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Figure 1: Visualization of stress tensor fields in 2D solid objects under load using the conforming lattice. From left to right: Plate, perforated
plate, slice through a femur. Arrows indicate the applied loads and bold black lines the fixation regions. Stress direction, convergence and
divergence is shown by principal stress lines along the major (red) and minor (blue) principal directions. Stress ratio is shown by the
elements’ shape. Tension and compression is encoded into shades of red and blue.

Abstract
We present a visualization technique for 2D stress tensor fields based on the construction of a globally conforming lattice.
Conformity ensures that the lattice edges follow the principal stress directions and the aspect ratio of lattice elements represents
the stress anisotropy. Since such a lattice structure cannot be space-filling in general, it is constructed from multiple intersecting
lattice beams. Conformity at beam intersections is ensured via a constrained optimization problem, by computing the aspect
ratio of elements at intersections so that their edges meet when continued along the principal stress lines. In combination
with a coloring scheme that encodes relative stress magnitudes, a global visualization is achieved. By introducing additional
constraints on the positional variation of the beam intersections, coherent visualizations are achieved when external loads or
material parameters are changed. In a number of experiments using non-trivial scenarios, we demonstrate the capability of the
proposed visualization technique to show the global and local structure of a given stress field.

1. Introduction

Techniques for visualizing the stress distribution in solid objects
under load are important in a number of applications ranging from
lightweight structure design over implant planning to the design of
support structures. Such visualizations improve our understanding
of the material response to external load conditions, and give rise
to improved object designs regarding their mechanical properties.

At each point in a stress field, the state of stress is fully described
by the stress vectors for three mutually orthogonal orientations of
a differential area element at that point. From these orientations,
the so-called principal stresses can be computed, i.e., the normal
stresses into the directions where the shear stress components van-

ish. These normal stresses, which include the maximum and mini-
mum normal stress components acting at a point, are fundamental
to the visualization of stress tensor fields. Their visualization, how-
ever, is challenging due to several reasons:

• It requires to find visual abstractions of the stress tensor, to con-
vey the principal stress directions and magnitudes in a mean-
ingful way. This includes distinguishing between the different
types of normal stresses, i.e., tension and compression, as well
as the ratio of the principal stresses. This information should be
visualized simultaneously, to reveal the mutual variations of the
principal stresses across the solid body.
• The visualization should provide a global view of the stress field,
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(a) (b) (c)

Figure 2: (a, b) Minor Principal Stress Lines (PSLs) (blue) are
seeded at equally spaced seed points (•) along the initial PSL (bold
orange). Additional major PSLs (orange) are then seeded along
one of the minor PSLs (bold blue). (a) The resulting grid cells
do not represent the local stress ratio. (b) The domain is incom-
pletely covered. (c) PSLs concentrate despite uniform seeding den-
sity along the domain boundaries.

to convey a general impression of the major mechanical proper-
ties of the body under load, as well as their spatial dependencies
under varying load conditions and when shape or topology vari-
ations are applied.
• It is desired to show continuous stress trajectories, i.e., the prin-

cipal stress lines (PSLs), that reveal along which paths external
loads are transmitted. This supports finding paths along which
loads are predominantly transmitted from one boundary to an-
other, to analyse how load transmission is affected by variations
in the structure of the simulated material and external load con-
ditions, and to indicate where the reduction of distances between
the PSLs come along with a simultaneous increase of stresses.

In engineering, the most common visualization of 2D tensor
fields is by means of so-called trajectory images, which show se-
lected PSLs in the domain [Tim83, Fro48]. Such visualizations are
generated by selecting an initial seed point to start the PSLs and
placing new seed points automatically along the initial trajectory,
or by seeding uniformly along the object’s boundary. Even though
this kind of visualization can provide a global view on the stress
distribution, it has weaknesses if PSLs are not selected carefully. As
shown in Fig. 2, the resulting grid structure usually does not convey
the local stress state, since the size and aspect ratio of the generated
grid cells is dictated by the initial seeding strategy. Furthermore,
such visualizations can result in strongly varying trajectory density,
which can mislead the interpretation of stress concentration.

1.1. Contribution

We propose a visualization technique for 2D stress fields using
PSLs, which considers the aforementioned requirements and over-
comes some of the limitations of classical trajectory images. We in-
troduce the globally conforming lattice, a grid structure that aligns
with the principal stress directions. Yet it is not domain-filling but
comprised of quadrilateral (2D) elements aligned along the princi-
pal stress directions, so called beams. Beams are selected interac-
tively, and the geometry of the beam elements is constructed so that
they convey the anisotropy of the principal stresses. In 2D, where
beams intersect and share an element at the intersection, this el-
ement has to conform the geometry of both beams. By ensuring
conformity at all beam intersections, a globally conforming struc-
ture is generated. Our method builds upon the following specific
contributions:

• We introduce the use of beams instead of single lines to create
a stress-following grid structure in multiple dimensions, and to
encode the ratio of principal stresses into the geometry of the
beam elements. Thus, only line segments coinciding with stress
lines are shown, along all principal directions.
• Conformity of beams at intersections is achieved via the solution

of a constrained optimization problem. The optimization com-
putes for all intersection points the size and aspect ratio of cor-
responding beam elements, so that the ratio of principal stresses
is maintained and the edges of connected elements meet when
continued along the respective PSL.
• We provide different color mappings for points along the tra-

jectories to distinguish between tension and compression or the
relative stress magnitudes along the principal stress directions.

For different solids and load conditions, we demonstrate the ca-
pability of our method to provide a globally conforming visualiza-
tion of a 2D stress distribution. We further demonstrate the use of
this method for visualizing 3D tensor fields. In 3D, PSLs do not
intersect, in general, so that forming a beam structure with cycles
as in 2D becomes unfeasible. Thus, we let the user interactively se-
lect seed positions and progressively grow new beams composed of
hexahedral elements along the PSLs. The growth process considers
the design decisions underlying the construction of a conforming
lattice in 2D, and, thus, adheres to the identified requirements.

2. Related work

Besides the use of trajectory images, 2D stress tensor fields can be
visualized in a number of different ways, each coming with its own
strength and weakness. Let us refer here to the work by Kratz et
al. [KASH13], which provides a thorough discussion of the prop-
erties of many different stress visualization techniques.

For an overview of the stress state in a solid object, one often
resorts to the visualization of scalar stress measures like the von
Mises stress [DGBW09,KMH11] or the material’s index of refrac-
tion when loaded [BES15]. Such measures are derived from the
components of the stress tensor, and they can be visualized using
standard techniques like direct volume rendering or iso-contouring.
Yet since these techniques simplify the complex stress state to a sin-
gle scalar number, they cannot accurately convey the shape of load
transmission pathways. In particular, the mutual dependencies be-
tween major and minor stresses—which are important for a struc-
tural stress analysis of a solid under load—are lost.

Another alternative to visualize stress tensor fields is by means
of tensor glyphs, i.e., geometric primitives encoding tensor in-
variants by visual attributes like shape and color. Tensor glyphs
originate from early work on glyph-based diffusion tensor visu-
alization [Kin04], and a number of variants have been designed
for the visualization of positive definite tensors [KWS∗08], gen-
eral symmetric tensors [SK10], as well as non-symmetric tensors
[ZP05,SK16,GRT17]. Placement strategies for dense glyph visual-
izations help to reduce visual clutter [KW06, HSH07], and special
glyph designs have been proposed to support the comparative visu-
alization of diffusion tensors [ZYLL08].

While tensor glyphs can effectively convey the local stress state,
due to their discrete nature they make it difficult to accurately infer
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(d)(c)(b)(a)

Figure 3: Method overview: (a) Selected nodes (black circles) and computed intersections, skeleton trajectories, seed elements oriented
along PSLs. (b) Edges of connected nodes do not lay on the same PSL, (c) but do so due to anisotropic scaling during optimization. (d)
Conforming lattice, where beams of elements connect the seed elements. Coloring indicates stress magnitude, tension and compression.

the global shape and the divergent or convergent behavior of load
transmission pathways. In contrast, the technique we propose aims
at encoding the local stress state by the cells of a conforming grid,
and achieving a continuous impression—also revealing the global
relationships between induced loads and material response—by
growing these cells along PSLs.

To generate the conforming grid, we build upon the computa-
tion of continuous stress trajectories by using Lagrangian parti-
cle tracing in the principal stress direction fields. In the work by
Delmarcelle and Hesselink [DH93], stress trajectories are used
to generate so-called hyperstreamlines. A hyperstreamline shows
a cylinder-like geometric structure, which is formed by extruding
ellipses along a selected major PSL. The major- and minor-axis of
the ellipses correspond to the direction and length of the eigenvec-
tors and -values of the medium and minor stresses. Even though
hyperstreamlines were introduced for the visualization of 3D stress
fields, they can be adapted straightforwardly to 2D scenarios.

Silhouettes and ridges of a hyperstreamline, however, do not co-
incide with stress lines, possibly misleading the user in the inter-
pretation of the underlying stress field. The spatial extent of hyper-
streamlines prohibits placing them close to each other, making it
difficult to reveal contracting behaviour of the PSLs. In 3D, it is
also difficult to extract the orientation of a hyperstreamline when
the medium and minor stresses have similar magnitude. By using
a grid structure that is solely composed of (segments) of PSLs, we
overcome these limitations.

Visualizations building solely upon PSLs have also been pro-
posed in previous works. Stress-nets [WB05] are obtained by ren-
dering together major and minor PSLs, at the same time trying to
place them evenly to reduce clustering. Dick et al. [DGBW09] se-
lect random seed points in the 3D domain and trace PSLs along
all principal directions, simultaneously encoding tension and com-
pression by color. Both approaches, due to the random selection of
PSLs, face the same problems as classical trajectory images and
cannot adhere to our specified requirements in general. For sur-
face remeshing, Alliez et al. [ACSD∗03] build an initial control
mesh that follows the principal curvature directions, derived from
the curvature tensor. When applied to stress tensor fields, this ap-
proach produces visualizations similar to trajectory images, and
cannot effectively control the shape and local density of elements.
Hotz et al. [HFH∗06] smear out dye along along the PSLs using
line integral convolution, to generate a density field that resembles
a grid-like structure, This approach provides a global overview of
the stress distribution, yet it cannot accurately reveal the local stress
state and does not produce continuous load transmission pathways.

Besides visualizing the directional information in a stress field,
a number of works have studied the topology of symmetric 2D and
3D tensor fields [DH94, HLL97]. They characterize the topology
of a tensor field by degenerate structures where two or more eigen-
values are equal. The robust extraction of the topological skeleton
using numerical schemes has been addressed by Zheng and Pang
[ZP04] and Roy et al. [RKZZ18]. Topological approaches are dif-
ferent to our approach, since they focus on the extraction of specific
points or surfaces where the eigenvector fields behave in a specific
way. Let us refer to the works by Zobel and Scheuermann [ZS18]
and Raith et al. [RBN∗19] for thorough overviews of this field.

3. Mechanical foundations and method overview

In the following, we first describe the mechanical foundations un-
derlying the computation of stress trajectories, and then briefly
summarize how our proposed technique makes use of these trajec-
tories. Since the fundamental relationships required for the compu-
tation of stress trajectories in 2D solids can be derived as special
cases of the 3D case, we focus on the latter case in the following.

3.1. Trajectories in mechanics

In a material under load, the point-wise stress vector σ is defined as
σ = dF/dA, where dF is the force which the material on one side
of an infinitely small area element dA exerts on the material on the
other side. At each point, the state of stress is fully described by the
stress vectors for three mutually orthogonal orientations of the area
element. In particular, the second-order stress tensor S, represented
by a 3× 3 matrix, contains the stress vectors for the three orienta-
tions corresponding to the axes of a Cartesian coordinate system:

S =

σx τyx τzx
τyx σy τzy
τzx τzy σz

 (1)

Here, the mixed index components correspond to the shear stresses,
and they are equal on mutually orthogonal planes.

For an arbitrary orientation of the area element specified by its
normal vector n, the stress vector is determined by Sn. This vector
can be decomposed into a normal stress and a shear stress com-
ponent, acting orthogonally and tangentially on the area element,
respectively. For each stress tensor, there are three mutually orthog-
onal orientations of the area element where the shear stress compo-
nents vanish. For these orientations, the normal stresses are called
the principal stresses of the stress tensor.
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The solution of the eigenvalue problem for S results in the
three eigenvalues, which represent—sorted in descending order—
the principal stresses σ1,σ2, and σ3. If the eigenvalues are different,
the corresponding eigenvectors are linearly independent and even
mutually orthogonal due to the symmetry of S. The eigenvectors
have unique direction, yet their orientation cannot be decided in
general.

For an arbitrary start point, the PSLs are computed by a numer-
ical integration scheme over the selected eigenvector field. We use
a Runge-Kutta RK2(3) scheme with fixed integration step size δ.
Since there is no consistent orientation of the eigenvectors, rather
than interpolating eigenvectors, we interpolate the stress state in
2D in the form σx,σy and τxy. From the interpolated quantities, the
principal stress components are derived.

3.2. Method overview

Our method starts with a discrete grid structure on which stress
tensors are given. It needs to be equipped with an interpolation
scheme, so that continuous stress trajectories can be computed. In
addition, we provide the user information about the location of de-
generate points where multiple eigenvalues are equal and the PSLs
can cross. This guides the user towards regions where the generated
grid structure has high deformation.

Selection: The user interactively picks points in the domain. If
a selected location is close to an existing trajectory, the point is
snapped to that trajectory. For each point, the PSL passing through
that point (if not available from a previous selection) and the inter-
section points between the new and existing trajectories are com-
puted instantly (Fig. 3a). We subsequently call the computed tra-
jectories the skeleton trajectories, and the intersection points the
nodes.

Lattice initialization: For each new set of PSLs and nodes along
them, the globally conforming lattice is computed in turn. Firstly,
each node is used as center point for a quadrilateral element, the
so-called lattice seed element. The ratio of the edge lengths of seed
elements is according to the ratio of the principal stresses (Fig. 3a),
its edges are along PSLs. A global scale factor controls the size of
elements. The elements’ edges, per construction, lay on stress tra-
jectories, and we consider them in the upcoming stages to construct
a conforming lattice.

Constrained optimization: Given the lattice seed elements,
with their nodes being connected via the skeleton trajectories, we
aim at connecting the edges of connected elements via stress tra-
jectories. Edges along the major or minor stress direction, respec-
tively, should be connected via a major or minor stress trajectory.
However, the edges of connected elements lay on different stress
trajectories in general (as shown in Fig. 3b). Thus, we pose an op-
timization problem with the objective to scale the seed elements
individually so that corresponding edges of connected elements lay
(approximately) on the same PSL (Fig. 3c). We call the scaled seed
elements conforming.

Beam construction: From the conforming seed elements we
construct so-called beams, which connect the elements along the
skeleton trajectories. Beams are sequences of lattice elements,

starting and ending in a seed element, and having center points on
the connecting skeleton trajectory. The beam elements vary linearly
in size and edge ratio along the connecting trajectories (Fig. 3d).
The lengths of the beam elements along this trajectory are relaxed
to obtain a smooth transition between the seed elements. Notably,
due to this construction the shapes of the beam elements cannot
indicate any non-linear behavior of the stress ratio along a beam.

In the conforming lattice, the beams follow the principal stress
directions only approximately. In extreme cases, the optimization
might even suggest element shapes that do not accurately represent
the local stress state. By an additional coloring, such cases can be
emphasized, hinting towards regions where the lattice needs to be
refined. In the following, we describe the major components of the
construction process for generating a conforming lattice. We focus
on generating such a lattice for a given 2D stress field, and provide
details for the handling of 3D stress fields later on.

4. Element construction

Our approach aims at encoding the stress anisotropy into the shape
of lattice elements, i.e., the ratio of the edge lengths along the major
(l1) and minor (l2) principal directions should be equal to σ1/σ2.
Because of the intrinsic divergence/convergence of PSLs, however,
it’s not feasible, in general, to strictly ensure this ratio for all lattice
elements. Thus, we explicitly enforce this constraint only at the
lattice seed elements.

4.1. Lattice seed elements

The lengths of the edges of seed elements are determined as

l1 = lmax · p
√
|σ1|/max(|σ1|, |σ2|)

l2 = lmax · p
√
|σ2|/max(|σ1|, |σ2|),

(2)

where we prescribe the permitted maximum length lmax, as well as
a penalty term p that reduces the effect of local extreme values on
the construction process. We set p = 2 in our examples. Lengths
below a prescribed length lmin are clamped to this value.

To create the lattice seed element with the computed edge
lengths for a given node, we create two points on each the major
and the minor PSL going through that node (Fig. 4a). From the in-
tersection of the minor and major PSL, respectively, going through
these points, the element corners are determined.

(a) (b)

Figure 4: (a) Lattice seed element construction. (b) From top to
bottom, the two seed elements, the non-fitting beam elements, and
the fitting elements improved by Eqn. 3.
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4.2. Beam elements

Beams connecting the seed elements along the trajectory skeleton
are created by inserting new lattice elements along the skeleton via
a relaxation process. Therefore, let us assume that the seed ele-
ments have been scaled properly (via the optimization described
in Sec. 5, so that the edges of connected elements lay on the same
PSL. The construction process considers the length of the PSL from
one node to the other one, as well as the lengths of the edges of the
lattice seed elements corresponding to these nodes (Fig. 4b).

According to Fig. 4b, let us assume that L1 and L2, respec-
tively, refer to the length of the longer and shorter element, and
the construction proceeds from L1 to L2. L0 is the distance be-
tween the two nodes along the skeleton trajectory. Then, the num-
ber of new elements is the number of times an element with average
length l = 0.5 · (L1 +L2) can be placed between the two nodes, i.e.,
Nl = round(l0/l). If Nl −1 > 0, the size li of the i− th, i = 1 : Nl
element is given by

li = β1 +β2 · (Nl− i), (3)

where β1 = (L0− (L1−L2))/Nl and β2 = (L1−L2)/
Nl−1

∑
k=1

k.

Since it is not always possible to fill exactly the distance be-
tween two nodes with new elements, the remaining portion is dis-
tributed equally to all elements along the connection. The length
of the element edges along the respective other principal stress di-
rection is linearly interpolated between the corresponding values at
the nodes.

5. The conforming lattice structure

The seed elements have to be scaled properly so that the edges of
connected elements lay on the same PSL. We propose a constrained
optimization process and compute the optimized seed elements via
a gradient-based optimizer, so that the matching is achieved as good
as possible.

5.1. The constrained optimization problem

The optimization problem can be described as

min
x

f (x),

s.t. g(x)6 0, and lmin < x < λlmax

(4)

Here, x is the design variable, f (x) is the objective function that
measures the un-matching situation, and g(x) is the constraint func-
tion that keeps the changes of seed elements within a permitted
range. λ is a magnification factor to expand the design domain of
the design variables. It is set to 1.5 in our experiments.

Design variables As mentioned in Sec. 4.1, the seed elements
are constructed by placing 4 new points around each node, and us-
ing the major and minor PSLs through these points to determine
the element corners. We take the distances of the new points to the
node as the design variables (Fig. 5).

The 4 design variables at each node are the local design vari-
ables, and the 4 PSLs traced from each of these nodes are the local

2

6

Figure 5: Schematic illustrating of the optimization process for
nodes 2 (green) and 6 (yellow). Thin solid and dashed lines are
the support trajectories, crosses refer to the design variables. The
first concomitant design variable of x21 is x61.

support trajectories. Let us also introduce the concomitant design
variables and support trajectories. By this, we mean the local de-
sign variables and PSLs from the nodes that are connected to the
current node (Fig. 5).

Constraints The optimization constraints are used to ensure that
the seed elements still encode the stress ratio in their shape. Ac-
cording to Fig. 5, the ratio of the i-th seed element is given by

ri =
xi1 + xi2
xi3 + xi4

, (5)

Furthermore, Eqn. 6 is used to make the change of the seed ele-
ments not exceed a predefined range

(
ri− r∗i

r∗i
)2 6 ξ

2. (6)

Here, r∗i refers to the initial shape of the element, and ξ is the per-
mitted change of the element’s shape. From this, we obtain the con-
straint function gi(x) as

gi(x) = (
1
r∗i

xi1 + xi2
xi3 + xi4

−1)2−ξ
2 6 0, i = 1 : m, (7)

where m is the number of nodes. The value of ξ has a significant
effect on the convergence of the optimization process and the gen-
erated results. A small ξ ensures a limited change to the shape of
seed lattice elements. However, it necessitates more iterations in the
optimization process and may even lead to non-convergent results.

5.2. Objective function

The objective function is designed to measure how far the current
lattice structure is from conformity. To characterize the conformity,
we measure the deviation between the local support trajectory and
the corresponding concomitant support trajectories. Considering
xi j, the j-th design variable of the i-th node, and assuming it has
Ki j concomitant support trajectories, then the conformity fi j(x) for
xi j is defined as

fi j(x) =
Ki j

∑
k=1

(xi j− x̂i jk)
2, (8)
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Figure 6: Coherence of conforming lattices that are generated automatically from the leftmost lattice when different load conditions (indi-
cated by blue arrows) are applied to the 2D cantilever (Fig. 7a).

where x̂i jk is the distance between the i-th node and the intersection
of the k-th concomitant support trajectory with the PSL through xi j.
The global conformity f (x), considering m nodes with all 4 design
variables, is then given by

f (x) =
m

∑
i=1

4

∑
j=1

Ki j

∑
k=1

(xi j− x̂i jk)
2 (9)

By substituting Eqns. 7 and 9 into Eqn. 4, we obtain the optimiza-
tion problem.

Solving the optimization problem requires to trace PSLs and
compute their intersections in each iteration step. Therefore, we
relax x̂i jk to efficiently find an approximation without computing
PSLs. This relaxation builds upon our observation that the design
variables are mutually dependent via the concomitant design vari-
ables. Thus, the objective function becomes an explicit function
with respect to the design variables, if the approximation hi jk(x) of
x̂i jk is explicit with respect to x.

To construct hi jk(x), we use polynomial interpolation of samples
that are obtained by moving the concomitant design variable in a
limited range and computing the induced corrections. Then, the co-
efficients of the polynomial are computed by solving


XN−1

1 XN−2
1 · · · X0

1
XN−1

2 XN−2
2 · · · X0

2
...

...
. . .

...
XN−1

N XN−2
N · · · X0

N




p1
p2
...

pN

=


Y1
Y2
...

YN

 (10)

Here, ps, s = 1 : N are the coefficients of the polynomial, N is the
number of samples, and Xi and Yi, i = 1 : N are the sampled con-
comitant design variables and their corresponding corrections. The
variables x̂i jk can now be approximated via

x̂i jk ≈ hi jk(x) =
N

∑
s=1

ps · xN−s. (11)

N is set to 3 in our experiments. By substituting Eqn. 11 into Eqn.
9, the explicit expression of the objective function with respect to
the design variable is available, and the final optimization equation

becomes

min
x

f (x) =
m

∑
i=1

4

∑
j=1

Ki j

∑
k=1

(xi j−hi jk(x))
2,

s.t. gi(x) = ( 1
r∗i

xi1+xi2
xi3+xi4

−1)2−ξ
2 6 0, i = 1 : m,

lmin < x < λlmax

(12)

This function, since its derivatives can be computed analytically,
gives rise to efficient gradient-based optimizers, like the method of
moving asymptotes (MMA) [Sva87] that is used in our work.

5.3. Coherent visualization of stress changes

In many practical applications, domain experts are interested in
analysing the variations in the internal stress state due to changes
in the external load conditions or when a different material is
simulated. To enable an effective comparison of different stress
states, their visualizations should not change significantly when
only marginal changes have occurred.

With our method this is difficult to achieve, because the user
specifies only few initial seed nodes, while the other nodes are
computed automatically from the intersections of the traced PSLs.
When the seed nodes are fixed and used for generating the con-
forming lattice for a new stress state, due to changes in the PSLs
the other nodes might be at vastly different locations than they oc-
curred in the previous lattice. On the other hand, if the initial nodes
were only slightly moved in the new field, the resulting lattice struc-
ture might be very similar to the initial one.

To preserve positional coherence of all nodes—and thus struc-
tural coherence of the lattice structures—for varying stress states,
we introduce a globally optimal placement scheme that attempts to
minimize the summed positional changes over all nodes when gen-
erating a conforming lattice for a new stress distribution. Therefore,
we establish the following equation for the placement optimization:

min−→
m

∑
i=1
|pi− p̂i|2,

s.t. p j ∈ Γ j, j = 1 : m̂

(13)

Here, p̂i and pi, i = 1 : m, respectively, are the node positions in
the previous and current lattice. p j, j = 1 : m̂ are the seed nodes,
which are the design variables in the optimization. Γ j, j = 1 : m̂ are
the corresponding design domains, which restrict the movements
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of the seed nodes. Thus, the locations of nodes that are created au-
tomatically are regularized by these nodes. Since it is not possible,
in general, to derive a differentiable formulation of the automat-
ically computed locations of new points with respect to the seed
points, a gradient-based optimizer cannot be used. Instead, we re-
sort to the derivative-free optimizer CMA-ES proposed in [Han16],
which only requires iterative evaluations of the free node positions
for varying seed positions. I.e., in every iteration the seed nodes
are slightly moved so that the positional changes of all nodes are
optimized.

As an example, consider the 2D cantilever in Fig. 7a, to which a
concentrated force is applied at the point P3. The initial load direc-
tion is downward, and it is then changed continually in 9 steps of
20 degrees clockwise, so that eventually the load direction turns to
180 degrees and the structure is under an upward force. We input
three seed nodes p1, p2 and p3, with initial positions (125,125),
(250,125) and (375,125), respectively. The corresponding design
domains Γi, i = 1 : 3 of pi are indicated by circles around each pi.

When comparing the lattice structures from different simulation
steps in Fig. 6, it can be seen that number of nodes and skele-
ton trajectories do not change, the lattice slightly rotates clockwise,
and the region where the structure is under compression becomes
increasingly larger from left to right (see the shape change of the
lattice elements). In particular, even though significant changes in
the stress field occur, the conforming lattices do not change their
topology and geometric changes are tried to be minimized. This
gives rise to an effective comparison of all fields.

6. Results and analysis

We use the solid structures in Fig. 7 to validate our method. Stress
fields are computed by finite hexahedral element analysis, with the
Young’s modulus and Poisson ratio of all solids set to 1 and 0.3,
respectively. The second solid in Fig. 7 is obtained from the first
one by inserting holes.

(a) (b) (c)

Figure 7: The 2D solid objects used in our experiments. Blue ar-
rows indicate the load conditions. (a) Cantilever with fixed left
edge, discretized into 250×500 finite elements. Points P1, ...,P5 in-
dicate the positions were different loads are applied. (b) Perforated
plate, adapted from the cantilever. (c) Slice through a 3D CT-scan
of a femur, fixed at the bottom and discretized into 182×140 finite
elements.

All experiments are carried out using the MATLAB R2019a -
academic use release, on a workstation running Windows 10 and
equipped with 8 cores (Intel Xeon W-2123, @3.60Ghz) and 64GB
RAM. The processing times range from roughly 5 seconds for the
2D examples up to almost 25 seconds for the 3D examples dis-
cussed below. Since the number of constraint functions in Eqn. 12

equals the number of nodes that are used to construct the skeleton
trajectories (i.e., Sec. 5), processing times strongly depend on this
number. For large numbers, also the probability to get stuck in local
optima increases.

To validate the capability of our method to represent complicated
stress scenarios, we simulate the stress distribution in the 2D can-
tilever (Fig. 7a) using three different load conditions: The 1st test
case is obtained by applying a rightward concentrated force and a
downward force on P3 and P1, respectively. The 2nd case is gen-
erated by applying two rightward concentrated forces on P3 and
P5 separately. The 3rd case is obtained by applying a downward
distributed force on the edge P2P4. The 1st and 2nd test cases are
used to demonstrate the construction of a conforming lattice when
a trisector and a wedge degenerate point, respectively, exist. Via
the 3rd case we shed light on a scenario where a large number of
nodes is initially specified. In all test cases, we set lmin = 2.5δ and
lmax = 4lmin. In Eqn. 12, ξ = 0.3 is used to restrict the change of
the seed lattice shape during the optimization, here setting it 0.3 is
a consideration from both the convergence and effectiveness after
observing a series numerical examples.

For all three test cases, the support trajectories before and af-
ter optimization are shown in Fig. 8, In a pre-process, degenerate
points are computed and shown together with the corresponding
topological skeleton. The topological skeleton divides the domain
into sub-domains where the corresponding PSLs have similar be-
havior [DH94]. In particular, this information is used to avoid plac-
ing seed nodes too close to critical points or topological skeletons,
so that the computed beam structures overlap multiple topological
regions.

Figure 8: Top to bottom: Support trajectories for the 2D cantilever
under different loads before (left) and after (right) optimization, in-
cluding degenerate points (small circles), and the topological skele-
ton with PSLs along the major (grey solid lines) and minor (dashed
lines) principal directions.

Notably, the optimization fails if the support trajectories fall
within different topological regions (Fig. 9). In this case, either the
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Figure 9: Failure case. Support trajectories (blue dashed lines) en-
closing a degenerate point (circle). Topological skeleton in grey.

size of the lattice seed elements needs to be scaled down or the
selected node needs to be relocated.

The conforming lattices for the three test cases are shown in
Fig. 10 and Fig. 1(left). The values of σ1 and σ2 along the ma-
jor and minor principal directions are encoded in shades of red and
blue. Visualization of stress anisotropy are shown in the Appendix.

0.0000

0.2351

0.4702

0.7052

0.9403

(a)
-3.8168

-1.9891

-0.1614

1.6663

3.4940

10-3

Figure 10: Visualization of stresses in the cantilever under differ-
ent loads using conforming lattices. Blue arrows indicate the loads
corresponding to our 2nd (top) and 3rd (bottom) test case.

The perforated plate (Fig. 7b) is used as an additional test case
to validate our method. The stress field is simulated by applying
a distributed force acting downward on the right boundary of the
plate. The optimized support trajectories are shown in the top of
Fig. 11, with color coding according to major and minor stress di-
rection (left) and according to the von Mises stress (right) to show
the potential stress concentration. In the bottom of Fig. 11, the same
visualizations are shown for the 2D femur slice. The loads mimic
compression due to body weight (downward acting loads) and ten-
sion due to muscle forces (upward acting loads). In Fig. 1(middle)
and Fig. 1(right), major and minor principal stresses along the PSLs
in both datasets are encoded into shades of red and blue.

Convergence A conforming lattice is constructed by a con-
strained optimization. The convergence behavior of both the ob-
jective function and the constraint function for all five test cases are
collectively shown in Fig. 12a and b. Here, the normalized objective

(a) (b)
0.17

2.89

5.60

8.31

11.02

(c) (d)

Figure 11: Perforated plate (top) and 2D femur slice (bottom). Op-
timized support trajectories (left), and conforming lattice with von
Mises stress encoded along principal directions (right). In the fe-
mur stress field, PSLs cannot reach the boundary in the right upper
region, because of the two degenerate points (black circles).

function f ∗(x) = f (x)/max( f (x)) is used. The convergence plots
indicate that the optimization always converges after less than 50
iterations. We further analyse the accuracy by which the edges of
beam elements follow the PSLs. Therefore, we measure the aver-
age directional deviation between the element edges at the element
corner points and the exact direction of the PSLs. This deviation
is always below 4 degrees, yet we also observed outliers of more
than 20 degrees in highly diverging situations. Fig. 12c, b shows
the seed elements before and after optimization, superimposed for
comparison, for the 2nd and 3rd test case, respectively. A numer-
ical analysis verifies that all changes in aspect ratio are within the
prescribed tolerance, ξ = 0.3, which confirms convergence of the
optimization process.

(a) (b)

(c) (d)

Figure 12: Top: Convergence analysis for all 2D experiments. (a)
Normalized objective function. (b) Constraint function. Bottom:
Comparisons of seed elements before and after optimization, for the
2nd (c) and 3rd (d) test case. Elements with colored edges depict
the initial seed elements, black edges indicate optimized elements.
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7. 3D lattice structure

In principle, the conforming lattice in a 3D stress tensor field can
be computed in much the same way as in 2D. However, since the
PSLs in a 3D tensor field do not intersect in general, our proposed
optimization process is not applicable. Thus, in 3D we waive this
process and only make use of the proposed beam construction pro-
cess. Conformity is ensured by progressively growing beams along
the PSLs, thereby adjusting the cells’ extents to convey the local
stress state.

7.1. Beam growth

The seed element in 3D is constructed so that its edges are aligned
with the three principal stress directions and the edge lengths are
according to the ratio of the principal stresses. Since the edges do
not necessarily coincide with PSLs, we place points at the edge
midpoints, compute the PSLs corresponding to the edge direction,
and relax the cell corner points towards these PSLs. This process is
repeated iteratively until the changes are below a given tolerance.

(a) (b) (c)

Figure 13: Illustration of the element construction process. (a)
Tracing along PSLs, (b) Fitting of element face. (c) The final beam
structure in 3D.

For every face of the seed element and starting from the face’s
corner points, we trace out 4 new points along the PSLs "orthog-
onal" to that face. The step size along the PSLs is the same as the
length of the seed element along that direction (Fig. 13a). When
connecting the new points (grey dots in Fig. 13b) to form a face of
the new element, however, the edges of that face do not coincide
with PSLs in general. Thus, we also trace out a 5th point along the
skeleton trajectory of the current beam, using the same step size as
before (black dot in Fig. 13a). We then center a planar quadrilateral
at that point, with its edges aligned along the respective other PSLs
at this point, and the edge lengths according to the stress ratio along
these PSLs (dark grey quadrilateral in Fig. 13b). The newly gener-
ated points are projected onto the plane of the quadrilateral (grey
dots in Fig. 13b). Since we know which corner point of the quadri-
lateral corresponds to which new point, we now scale the quadrilat-
eral isotropically so that the sum of the distances between it’s cor-
ner points and their corresponding new points is minimized (light
grey quadrilateral in Fig. 13b). The new points are then snapped to
their corresponding corner points to form the final face. Fig. 13c
shows an entire beam that is generated as described.

It is clear that the edges of the beam elements do not follow the
PSLs exactly, since they are aligned solely with the PSLs at the se-
lected center point. Apart from cases where trajectories are highly
diverging, however, the elements align fairly well with the PSLs in

all of our experiments. In particular, the average directional devi-
ation between the element edges at the element corner points and
the exact direction of the PSLs was always below 5 degrees. An ex-
traordinary case occurs when two trajectories have been snapped to
each other. Then, the elements at the start and end points are gen-
erated along different beams, and they do not consider the stress
variation along the connection. We handle this case by interpolat-
ing the beam elements linearly along the connection, in the same
principal way as described for the 2D setting.

7.2. Visual mapping

To visualize the generated 3D beam structure, all element edges
are rendered as tubes for improved visibility. In addition, the stress
magnitudes along the major, medium, and minor PSLs are mapped
to red, green, and blue, respectively, with the magnitudes from
lowest to highest encoded by increasing saturation. To reduce vi-
sual clutter, beam elements are rendered as opaque cubes, and
the strength of anisotropy of the stress magnitudes is encoded
into greyscales of the element faces. Here, the following coloring
scheme is used to compute the intensity γ3D:

γ3D = ln(
max(|σ1|, |σ3|)
min(|σ1|, |σ3|)

) (14)

7.3. Test cases

In our experiments we consider two solid objects (Fig. 14), a 3D
cantilever and a human femur. In the first two experiments using
the 3D cantilever, we apply a distributed force to face P1P2P3P4,
which is then exchanged by a distributed force exerting on edge
P1P2 to introduce a torque.

Figure 14: The 3D solid objects used in our experiments. Blue ar-
rows indicate the load conditions, regions where the objects are
fixed are shown in black. Left: 3D cantilever with fixed left face,
discretized into 50× 100× 50 finite elements. Different loads are
applied at points P1, ...,P4. Right: Femur fixed at the bottom, dis-
cretized into 140×92×182 finite elements.

In Fig. 15a, b, beam structures in the cantilever stress fields are
shown when only one single beam is traced along the PSLs at the
initial seed point. Most importantly, the 3D beam structures can
simultaneously visualize the principal stress directions, the diver-
gence and convergence of PSLs, as well as the anisotropy of the
stress magnitudes. Notably, the torque that is introduced by the
load in the second experiment is clearly conveyed by the torsion
of the beams along the major and minor stress directions. Visually,
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Figure 15: Beam structures showing the stresses in the 3D can-
tilever under different load conditions. Shades of grey characterize
the strength of anisotropy of the beam elements. Top: One single
seed element is selected. Bottom: Beam structures are extended by
growing beams from additional elements.

the single beams look similar to hyperstreamlines, yet there are es-
sential differences between them. The most important are that the
beams encode (relative) local and global information concerning all
three major stress directions, and can be stitched together in a con-
forming way to better represent the 3D stress distribution. The latter
is demonstrated in Fig. 15c, d, where additional beam elements are
selected and new branches are grown along them.

We perform one last experiment using the 3D femur
(Fig. 14right), where multiple seeds are input sequentially in or-
der to obtain a complete image of the stress distribution. As seen in
Fig. 16, faces colored in light greyscale also appear in some middle
parts of the beams, i.e., high anisotropy does not only occur in re-
gions close to where the loads are applied, but also in the interior.
Region of high compression due to body weight and high tension
due to muscle forces can be conveyed effectively in the upper right
and left part of the femur, respectively. In addition, the twisting
of beams indicate that the stress field is under severe torsion. It is
worth noting that these effects are difficult to convey via alternative
techniques like hyperstreamlines or by drawing single PSLs along
any of the major stress directions.

8. Conclusion and outlook

We have introduced a novel method to visualize 2D stress tensor
fields via a conforming lattice that follows the PSLs, conveys their
divergent/convergent behaviour, and encodes stress type and rela-
tive stress magnitude. The method is global in that it allows fol-
lowing the paths along which stresses are transmitted through the
domain. The construction of a 2D conforming lattice is formulated
as an optimization problem, which adjusts the lattice elements so
that they conform to the local stress state. We have shown a mod-
ification to visualize 3D stress fields, by progressively building a
beam structure comprised of hexahedral elements using a sequen-
tial growth process.

Figure 16: Visualization of stresses in the 3D femur using beams
that are grown progressively from user selected seed elements.

In the future, we aim to extend the method to generate a space-
filling stress-following grid in 2D and 3D. In 2D, we will further
investigate construction processes that consider sharing of support
trajectories between beams, in combination with seeding strategies
that can automatically distribute beams so that they densely cover
the domain. In 3D, since a globally conforming structure does not
exist in general, we will investigate relaxation schemes to compute
a pseudo-conforming yet dense grid structure. Therefore, it will be
interesting to look into hex-meshing approaches for arbitrary ge-
ometries, and to adapt them to the specific needs. Since occlusions
become paramount already in the case of rather sparse 3D spatial
grid structures, we will further investigate dedicated visualization
techniques for such structures, e.g., by considering focus+context
techniques including feature-based element highlighting.

9. Acknowledgements

This work was partially funded by the German Research Founda-
tion (DFG) under grant number WE 2754/10-1 "Stress Visualiza-
tion via Force-Induced Material Growth".

10. Appendix

We provide additional visualizations of the anisotropy of minor and
major stresses in the 2D cantilever under different loads (Fig. 10).
Fig. 17 shows the anisotropy measured by γ2D = ln( |σ1|

|σ2| ). By com-
paring the anisotropy with the aspect ratio of beam elements in
Fig. 10, good agreement of the aspect ratio of elements and the
anisotropy can be observed.

Figure 17: Anisotropy of local stresses in the cantilever under dif-
ferent loads (2nd (left) and 3rd (right) test case).
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