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Abstract: The development of actinic mask metrology tools represents one of the major chal-
lenges to be addressed on the roadmap of extreme ultra violet (EUV) lithography. Technological
advancements in EUV lithography result in the possibility to print increasingly fine and highly
resolved structures on a silicon wafer, however the presence of fine–scale defects, interspersed
in the printable mask layout, may lead to defective wafer prints. Hence the development of
actinic methods for review of potential defect sites becomes paramount. Here, we report on a
ptychographic algorithm that makes use of prior information about the object to be retrieved,
generated by means of rigorous computations, to improve the detectability of defects whose
dimensions are of the order of the wavelength. The comprehensive study demonstrates that
the inclusion of prior information as a regularizer in the ptychographic optimization problem
results in a higher reconstruction quality and an improved robustness to noise with respect to the
standard ptychographic iterative engine (PIE). We show that the proposed method decreases the
number of scan positions necessary to retrieve an high quality image and relaxes requirements in
terms of signal to noise ratio (SNR). The results are further compared with the state–of–art total
variation based ptychographic imaging.

© 2020 Optical Society of America

1. Introduction

Since EUV lithography is nowadays adopted for high volume manufacturing (HVM) in the
semiconductor industry, it becomes relevant to address various technical and technological
challenges on its roadmap [1]. One of the crucial concerns is mask defectivity [2]. While the
technology matures and the technical advancements pave the way towards the printability of
increasingly fine features, defects of smaller sizes may also become printable. This dictates the
need for highly sensitive mask inspection tools that can generate highly resolved defect maps for
defect review and inspection. The EUV mask can be inspected at a non actinic wavelength [3],
however the images obtained by means of deep ultra violet (DUV) and e-beam tools can differ
significantly from the aerial images of the scanner [4,5]. This, in turn, can result in the incapability
to detect crucial defects that can lead to device failure. Hence, the actinic inspection of EUV
masks is particularly important. Further, as mask manufacturers are considering phase shifting
EUV mask absorbers for the next generation of EUV technology, methods for metrology and
quantification of these phase shifts are important.

Ptychography [6] – a lensless imaging method that enables wide field–of–view, high resolution
imaging via phase retrieval – is a possible candidate for the inspection of samples, in reflective
mode at short wavelengths [7–9]. This coherent diffractive imaging (CDI) method has been
introduced as a potential actinic inspection tool for EUVmask inspection [10–12]. In ptychography
a probe sequentially illuminates a given scattering object at partially overlapping positions. The
scattered light is usually detected in the far–field and the recorded diffraction patterns are
computationally processed to image the transmission/reflection function of the scattering object.
The translational diversity and the highly redundant information in the data set result in a



robust solution of the phase problem. Nevertheless, since the phase problem is a nonlinear and
non–convex inverse problem, ill–defined solutions can still arise and there are neither theoretical
guarantees on the uniqueness of the retrieved solution, nor certainties about its optimality [13].
In such cases including prior information in the optimization algorithm can be beneficial.

The use of prior information is ubiquitous in the inverse problems community [14,15] and it was
proven to be important to unveil deep subwavelength details in optical imaging methods [16–18].
In the context of CDI, prior information about the amplitude of the ptychographic illumination
function enabled subwavelength imaging at the edges of the lines of a periodic object [19]. Recent
studies have further shown the benefits that stem from the inclusion of the total variation (TV)
prior in the ptychographic algorithms [20–22].

In this work we have taken a different approach and instead of using a prior for the probe or a
TV prior we have devised a way to generate a physically sound prior for the transmission/reflection
function of the scattering object.

In what follows we show how one can make use of rigorous forward modeling with Maxwell
solvers to compute such prior and how this can be included in the ptychographic method. We
apply the algorithm to the problem of detection and imaging of extrusion and intrusion type
defects in a patterned EUV mask layout. The method is shown to outperform the regular
ptychographic iterative engine (PIE) and the total variation based ptychographic method.

2. Method

Ptychography can be framed as a cost functional minimization problem in which, considering the
j–th probe position P(r − R j), one seeks a certain object O j(r) that best fits the j–th recorded
diffraction intensities Ij(k):

L(O j, Ij) B
��������|F (P(r − R j)O j(r))| −

√
Ij(k)

��������2
O j(r) B arg min

Oj

L(O j, Ij)
(1)

where F represents the Fourier transform, P(r) is the probe function, O j(r) is the part of the
guessed object which is illuminated when the probe is located at the j–th probe position and Ij(k)
is the intensity pattern measured at the j–th probe position. In (1) and in all that follows we assume
the probe to be known. The PIE proceeds in a sequential fashion and the complete object, O(r),
is reconstructed by the sequential reconstruction of its j-th views [6]. Owing to the translational
diversity and to the redundancy in the data the ptychographic reconstructions are very robust.
However, as the phase problem is a nonconvex optimization problem – meaning that there can
be multiple local minima – and because the reconstruction is obtained solely by processing the
data set, one might wonder whether the inclusion of physically sound prior knowledge in the
algorithm can lead to a more satisfactory solution. Prior information is commonly included
introducing a regularization term to the data discrepancy functional. In this case:

Oα
j (r) B arg min{L(O j, Ij) + Rα(O j)} B arg min{Lα(O j, Ij)} (2)

where Rα(O j) is the regularizer, which depends upon the regularization parameter α, Lα(O j, Ij)
is the regularized cost functional and Oα

j (r) is the associated object update. Rα(O j) is intended
as a penalty term in variational approaches or as the negative logarithm of a prior probability
distribution from the Bayesian viewpoint [23]. Different regularizers (priors) have been studied in
the field of image reconstruction, for instance structural priors [24], sparsity promoting priors [25]
or edge–preserving priors. An important example of the latter is total variation (TV), in which
Rα(O) = | |∇O(r)| |1 . TV is commonly employed due to its effectiveness in smoothing noise – by
favouring images that have a sparse gradient – while preserving edges. In recent years there have



been a number of studies reporting implementations of TV regularized ptychography [20–22].
In this work we have taken a different approach and instead of considering a regularizer that
promotes generic properties of the reconstructed image (like its sparsity or the sparsity of its
gradient), the regularizer Rα(O) has been designed to promote adhesion to a given prior image
(object):

Rα(O j) = α
����O j(r) −Op, j(r)

����2 (3)

where Op, j(r) is the prior of the object at the j–th probe position. Crafting a “good” prior is
challenging. This task requires one to properly account for the physics that contributes to the
process of image formation. For instance it is known that at EUV wavelengths waveguiding
effects and diffraction of light along the thickness of the absorber materials have an impact on
image formation [26]. Further, the phase of the scattered wave Φ = k · r accumulates linearly
as photons pass through an object and the rate of accumulation depend on the refractive index
which changes from material to material [27]. This is important to realize when one wants
to compute an a–priori map for the phase of a wave scattered by nanostructures that consist
of a sequence of layers of different materials and thicknesses. Such a situation applies to the
multilayer Bragg–reflector and to the absorber layers of an EUV mask. These aspects should be
properly encoded in the prior, in order for it to be reliable and accurate.
These physical aspects and the intrinsically 3D thickness effects can be duly accounted for

recurring to three dimensional fully rigorous simulations. Forward Maxwell solvers can compute
the complex field, which is a rigorous solution in terms of amplitude and phase of Maxwell’s
equations, for a given 3D scattering geometry [28,29]. It is important to notice that light–matter
interaction is modeled differently in the rigorous Maxwell solvers and in ptychography. On
the one hand the rigorous electromagnetic solvers provide an accurate solution of Maxwell’s
equation, on the other hand ptychography models light–matter interaction in terms of the 2D
“probe–times–object” approximation. This fundamental difference in the physical models could
be a reason of concern when intermixing the use of the rigorous solvers with ptychographic
algorithms. In other words, a certain rigorously computed complex–valued far–field ΨMaxw

can be used in ptychographic algorithms only when it can be interpreted in terms of the 2D
ptychographic approximation of light matter interaction:

Ψ
Maxw
p, j ≈ F (P(r − R j)Op, j(r)) (4)

where ΨMaxw
p, j is the far–field, amplitude and phase, as computed by the forward Maxwell solver,

for the nominal – a priori known – scattering geometry on the mask. Notice that although
ptychography assumes the object function to be two dimensional, ΨMaxw

p, j is computed by the
rigorous 3D simulations. In other words, the 2D object reflection function comprises genuine 3D
information about the object. Bearing (4) in mind we proceed to write, at the j–th probe position,
the ptychographic cost functional inclusive of the prior term. By Eqs. (1)–(3):

Lα(O j, Ij) B L(O j, Ij) + Rα(O j) =

=

��������|F (P(r − R j)O j(r))| −
√

Ij(k)
��������2 + α ����O j(r) −Op, j(r)

����2 (5)

where α regulates the interplay among the two terms on the right hand side of Eq. (5). The
second term in (5) penalizes large deviations of the reconstructed object from the prior object.
Eq. (5) can be minimized analytically using Wirtinger calculus to yield the update rule that can
be used in a gradient descent algorithm. The gradient of Eq. (5) with respect to O∗j is:

∇Lα(O j, Ij) = P∗j
[
F −1(Ψj − Ψc, j)

]
+ α(O j −Op, j) = ∇L1 + ∇L

α
2 (6)



In (6) Ψj = F (PjO j) is the guessed wavefront in the momentum space, Pj = P(r − R j) and Ψc, j

is the revised wavefront obtained by enforcing the measured amplitudes on the far–field guess.
We focus now on ∇Lα2 and, with the use of Eq. (4), we obtain:

∇Lα2 = α(O j −Op, j) = α
P∗j
(|Pj |

2)
(PjO j − PjOp, j) =

= α
P∗j
|Pj |

2F
−1(F (PjO j) − F (PjOp, j)) = α

P∗j
|Pj |

2F
−1(Ψj − Ψ

Mawx
p, j )

(7)

The steepest descent update, at given iteration n dictates:

O j ,n+1 = O j ,n − β∇L
a (8)

therefore the part of the object that is illuminated by the probe at the j–th probe position, O j(r),
is updated as follows:

O j ,n+1 = O j ,n + β
|Pj |

|Pj ,max |

P∗j
(|Pj |

2 + c)
(Ψc, j ,n − Ψj ,n)

+ α′
|Pj |

|Pj ,max |

P∗j
(|Pj |

2 + c)
(ΨMaxw

p, j − Ψj ,n)

(9)

In Eq. (9) c is a small constant that prevents division by zero, α′ = βα, and |Pj |/|Pj ,max | is a
scaling factor – present in the PIE – that makes the update less reliable where the probe is dim.
Notice that, besides α′ and β, the scaling factors in (9) are the same for the two terms. This is in
order to avoid overenforcing the prior in those pixels where the probe is dim. For α = 0, Eq.
(9) yields the same update rule of the PIE. The algorithm proceeds in a sequential fashion, and
the complete object, O(r), is reconstructed by the sequential reconstruction of its j–th views,
according to Eq. (9).
A layout of this approach is given in Fig. 1.

Fig. 1. A schematic that illustrates the approach of the proposed work.

The inclusion of prior information as a regularizer in Eq. (5) is preferable to the use of Op(r)
as a starting guess in the optimization. There are various reasons for this:

• the presence of the quadratic term in (5) improves the conditioning of the problem. This
stabilizes the inversion with respect to the noise and improves the performance of the
iterative method. Further, the regularizer aids in creating a better model by achieving a
balance in the bias–variance trade–off for a proper selection of α [30]. Values of α which
are too small make the reconstruction too sensitive to the noise, however setting α to a
value that is too high biases the reconstruction towards the prior, yielding a poor fit. A
proper value of α achieves a balance among these two cases.



• The prior in Eq. (9) is present at every step of the iteration, therefore preventing the
reconstruction from diverging towards an “unphysical” solution, and

• the regularization parameter α can be tuned to reflect the degree of belief in the prior.

In what follows, we will show that the inclusion of the regularization term of Eq. (3) via
the use of the accurate physical–analytical models yields a better reconstruction with respect to
the standard case in which the transmission function O(r) is retrieved solely by processing the
measured data–set.

3. Results

We have applied the method outlined above to reconstruct the patterned absorber of a 3D EUV
mask. Table 1 reports the materials and the thicknesses of the layers used in this work.

Table 1. Layers thicknesses and Materials at λ = 13.5 nm

layer thickness [nm] n k

ARC TaBO 2 0.952 0.026

Absorber TaBN 58 0.95 0.031

Ru 0.5 0.88586 0.01727

Ru (Capping layer) 2 0.88586 0.01727

Si 1.8968 0.99888 0.00183

MoSi2 0.7986 0.96908 0.00435

Mo 2.496 0.92347 0.00649

MoSi2 1.8908 0.96908 0.00435

Four EUV masks have been considered through this study:

• the “nominal” mask. This is the cell as given by prior information. This cell does not
contain any information about the defects.

• The “actual” mask. This is the cell that mimics the “reference” mask which is close to the
prior but not exactly the same. In order to account for this difference the actual cell has
been generated from the prior cell, displacing the sides of the polygons of 1–5 nm. This
cell is displayed in Fig. 2(a).

• The programmed defects mask. Consistently with the practice in EUV mask defectivity
studies we have perturbed the actual mask, at known locations, with additive and subtractive
features (extrusions and intrusion defects) (Figs. 2(b–c))

The size of the defects in Figs. 2(b,c) is the same on a given polygon, and it changes from
polygon to polygon. The number and the side length of the squares that constitute the rough
extrusions/intrusions on a certain polygon are the following: [number of squares, side length] =
[3, 16 nm], [6, 12 nm], [7, 9 nm], [7, 6 nm]. Such sizes have been chosen in accordance to the
theoretical Abbe resolution limit imposed by the NA (11 nm in this case). If the collection NA
was to be smaller the defects would have been made bigger accordingly.

To understand whether the inclusion of prior information yields any benefits for our specific
application we have carried out a computational die–to–database comparison [31]. This is done



(a) (b)

(c)

Fig. 2. Top views of EUV mask layouts. a) Actual cell , b) programmed defect mask
(extrusions), c) programmed defect mask (intrusions). The sidelength of the single
defect is specified in the figure.

comparing the reconstruction of the defected mask with the reconstruction of the defect–free
actual mask. The two reconstructions are subtracted one from the other to identify the defects
at their locations. The impact of the defects is quantified by a certain figure of merit. In what
follows we will use the defect SNR defined as [31]:

SNRδ =
Ād − Āa

std(Aa)
(10)

Where Ād is the average magnitude of the defected area, Āa is the average magnitude of the
whole difference image – where the object is present – and std(Aa) is the standard deviation
of the latter area. The definition of the defect SNR is independent of the defect size. This
investigation is done using the standard PIE and the PIE with prior, where we use Eq. (9) as
update rule to reconstruct both the actual mask (Fig. 2(a)) and the defected masks (Fig. 2(b–c)).
As outlined above four data sets have been computed:

• one complex data set, in amplitude and phase, for the nominal mask. This is the far field
ΨMaxw

p, j , related to the nominal mask, we referred to in Eqs. (4) and (9).

• One intensity–only data set for the actual defect–free mask in Fig. 2(a). This data–set has
been corrupted with noise to emulate measured data.

• Two intensity–only data sets for the defected masks, one for the extrusions in Fig. 2(b) and
one for the intrusions in Fig. 2(c). This data sets have also been corrupted with noise to
emulated measured data.

The data sets mentioned above have been generated via fully rigorous 3D simulations using a
volume–integral Maxwell solver [32, 33]. The solver is formulated for the problem of scattering



from periodic objects hence, in order to avoid cross–talk among adjacent cells, we have opted
for a supercell approach. The cell is a square with lateral dimension Λ = 3.5µm. The sampling
in the far field and in the illuminating NA equals 2π

Λ
. Although the lateral dimensions of the

supercell are of the order of hundreds times the wavelength, the computational complexity and
the memory requirement necessary to solve the forward problem are maintained relatively low,
of the order of O(N log N). The probe is assumed to be a Gaussian beam with a 3σ amplitude of
about 1.5 µm and it is described by its angular spectrum. The scattered far–field is evaluated, for
each of the plane waves which compose the illumination, in parallel on a multicore HPC cluster.
The output far–field that results from the interaction of the probe with the object is then given by
the weighed coherent superposition of the individual contributions. The ptychographic scans
are performed shifting the object of 0.2 µm, in 5 positions, inside the supercell. The probe is
polarized in the x direction – parallel to the horizontal axis of the supercell – by proper linear
combination of s and p polarization states. The collection NA is 0.6, close to the value (0.54)
used for an identical wavelength in [19]. Fig. 3(a,b) illustrates the probe, its cross–section and
one of the acquired diffraction patterns for the mask in Fig. 2(a).

(a)

0 0.5 1 1.5 2 2.5 3 3.5

Distance [ m]

0

10

20

30

40

50

60

70

80

90

100

N
o
rm

a
li
z
e
d
 A

m
p
li
tu

d
e
 [
%

]

(b) (c)

Fig. 3. a) Probe used in the computations. b) Cross–section of a. c) Diffraction pattern
(log scale).

Fig. 4(a,b) shows the prior for the central probe position. In all that follows we have fixed the
regularization parameter α to 2e-2.

700 nm

(a) (b) (c)

Fig. 4. Zoom of the prior object, a) magnitude, b) phase and c) magnitude after and
removal of the strong unscattered beam to emulate the presence of a beam–stop in the
experimental set–up. The fringes in (b) are caused by the projection of the term eik ·r

over the x–y plane related to the 6◦ tilt of the probe with respect to the normal.

3.1. Extrusion defects

The magnitude of the ptychographic reconstruction of the patterned absorber depicted in Fig.2(b),
without and with prior respectively, is depicted in Fig. 5(a,b), while the phase is shown in Fig.



5(d,e). White Gaussian noise has been added to the synthetically generated data for an SNR =
110 dB. The object error, at iteration n, has been computed as the deviation of the reconstructed
object, On(r), from the theoretical object Ot (r):

EO,n =

∑
r |Ot (r) − γOn(r)|2∑

r |Ot (r)|2
(11)

where γ is a parameter that compensates for phase ambiguities [34].

700 nm
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Fig. 5. Ptychographic reconstructions: a) magnitude as given by the PIE; b) magnitude
given by the new algorithm PIE with prior term included. The rough extrusions are
highlighted in the red circles;c) error; d) phase given by the PIE and e) phase given by
the PIE with prior.

Result of the reconstructions is highlighted in Figs. 5(a–d). The rough extrusions, highlighted
in Fig 5(b), are better resolved in both the amplitude and phase images in Fig. 5(b,d). The error,
defined in (11) and shown in Fig 5(c) shows an overall better reconstruction and convergence
when the prior is included in the optimization algorithm. Practically, we have observed the
algorithm to converge in about a third of the iterations of the regular PIE. As stated before a
quantitative assessment of the improvement in terms of defect inspection can be obtained in a
die–to–database comparison by computing difference images. Those are defined as the magnitude
of the difference among the retrieved ptychographic reconstruction of the objects in Figs. 2(a,b):

∆O(r) = |Oa(r) −Oδ(r)| (12)

with Oa(r) and Oδ(r) being the reconstructed reflection functions relative to actual mask in Fig.
2(a) and to the defected mask in Fig. 2(b–c). In what follows we will refer to Eq. (12) as the
object difference metric. Fig. 6 shows ∆O(r) defined in (12), obtained when reconstructing Oa(r)
and Oδ(r) using prior information – by the ptychographic update rule (9) – and the standard PIE.
Here, and in all that follows, the objects have been aligned before their subtraction.



700 nm

(a) (b)

Fig. 6. a) and b) show the object difference metric ∆O in Eq. 12 obtained for extrusions.
a) makes use of prior while in b) we employed the standard PIE. The sizes in a) are the
side lengths of each of the blocks of the extrusions.

All the defects are better resolved in Fig. 6(a) than in Fig. 6(b), and their signature appear
to be stronger in the difference image 6(a). Particularly, the rough defects of 9 nm size are not
distinguishable in Fig. 6(b), however they are detectable in Fig. 6(a), as highlighted in the
red circle. We found the finest details, the rough extrusions of 6 nm size, to be absent in the
reconstruction in Figs. 5(a–b), and in the difference images in Figs. 6(a–b). The side of the
polygon over which these defects are located appears to be smooth in the reconstructed image.
This computational experiment highlights that subwavelength ptychographic imaging is possible
to a certain extent, however the spatial periodicities below the theoretical limit of about λ/2 are
not retained, in this case, in the reconstruction. Being the collection NA equal to 0.6 the Abbe
limit is 11 nm which is slightly above the size, 9nm, of the smallest defect we managed to resolve.
A comparison of the retrieved SNR for Figs. 6(a,b) is reported in Table 2:

Table 2. Extrusion defects SNR

Defect Size [nm] Number of defects SNR PIE with prior SNR PIE

16 3 3.8 1.8

12 6 5.3 1.2

9 7 1.6 N/A

Table 2 highlights a steep improvement in the detectability of defects when incorporating the
prior term in the reconstruction algorithm. The value N/A means that the defets are not visible in
the difference image. A cross section of the reconstructions in Fig 5(a–b), taken on the location
of the defects, is shown in Figure 7.
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Fig. 7. Cross section of the reconstruction at the defect sites.a) 3 defects of 16 nm
sidelength; b) 6 defects of 12 nm sidelength; c) 7 defects of 9 nm sidelength.



The cross sections in Fig. 7 generally have a move pronounced peak to valley ratio when the
prior is included and, in the case of Fig. 7(c), the periodicity of the signal is more evident, while
it is lost – in the central part of the plot – in the case of the standard PIE.

3.2. Intrusions

The magnitude of the ptychographic reconstruction of the patterned absorber layout in Fig. 2(c),
without and with prior respectively, is depicted in Fig. 8(a,b), while the phase is shown in Figs.
8(d,e).
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Fig. 8. Ptychographic reconstructions: a) magnitude as given by the PIE; b) magnitude
given by the PIE with prior included. The rough inclusions are highlighted in the red
circles; c) phase given by the PIE and d) phase given by the PIE with prior;e) error.

Fig. 9 shows the object difference metric ∆O(r) defined in (12), obtained using the update rule
(9) and the standard PIE.

700 nm

(a) (b)

Fig. 9. a) and b) show ∆O in Eq. (12) obtained for intrusions. a) makes use of prior
while in b) we employed the standard PIE. The sizes in a) are the side lengths of each
of the blocks of the intrusions.

The comparison of the SNR for Figs. 8(a,b) is reported in Table 3:
All the intrusion defects have decreased SNR with respect to extrusion defects of the same

size, and even with the inclusion of the prior term the 9 nm size intrusions are difficult to image.
As guided modes propagate within the absorber, and as they are not immediately truncated at
the edges of the structures, they can couple and interfere within the small intrusions, making



Table 3. Intrusion defects SNR

Defect Size [nm] Number of defects SNR with prior SNR PIE

16 3 3.8 1.5

12 6 3.4 N/A

9 7 1 N/A

these defects harder to image with high contrast [26]. Fig. 10 illustrates the cross section of the
reconstructions in Fig. 8(a–b), taken at the location of the defects:
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Fig. 10. Cross section of the reconstruction at the defect sites.a) 3 defects of 16 nm
sidelength; b) 6 defects of 12 nm sidelength; c) 7 defects of 9 nm sidelength.

3.3. Effect of number of probe positions, SNR, initial guess and a comparison with TV
regularization

3.3.1. Increasing the number of probe positions

Ptychography achieves a very robust reconstruction by exploiting translational diversity and
redundancy in the data set. In the study presented earlier the data set included five probe positions.
As the object is, in this case, entirely covered by the probe there is an high degree of redundancy
in the data in spite of the few probe positions. However it can be interesting to see whether
increasing the number of probe positions allows one to get to a reconstruction which is as good
as in the case in which the prior term is included. We have performed this study for the case
of the extrusions type defects. We have used 9 probe positions and the reconstruction has been
carried out using the PIE. The 9 positions constitute a 3–by–3 grid which span, in steps of 200nm
along the x and y directions, a square whose sidelength is 400nm. The reconstruction and the
difference image is showed in Fig. 11.
Fig. 11(b) reports an overall better reconstruction of the defects with respect to Fig. 6(b).

Still the reconstruction is not as satisfactory as the one obtained with 5 probe positions and the
inclusion of the prior term. This is highlighted in Table 4.
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Fig. 11. Ptychographic reconstructions: a) magnitude as given by the PIE; b) difference
image given by PIE; c) error.

Table 4. Extrusions defects SNR

Defect Size [nm] SNR with prior (5 probe positions) SNR PIE (9 probe positions)

16 3.8 3

12 5.3 2.5

9 1.6 0.6

3.3.2. Decreasing SNR

The effect of the noise is here studied. A decrease of the SNR constitutes a problem for the
retrieval of fine features that weakly scatter light, because their signature could be below the noise
floor. A workaround could be to increase the radiation dose, but this could in turn damage the
sample. The role of the prior as a regularizer is helpful in this, as it stabilizes the inversion and
enables one to achieve a better reconstruction when the SNR decreases. Here we have decreased
the SNR from 110 dB to 100 dB and 90 dB. The results, for the extrusion defects, are given in
Figs. 12 and 13.

700 nm

(a) (b)

Fig. 12. a) and b) show the object difference metric ∆O in Eq. (12) obtained when
SNR = 100 dB. a) PIE with prior; b) PIE.
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(a) (b)

Fig. 13. a) and b) show the object difference metric ∆O in Eq. (12) obtained when
SNR = 90 dB. a) PIE with prior; b) PIE.

All of the defects are still visible in Fig. 12(a), while in Fig. 13(b) only the bigger ones are
visible. In Fig. 13 the 16 and 12 nm size defects are visible, but none of the defects can be
detected by the PIE.

3.3.3. Using the prior as initial guess

The advantages of having a regularizer in Eq. (5) rather than using the prior only as a starting
point were outlined in Section 2. Here we compare the results, for extrusion type defects, given
using the update rule Eq. (9), the PIE and the PIE using the prior as starting guess. Fig. 14
highlights results for an SNR = 110 dB. Fig. 15 shows results for an SNR = 100 dB.

700 nm

(a) (b) (c)

Fig. 14. Difference image SNR 110 dB: a) Update rule Eq. (9); b) PIE; c) PIE with
prior as starting guess.

700 nm

(a) (b) (c)

Fig. 15. Difference image SNR 100 dB: a) Update rule Eq. (9); b) PIE; c) PIE with
prior as starting guess.

As it can be noticed a proper starting guess in the standard PIE yields a better reconstruction,
however the absence of the regularizer – that stabilizes the reconstruction with respect to the
noise and that promotes the retrieval of a better fit via a bias–variance trade–off – has a negative
impact over the reconstruction.



3.3.4. Comparison with TV regularization

Recent works have reported the use of total variation as regularizer for denoising in ptychography
[20–22]. Here we compare results obtained using the two different regularizers Rα(O j) =

α | |O j(r) − Op, j(r)| |
2 and RαTV (O j) = αTV | |∇O j(r)| |1. Total variation is here solved via the

alternating direction method of multipliers (ADMM). We solve the following problem at the j–th
probe position:

min
Oj ,p

��������|F (P(r − R j)O j(r))| −
√

Ij(k)
��������2 + αTV | |p| |1

s.t. p = ∇O j

(13)

The augmented Lagrangian for real functional of complex variables can be written as [35]:

Lρ(O j, p, y) =
��������|F (P(r − R j)O j(r))| −

√
Ij(k)

��������2
+ 2 Re(〈p − ∇O j, y〉) + ρ| |p − ∇O j | |

2 + αTV | |p| |1

(14)

where 〈·, ·〉 is the inner product over the complex space, Re(z) is the real part of z, y is the
Lagrangian multiplier and ρ is the penalty parameter. Eq. (14) can be further simplified scaling
the variable y by 1/ρ [36]. At iteration n the ADMM solves the following steps:

On+1
j = arg min

Oj

Lρ(O j, pn, yn)

pn+1 = arg min
p
Lρ(On+1

j , p, yn)

yn+1 = yn + ρ(pn+1 − ∇On+1
j )

(15)

the derivations necessary to minimize (15) are analogous to the ones that can be found
elsewhere [21] and are here omitted. Problem (13) is minimized per probe position, the
subproblem with respect to O j is solved via a steepest descent, the subproblem with respect
to p has a closed–form solution in the form of a soft–thresholding operator, and αTV has been
computed by the L–curve and it is equal to 1e-6 [37].

The object difference images for SNR=110 dB and for SNR=90 dB, for extrusions defects, are
outlined in Fig. 16 and Fig. 17.
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Fig. 16. Object difference image SNR 110 dB: a) Update rule (9); b) TV regularization;
c) error.
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Fig. 17. Object difference image SNR 90 dB: a) Update rule (9); b) TV regularization;
c) error.

Although TV regularization produces results that are qualitatively superior to the PIE (Figs.
6(b) and 13(b)) the proposed method that includes object prior in the optimization enables a
more robust reconstruction.

4. Conclusions

We have presented a ptychographic algorithm that makes use of prior information about the
transmission/reflection function of the object to improve the quality of the ptychographic
reconstruction. Prior information is generated by employing the rigorous forward Maxwell
solver – to properly account for the complex physics that contributes to the process of image
formation – and by interpreting the outcome of the fully 3D rigorous simulations in terms of the
“probe–times–object” ptychographic approximation of light–matter interaction. The method has
been applied to the problem of actinic ptychographic inspection of extrusion and intrusion type
defects in a patterned EUV mask layout. The numerical results indicate a steep improvement
over the standard PIE in terms of quality of reconstruction and convergence. Smaller defects
are detectable and all the defects are imaged with higher SNR. The method is shown to achieve
better reconstructions using a smaller number of probe positions, to be more robust to the noise
and to outperform total variation based ptychographic imaging. Although the algorithm has
been applied to the specific technological problem of EUV mask inspection, this work can be
interesting for the ones that employ lensless imaging for the reconstruction of nanostructures and
that have prior information about the object structure available.

Funding

This project has received financial support from the European Union’s Horizon 2020 research
and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 675745.

Disclosures

The authors declare no conflicts of interest.

Acknowledgments

We are grateful to Mark Van Kraaij, ASML Research, for assistance with the use of the Maxwell
solver and to the anonymous reviewers that have contributed to improve the quality of this
manuscript.

References
1. V. Bakshi, EUV lithography, vol. PM2814 (SPIE Press, 2018).
2. D. Hellweg, S. Perlitz, K.Magnusson, R. Capelli, M. Koch, andM.Malloy, “Actinic review of euvmasks: performance

data and status of the aims euv system,” in Extreme Ultraviolet (EUV) Lithography VII, vol. 9776, International
Society for Optics and Photonics (SPIE, 2016), pp. 374 – 381.



3. K. Badger, E. Gallagher, K. Seki, G. McIntyre, T. Konishi, Y. Kodera, and V. Redding, “Evaluation of non-actinic
EUV mask inspection and defect printability on multiple EUV mask absorbers,” in Photomask and Next-Generation
Lithography Mask Technology XX, vol. 8701, International Society for Optics and Photonics (SPIE, 2013), pp. 315 –
327.

4. M. Waiblinger, T. Bret, R. Jonckheere, and D. V. den Heuvel, “E-beam based mask repair as door opener for defect
free EUV masks,” in Photomask Technology 2012, vol. 8522, International Society for Optics and Photonics (SPIE,
2012), pp. 471 – 480.

5. J. Na, D. Lee, C. Do, H. seok Sim, J.-H. Lee, J. Kim, H.-S. Seo, H. Kim, and C. U. Jeon, “Application of actinic
mask review system for the preparation of HVM EUV lithography with defect free mask,” in Metrology, Inspection,
and Process Control for Microlithography XXXI, vol. 10145, International Society for Optics and Photonics (SPIE,
2017), pp. 191 – 198.

6. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85,
4795–4797 (2004).

7. D. F. Gardner, B. Zhang, M. D. Seaberg, L. S. Martin, D. E. Adams, F. Salmassi, E. Gullikson, H. Kapteyn, and
M. Murnane, “High numerical aperture reflection mode coherent diffraction microscopy using off-axis apertured
illumination,” Opt. Express 20, 19050–19059 (2012).

8. C. L. Porter, M. Tanksalvala, M. Gerrity, G. Miley, X. Zhang, C. Bevis, E. Shanblatt, R. Karl, M. M. Murnane, D. E.
Adams, and H. C. Kapteyn, “General-purpose, wide field-of-view reflection imaging with a tabletop 13 nm light
source,” Optica 4, 1552–1557 (2017).

9. M. Odstrcil, J. Bussmann, D. Rudolf, R. Bresenitz, J. Miao, W. S. Brocklesby, and L. Juschkin, “Ptychographic
imaging with a compact gas–discharge plasma extreme ultraviolet light source,” Opt. Lett. 40, 5574–5577 (2015).

10. P. Helfenstein, R. Rajeev, I. Mochi, A. Kleibert, C. A. F. Vaz, and Y. Ekinci, “Beam drift and partial probe coherence
effects in euv reflective-mode coherent diffractive imaging,” Opt. Express 26, 12242–12256 (2018).

11. P. Ansuinelli, W. Coene, and P. Urbach, “EUV mask feature reconstruction via phase retrieval,” in Nanoengineering:
Fabrication, Properties, Optics, Thin Films, and Devices XVI, vol. 11089, International Society for Optics and
Photonics (SPIE, 2019), pp. 299 – 305.

12. R. Rajendran, I. Mochi, P. Helfenstein, I. Mohacsi, S. Redford, A. Mozzanica, B. Schmitt, S. Yoshitake, and Y. Ekinci,
“Towards a stand-alone high-throughput EUV actinic photomask inspection tool: RESCAN,” inMetrology, Inspection,
and Process Control for Microlithography XXXI, vol. 10145, International Society for Optics and Photonics (SPIE,
2017), pp. 199 – 210.

13. R. Horstmeyer, R. Y. Chen, X. Ou, B. Ames, J. A. Tropp, and C. Yang, “Solving ptychography with a convex
relaxation,” New J. Phys. 17, 053044 (2015).

14. C. R. Vogel, Computational Methods for Inverse Problems (Society for Industrial and Applied Mathematics, 2002).
15. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (Society for Industrial and

Applied Mathematics, 2005).
16. P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved

coherent diffraction imaging of one-dimensional objects,” Nat. communications 6, 8209 (2015).
17. A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E.-B. Kley, S. Gazit,

T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. Eldar, O. Cohen, andM. Segev, “Sparsity-based single-shot
sub-wavelength coherent diffractive imaging,” Nat. materials 11, 455–9 (2012).

18. T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Belkebir, and A. Sentenac,
“Far-field diffraction microscopy at λ/10 resolution,” Optica 3, 609–612 (2016).

19. D. Gardner, M. Tanksalvala, E. Shanblatt, X. Zhang, B. Galloway, C. Porter, R. Karl, C. Bevis, D. Adams, M.Murnane,
and G. Mancini, “Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light
source,” Nat. Photonics 11 (2017).

20. H. Chang, P. Enfedaque, J. Zhang, J. Reinhardt, B. Enders, Y.-S. Yu, D. Shapiro, C. G. Schroer, T. Zeng, and
S. Marchesini, “Advanced denoising for x-ray ptychography,” Opt. Express 27, 10395–10418 (2019).

21. H. Chang, P. Enfedaque, and S. Marchesini, “Iterative Joint Ptychography-Tomography with Total Variation
Regularization,” arXiv e-prints arXiv:1902.05647 (2019).

22. V. Nikitin, S. Aslan, Y. Yao, T. Biçer, S. Leyffer, R. Mokso, and D. Gürsoy, “Photon-limited ptychography of 3d
objects via bayesian reconstruction,” OSA Continuum 2, 2948–2968 (2019).

23. S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb, “Solving inverse problems using data-driven models,” Acta
Numer. 28, 1–174 (2019).

24. Q. Fang, R. Moore, D. Kopans, and D. Boas, “Compositional-prior-guided image reconstruction algorithm for
multi-modality imaging,” Biomed. optics express 1, 223–235 (2010).

25. A. Mohammad-Djafari, “Bayesian approach with prior models which enforce sparsity in signal and image processing,”
EURASIP J. on Adv. Signal Process. 2012, 52 (2012).

26. S. Zayko, E. Mönnich, M. Sivis, D. M. Mai, T. Salditt, S. Schäfer, and C. Ropers, “Coherent diffractive imaging
beyond the projection approximation: waveguiding at extreme ultraviolet wavelengths.” Opt. express 23 15, 19911–21
(2015).

27. J. Rodenburg and A. Maiden, “Ptychography,” in Springer Handbook of Microscopy, P. W. Hawkes and J. C. H.
Spence, eds. (Springer International Publishing, Cham, 2019), pp. 819–904.

28. X. Wei, A. J. Wachters, and H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,”



J. Opt. Soc. Am. A 24, 866–881 (2007).
29. J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical

nano structures,” physica status solidi (b) 244, 3419 (2007).
30. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer Series in Statistics (Springer

New York Inc., New York, NY, USA, 2001).
31. I. Mochi, K. A. Goldberg, B. L. Fontaine, A. Tchikoulaeva, and C. Holfeld, “Actinic imaging of native and

programmed defects on a full-field mask,” in Extreme Ultraviolet (EUV) Lithography, vol. 7636, International
Society for Optics and Photonics (SPIE, 2010), pp. 425 – 433.

32. M. C. van Beurden, “Fast convergence with spectral volume integral equation for crossed block-shaped gratings with
improved material interface conditions,” J. Opt. Soc. Am. A 28, 2269–2278 (2011).

33. M. C. van Beurden, “A spectral volume integral equation method for arbitrary bi-periodic gratings with explicit
Fourier factorization,” Prog. In Electromagn. Res. B 36, 133–149 (2012).

34. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,”
Ultramicroscopy 109, 1256 – 1262 (2009).

35. L. Li, X. Wang, and G. Wang, “Alternating direction method of multipliers for separable convex optimization of real
functions in complex variables,” Math. Probl. Eng. 2015, 1–14 (2015).

36. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Found. Trends Mach. Learn. 3, 1–122 (2011).

37. P. C. Hansen, “The l-curve and its use in the numerical treatment of inverse problems,” in in Computational Inverse
Problems in Electrocardiology, ed. P. Johnston, Advances in Computational Bioengineering, (WIT Press, 2000), pp.
119–142.


