standard deviation of the 
FFS distribution, respectively.  

The mean free flow speed, ��, is influenced by, among other factors, road geometric 
characteristics, as previously stated. Thus, the mean FFS expression can be formulated as a 
function of those influencing factors:  

�� = T� + ∑ T& ∙ N&                                                                                        (9) 

T� is a constant, and  T& and N& are parameters and explanatory variables respectively, 
affecting the mean FFS. The exact specification depends on the nature of the available data. 
 
3.3 Constrained speed distribution 

When vehicles are close to each other, the interactions among vehicles results in drivers not 
being able to attain their desired speeds. In the constrained state (e.g. the driver feels constrained 
by the vehicle in front), a vehicle has a speed that is either its desired speed or is constrained by 
the speed of the vehicle in front (Hoogendoorn, 2005a), i.e.: 
 � = min/��� ,  �E�2                     (10) 

and,       

�X �E�Y = 1
OHI P Q �HI0�IZ[\]

OHI S                 (11) 

��� is the free flow speed of the driver with a probability density function given by Eq. (8). 

 �E� is the speed of the vehicle when it is influenced by the speed of the vehicle in front, S_`abc, 
and it is assumed to follow a normal distribution around ��ABDd,  �E� ~ 
(��ABDd , �E�).                                                               

Eq. (10) states that if the speed of the vehicle in front is larger than the driver’s free flow 
(desired) speed, the driver travels at its desired speed; otherwise it follows the speed of the 
leader (since the state is constrained). Equation (11) indicates that if the lead vehicle’s speed is 
the constraining factor, then it is assumed that the speed of the subject vehicle is normally 
distributed around the lead vehicle’s speed, ��ABDd, and �E� is the standard deviation of the 
constrained speed distribution.   

For two random variables N1~ 
(1, �1) and N9~ 
(2, �2) and correlation coefficient, e, the random variable f = min)N1,  N9* has a distribution given by (Nadarajad and Kotz, 
2008): 

�(g) = �1(g) + �9(g),  

where; 
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�1(g) = 1
Oh P ij0Rh

Oh k Ф Q m(j0Rh)
Ohn10mo − j0Ro

Oon10moS                                                             (12) 

�9(g) = 1
Oo P ij0Ro

Oo k Ф Q m(j0Ro)
Oon10mo − j0Rh

Ohn10moS                                                     (13) 

Hence, the pdf of the speed � under constrained conditions, assuming that ��� and �E� are 
not correlated, is given by:   

�E�(�) = 1
OHI P Q�0�IZ[\]

OHI S Ф Q− �0�II
OII S + 1

OII P Q�0RII
OII S Ф Q− �0�IZ[\]

OHI S   
              = 1

OHI P Q�0�IZ[\]
OHI S p1 − Ф Q�0RII

OII Sq + 1
OII P Q�0RII

OII S p1 − Ф Q�0�IZ[\]
OHI Sq    (14) 

 

3.4. Maximum likelihood formulation 

The parameters of the model are estimated jointly using the maximum likelihood approach. 
Based on the framework illustrated in Figure 1, the probability density function of a speed 
observation �D is given by:   

 

F(�D) = (1 − FE�) ∙ ���(�D) + FE� ∙ �(�D)                                                            
 

           = X1 − FE�Y  ∙ 1
��� P Q�−����� S + 

                     FE� ∙ r 1
��� P Q�−��st.u

��� S p1 − Ф Q�−��
��� Sq + 1

��� P Q�−��
��� S p1 − Ф Q�−��st.u

��� Sqv  (15)   

 
The likelihood function for all vehicles 1,…, N (assuming independence) is given by: 
 ℒ = F(�1, �9, … �D) =  ∏ F(�D)zD{1                                                   (16) 
 
The log-likelihood function is then defined by: 
 ℒℒ =  ∑ |t}F(�D)zD{1          (17) 
 
 

4. APPLICATION 

The methodology discussed in the previous section is applied using an extensive dataset from 
more than 30 locations in Sweden.  

4.1 Data 

A new speed limit scheme was evaluated in Sweden on urban roads (Hyden et al., 2008; Bang 
and Silvano, 2012). Depending on road characteristics, the speed limit on urban roads with 
existing speed limit of 50 km/h was changed. The selection of sites was undertaken by the 
Swedish Transport Administration and Municipal traffic authorities. The before-change data 
collection started in September 2009 and was concluded in June 2010. The after-change data 
collection started in September 2010 and was concluded in June 2011. The collected data 
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correspond to only one-day before the speed limit change and one-day after the speed limit 
change. The measurement location at each site was placed midblock on a sufficiently long link, 
with right of way at minor intersections and avoiding nearby traffic signals, roundabouts, and 
crosswalks. The data were collected by means of pneumatic tubes and data loggers, on average 
over 7 hours per site during daytime. The sites represent a broad range of urban road 
characteristics (summarized in Table 1). The text files from the data loggers were interpreted 
with the Axel Passage Interpreter (Archer, 2003) to obtain passage times, speeds, flow, vehicle 
types and travel direction. The data set used in this study is related to 32 of the sites that were 
considered in the study by Bang and Silvano (2012), from 8 urban areas across Sweden with 
50 km/h speed limits. The dataset was composed of about 31,000 speed and time headway 
observations with 50 km/h PSL and about 36,000 observations with 40 km/h PSL.  

 
TABLE 1 Road Characteristics 

Variable Definition Number of sites per category 

Posted Speed Limit  PSL 
Before: 50 km/h = 32 sites 
After: 40 km/h = 32 sites 

Land Use 
City Center = 0 
Suburb = 1 

Center = 6 (Presence of commercial development) 
Suburb = 26 (Homebased neighborhoods) 

Parking-only 
No = 0 
Yes = 1 

No = 30  
Yes = 2 (Presence of parked vehicles only) 

Sidewalk-only 
No = 0 
Yes = 1 

No = 13  
Yes = 19 (Presence of sidewalk only) 

Parking + Sidewalk 
No = 0 
Yes = 1 

No = 26  
Yes = 6 (Presence of parked vehicles + sidewalk) 

Speed (km/h) All observations 
Before: mean=41.97; std.=9.33 
After:    mean=40.41; std.=8.45 

Headways (s) All observations 
Before: mean=23.09; median=11.66; std.=33.44 
After:    mean=23.37; median=12.67; std.=48.80 

Flow rate (veh/h/ln) All observations 
Before: mean=142; std.=72.4; max=305; min=18 
After:    mean=158; std.=72.5; max=364; min=48  

 

Figure 2 presents the headway and speed distributions for all observations with 50 km/h 
PSL. Similarly, Figure 3 depicts the headway and speed histograms for all observations after 
the speed limit reduction to 40 km/h. It is important to point out that the data collection aimed 
at capturing free flow vehicles from as many sites as possible with varying geometric 
conditions. The speed measurements took place under light to moderate traffic, which is 
appropriate for free flow estimation. As a result, the range of the speed data collected is from 
20 to 70 km/h (See Figures 2b and 3b)).  
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(a) 

 
(b) 

Figure 2 Speed and headway histograms (all observations - 50 km/h PSL) 

 
(a) 

 
(b) 

Figure 3 Speed and headway histograms (all observations - 40 km/h PSL) 
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4.2 Results 

The Gauss econometric package (Aptech System, 1994) was used for the simultaneous 
estimation of the model parameters. The analysis is based on the speed and headway 
observations dataset composed of the 32 sites before and after the speed limit reduction from 
50 km/h to 40 km/h.   

 

A. Before speed limit change (50 km/h PSL)  

Table 2 summarizes the results of the simultaneous model estimation. According to the results, 
the main variables that impact the free flow speed are land use, the presence of parking, and the 
presence of sidewalks. The probability of the constrained state is mainly impacted by the time 
headway and the relative speed between successive vehicles, but only when the space headway 
is less than 60 m. For longer space headways, the impact was not significant. All the parameters 
are significant at the 95% confidence level and with the expected sign. The constant of the mean 
free flow speed, T�, is 46.02 km/h, and the standard deviation, ���, 7.76 km/h. 

 

TABLE 2 Parameter estimates before speed limit change (PSL=50 km/h) 

Description  Estimate t-statistic 

Free flow speed distribution 

Free Flow Constant (km/h) T� 46.02      227.42 
Land Use  (Centre=0; Suburb=1) T1  5.56 36.38 
Parking-only (Yes=1; No=0) T9 -8.58        -17.85 
Sidewalk-only (Yes=1; No=0) T~ -5.52        -39.21 
Parking + Sidewalk (Yes=1; No=0) T� -9.35 -47.19 
Free flow Standard deviation  ���   7.76         7.73 

Constrained speed distribution 

Constrained Standard deviation �E� 4.51        4.47 

Probability to be constrained 

Constant K� 4.7129 28.81 
Time Headway (s) K1 -0.6934       -22.87 
Relative Speed (m/s) (�D − �D01)  
(for Space Headway < 60m) 

K9 -1.3361 -3.48 

Number of sites and observations 

No. Observations 31019 
No. Sites 32 
Mean LL(β) per observation -3.35754 
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Variable Relative Speed (�D − �D01) for Space Headway < 60m is an interaction variable 
defined as: 
 
 (�D − �D01) ∙ (��'���>?@C?j < 60%)       (18) 
 
Where  ��'���>?@C?j is a dummy variable, 
 

��'���>?@C?j = �1     -� ��'�� ℎ�'5�'g < 60%0                        tuℎ�s�-��                   (19) 

 
 
Free flow speed distribution and impact of street characteristics 

Figure 4 shows the impact of the presence of parking and sidewalk classified by land use on the 
free flow speed distribution before the speed limit change. Figure 4(a) shows the results on city 
center roads, the solid line shows the impact of sidewalk-only on the free flow speed, while the 
dashed line shows the impact of the interaction of parking and sidewalk presence. Figure 4(b) 
shows the speed results in suburb areas which are higher compared to city center roads. City 
center roads are normally characterized by the presence of sidewalks, parking, pedestrians, 
cyclists and shops. The mean free flow speed on a city center road with the presence of 
sidewalk-only, is 40.5 km/h and the impact of parking and sidewalk combined results in the 
lowest mean speed of 36.7 km/h. On the other hand, roads located in suburb areas show on 
average, higher mean free flow speed compared to city center areas. For example, a road in 
suburb area with the presence of parking-only has a mean speed of 43.0 km/h. The same road 
with the presence of sidewalk-only has a mean speed equal to 46.1 km/h, and a road with the 
presence of parking and sidewalk combined show a mean free flow speed equal to 42.2 km/h, 
while a road located in a suburb area without parking and no sidewalk has a mean free flow 
speed of 51.6 km/h. Parking has a strong impact, reducing the mean free flow speed by 8.5 
km/h. The presence of sidewalk reduces the mean speed as well by 5.5 km/h. The effect of 
parking and sidewalk combined results in the highest impact reducing the mean free flow speed 
by 9.35 km/h yet the impact is lower compared to adding parking and sidewalk impacts 
separately (-14.1 km/h) and this is consistent with our a-priori expectations. 

  

 
(a) City center areas           (b) Suburb areas 

 
Figure 4 Impact of road characteristics (50 km/hr PSL) 

Table 3 summarizes the free flow speed for typical urban roads with different road 
characteristics based on the model estimation results of Table 2.  
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Table 3 Mean free flow speed for different facility types with PSL 50 km/hr  

Land Use Center Center Suburb Suburb Suburb Suburb 
Parking-only No No Yes No No No 
Sidewalk-only Yes No No Yes No No 
Parking + Sidewalk No Yes No No Yes No 
Average free flow speed (km/h) 40.5 36.7 43.0 46.1 42.2 51.6 

 

These results are in line with previous research on the impact of road characteristics on the 
mean free flow speed (Ericsson, 2001; Aronsson and Bang, 2007; Hansen et al., 2007; Wang et 
al., 2006; Silvano and Bang, 2015). The results clearly indicate that on-street parking, sidewalk 
presence, and their interaction reduces the mean free flow speed in city centers and suburban 
areas on urban roads.  

 
Probability to be constrained 

According to the results in Table 2, the time headway parameter, β1, is negative, indicating that 
shorter time headways result in drivers with higher probabilities of perceiving their state as 
constrained by the vehicle in front. According to the model specification the relative speed, ΔS, 
with an estimated value of -1.3361 m/s only impacts the interaction between the subject vehicle 
and the vehicle in front if the distance between them is less than 60 m (this distance was 
determined based on separate estimations of the model with different values for the distance 
threshold).  

Figure 5 illustrates the impact of the time headway and relative speed on the probability to be 
constrained in two cases: (i) the relative speed is zero, reflecting a subject vehicle following at 
a speed equal to the speed of the vehicle in front and (ii) the relative speed is −0.55 %/� 
(−2 $%/ℎ) reflecting the case where the subject vehicle is traveling faster by 2 $%/ℎ than the 
vehicle in front. According to the results, in the first case (ΔS = 0), the probability to be in the 
constrained state is 63% at 6 s time headways. The results also show a critical time headway of 
6.8 s, where the probability that a driver perceives the situation as constrained is 50%. The 
probability of the constrained state is high at headways shorter than 4 sec (>88%) which is a 
threshold used for car-following regimes in various studies (Bando et al., 1995; Ahmed, 1999; 
Toledo, 2003), whereas, the probability is under 10% for headways larger than 10 sec. For ΔS =−2 $%/ℎ, the probability to be constrained increases rapidly, since the subject driver travels at 
a higher speed than the vehicle in front. The probability of the constrained state is high (>88%) 
up to 5 s headways.  

The estimated probabilities show how drivers perceive the traffic situation, as being constrained 
or not. At short headways, it is most likely that drivers feel constrained (high probability), 
whereas, at large headways, it is very unlikely that they feel constrained (low probability). 
However, there is still a proportion of drivers who may feel free at short headways or feel 
constrained at large headways, as shown by the resulting probabilities.   
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Figure 5 Probability to be constrained (50 km/h PSL) 

 

B. After speed limit change (40 km/h PSL) 
The estimation results are summarized in Table 4. In the after case, the constant of the mean 
free flow speed, T�, is 45.08 km/h which is reduced by 0.94 km/h compared to the before case 
in which the speed limit was 50 km/h. The standard deviation, ���, is 8.25 km/h which is 
increased by 0.49 km/h. In general, the results are in line with previous research on the impact 
of road characteristics on the mean free flow speed (Ericsson, 2001; Aronsson and Bang, 2007; 
Hansen et al., 2007; Wang et al., 2006; Silvano and Bang, 2015). The impact of the road 
characteristics is lower compared to the case of PSL of 50 km/h, as expected. However, the 
impact of parking only is nearly the same with a very small increase of 0.21 km/h in the after 
case. The highest reduction of the speed limit change is for land use which has been reduced by 
4.1 km/h. The presence of sidewalk only has been reduced changing from -5.52 km/h to -3.05 
km/h which is a reduction of 2.47 km/h. Similarly, the impact of the interaction of parking and 
sidewalk has decreased from -9.35 km/h to -6.16 km/h showing a reduction of 3.16 km/h.  
 
TABLE 4 Parameter estimates after speed limit change (40 km/hr PSL) 

Description  Estimate t-statistic 

Free flow speed distribution 

Free Flow Constant (km/hr) T� 45.08      238.63 
Land Use  (Centre = 0; Suburb=1) T1   1.46 12.10 
Parking-only (Yes = 1; No = 0) T9 -8.79        -26.64 
Sidewalk-only (Yes = 1; No = 0) T~ -3.05        -20.08 
Parking + Sidewalk (Yes = 1; No = 0) T� -6.16 -32.18 
Free flow Standard deviation  ���   8.25          8.22 

Constrained speed distribution 

<E� = 4.71 − 0.69 ∙ �-%��>?@C?j − 1.34 ∙ ∆� ∙ (��'���>?@C?j < 60%) 
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Constrained Standard deviation �E� 4.36        4.32 

Probability to be constrained 

Constant K� 5.3292 28.71 
Time Headway (s) K1 -0.7503       -23.20 
Relative Speed (m/s) (�D − �D01)  
(for Space Headway < 60m) 

K9 -1.2692 -4.04 

Number of sites and observations 

No. Observations 36058 
No. Sites 32 
Mean LL(β) per observation -3.34007 

 
Table 5 shows the estimated mean free flow speed for typical streets. The results show that the 
speed limit change was not an effective measure to reduce speed levels on roads with already 
low speeds located in city center areas. Silvano and Bang (2015) also found a similar pattern 
on roads with already low current speeds indicating that the speed limit reduction can result in 
undesirable impacts increasing the mean speed. According to the results, the mean free flow 
speed on a road with parking and sidewalk is 38.9 km/h, which is an increase of 2.2 km/h 
compared to the before case (PSL of 50 km/h). Also, a road with sidewalk-only results in a 
mean free flow speed of 42.0 km/h which is an increase of 1.5 km/h compared to the higher 
PSL of 50 km/h. On the other hand, the speed limit reduction did effectively reduce the mean 
free flow speed on roads located in suburb areas. For instance, a road with parking-only has 
mean speed equal to 38.1 km/h which is a reduction of nearly 5 km/h compared to the previous 
speed limit. Similarly, a road with sidewalk-only results in a mean speed of 43.5 km/h showing 
a reduction of 2.6 km/h. The impact of the interaction of parking and sidewalk in suburb areas 
results in a mean speed of 40.4 km/h indicating a reduction of 1.8 km/h from the previous speed 
limit. Furthermore, a road without parking and no sidewalk has mean free flow speed of 46.5 
km/h showing a reduction of 5.1 km/h on the mean speed for PSL equal to 50 km/h. 

 

Table 5 Mean free flow speed for different facility types with PSL at 40 km/h 

Land Use Center Center Suburb Suburb Suburb Suburb 
Parking-only No No Yes No No No 
Sidewalk-only Yes No No Yes No No 
Parking + Sidewalk No Yes No No Yes No 
Average free flow Speed (km/h) 42.0 38.9 38.1 43.5 40.4 46.5 

 

Figure 6 shows the impact of road characteristics and speed limit changes on the free flow 
speed. For instance, Figure 6(a) shows the impact of parking and sidewalk in city center areas. 
Similarly, Figure 6(b) shows the impact of sidewalk-only in city center roads. Figure 6(c) shows 
the impact of sidewalk-only on driving speeds in suburban roads, Figure 6(d) depicts the impact 
of parking-only, and Figure 6(e) shows the impact of no parking and no sidewalk presence in 
suburban areas. Figure 6(f) plots the impact of the interaction of parking and sidewalk.  
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(a)                                                                                 (b) 

 

(c)                                                                               (d) 

 

 
(e)                                                                                (f) 

Figure 6 Impact of speed limit reduction (parking, sidewalk, and land use) 

 

The probability that the driver perceives the state as constrained was estimated as well and 
compared to the different speed limit cases under investigation (i.e., 50 km/h and 40 km/h) and 
for the two relative speed cases (ΔS = 0 $%/ℎ, and ΔS = −2$%/ℎ). According to the results, 
comparing Table 2 and Table 4, the time headway parameter, β1, is not very sensitive to the 
speed limit changes with an estimated value of -0.6934 and -0.7503 for the before and after 
speed limit change respectively. On the other hand, the constant of the utility function, β�, 
increases from a value of 4.7129 for 50 km/h PSL to a value of 5.3292 for speed limit of 40 
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km/h resulting in higher probabilities of perceiving the state as constrained for the lower speed 
limit.  

Figure 7 compares the probability of the constrained state as a function of the time headway for 
the two PSL cases and the two relative speed values (0 km/h and −2 km/h). The results for 
relative speeds equal to zero show that the probability of the constrained state is 63% at 6 s time 
headways with 50 km/h speed limit. However, at 40 km/h, the constrained probability becomes 
70% for the same time headway. In the case of the 40 km/h PSL the critical time headway, 
where the constrained probability is 50%, is 7.1 s (compared to 6.8 s when the PSL is 50 km/h). 
The impact of the speed limit change is small but as expected, increasing the constrained 
probability. Similar observations apply for the case were the relative speed is ΔS = −2$%/ℎ. 

 

Figure 7 Probability to be constrained and speed limit changes 

 

As discussed in the literature review section of the paper, Vogel (2002) found a deterministic 
fixed threshold of 6 sec on urban roads to discriminate free flow vehicles from constrained 
vehicles using data from a single intersection (i.e., site-specific results). Luttinen (1996) 
suggests that vehicles are free from the influence of the leader at time headways larger than 10 
seconds, mainly on rural roads.  Furthermore, the author suggests that there is a third group of 
drivers (called in-transition) from being a leader and becoming a follower pointing out that from 
9 to 7 seconds drivers adjust their speed to the speed of the vehicle in front. The results in Figure 
7 for  (ΔS = 0) show that at headways larger than 10 seconds the constrained probability is 
lower than 10% whereas, at headways shorter than 10 seconds the probability increases rapidly 
with drivers being potentially in-transition state up to 7 seconds. At headways shorter than 4 
seconds, the constrained probability is high, as expected.   

Buckley (1968) states that a driver in the car-following regime drives at a speed equal on 
average to the speed of the vehicle in front. This was also assumed in the model proposed in 
this paper for the case where the subject vehicle was constrained by the vehicle in front. This 
means that the relative speed ΔS = (�D − �D01) follows a distribution with 0 mean. The results 
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in Table 2 and Table 4 show the variations of the estimated standard deviations of the car-
following regimes on the speed limit cases. The CF standard deviation before the PSL change 
is 4.51 km/h which reduces to 4.36 km/h when the speed limit is 40 km/h. The speed limit 
reduction thus impacts the variability of the relative speeds between the subject and the leading 
vehicle, as shown in Figure 8 which compares the two distributions.   

 

 

 
Figure 8 Constrained relative speed distribution 

 

Comparison with fixed threshold results 

Table 6 shows the results of the free flow speed estimated by regression models using different 
threshold values compared to the proposed latent approach. The difference in the estimated 
values (latent approach vs regression at a predefined threshold) is significant (e.g., Headway > 
5 sec, t-stat=5.32). The proposed latent approach shows a higher mean free flow speed (> 1 
km/h) compared to the regression models. The latent approach considers all observations in the 
estimation. 

 

Table 6 Comparison of latent approach vs. regression approach at different thresholds  

PSL 50 km/h Headway threshold No threshold 

Headway 
> 4 sec 

Headway   
> 5 sec 

Headway 
> 6 sec 

Headway 
> 7 sec 

Headway  
> 10 sec 

Latent 

approach 

Free flow speed (km/h) 

(land use = 1) 
50.27 50.28 50.24 50.25 50.16 51.58 
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5. CONCLUSION 

The estimation of the free flow speed distribution is important for all types of transportation 
facilities such as freeways, rural, and urban roads since it captures the influence of various 
factors such as road geometry, traffic regulations, driver preferences, etc. Time headways have 
been widely used to distinguish between free flow and constrained vehicles but the cut-off point 
(critical headway threshold) is likely to vary based on the type of the transportation facility and 
the traffic conditions. Therefore, the main objective and contribution of this study is to propose 
a probabilistic approach to estimate simultaneously the free flow speed distribution and the 
probability that drivers perceive their state as constrained, overcoming the limitation of 
arbitrary cut-off point used in previous studies. At the same time, the proposed methodology is 
able to incorporate the impact of road geometric characteristics and speed limit changes on the 
mean of the free flow speed, using an extensive dataset from more than 30 urban sites in Sweden 
with varying characteristics.   

The results show that the mean free flow speed is strongly influenced by several road 
characteristics such as land use, parking, and the presence of sidewalks. The reduction in the 
posted speed limit decreases the impact of sidewalk by 2.5 km/h and the impact of the 
interaction of parking and sidewalk by 3.2 km/h. Land use (center or suburb) shows the highest 
impact on speed reduction of 4.1 km/h. On the other hand, the impact of parking only is nearly 
unchanged with the reduction of the posted speed limit. Furthermore, the results show that the 
speed limit may not be an effective intervention to reduce speed levels on roads with already 
low speeds (e.g., city center roads), where other factors such as parking intensity, pedestrian 
and bicyclist flows also impact behavior. The speed limit reduction effectively decreases the 
mean speed on roads with higher actual speeds (e.g., suburb areas).  

The paper has shown that the proposed modeling framework is capable of simultaneously 
estimating the impact of changes in the road environment e.g., speed limit reduction, on the 
FFS distribution and the estimation of the constrained probability with reasonable results. The 
model can also evaluate the impact of road geometric characteristics on the FFS as it is a generic 
model (i.e., not site-specific) including 32 sites with varying characteristics.  

The estimated probabilities show how drivers are most likely to perceive their driving 
situation, given her/his desired speed. For example, the constrained probability is high (>88%) 
at headways shorter than 4 s while at headways larger than 10 s the probability is low (<10%). 
The critical headway, where the constrained probability is 50% is around 7 s. Moreover, the 
relative speed between the subject and leading vehicle has a strong impact on the constrained 
probability, as expected.  

Future research can benefit from richer datasets that include a variety of traffic conditions 
as well as more detailed information about parking activity intensity, mid-block crossing 
pedestrian flows, and cyclist flows, so that their impact on the free flow distribution can be 
captured more accurately. It will be interesting to estimate the model under mixed conditions, 
where, for some period of time, because of an incident, conditions have become very congested 
and evaluate the ability of the model to put low weight in such observations while estimating 
the free flow speed distribution. 
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