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ABSTRACT:

Point cloud usage has increased over the years. The development of low-cost sensors makes it now possible to acquire frequent point
cloud measurements on a short time period (day, hour, second). Based on the requirements coming from the coastal monitoring domain,
we have developed, implemented and benchmarked a spatio-temporal point cloud data management solution. For this reason, we make
use of the flat model approach (one point per row) in an Index Organised Table within a RDBMS and an improved spatio-temporal
organisation using a Space Filling Curve approach. Two variants coming from two extremes of the space - time continuum are also
taken into account, along with two treatments of the z dimension: as attribute or as part of the space filling curve. Through executing a
benchmark we elaborate on the performance -loading and querying time-, and storage required by those different approaches. Finally,
we validate the correctness and suitability of our method, through an out-of-the-box way of managing dynamic point clouds.

1. INTRODUCTION

Since the introduction of the LIDAR technology in the 1960s,
the volume of point cloud data has seen a rapid increase and it
is anticipated that it will continue to increase exponentially in
the years to follow. This growth is mainly the result of the de-
velopments in the point cloud acquisition technologies, the most
important of which are: terrestrial and airborne laser scanning,
mobile mapping, multi-beam echo-sound techniques (Otepka et
al., 2013).

Over the last years many easy-to-use and inexpensive sensors
mounted in mobile devices have become widely available. Ex-
amples of these devices are: Microsoft’s Kinect sensor (Izadi et
al., 2011), Google’s Project Tango (Schöps et al., 2015), Structure
from Motion (SfM) techniques (Westoby et al., 2012), etc. The
advent of these technologies has allowed repeated scans of the
same area on a regular basis, leading to massive spatio-temporal
point clouds having both very high spatial and temporal resolu-
tion. However, the management and querying of these massive
point clouds is a challenge (van Oosterom et al., 2015). The
reason for this is the generally unstructured nature of the points
(compared to raster data) and the multiple attributes that can be
attached to them. Depending on the acquisition technique, point
clouds can contain: time information, intensity, return number,
number of returns, classification, colour etc. These attributes can
be present in different combinations making even simple storage
and selections non trivial.

In the majority of today’s applications point clouds are managed
using file solutions. Typical file-based solutions include desk-
top applications (usually vendor-specific) and command-line exe-
cutables, like Rapidlasso’s LasTools (mixed - source) or the Point
Cloud Abstraction Library (PDAL) (an open - source project).
Within these solutions, the work-flow includes reading one or
more files, processing the data and writing files back to the user.

The database community, commercial and open source, provides
point cloud specific data structures. In particular, Oracle (Spa-
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tial and Graph) and PostgreSQL (PostGIS) follow a similar or-
ganisation technique for point cloud data. Their storage model
is based on the physical reorganisation of the data into groups
of spatially close points, called blocks (Ravada et al., 2010; Ram-
sey, 2014) and provides efficient management and query response
times (van Oosterom et al., 2015; Cura et al., 2015). However, the
data structures available in the Database Management Systems
(DBMS), are not designed for applications with dynamic nature.
This means that they consider point clouds as static objects, not
including time as part of the organisation. This is a very important
limitation as for specific applications time is as selective as the
spatial component or needed in integrated space - time selections
(change detection). These requirements, suggest that storing time
as an attribute does not offer efficient query response times. Fi-
nally, the structures do not scale good with the accumulation of
time dependent data. With such voluminous data, performance
-in terms of loading and query time, as well as storage- is very
important.

In this paper we investigate how effective time-varying point-
clouds can be stored and queried in a relational DBMS. More
specifically, we investigate different options of using a Space Fill-
ing Curve (SFC) to capture both time and space in one efficient
data-containing index.

This paper is organised as follows: Section 2 gives an overview of
the related literature on managing point clouds. Section 3 intro-
duces the methodology used in this paper. Section 4 provides the
implementation, followed by Section 5 and 6 where the bench-
mark description and results are given respectively. The paper
ends with Section 7, where conclusions and the future work are
discussed.

2. RELATED LITERATURE

2.1 Management of point cloud data in DBMS

Research on the management of point clouds has been ongoing
for at least a decade. In the beginning, the already available data
types (POINT, MULTIPOINT) were proposed for the management
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of point clouds (Wijga-Hoefsloot, 2012; Höfle et al., 2006). Later
on, it was argued that these approaches present significant draw-
backs in terms of storage overhead, memory intensive operations
and difficult updates and insertions (Ott, 2012).

The database community currently provides specific data struc-
tures suitable for the the management of point clouds. But apart
of the blocked model available in Oracle and PostGIS, a second
organisation is also possible. This is the flat model, where each
point is stored separately in one row. This model is easy to be
implemented in all database systems (van Oosterom et al., 2015),
relational or not (Martinez-Rubi et al., 2014). Compared to each
other, the block-based approach provides better scalability, less
overhead per point and potentially good compression (van Oost-
erom et al., 2015) that is directly related to the block size. How-
ever, blocks are less efficient in terms of updating, and further
insertions of points lead to overlapping blocks. This is not ideal
when managing dynamic point clouds, as within the current struc-
tures the indexes are used independent from each other and the
query optimiser will first filter on space and then on time. On the
other hand, the flat model is easier with updates and insertions.
An improved organisation of the flat model uses spatial clustering
techniques and specifically SFCs. SFCs have the ability to cluster
points close in reality, close on the curve. The improved organi-
sation is introduced in van Oosterom et al. (2015) and extended
in Martinez-Rubi et al. (2015) for the two spatial dimensions.

2.2 Spatio-temporal point cloud management

The organisation of point clouds has in its majority been focused
only on the spatial dimensions of the points. This means that
time is stored as an attribute, not taking part in the organisation
of the points into blocks or into the SFC. However, point clouds
are used for spatio-temporal analysis and therefore, an integrated
space and time approach is needed when organising the points.
Integrating space with time is, nonetheless, not an easy task. The
challenge lies in the different semantics and nature of the two
concepts. In the design phase, two aspects should always be taken
into account: 1. the resolution of time, meaning how the line of
time is partitioned. 2. the granularity of time, meaning at which
level of the spatial phenomenon (point data) the time dimension is
added. For example, time can be attached to the whole or subset
of a dataset, or can be part of each spatial object (point).

Implementations of spatio - temporal point cloud databases can
be found in the academia. More specifically, Fox et al. (2013)
used a NoSQL database for managing time dependent point data.
Their implementation is based on interleaving parts of the geo-
hash, with parts of the string representation of time. A geohash
is an implementation of the Morton SFC, ultimately generating
a recursive quadtree of the world. The derived string is used as
key for indexing the point data lexicographically. One disadvan-
tage of the method is that it is very platform specific as it accom-
modates the column key requirements of the Accumulo database
(key value store). At the same time, however, the system can
provide efficient insert and update operations. Tian et al. (2015),
following also a clustering approach, interleave the bits of the
x,y and time dimensions to derive the Morton key which is later
used to create a 3D Morton R-Tree inside a relational database.
Their developed prototype gives efficient query response times,
also under concurrent queries. However, their approach lacks the
ability to further insert new data. Finally, a different approach is
followed by Richter and Döllner (2014). Their developed system
handles point cloud updates by using an ”incremental database
update process”. For this they use change detection techniques to
determine which parts of the new point cloud have changed since

the previous state. Only the changed parts are then being inserted
into the database. Their implementation although has reduced
storage requirements and allows efficient change detection from
one moment to another, makes it very hard to restore what hap-
pened at a specific moment as a number of change entries have to
be applied to the initial state.

From the literature it becomes clear that a SFC approach is a log-
ical way to proceed when managing dynamic point clouds. How-
ever, different options need to be investigated to find an optimal
solution; specifically treating time (and z) as dimensions used in
the SFC computation (or not) and the scaling of space and time.

3. METHODOLOGY

As explained in Section 2.1, the flat storage model is a very flex-
ible solution for the management of point clouds, dynamic or
not. The method can either be used as a final storage model
or as an intermediate stage in order to efficiently create blocks.
However, being able to efficiently ask questions to the database
is directly proportional to the data structure and access methods
used. Therefore, a clustering technique, and more specifically a
SFC can be used for the efficient sorting of the points. A SFC has
the ability to apply a linear ordering to a multi-dimensional do-
main. Many SFCs have been developed through the decades, all
of which preserve a different degree of proximity in the data. Two
very commonly used orderings are the Morton and the Hilbert
curve. The curves are respectively shown in Figure 1a and 1b for
the 2D case. Both curves have the characteristic of being Quad-
rant recursive, which indicates that the cells in any sub-quadrant
have consecutive SFC values. SFCs, which can be extended to
the nD space, have been proven to be very relevant for multidi-
mensional storage (Lawder, 2000). A 3D implementation of the
Morton curve is given in Figure 1c. One important advantage of
utilising SFCs is that the derived one dimensional values can be
indexed using a B-Tree.

(a) The Morton
curve

(b) The Hilbert
curve

(c) The Morton curve
in 3D

Figure 1: The Morton and Hilbert space filling curves.

3.1 Storage Model

Diverging from the blocked models as commonly used by the
DBMS, we explore the flat model with an improved spatio - tem-
poral organisation. For this we use an integrated space and time
approach and a SFC, the Morton curve, for the organisation of the
points. Instead of using a (heap) table with a B-Tree index, we
use an Index Organised Table (IOT) which avoids storing a large,
separate index, thus not requiring to perform a join during query
execution (between index and data).

The Morton curve (also called Z-order or N-order curve) is based
on interleaving the bits of the binary representation of the n-
coordinates. For the SFC calculation, we define the curve for
the full resolution of the point cloud domain. This allows us to
avoid storing the x, y (,z) and t values, since those can be re-
covered back from the key. The above storage model leads to
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significantly less disk space but requires a decoding function that
can recover the original dimensions.

One very important aspect when using SFCs is keeping in mind
that they are based on hyper cubes and that all dimensions present
in the curve should have the same cardinality i.e. be of the same
size. For the spatial components that have the same nature, this
assumption is not detrimental to assume. However, time has a dif-
ferent nature compared to the spatial components; it is measured
in years, months, days, hours, minutes or seconds. Space, on the
other hand, is measured in degrees, meters, centimetres or mil-
limetres. The correspondence of those two (the relative scaling)
can be considered as the factor of how much time is integrated
with how much space. This integration should, nonetheless, be
constrained by the fact that additional data need to be added into
the database. Therefore, space on the hypercube should be re-
served for new data to be added in the future.

Structuring space and time to support dynamic point clouds is
not a trivial problem. The reason for this is that two contradic-
tory requirements need to be taken into account; (1) points close
in space and time should be stored close together (clustered) for
fast spatio - temporal retrieval, but, (2) in a way that already or-
ganised data is not affected by new data (to achieve fast loading).
The clash of these two requirements takes place when adding new
data. The new points, in order to preserve space-time locality,
will have to be inserted between the already stored points. As a
result, the data already organised will have to be moved which
is a very costly operation. For this reason, two integrations of
space and time are explored: the integrated space and time ap-
proach, where space and time have an equal part in the Morton
key calculation (Figure 2a) and, the non - integrated space and
time approach, where time dominates over space and is stored as
a separate column (Figure 2b). The two options actually represent
two extremes of a continuum which is achieved by appropriately
scaling the time dimension relative to space.

x

y

time

(a) Integrated

x

y

time

(b) Non-integrated

Figure 2: The two integrations of space and time.

3.2 Loading procedure

The loading procedure of our methodology is divided into two
phases. The data are physically structured according to their po-
sition on the space filling curve and organised with a data con-
taining B-Tree. The steps followed are:
1. Preparation: the data are read from the files and converted

to the Morton keys. This conversion depends on the type of
integration of space and time, the dimensions used in the Mor-
ton key calculation and the scaling of time. The data are bulk
loaded into a normal heap table.

2. Loading: The data is read from the heap table, sorted based
on the key and stored in the IOT. In this way, the index is
created once, which will assure that the data are clustered.
An incremental approach can replace this step. Incremental
means that the data are added in batches and the index will be
reorganised with every batch.

3.3 Query procedure

Since our use case (presented Section 5.1) comes from the coastal
monitoring domain, we carried out a research of the most impor-
tant queries used in those applications (de Boer et al., 2012; Lod-
der and van Geer, 2012), which are (Figure 3): (1) Space only
queries, that request all the spatio - temporal objects located in a
specific area. (2) Space-time range queries, that request all the
spatio-temporal objects located in a specific area during a specific
time range. (3) Time only queries, that request all the spatio-
temporal objects existing during a specific time range.

Figure 3: An overview of the important queries

Multidimensional selections using SFCs require a modified query
algorithm that takes into account the space filling organisation.
This means that the query geometry needs to be translated into a
number of continuous runs on the curve. Because all the above-
mentioned queries correspond to a kind of multi - dimensional
range query, within our method, we make use of the relationship
between the Morton curve and the Quadtree (van Oosterom and
Vijlbrief, 1996; Gargantini, 1982) or 2n trees for higher dimen-
sions. The maximum depth of the tree affects, (1) the number of
Morton ranges that compose the query, and (2) the approximation
of the query geometry. Only requesting higher levels will give
coarser 2n tree cells, resulting in additional points. The query
procedure used is as follows:
1. Filtering: The 2n tree cells that intersect with the query re-

gion, up to a specific depth, are identified (Figure 4a). Note
the mixture of big and small ranges returned, with the smaller
ones located mostly near the boundary. The cells are then
translated into the equivalent Morton ranges and the neigh-
bouring ranges on the curve are merged (Figure 4b). Note
that the direct neighbour merging can either have no effect on
the cells or create non-rectangular ones. Unless differently
defined, the ranges are further merged in case they exceed
a specified maximum amount. Merging of non-direct neigh-
bours will always result in additional tree cell space added to
the original situation. The returned ranges are used for fetch-
ing the data. The result is an approximation of the query being
asked because the ranges are not formed from the finest 2n

tree cells. Two examples with a different degree of merging
(30 and 20) are present in Figure 4c and 4d respectively. The
number of the tree cells after the direct neighbour merging is
42. With the application of the merging one can observe two
things: First, that the 2n tree approximation is very accurate,
especially when compared to the commonly used Minimum
Bounding Rectangle. Second, when applying a merging there
is a certain loss in the accuracy of the approximation (Fig-
ure 4e and 4f) but, also a gain when the number of ranges is a
bottleneck.

2. Decoding and storing: The previous result is decoded back to
the original x, y, z and time dimensions and stored temporarily
in a table. This is needed because there are not yet functions
inside the database to perform the decoding on-the-fly.

3. Refinement: The final query result is obtained by performing
a point-in-polygon operation or filtering out time and z.
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(a) Original 176 tree cells (b) Merging of direct
neighbours leading to 42

cells

(c) Merged to maximum
number of 30

(d) Merged to maximum
number of 20

(e) The expansion of the
original geometry (case (b))
in red after merging to 30

ranges

(f) The expansion of the
original geometry (case (b))
in red after merging to 20

ranges

Figure 4: The different steps in the preparation of the filter step: Tree cell identification, direct neighbour merging and, merging to
maximum number. Cases (c) and (d) depict different degrees of merging applied to the tree cells of case (b). The expansion of the area

according to the two degrees of merging (30 and 20) is shown in cases (e) and (f) respectively

4. IMPLEMENTATION

4.1 Developed scripts

For the implementation of our methodology we have developed
sets of Python scripts that perform the loading and querying pro-
cedures according to the specified parameters. The source code
can be found at: https://github.com/stpsomad/DynamicP
CDMS. Selected parts of the loading scripts along with some ex-
planations can be found in the Appendix of this paper.

4.2 Database selection

The system chosen for the validation of the methodology is the
Oracle Database. The version that was used for the tests is the
Oracle Database 12c Enterprise Edition Release 12.1.0.1.2 - 64
bit Production. The system is chosen because of the availability
of the IOT. With an IOT, the data itself is stored in a B-Tree index
structure and physically clustered. This means that contrary to the
usual way, IOTs do not store the table and the index separately.
Another reason for choosing the Oracle database was that the full
Morton keys can very easily become larger than 64 bit integers.
The Oracle database includes the NUMBER type that can handle
numbers up to 38 decimal digits, enough for 128 bit keys.

4.3 The representation of space and time

One of the issues faced when using time in general and inside
SFCs specifically, is its unique nature. Time is usually repre-
sented with the date format inside the database. However, inte-
gers can be sorted more efficiently, a characteristic that is very
important for our methodology. Furthermore, SFCs are imple-
mented with integers. Therefore, both space and time need to be
converted to and represented by integer values.

For space this issue is solved by applying a linear transformation
to the spatial coordinates (translation and scale). In order to repre-
sent time as an integer many different ways can be identified that
correspond to different time resolutions (seconds, days, years).
We can express time simply as an integer of format yyyymmdd
for day or yyyy for year resolution. This expression, however, as
the resolution becomes finer, leads to time gaps. Another option
is to use the Unix time that gives the the number of seconds since
00:00:00, 1/1/1970. This option can be very useful for datasets
that are streamed every second, but is very verbose for day or
year resolution. For day resolution we can chose to store the days
since a specific epoch, e.g. 1/1/1990.

4.4 Hardware and Software

For the tests described in this document we have used a server
with the following details: HP DL380p Gen8 server with 2 x 8-
core Intel Xeon processors, at 2.9 GHz, 128 GB of main memory,
and a RHEL 6 operating system. The disk storage which is di-
rectly attached consists of a 400 GB SSD, 5 TB SAS 15K rpm
(\work) in RAID 5 configuration, and 2 x 41 TB SATA 7200 rpm
in RAID 5 configuration (\pak1 and \pak2 respectively).

Purpose Tablespace File system

Data - \pak2
Heap table USERS \pak1
IOT INDX \pak2
DBMS Temporary storage TEMP \work
Query table PCWORK \work

Table 1: The distribution of files and tables in the available disks
according to the specific purpose.
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To minimise mixed read/ write operations on the same disk, es-
pecially during the loading procedure, we have distributed our
data files and database tables over different disks. Within the
DBMS this is achieved using different tablespaces. The chosen
distribution is available in Table 1. The decision was made as
follows: The data are stored in the /pak2 file system. To avoid
disk contention, the /pak2 file system (INDX tablespace) should
not be used for loading the data into the heap table. Therefore,
the USERS tablespace is used (=/pak1). For the creation of the
IOT data is read from USERS tablespace, and sorting will take
place in the TEMP (=/work) tablespace. To avoid disk contention
in the final stages of this phase (the writing of the resulting IOT)
the INDX tablespace is used for storing the IOT.

5. BENCHMARK DESIGN

5.1 Loading

In order to test the performance of our storage model, we de-
signed and executed a benchmark. The benchmark is designed to
measure the performance in terms of storage space, loading times
and query response times. In addition to that, it includes the test
datasets used and the description of the queries both in geometry
and time.

The data (provided by Deltares) originate from the Sand Engine
use case, 21 million cubic metres of sand deposited at the coast of
the province of South Holland in the Netherlands. The region has
a size of 4.5 x 4.5 km. The purpose is to investigate how nature
spreads this amount of sand along the coast as the years go by.
For this reason, the area is measured at irregular periods (mostly
after the occurrence of storms). So, although it is not measured
every single day, the time resolution will be in days in order to
offer the best possible organisation. In Table 2 we present the
details of the benchmark stages. The data itself is available as a
set of LAZ files, with approximately 100,000 points per file. It is
important to mention that the spatial extent remains more or less
the same, while the time extent is increasing. In addition to that,
years 2000 to 2011 are artificially created from the subsequent
measurements. With this type of dataset we aim to compare the
scaling in size of the stored data and the effect of adding new
temporal data in batches between the benchmarks, as well as, the
query response times.

Benchmark Points Days Size (MB) Description No. of files

Small 18M 230 346 2000 to 2002 230
Medium 44M 554 833 2000 to 2006 554
Large 74M 931 1409 2000 to 2015 931

Table 2: Benchmark stages of the Sand Engine use case. The
size represents the size of the LAZ files in the filesystem.

In addition to comparing our storage model between the three
benchmark sizes, the two integrations of space and time have to
be compared with each other. In addition, for both the integrated
and non-integrated approach, the z dimension can be part of the
SFC value (z added) or not (z attribute). This leads to 4 different
loading options, for each one of which the benchmark is repeated
as mentioned previously. Finally, as mentioned in Section 3.1,
SFCs are defined on hypercubes and thus the relative scaling be-
tween the space and time dimensions needs to be defined. Scal-
ing, however, only makes sense for the integrated approach. In
our implemented system, the user can choose to implement dif-
ferent degrees of integration, from a complete to a less deep inte-
gration.

All the tests are carried out in order to gain insight into which
organisation is the most optimal. The notation used throughout
the tables in the next subsection is: xy for the non-integrated with
z as attribute, xyz for the non-integrated with z in key, xyt for the
integrated with z as attribute, xyzt for the integrated with z in key.

5.2 Queries

The queries which are executed are described in detail in Table 3.
Type is the type of query as defined in Section 3.3. Start and End
are respectively the start and end date requested for retrieval. The
time type, indicates whether the previously mentioned start and
end date are continuous (i.e. between start date and end date) or
discrete (i.e. only start date and end date). Finally, the area gives
an indication of the space covered. The spatial representation
of the queries used within our benchmark is shown in Figure 5.
For testing purposes we query areas of different geometry like
rectangle, polygon, line with buffer and point with buffer. We
also test different sizes of the those geometries. This will give
us an insight as to whether certain geometries behave differently
using the same storage model.

ID Type Start End
Time
type Description Area

(km2)

ST-A s-t 03/01/00 28/01/00 d Large axis - aligned rectangle 0.44
ST-B s-t 10/11/01 - d Large Polygon 0.46
ST-C s-t 01/11/00 15/11/00 c Medium, complex polygon 0.16
ST-D s-t 01/08/01 31/08/01 c Medium polygon 0.04
ST-E s-t 01/08/01 31/08/01 c Line with buffer 5 m 0.015
ST-F s-t 01/01/02 15/01/02 c Large Line with buffer 5 m 0.02
T-A t 25/10/02 26/10/02 c - 20.25
T-B t 02/09/02 05/09/02 c - 20.25
S-A s - - - Small Polygon 0.04
S-B s - - - Small polygon 0.002
S-C s - - - Point buffer of 50 m 0.008
S-D s - - - Diagonal line with buffer 5 m 0.009

Table 3: The description of the queries.
In type: s-t stands for space - time, t for time and s for space. In

time type: c stands for continuous and d for discrete.

6. BENCHMARK RESULTS

In this section we present the results of loading the datasets and
performing the above-mentioned queries according to the three
benchmark stages, two integrations of space and time and two
treatments of z. Space is encoded in mm and time in days since
1/1/1990. It must be noted that, when testing the performance
of the various scalings of time for the integrated approach, we
realised that the scaling of 10,000 gave the best performance for
this specific use case. Such a scaling means that for a certain day,
the area grouped close in disk is 10m by 10m. In the following
tests only the results of this scaling are presented.

6.1 Loading results

During the benchmark, the files are processed one by one both for
their conversion to the Morton key and the loading to the heap.
To take into consideration the growing nature of our scenario, the
medium and large benchmarks do not include a fresh reloading of
the previous stage, but the new data is added to the already stored
points. For our benchmark execution each approach is tested sep-
arately from the others (until both loading and querying are com-
pleted).

In Table 4 the loading times are presented. No parallel processing
is present in any of the steps. From the table it is easy to see
that, the conversion to the Morton key (SFC prep.) is in general
the most expensive step in the procedure. The reason for this is
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Figure 5: The spatial representation of the queries used within the benchmark

Approach
Time (s) Size

(GB)

Points Points per sec.

SFC
prep.

Load
heap

Load
IOT

Heap IOT Heap IOT

xy - small 105.43 11.79 13.60 0.5 18,147,709 18,147,709 1,539,024 1,334,390
xy - medium 145.14 16.56 49.65 1,1 25,561,106 43,708,815 1,543,433 880,339
xy - large 167.75 19.72 78.00 1,9 30,205,111 73,913,926 1,531,699 947,614

xyz - small 352.37 9.91 10.5 0.4 18,147,709 18,147,709 1,830,384 1,728,353
xyz - medium 498.79 14.24 34.07 0.9 25,561,106 43,708,815 1,794,832 1,282,912
xyz - large 590.00 16.77 61.71 1,5 30,205,111 73,913,926 1,801,161 1,197,763

xyt - small 349.68 11.79 13.09 0.5 18,147,709 18,147,709 1,539,024 1,386,380
xyt - medium 492.29 16.56 40.39 1.1 25,561,106 43,708,815 1,543,433 1,082,169
xyt - large 594.10 19.72 74.11 1.9 30,205,111 73,913,926 1,531,699 997,354

xyzt - small 435.48 11.79 10.78 0.4 18,147,709 18,147,709 1,539,024 1,683,461
xyzt - medium 604.27 16.56 33.21 0.9 25,561,106 43,708,815 1,543,433 1,316,134
xyzt - large 722.08 19.72 57.96 1.5 30,205,111 73,913,926 1,531,699 1,275,258

Table 4: The incremental loading times for the two integrations of space and time and the two treatments of z.

that the code that we use so far is non-optimised Python code.
Also, it is easy to see that from approach to approach (xy →
xyz or xyt → xyzt) the conversion gets more costly. This can
be explained because the complexity of the algorithm increases
with the addition of more dimensions. The loading inside the
heap tables is more or less in the same magnitude for the four
approaches. As for the loading in the IOT, the treatment of z as an
attribute seems to be more expensive in terms of time. This may
be because one more column needs to be organised (compared to
the treatment of z as part of the Morton key). Finally, comparing
the storage requirements of the different approaches, it is easy
to see that the treatment of z as an attribute requires in general
more space. However, the differences are not big. Also, using a
separate attribute for the time or integrating it in the key appears
not to influence the storage.

6.2 Query results

The queries introduced in Section 5.2 are executed for each of
the four storage organisations for all three data sizes (12 combi-
nations). For all the queries we run both cold and hot runs. In
contrast to the cold run, the hot run means that the query has al-
ready been executed and caching takes place. Within our bench-
mark each query is repeated 6 times before moving to the next
one. The execution order of the queries (as presented in Table 3)
is as follows: ST-A, ST-B, S-A, ST-C, T-A, ST-D, S-B, S-C, ST-
E, T-B, S-D, ST-F. For the results presented here we ignore the
most and least expensive response and calculate the average from
the rest. As a result, the presented number correspond to hot runs.

Only the first fetching (filtering) of the data (along with the num-
ber of points in the refinement stage and the percentage of the

extra points obtained between the two querying steps) is given in
the following table. This step is the most crucial because it is di-
rectly related to the depth of the 2n tree and the maximum number
of ranges specified (degree of merging). The rest of the steps can
be optimised further and are, therefore, of secondary importance.
Finally, it is very important to mention that two different methods
of posing the queries are used between the two integrations. In the
integrated approach we load the ranges into a separate IOT and
perform a join to fetch the data. This method, however, does not
provide efficient response times for the non-integrated approach
(where the index is composed out of 2 columns) and as a result
the keys are specified in the WHERE predicate (see A.2.2). But
because there is a limit to the number of ranges we can ask when
using a SQL query, a limit of 200 ranges is applied. This is not
the case for the integrated approach where in theory there are no
limits when performing joins. Nevertheless, a number of 1 mil-
lion ranges is set as maximum for practical reasons.

The query results (filter step) for all integrations of space and
time, treatments of z and benchmark stages can be found in Ta-
ble 5. All queries are executed using only one process (no paral-
lel). This is based upon the observation that, in certain test cases,
although parallelisation in Oracle was enabled, during query ex-
ecution one core was actually being used. Only queries that do
not use the primary key ([time, ]Morton) to fetch the data i.e.
space queries in the non-integrated approach seem to enable the
parallel option. However, for consistency within our results, no
parallelisation is enabled.

By first observing space - time and time queries, we can conclude
that:
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Approach id Filter step (s) % extra points Final Points

small medium large small medium large small medium large

xy

ST-A 0.33 0.33 0.33 12 12 12 3927 3927 3927
ST-B 0.22 0.22 0.21 14 14 14 4237 4237 4237
ST-C 0.92 0.91 0.93 12 12 12 2812 2812 2812
ST-D 3.86 3.92 4.03 3 3 3 2185 2185 2185
ST-E 2.94 3.09 3.38 38 38 38 380 380 380
ST-F 1.34 1.57 1.40 137 137 137 327 327 327
T-A 0.52 0.51 0.51 0 0 0 78902 78902 78902
T-B 1.01 1.01 1.04 0 0 0 157806 157806 157806
S-A 30.66 74.11 128.02 30 29 28 86017 231283 509964
S-B 50.98 122.38 209.89 7 9 8 2788 8934 23949
S-C 24.72 64.30 108.58 11 11 11 11501 32983 54111
S-D 109.10 260.34 444.13 62 62 61 11933 33494 90670

xy
z

ST-A 1.07 1.08 1.12 19 19 19 3927 3927 3927
ST-B 0.65 0.64 0.66 17 17 17 4237 4237 4237
ST-C 1.75 1.86 1.83 40 40 40 2812 2812 2812
ST-D 3.93 3.97 4.30 24 24 24 2185 2185 2185
ST-E 3.39 3.42 3.41 251 251 251 380 380 380
ST-F 1.75 1.94 1.93 497 497 497 327 327 327
T-A 0.33 0.32 0.31 0 0 0 78902 78902 78902
T-B 0.62 0.63 0.62 0 0 0 157806 157806 157806
S-A 122.95 292.07 503.75 30 29 28 86017 231283 509964
S-B 114.90 291.73 481.49 32 37 33 2788 8934 23949
S-C 105.02 260.18 422.42 22 22 22 11501 32983 54111
S-D 103.44 244.45 417.43 237 237 218 11933 33494 90670

xy
t

ST-A 0.05 0.05 0.06 2 2 2 3927 3927 3927
ST-B 0.13 0.12 0.13 1 1 1 4237 4237 4237
ST-C 0.04 0.04 0.04 12 12 12 2812 2812 2812
ST-D 0.03 0.03 0.03 6 6 6 2185 2185 2185
ST-E 0.04 0.04 0.04 27 27 27 380 380 380
ST-F 0.04 0.04 0.04 35 35 35 327 327 327
T-A 0.59 0.60 0.59 0 0 0 78902 78902 78902
T-B 0.96 0.96 0.95 0 0 0 157806 157806 157806
S-A 0.68 1.73 3.76 15 15 28 86017 231283 509964
S-B 0.10 0.26 0.36 14 16 26 2788 8934 23949
S-C 0.16 0.39 0.53 11 11 22 11501 32983 54111
S-D 0.42 1.09 1.75 46 47 97 11933 33494 90670

xy
zt

ST-A 0.11 0.11 0.11 2 2 2 3927 3927 3927
ST-B 0.08 0.08 0.08 4 4 4 4237 4237 4237
ST-C 0.06 0.06 0.06 12 12 12 2812 2812 2812
ST-D 0.12 0.13 0.12 6 6 6 2185 2185 2185
ST-E 0.13 0.13 0.13 50 50 50 380 380 380
ST-F 0.11 0.11 0.11 67 67 67 327 327 327
T-A 0.42 0.42 0.42 0 0 0 78902 78902 78902
T-B 0.57 0.57 0.58 0 0 0 157806 157806 157806
S-A 0.47 1.17 2.61 30 29 58 86017 231283 509964
S-B 0.08 0.21 0.48 64 72 68 2788 8934 23949
S-C 0.17 0.23 0.41 22 45 46 11501 32983 54111
S-D 0.63 0.59 1.41 100 190 184 11933 33494 90670

Table 5: Query response times, the percentage of false hits compared to the actual number of points and the points returned by the
queries.
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• In general rectangles and polygons have faster response times
in the non-integrated approach.

• In the non-integrated approach there are some differences in
the response times between the two treatments of z, especially
for rectangles and polygons. Adding z in the key without using
it slows down the query execution.

• In the integrated approach having z as an attribute or as part of
the key does not have a big effect on the execution time of the
data.

• Response times of time queries are of the same magnitude per
treatment of z.

• Clearly the results present good scalability (constant response
times) for the benchmark stages used, since doubling the size
of the data does not affect the query execution time. However,
we must keep in mind that the specific use case is not massive
and therefore not a good indicator for scalability. For this rea-
son, we also tested our proposed methodology with a dataset of
2 billion points. The results (not presented here, but in a soon
to be published MSc thesis) confirm the constant scalability of
the method.

• Comparing the % of extra points received from the filtering
step between the four approaches, we can observe that line
queries receive the most extra points. Further, adding z in the
key comes at the cost of more extra points. This can be solved
by moving deeper in the 2n tree, which requires a more dy-
namic algorithm for identifying the maximum depth. Clearly
the non-integrated approach presents the largest amount of ex-
tra points mostly because of the way that the query is posed
(WHERE clause with 200 maximum ranges).

Moving on to space queries, it is important to specify that they are
different from space - time and time queries in that the number
of points is increasing between the benchmarks, simply because
more data is added. From the results we can observe that space
queries perform better in the integrated approach while the worst
case is for the non-integrated when z is part of the key. Compar-
ing the percentage of extra points we can realise that there is not
a distinct pattern (i.e. line buffers do not necessarily give more
extra points). However, in the integrated approach and specifi-
cally the large benchmark the number of extra points doubles. Al-
though not present in this table, the number of ranges with which
the join is performed is less than in the small and medium bench-
mark. Again, this can be resolved by developing an algorithm
that identifies the maximum depth in a more dynamic way.

During our tests we have also investigated the effect of the pa-
rameters: (1) depth of the tree and (2) the maximum number of
ranges used. For this we present Figure 6 which shows the effect
of going deeper in the 2n tree on the number of extra points re-
ceived for the three different types of queries in the integrated ap-
proach. It is clear that using more ranges, significantly decreases
the number of extra points.

Finally, to show the reason why we limit to 200 ranges in the
WHERE clause of the non-integrated approach, we present Ta-
ble 6. For this, we use the same ranges in order to derive a maxi-
mum of 10, 100, 1000 and 10,000 for posing the SQL statement.
There it is clear that adding more ranges in the SQL statement
significantly slows down the fetching of the data, especially for
space queries. However, increasing the number of ranges de-
creases the percentage of extra points received during the filtering
phase. To have a balance between time and extra points, the max-
imum number of 200 is chosen.
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Figure 6: The effect of increasing the depth of the tree on the
percentage (%) of extra points obtained during the filtering
phase of the integrated approach. The x axis is logarithmic.

Query Maximum
ranges

Actual
ranges

fetching
[s]

extra
[%]

Space -
time

(ST-D)

10 10306 0.08 4636%
100 10306 0.10 384%
1000 10306 20.30 18%
10000 10306 69.38 9%

Space
(S-B)

10 7458 3.65 4943%
100 7458 34.37 458%
1000 7458 390.25 54%
10000 7458 1131.95 28%

Table 6: Using different magnitudes of maximum ranges in the
WHERE statement of the non-integrated approach.

6.3 Validation and comparison

To have a kind of validation that our implemented prototype re-
turns the right amount of points and for comparison purposes,
the out-of-the-box approach of using Oracle spatial and date data
types is implemented. For this we use a 3-D SDO POINT and a
2D R-Tree for fast spatial access. To, also, be able to have fast
access in the time dimension, a B-Tree index is built on the time
column. The benchmark defined before, is executed for this case
as well. An overview of the SQL codes used can be found in A.3
and A.4.

The results of the loading procedure are presented in Table 7 in
terms of time and, Table 8 in terms of storage requirements. The
same incremental loading as before is used. By comparing them
with any of the proposed storage models, we can see that the total
execution time of the loading procedure in the validation case
is 3 to 6 time more expensive. The process is mostly affected
by the R-Tree generation, while building the B-Tree index is the
least expensive operation. Moving to the storage requirements,
the Oracle spatial approach requires 5 times more space when
compared to the proposed storage model with the highest storage
requirements.

The query procedure is executed with the same configurations as
the proposed methodology. Each query is executed 6 times and
the results presented in Table 9 are calculated by excluding the
most and least expensive response times from the average. Be-
cause of the existence of the R-Tree index, the Oracle database
internally follows a two step approach during query execution.
However, contrary to the implemented methodology, this two step
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Stage
Time (s) Points

in
table

Prepa-
ration Load R-Tree B-Tree

small 31.04 244.27 891.99 15.37 18,147,709
medium 45.07 337.68 2273.38 31.69 43,708,815
large 51.48 400.27 4099.36 73.72 73,913,926

Table 7: The incremental loading times of the validation.
Preparation refers to the reading of the LAZ files and their

transformation to suitable representations for loading.

Stage Size (GB)
Points in

tableTable R-Tree B-Tree Total

small 0.9 1 0.4 2.4 18,147,709
medium 2.3 2.5 0.9 5.8 43,708,815
large 4.0 4.3 1.5 9.8 73,913,926

Table 8: The storage requirements of the validation.

process is transparent to the user. For this reason, the results pre-
sented in this Table 9 represent the total query execution time
(both filter and refinement step). Note that our implemented pro-
totype studies only the fetching of the filter step. With a close
inspection we can confirm that our implemented prototype is in-
deed retuning the correct amount of points. In addition to that,
our implemented prototype gives more expensive response times,
when considering all steps in the query procedure (not shown
here). This has to do with the type of programming language used
(Python) for such intensive operations and the movement of data
between the application and the database. Both parts can be con-
siderably be improved (see Future work). However, this ”naive”
approach does not provide constant execution times between the
benchmark stages, mostly because of the presence of two indexes
and the nature of the 2D R-Tree. This is a crucial observation
that makes the method not suitable for managing dynamic point
clouds.

7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this paper we have presented the design and execution of a
benchmark appropriate for the data management of dynamic point
clouds. We have investigated two integrations of space and time,
that are essentially two extremes of the space - time continuum.
Within this, we have also tested two treatments of the z dimen-
sion: using it as an attribute, or as part of the SFC calculation.
We have, also, validated and compared our method with the out-
of-the-box approach of using POINT and date data types. The
ultimate goal is to investigate the most appropriate structure for
managing time evolving point clouds. For this we have consid-
ered a use case coming from coastal monitoring domain. All the
developed code can be found at https://github.com/stpso
mad/DynamicPCDMS.

The main findings from our work is that the integrated approach
has in general better query response times compared to the non-
integrated. Both treatments of z are also appropriate for the spe-
cific use case. Further, in the non-integrated approach having z
as part of the key significantly slows down query execution and
increases the number of extra points received. A key aspect in
our solution is the use of the IOT. This storage structure signifi-
cantly reduces I/O operations as the data are contained in the in-
dex (compact and no effort/time to combine index and data from

id Total time (s) Final Points

small medium large small medium large

ST-A 0.52 1.28 1.89 3927 3927 3927
ST-B 0.83 2.08 3.85 4237 4237 4237
ST-C 0.36 0.72 2.52 2812 2812 2812
ST-D 0.33 0.42 1.00 2185 2185 2185
ST-E 0.29 0.32 0.41 380 380 380
ST-F 0.21 0.28 0.79 327 327 327
T-A 0.19 1.97 0.19 78902 78902 78902
T-B 0.31 1.97 0.31 157806 157806 157806
S-A 0.52 1.19 2.03 86017 231283 509964
S-B 0.11 0.16 0.24 2788 8934 23949
S-C 0.16 0.28 0.39 11501 32983 54111
S-D 0.17 0.32 0.69 11933 33494 90670

Table 9: The query response times and the number of points
returned by the queries of the validation benchmark.

table when querying). Our final conclusion is that as the flat table
model is indeed a very flexible solution for managing dynamic
point clouds.

7.2 Future work

For the future, several issues need to be investigated and ad-
dressed. These include:
• implementing functionality inside the database (encoding,

decoding SFC, range generation) or using a compiled lan-
guage (e.g. https://github.com/kwan2004/SFCLib). The
former would minimise the data movement now taking place
between the database and the application during query ex-
ecution. With the latter C++ library our preliminary re-
sults for the loading phase, show significant improvement
(6 times faster) during the SFC preparation phase of the xyzt
case (see Table 10).

Approach SFC prep.
[s]

mini 68.69
medium 95.27
full 110.63

Table 10: Using C++ code for the SFC transformation

• investigating parallel processing in all of the steps.

• using even more massive point cloud data for executing bench-
marks.

• investigating the value of higher dimensional SFC keys, mean-
ing what is the benefit of including more dimensions in the
key e.g. Level of Detail, colour etc.

• investigating delta (change detection) queries. Delta queries
are very important for coastal applications monitoring change.

• using a different SFC. For this, comparisons between the
Hilbert and Morton curve are the most appropriate, since the
former is considered to have higher clustering capabilities.
Investigating the number of ranges during the query process
would give insight into this, as well as to whether there is
a price to pay for the better clustering during encoding or
decoding.

• improving the refinement step. Although the refinement stage
is not examined within this paper, we believe that it would
be significantly aided by following a different approach af-
ter the filter stage. The approach includes having two sets
of ranges: 1. completely inside the query geometry, that are
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for sure part of the final points and do not need to be further
refined (Figure 7, white cells) and, 2. ranges partly inside
the query geometry that need to go to the refinement stage
(Figure 7, grey cells).

• investigating the creation of blocks using the same space and
time integrations will allow more efficient storage and com-
pression. Within this, researching the degree of overlapping/
non-overlapping blocks and the percentage of full/ under-
full blocks when dealing with time evolving point clouds
would add insight to to the current point cloud data manage-
ment storage models.

Figure 7: Separating internal ranges and ranges on boundary.
White cells are inside the query region. Grey cells are partially

inside the query region.
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A. APPENDIX

A.1 Loading scripts

The example SQL statements below are given for the non - inte-
grated and integrated approaches (respectively) for the treatment
of z as an attribute. For the full code, the reader is referred to our
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on-line code. The setup for the treatment of z as key is different
only in the absence of the z column. Starting with the prepara-
tion phase, we create the heap table where the data will be stored
temporarily.

CREATE TABLE temp xy (

time NUMBER, morton NUMBER, z NUMBER);

CREATE TABLE temp xyt (morton NUMBER, z NUMBER);

For the bulk loading of the data we use the SQLLDR utility of the
Oracle database. SQLLDR requires the creation of a set of files,
including the control file which specifies how to load the data.

load data append into table temp xy

fields terminated by ’,’

(time integer external, morton integer external,

z float external)

load data append into table temp xyt

fields terminated by ’,’

(morton integer external, z float external)

The conversion from the files to the Morton keys is initialised by
our developed Morton converter. The conversion is then pipelined
with the SQLLDR utility (command line).

mortonconverter |

sqlldr [user]/[password]@//[host]:[port]/[DB]

direct=true control=con.ctl data= \"-\"
bad=bd.bad log=lg.log

After the data have been inserted, unsorted, into the table, it is
possible to proceed to the loading phase. The heap table is used
to populate the IOT using the following command:

CREATE TABLE IOT xy

(time, morton z, CONSTRAINT IOT xy PK

PRIMARY KEY (time, morton)) ORGANIZATION INDEX

AS SELECT time, morton, z FROM temp xy;

CREATE TABLE IOT xyt

(morton z, CONSTRAINT IOT xyt PK

PRIMARY KEY (morton)) ORGANIZATION INDEX

AS SELECT morton, z FROM temp xyt;

In case more data need to be added into the database, the new
data are inserted into a heap table and then the two sources (old
and new data) are combined together:

CREATE TABLE IOT new xy

(time, morton z, CONSTRAINT IOT new xy PK

PRIMARY KEY (time, morton)) ORGANIZATION INDEX

AS SELECT time, morton, z FROM IOT xy

UNION ALL

SELECT time, morton, z FROM temp xy;

CREATE TABLE IOT new xyt

(morton z, CONSTRAINT IOT new xyt PK

PRIMARY KEY (morton)) ORGANIZATION INDEX

AS SELECT morton, z FROM IOT xyt

UNION ALL

SELECT morton, z FROM temp xyt;

A.2 Query scripts

Within our python scripts we have implemented a work-flow that
maps the spatio-temporal queries to Morton ranges, time or height

predicates. The procedure depends on the specified integration
and type of query. Again the SQL codes are given for the non-
integrated and integrated approaches (respectively) for the treat-
ment of z as attribute. The setup for the treatment of z as a key is
sightly different.

The queries are loaded into a table called QUERIES. When a cer-
tain query needs to be executed the implemented scripts read the
required information from the QUERIES table. The table con-
tains the following information: 1. query ID, 2. dataset, 3. type
of query, 4. geometry, 5. start and end date, 6. minimum and
maximum height (if any).

A.2.1 Time only queries in the non-integrated approach do
not require the identification of Morton keys. This is because time
is stored as a separate column. The first filtering gives directly the
refined points. This query requests points between two moments
in time. These are then decoded back to their original dimensions
and stored in a table.

SELECT time, morton, z FROM IOT xy

WHERE (time BETWEEN 4681 AND 4682);

In the integrated approach time queries follow the two step query
process. First, the Morton ranges are loaded into an IOT named
RANGES. The data table and the RANGES table are joined. This
concludes the filtering step. The data are decoded to their original
coordinates and stored into a table. This tables is then used to
proceed to the refinement step, by imposing predicates on the
time dimension.

--RANGES table definition

CREATE TABLE RANGES(low NUMBER, upper NUMBER,

CONSTRAINT RANGES iot idx PRIMARY KEY (low))

ORGANIZATION INDEX;

-- Join operation

SELECT /*+ USE NL (t r)*/ t.morton, t.z

FROM IOT xyt t, RANGES r

WHERE (t.morton BETWEEN r.low AND r.upper);

-- Table storing the decoded points

CREATE TABLE decoded (

time DATE, X NUMBER, Y NUMBER, Z NUMBER);

-- Refinement Stage

CREATE TABLE result AS SELECT *

FROM (SELECT X, Y, Z, time FROM decoded)

WHERE (TIME BETWEEN

TO DATE(’2002/10/25’, ’YYYY/MM/DD’) AND

TO DATE(’2002/10/26’, ’YYYY/MM/DD’));

A.2.2 Space only queries in the non-integrated approach fil-
ter on the Morton keys during the filtering step. Here, to avoid
congestion in the paper we represent only 2 Morton ranges out
of the 87 that were needed for this space query. This particular
query requests all the time information for a polygonal geometry.

SELECT time, morton, z FROM IOT xy

WHERE ((morton BETWEEN 181664219136000 AND

181664231718911) OR [..] OR (morton BETWEEN

181675304681472 AND 181675313070079));

In the integrated approach the same JOIN procedure as with time
queries is used.

Because no functions are available inside the database to perform
the decoding of the Morton keys, this procedure is performed
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with Python. After that, follows the temporary storage in the
database in order to finally perform the second filtering step. In
this case it is a point in polygon operation. This step is the same
independently from the integration and treatment of z used.

CREATE TABLE query AS (SELECT *

FROM TABLE(sdo PointInPolygon(CURSOR(

SELECT X, Y, Z, time FROM decoded),

SDO GEOMETRY(’POLYGON ((72466 453045,

72498 453076, 72526 453048, 72493 453017,

72466 453045))’, 28992), 0.001)));

A.2.3 Space - time queries in the non-integrated approach
are performed similar to the space query. However, in the WHERE
predicate a time range is also specified. The query represents a
rectangle, where two moments in time are being asked.

SELECT time, morton, z FROM IOT xy

WHERE (time IN (3655, 3680)) AND ((morton

BETWEEN 151177480110080 AND 151178553851903)

OR [..] OR (morton BETWEEN 156420561436672

AND 156421635178495));

In the integrated approach the SQL code used is exactly the same
as with space and, time queries.

The next step proceeds as with space queries: a point in polygon
operator is used to retrieve the points inside the requested geom-
etry. In the integrated approach we will also filter on time (or z)
depending on which treatment is used.

-- Non-integrated

CREATE TABLE query AS (SELECT *

FROM TABLE(sdo PointInPolygon(CURSOR(

SELECT X, Y, Z, time FROM decoded),

SDO GEOMETRY(’POLYGON ((71028 451007,

71027 451654, 71715 451656, 71716 451006,

71028 451007))’, 28992), 0.001)));

-- Integrated

CREATE TABLE query AS (SELECT *

FROM TABLE(sdo PointInPolygon(CURSOR(

SELECT X, Y, Z, time FROM decoded),

SDO GEOMETRY(’POLYGON ((71028 451007,

71027 451654, 71715 451656, 71716 451006,

71028 451007))’, 28992), 0.001))

WHERE (TIME IN

(TO DATE(’2000/01/03’, ’YYYY/MM/DD’),

TO DATE(’2000/01/28’, ’YYYY/MM/DD’))));

A.3 Validation loading scripts

The loading follows the same logic as with the proposed method-
ology. In the preparation phase the data are transformed to the
correct format and loaded into the database. The table where the
spatial data will be inserted is initialised as follows:

CREATE TABLE valid (time DATE, geom SDO GEOMETRY);

The data are then read from the LAZ files and formatted accord-
ing to the rules required by the SQLLDR. Then, in the loading
phase, the data are bulk loaded into the table.

load data append into table valid

fields terminated by ’,’ TRAILING NULLCOLS (

time DATE ’YYYY MM DD’,

geom COLUMN OBJECT (

SDO GTYPE integer external,

SDO SRID integer external,

SDO POINT column object (X float external,

Y float external, Z float external)));

las2txyz |

sqlldr [user]/[password]@//[host]:[port]/[DB]

direct=true control=con.ctl data= \"-\"
bad=bd.bad log=lg.log

Then, in order to be able to build spatial indexes, Oracle requires
the insertion of certain spatial metadata.

INSERT INTO user sdo geom metadata

(table name, column name, srid, diminfo)

VALUES (’valid’, ’geom’, 28992, SDO DIM ARRAY (

SDO DIM ELEMENT (’X’,69000,80000,0.001),

SDO DIM ELEMENT (’Y’,449000,460000,0.001),

SDO DIM ELEMENT (’Z’,-100,100,0.001)));

The spatial index is created using an R-Tree. To be able to also
ask efficient questions in the time dimension, a B-Tree is built on
the relevant column. These two actions are achieved using the
following SQL statements.

CREATE INDEX valid rtree IDX ON valid(geom)

INDEXTYPE IS MDSYS.SPATIAL INDEX

PARAMETERS(’sdo indx dims=2 tablespace=INDX

layer gtype=POINT sdo rtr pctfree=0

work tablespace=PCWORK sdo fanout=48’);

CREATE INDEX valid btree IDX ON valid(time);

A.4 Validation query scripts

The same queries are executed using the same QUERIES table.
However, this time the query process is more straightforward and
the filter and refinement step are performed in an automated way
by the database system. The following examples present the same
queries as presented previously for the three types of queries.

A.4.1 Time queries like in the non-integrated approach, re-
quire only refinement based on the time column. This is per-
formed in the following way:

CREATE TABLE result AS

(SELECT t.geom, t.time FROM valid t, queries q

WHERE (q.ID = 5 AND

(t.TIME BETWEEN q.START DATE AND q.END DATE)));

A.4.2 Space queries require the use of a spatial operator. In
this case we require to obtain all the points that intersect the ge-
ometry. This is performed as follows:

CREATE TABLE result AS

(SELECT t.geom, t.time FROM valid t, queries q

WHERE (q.ID = 3 AND

SDO ANYINTERACT(t.geom, q.geom) = ’TRUE’));

A.4.3 Space - time queries require both a spatial and a time
predicate. The query is performed as follows:

CREATE TABLE result AS

(SELECT t.geom, t.time FROM valid t, queries q

WHERE (q.ID = 1 AND

(t.TIME IN (q.START DATE, q.END DATE))

AND SDO ANYINTERACT(t.geom, q.geom) = ’TRUE’));
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