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Abstract 
This paper presents a method for determining the deployment of one-way electric carsharing services 
within a designated region that maximizes the total profit of the operator. A mixed integer non-linear 
program model is built, with a strategic planning level that decides the fleet size and the station capacity 
and an operational level that decides on the required relocation operations. The state of charge (SOC) 
of the vehicles parked in one station is assumed to follow a continuous distribution. A rolling horizon 
method is used to optimize the operational decisions over the course of a day, considering demand 
fluctuations and the limited battery capacity of the vehicles. A golden section line search method and a 
shadow price algorithm are developed to optimize the fleet size and station capacity, with the results 
feeding back to the carsharing operations. To demonstrate the applicability of the formulated models 
and solution algorithms, a large-scale case study is conducted for Suzhou Industrial Park, China as the 
region of operation. A two-step verification method that combines an optimization model via tracking 
of individual vehicle SOC and a discrete event simulation, demonstrates the accuracy of the SOC 
distribution model. Managerial insights from the application are also presented.  
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1 Introduction 
One-way carsharing allows users to return vehicles to any designated parking station, which may be 
different from the initial pick-up station (Shaheen et al., 2015). Compared to the round-trip carsharing 
system in which vehicles are returned to the original parking station, one-way carsharing has the 
apparent advantages of encouraging the use of carsharing services and making the carsharing system 
more competitive (Jorge et al., 2015; Yoon et al., 2017; Huang et al. 2018). Because of the significant 
added convenience, one-way carsharing is attracting a growing number of users (Nair and Miller-Hooks, 
2014), and many start-ups, as well as traditional car rental companies, have begun to offer one-way 
carsharing services, e.g., Zipcar, Hertz, GoGet, Go4carrental, and EVCARD. The rapid growth of 
carsharing companies across the world is unlocking the potential of the sharing economy in the mobility 
sector.  
 
There is a growing trend of providing carsharing services using Electric Vehicles (EVs) because of the 
environmental benefits involved. EVs contribute to reducing local air pollution, and if aligned with 
clean energy practices, can contribute significantly to reductions in greenhouse gas emissions (Yang et 
al., 2016). According to a stated preference survey conducted in Korea, it is believed that CO2 emissions 
could be reduced to as much as 655,773 t per year if the number of EV charging stations reaches 50% 
of the current number of Internal Combustion Engine Vehicles (ICEV) fuel stations (Jung and Koo, 
2018). Therefore, one-way electric carsharing offers significant environmental benefits compared with 
its internal combustion engine counterpart. However, it presents significantly greater challenges for 
both operational decision-making and strategic planning for carsharing systems owing to station-based 
demand-supply imbalances and the limited battery capacity of EVs (Firnkorn and Müller, 2015; Lu et 
al., 2018; Zhang et al., 2019).  
 
At the operational level, one notable difficulty arises from intrinsic asymmetry and fluctuations in 
demand. To deal with the imbalance between demand and the available vehicles at different stations, 
operators implement vehicle relocations that transport vehicles from surplus zones to deficit zones 
(Bruglieri et al., 2017; Jorge et al., 2014; Wang et al., 2019). Drivers are needed to relocate vehicles, 
and this comes at a significant cost for the operators. To maximize total profit, operators need to weigh 
relocation costs against carsharing revenues. In the literature, Mixed Integer Programming (MIP) has 
been used to manage fleet redistribution when demand is known either through forecasting or based on 
historical data (Kek et al., 2009; Huang et al. 2018).  
 
Employing EVs further adds to the difficulty of managing these relocations as the state of charge (SOC) 
of each vehicle needs to be tracked to ensure that the remaining battery capacity is sufficient for the 
upcoming carsharing demand or relocations. Given the scale of carsharing fleet sizes, modeling the 
SOC of each vehicle every minute of the day would require an enormous number of integer variables 
(Correia and Santos, 2014). Zhao et al. (2018) studied the EV rebalancing and staff relocation problem 
by tracking the SOC of each vehicle in a carsharing system of up to 130 vehicles and 60 drivers. It is a 
formidable task to solve such a large-scale MIP regarding vehicle relocations, idle time for charging, 
and passenger/vehicle movements. Consequently, it is natural for researchers to explore model 
simplification or heuristic techniques as alternatives (Jorge et al., 2012).  
 
One stream of studies on EV sharing relocation adopts simplified charging strategies to formulate a 
trackable EV relocation problem (Liang et al. 2016). For example, EVs are only made available for rent 
or are relocated when they are charged to a certain capacity, i.e., the SOC equals a predefined value (Li 
et al., 2016; Brandstätter et al., 2017; Xu et al., 2018). Once a vehicle arrives at a parking station, it is 
required to remain there for a predetermined period to be recharged. Xu et al. (2018) formulated a 
concise non-linear program for EV relocations assuming that vehicles must be fully recharged before 
each departure. Thus, it would be unnecessary to record the SOC, with vehicles marked as unavailable 
for the period of recharging after each trip. This considerably reduces the model scale. However, it is 
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unrealistic and uneconomical to fully charge the vehicles during rush hour when there is a great demand 
for carsharing (Boyacı et al., 2017).  
 
Another stream of studies on EV sharing and relocation captures the changing SOC of vehicles through 
time-space network constraints or via simulation-based methods. Gambella et al. (2018) established a 
space-time network model to address vehicle and personnel movements in an electric carsharing system. 
Zhang et al. (2019) built another space-time network flow model for tracking vehicle SOC in a different 
dimension that listed the number of vehicles with different battery states rather than specifying the SOC 
of each vehicle. However, in a large network, the Zhang et al. (2019) model faces a computation burden 
problem. Alternatively, simulation-based methods can be used to evaluate different charging strategies 
for a large network, but they overlook whole system optimization (Scheltes and Correia, 2017).  
 
Strategic/tactical planning of carsharing systems aims to investigate long-term resource deployment, 
e.g., exclusive charging/parking stations and their corresponding capacity and EV fleet size, which is 
crucial for guaranteeing financial sustainability. Strategic planning for carsharing systems is 
significantly impacted by operational level decisions, including relocation schemes and charging 
schedules (Li et al., 2016). Correia and Antunes (2012) pointed out the importance of station location 
and vehicle relocations in response to the demand-supply imbalance problem. Strategic decisions 
should be optimized considering the impact of operational decisions that will be made subsequently 
(Cepolina and Farina, 2012; Fassi et al., 2012; Jorge et al., 2012). However, all these vehicle relocation 
methods present significant challenges to the carsharing operator when engaging in strategic planning 
for a large-scale electric carsharing system. 
 
There are only a few of studies on the strategic planning problem for electric carsharing systems. Xu et 
al. (2018) established an optimization model for determining the EV fleet size by considering vehicle 
and personnel movements. Furthermore, to avoid requiring the vehicles to be fully charged before 
departures, Boyacı et al. (2017) proposed an integrated optimization in which recharging requirements 
were addressed via a simulation module. Existing studies typically assume that each parking space is 
equipped with a charger (e.g., Xu et al., 2018), which matches the current practices of operators such 
as EVCARD. A charging pile in every parking space ensures that all parked vehicles can be recharged. 
Hu and Liu (2016) optimized the station capacity and fleet size in a queuing network, considering road 
congestion, booking time windows, and parking space utilization constraints. Hua et al. (2019) jointly 
optimized station location and fleet management under demand uncertainty via a multi-stage spatial-
temporal network. However, the aforementioned research either intentionally scaled down the EV fleet 
to maintain the tractability of the problem, or encountered major challenges for the carsharing operator 
when engaging in strategic planning for a large-scale electric carsharing system. 
 
This study fills this gap by encapsulating the time-varying SOC of EVs into the optimization of strategic 
planning for real-world electric carsharing systems while considering the impact of operational level 
decisions. As mentioned earlier, requiring vehicles to fully recharge before departure reduces their 
utilization rate, while tracking the SOC of each vehicle incurs a heavy computation burden. 
Alternatively, we assume that the SOC of vehicles parked in a station follows a continuous distribution, 
with its parameters changing over time. A recursive equation is developed to calculate the average SOC 
of the vehicles in a station at any time step, based on which a mixed integer non-linear program (MINLP) 
is formulated.  
 
To handle the computation burden, we split the large-scale MINLP into two subproblems: one to obtain 
the fleet size and station capacity at the strategic level, and the other to obtain vehicle relocations at the 
operational level. Jointly optimizing the two levels is necessary owing to the feedback loop between 
both levels. Allocating only a few vehicles or renting only a few parking spaces for a large demand will 
lead to several unsatisfied requests, whereas if many vehicles and parking spaces are allocated, the 
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system may be underused. Studying an integrated problem while considering strategic planning and 
operational decisions simultaneously has become an important challenge (Hu and Liu, 2016; Deng and 
Cardin, 2018). At the strategic level, we first obtain the upper bound and lower bound of the fleet size 
by assuming fully charged EVs before departure or using EVs without battery capacity constraints, 
respectively. Given the fleet size and station capacity, a series of small-scale linear programs (LPs) is 
built to determine vehicle relocations for fulfilling travel demand in a rolling horizon framework. A 
shadow price algorithm and a golden section line search method are further developed to optimize the 
station capacity and fleet size such that the total profit can be maximized.  
 
The remainder of this paper is organized as follows: In Section 2, the station-based one-way electric 
carsharing mathematical model is established. In Section 3, the solution algorithms are proposed. 
Section 4 presents a case study conducted in Suzhou Industrial Park (SIP), China. Section 5 provides 
some concluding remarks on the algorithms and their application in the case study. 
 
2 Model formulation 
2.1 Assumptions 
The assumptions used in this study are as follows: 
• The distribution of travel demand and travel time is time-varying over the course of a day; 
• The travel demand in a typical workday is utilized in making strategic planning decisions, while 

demand uncertainty or changes in demand from day to day is not considered; 
• Every carsharing parking space has a charging pile; 
• The SOC of vehicles parked at a station at a time instant obeys a continuous distribution whose 

mean changes over time; 
• When two vehicles are used to service two trips, the one with the larger SOC is used to service the 

longer trip. 
 
2.2 Problem setting 
The operator aims to maximize profit by optimizing the fleet size and station capacity of a station-based 
one-way carsharing system for a predefined region. In operation management, demand satisfaction and 
vehicle relocations are considered simultaneously, which provides feedback for the strategic planning 
problem. Fleet size, station capacity, demand satisfaction, and vehicle relocations are decision variables. 
A typical workday’s demand, which is a given parameter, is utilized in the long-term strategic planning 
and the capital costs, including vehicle costs and station opening costs, are expressed as depreciation 
costs per day. It is possible that not all requests are satisfied. EVs are used to provide the service, and 
the SOC of vehicles parked in a station is assumed to follow a continuous distribution model, which 
can be seen as auxiliary decision variables. Vehicles with higher SOCs are used to service longer trips. 
We consider a scenario where customers make reservations in advance and the operator can assign 
vehicles to customers.  
 

The studied region is divided into I  traffic zones where index i  or j  denotes one traffic zone. Parked 
vehicles and allocated parking spaces can only be used to service the travel demand occurring in their 

own traffic zone. A day of operation is divided into T  time steps, where t T∈  denotes a time step. 

Client trips and vehicle relocations occur at the beginning of a time step. Let ijtq  denote the carsharing 

demand to move from traffic zone i  to traffic zone j , where i j≠ , at time step t . Only the trips 
between two zones are considered. The company purchases a certain number of EVs sumV  and rents a 
number of parking spaces iS  in zone i , all with chargers installed, to ensure that returned vehicles can 
be charged immediately. During operation, the demand-supply imbalance problem is handled using 
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relocation operations. Based on the predicted travel demand, the operator relocates ijtN  vehicles from 

traffic zone i  to traffic zone j  at time instant t  to fulfill the future demand. Because the number of 

travelers serviced by carsharing, i.e., ijtQ , is impacted by the available vehicles in traffic zone i  at time 

instant t , we impose a penalty of pc for each unsatisfied trip. The penalty can be seen as an allowance 
with which unserved clients can purchase a public transport ticket. This helps to prevent customer loss 
over the long term and makes carsharing unsustainable. If profit maximization, regardless of the demand 
fulfillment rate, is the goal of the operator, one can simply set pc = 0. Table 1 presents a complete 
notation list. 
 

Table 1 Notation list 
Parameters 

0c  Rental price of a shared EV per time step 

ec  Electricity consumption costs per time step 

fc  Fixed costs per vehicle per day, including depreciation costs and maintenance costs  

pc  Penalty for rejecting a single trip  

rc  Costs of relocating an EV per time step 
sc  Rental costs of a parking space per day 

:{ }I i  Set of traffic zones into which an urban area is divided 
:{ }T t  Set of time steps, where t  is also used to denote the beginning of time step t  

K  Number of time steps in one horizon of the rolling horizon framework 

ijtg  Travel time in time steps from zone i I∈  to zone j I∈ , where i j≠  departing at the 
beginning of time step t T∈  

ijtq  Travel demand from traffic zone i  to traffic zone j , where i j≠  at time step t  

rij  An origin and destination (OD) pair from zone i  to zone rj , where rj  is the index 
of the destination zone at the r th ascending order in travel time among all origins and 

destinations starting from zone i , and 1,..., 1r I∈ −  

is  Maximum number of parking spaces in zone i  
α  Recharging speed: as SOC increase (%) per time step 
β  Discharging speed: as SOC decrease (%) when a vehicle drives for one time step 
ζ  Weight for the future profits in the rolling horizon framework 
Decision variables 

iS  Number of parking spaces in zone i  
itV  Number of shared EVs in zone i  at time instant t   
sumV  Fleet size of the carsharing system 

ijtN  
Number of relocated vehicles from traffic zone i  to traffic zone j , where i j≠  at 
time instant t  

ijtQ  
Satisfied travel demand to move from traffic zone i  to traffic zone j , where i j≠  at 
time instant t  

Auxiliary variables 
itE  A random variable that represents the SOC of vehicles parked in zone i  at time 

instant t  
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rij tp  Proportion of vehicles from zone i  to zone rj  at time instant t  

irtP  Cumulative probability of vehicles heading to destinations closer than and equal to 
the r th destination from zone i  at time instant t  

sumV  Fleet size of purchased vehicles, with 1sum ii I
V V

∈
=∑  

itW  Number of idle vehicles in traffic zone i  at time step t  

rij tη  Average SOC of vehicles that head to destination rj  from zone i  at time step t , 
including client trips and relocations 

itµ  Average SOC of all the vehicles parked in traffic zone i  at time instant t  
itπ  Shadow price related to the parking space constraint in traffic zone i  at time step t  

Functions 
( )f x  Probability density function of the continuous SOC distribution 
( )F x  Cumulative distribution function of the continuous SOC distribution 
( , )G x u  Recharging function, where x  is the current SOC and u  is recharging time 
( , )H x u  Discharging function, where x  is the current SOC and u  is discharging time 

 
2.3 Mathematical model  
2.3.1 Continuous SOC distribution 
To facilitate formulation of the model, a series equation is constructed to capture vehicle SOC changes. 
Due to the battery capacity constraint of EVs, not all parked vehicles can be used by carsharing users. 
Only those with enough battery capacity to cover the upcoming trip can be rented or relocated. It is 
necessary to identify the vehicles that are able to embark on the desired trips based on the SOC of the 
parked vehicle. Thus, we construct a continuous SOC distribution model to simulate the SOC changes 
over time, as detailed in the next section. 
 
Let itE  be a random variable that represents the SOC of vehicles parked in zone i  at time instant t . 

We assume that itE  follows a continuous distribution ( )( )2~ ,it it itE D µ σ µ , with mean itµ  and 

variance 2σ . The probability density function (PDF) is ( )
itEf x , and the cumulative distribution 

function (CDF) is denoted by ( ) ( )
it it

x

E EF x f dω ω
−∞

= ∫ . Because the SOC of a vehicle is in the range 

[0,1], i.e., 0 1itE≤ ≤  (between 0% and 100% of the total battery power), the variance 2σ  should be 
properly defined, such that the majority of the itE  values fall within the range of [0,1].  
 
Thus, instead of tracking the SOC of each vehicle, only the average SOC itµ  in zone i  at time instant 
t  needs to be tracked. We hypothesize that the proposed continuous SOC distribution model can 
significantly reduce the number of variables while capturing their time-varying property. The 
assumption of a continuous SOC distribution is verified in the case study (Section 4.4). 
 
In operation, once a vehicle arrives at a station, it is recharged, with its SOC increasing according to the 
linear recharging function expressed in Eq. (1). When a vehicle is rented or relocated, the initial SOC 
reduces gradually with travel time, according to the linear discharging function in Eq. (2). Let us assume 
that the SOC of a vehicle arriving in traffic zone i  at time instant t  is x . In Eq. (1), α  is the battery 
recharging speed in percentage (%) per time step, and the percentage of battery capacity recharged in 
one time step is assumed to be equal at all charging stations. ( , )G x u  calculates the vehicle SOC after 
being recharged for a time duration of u ; this SOC cannot exceed the maximum level of 100%. In Eq. 
(2), β  is the battery consumption speed in % per time step, with the percentage of battery capacity 
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consumed after driving for one time step assumed to be equal for all vehicles across the fleet. ( , )H x u  
calculates the vehicle SOC after servicing a trip with a travel time of u . To ensure that ( , )H x u  is 
positive, the travel time u  cannot exceed the driving range of the vehicle. 
 

{ }( , ) min ,1G x u x uα= +  (1) 
( , )H x u x uβ= −  (2) 

 
When relocating a vehicle or renting a vehicle to a client, it must be ensured that the vehicle SOC is 
sufficient to complete the trip. For simplicity of the model formulation, we use a simple rule of 
customer-vehicle assignment: vehicles with larger SOC are used to service longer trips. The effects of 
other customer-vehicle assignment schemes on the profitability of the carsharing system, including first 
come first serve or random assignment, will be left to future studies. We first rank the trips starting from 
zone i  at time instant t  in ascending order of the travel time ijtg . Then, let rj  be the destination zone 

with the r th smallest travel time, where 1,2,..., 1r I= − . Thus, we have 
rij tQ and 

rij tN  denoting 

satisfied demand and vehicles relocated from zone i  to zone rj , respectively, at time instant t .  
 

( )( ) ( )
1

1
+ 1 +    ,  1,..., 1, 

r r it r n n

I

ij t ij t it E ij t ij t ij t
n r

Q N V F g Q N i I r I t Tβ
−

= +

≤ − − ∀ ∈ ∈ − ∈∑  (3) 

 
Eq. (3) specifies the vehicle SOC constraints. 

r rij t ij tQ N+  on the left denotes the number of trips from 

zone i  to zone rj  at t . The minimum SOC required to makes these trips is 
rij tgβ , i.e., the product of 

the travel time and the discharge speed. Based on the SOC distribution of vehicles parked in zone i , 

( )( )1
it rit E ij tV F gβ−  calculates the number of vehicles with an SOC larger than 

rij tgβ  available to 

realize trips from zone i  to zone rj  at t . Among the vehicles with SOC greater than 
rij tgβ , some 

could be used to service longer trips with a destination rank higher than r . Vehicles already assigned 
to the other travel time ranks are given by ( )1

1
+

n n

I
ij t ij tn r

Q N−

= +∑ . Eq. (3) states that trips made from zone 

i  to zone rj  at t  cannot exceed the available vehicles, with sufficient SOC, parked at zone i . Notably, 
Eq. (3) does not require long trips to be prioritized. Thus, it is possible that a request with a short travel 
time is fulfilled, 0

rij tQ > , and a long trip is not, 0,
nij tQ n r= > , while the vehicles actually have enough 

battery capacity to service both. The demand selection is simply a result of the optimization. We only 
assume that if trips A and B are both satisfied, with the travel time of A being longer, then the vehicle 
with higher SOC is used for trip A. 
 
At the beginning of the day, all vehicles are fully charged, with 1 1iµ = . In zone i  at time instant t , the 
available vehicles itV  have three options: servicing passenger demand, being relocated, or staying to be 
charged. Eq. (4) represents this conservation at instant t , where itW  is the number of idle vehicles for 
the entire time step. Given that long trips use vehicles with a large SOC, the available vehicles parked 
in zone i  at time instant t  can be divided into | |I  portions, each assigned with a probability of 

rij tp  

(see Fig. 1), where , 1,... | | 1
rij tp r I= −  is the proportion of vehicles heading to destination rj  at time t  

and iitp  is the proportion of idle vehicles. These calculations are given by Eqs. (5) and (6). The 
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cumulative probability irtP of vehicles from zone i  heading to destinations closer than and equal to the 
r th destination at t  is given by Eq. (7). According to the SOC CDF function, the corresponding quantile 
value 1( )irtF P−  provides the boundary value of the SOC required to support these trips. The vehicles 

heading to destination rj have SOC values ranging from 1
, 1,( )i r tF P−
−  to 1( )irtF P−  (horizontal axis in 

Fig. 1). We use , 1,... | | 1
rij t r Iη = −  to denote the average SOC of vehicles heading to destination rj , 

and iitη  to indicate the average SOC of idle vehicles. Eqs. (8) and (9) present the calculation as the 

integral of the scaled-up density function in the range 1
, 1,( )i r tF P−
−  to 1( )irtF P− .  

 
Fig. 1 PDF of the SOC of vehicles at station i at time instant t  

 

( )
1

1
+    ,  

r r

I

it it ij t ij t
r

V W Q N i I t T
−

=

= + ∀ ∈ ∈∑  (4) 

+
   , ,  1,..., 1r r

r

ij t ij t
ij t

it

Q N
p i I t T r I

V
= ∀ ∈ ∈ = −  (5) 

   ,  it
iit

it

Wp i I t T
V

= ∀ ∈ ∈  (6) 

0
   , ,  0,1,..., 1

n

r

irt ij t
n

P p i I t T r I
=

= ∀ ∈ ∈ = −∑  (7) 

( )
( )

( )1

1
1

   ,  , 1,..., 1irt it

r
ir t

r

F P E
ij t F P

ij t

f x
xdx i I t T r I

p
η

−

−
−

= ∀ ∈ ∈ = −∫  (8) 

( )( )1
0

0
   ,  i t it

F P E
iit

iit

f x
xdx i I t T

p
η

−

= ∀ ∈ ∈∫  (9) 

( )

{ }
1

1

( ,1) ( ( , ), )

,  1,2,... 1,  0, 1

iit it jim jim jim jim jim jim
j I

it
it

jim

G W G H g g g Q N

V

i I t T m = max t g

η η
µ ∈

+
+

 + − + 
=

 ∀ ∈ = − + −  

∑
 (10) 

 
Next, we formulate a recursive function for the average SOC 1itµ +  in traffic zone i  at time instant 1t + . 
At the beginning of the day, we assume all vehicles to be fully charged, i.e., 1=1iµ . Eq. (10) calculates 
the average SOC 1itµ +  at time instant 1t + , based on the following: vehicles idling at station i  at time 
step t  with charging for one full time step; vehicles arriving at station i  between time instants t  and 

1t + , with battery capacity consumed during the trip and recharging on arrival; total number of vehicles 
parked in station i  at the beginning of time step 1t + . The recharging and discharging functions are 
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expressed as Eqs. (1) and (2), respectively. Eq. (1) represents the charging function ( , )G x u , which 
calculates the vehicle SOC after it has been recharged and ensures that the vehicle is not overcharged. 

Taking ( ,1)iitG η  in Eq. (10) as an example, it can be written as { }( ,1)= min ,1iit iitG η η α+ , in the form 

of Eq. (1). In Eq. (10), ( ,1)iit itG Wη  denotes the total SOC of vehicles parked in traffic zone i  after 

recharging for one time step. ( , )jim jimH gη  is the remaining SOC of the vehicles after driving for jimg  

time steps. m  is the departure time of the vehicles that arrive at traffic zone i  between time instants t  
and 1t + . jimg    denotes the rounding-up travel time. Before the next movement of the returned vehicle, 

it is recharged for a duration of jim jimg g  −  . ( )( )( ), ,jim jim jim jim jim jimj J
G H g g g Q Nη

∈
  − + ∑  

represents the total SOC of the vehicles arriving at traffic zone i  between time instants t  and 1t +  
after being recharged for a parking time jim jimg g  −  . 

 
Proposition 1. The continuous SOC distribution model guarantees electricity conservation in the 
carsharing system. Vehicle charging has led to equivalent battery capacity increases and vehicle 
operation has incurred an equivalent battery capacity decrease. 
Proof. See Appendix. 
 
Lemma 1. The average SOC itµ  of the vehicles at any time instant t  is in the range of [0,1]. 

Proof. See Appendix. 
 
2.3.2 Mixed Integer Non-linear Program for EV carsharing network design 
With vehicle SOC constraints (1)–(10), it is possible to formulate the EV carsharing network design 
problem. 
 

P1 ( ) ( )0 1max e ijt ijt s i f i r ijt ijt p ijt ijt
t T i I j I i I i I t T i I j I t T i I j I

c c Q g c S c V c N g c q Qφ
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

= − − − − − −∑∑∑ ∑ ∑ ∑∑∑ ∑∑∑S,V,Q,N
(11) 

Subject to: 
Constraints (1)–(10), plus 

1 1  i i Iµ = ∀ ∈  (12) 
  , it iV S i I t T≤ ∀ ∈ ∈  (13) 
  , i iS s i I t T≤ ∀ ∈ ∈  (14) 

  , ,ijt ijtQ q i I j I t T≤ ∀ ∈ ∈ ∈  (15) 

( )  ,  it ijt ijt
j I

V Q N i I t T
∈

≥ + ∀ ∈ ∈∑  (16) 

( ) ( )

{ }
1   

,  1,2,... 1,  0, 1

it it ijt ijt jim jim
j I j I

jim

V V Q N Q N

i I t T m = max t g

+
∈ ∈

= − + + +

 ∀ ∈ = − + −  

∑ ∑
 (17) 

0, , , ,  , ,ijt ijt i itN Q S V i I j I t T∈Ζ ∀ ∈ ∈ ∈  (18) 

 
The objective function (11) maximizes total profit for a carsharing operator, and is equal to carsharing 
users’ travel fees minus the operation costs, which include electricity consumption costs, parking space 
rental costs, vehicle fixed costs, relocation operation costs and penalty costs for rejected trips. 
Relocation costs include two components: energy costs and labor costs. Personnel movements are not 
considered. Constraints (12) define the initial value of the SOC in traffic zone i  at the beginning of a 
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day. All vehicles are fully charged after a night. Constraints (13) require the parking spaces to be enough 
for the vehicles that have arrived. Constraints (14) impose that the number of parking spaces should not 
be greater than the upper bound. Constraints (15) state that the satisfied demand ijtQ  has to be lower 

than the total demand ijtq  for carsharing. As mentioned earlier, we penalize the rejected trips in to 
increase the demand satisfaction rate. Constraints (16) ensure that the number of available vehicles is 
greater than the total satisfied demand ijtQ  (one person per vehicle) and the number of relocated vehicles 

ijtN  leaving this station. Constraints (17) calculate the number of vehicles in traffic zone i  at time 

instant 1t + , and are equal to the available vehicles in traffic zone i  at time instant t , minus the vehicle 
outflow (passenger renting or relocated vehicles) in zone i  at time instant t , plus the vehicle inflow 
arriving in traffic zone i  during time step t . Constraints (18) specify the domain of the decision 
variables. 
 
MINLP P1 is compact in the number of variables via modeling vehicle flows instead of individual 
vehicles. However, the difficult integral Constraints (8)–(9) render P1 impossible to solve using state-
of-the-art solvers such as Gurobi, CPLEX, or Xpress, and thus requires an efficient algorithm. 
 
3 Solution algorithm 
To handle the computation difficulties, we propose a customized solution algorithm that separates the 
strategic and operational decisions. In the solution approach: (1) first, we construct a lower bound and 
an upper bound to the strategic decisions (fleet size and station capacity); (2) For a given fleet size and 
station capacity, we solve the operational level problem, which sorts the satisfied travel demand, decides 
vehicle relocation operations, and obtains the corresponding total profit; (3) The optimized fleet size 
and station capacity are explored in the identified feasible range using the golden section algorithm and 
shadow price algorithm, respectively, until the total profit cannot be further improved. The shadow 
price parameter used in Step 3 is obtained from Step 2 by optimizing the operational decisions. The 
profit for any given fleet size and station capacity in Step 3 is obtained by solving the problem in Step 
2. Consequently, the strategic and operational decisions are interrelated with each other in this loop 
solution approach. The proposed solution algorithm is a hybrid heuristic method, and the term 
optimization models and optimized results are used throughout this study to contrast with the 
simulation-based methods. Fig. 2 illustrates the optimization procedure. 
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Fig. 2 Flow chart of the solution algorithm 

 
3.1 Strategic level decisions 
The strategic decisions in P1 include the fleet size sumV  and station capacity { }iS . This section aims to 
construct an upper bound and a lower bound to fleet size: maxV  and minV , respectively, and to construct 
a feasible solution to station capacity. 
 
1) Fleet size upper bound maxV  
Two constraints are added to derive the fleet size upper bound of P1: (a) all travel demand should be 
satisfied ( ijt ijtQ q= ), and (b) vehicles must be fully charged after each trip before being rented or 

relocated. Consequently, the SOC related Constraints (1)–(10) can be removed. The rest of the problem 
can be formulated as the following mixed integer linear program (MILP) 
 
P2 ( )0 1max lb e ijt ijt s i f i r ijt ijt

t T i I j I i I i I t T i I j I
c c q g c S c V c N gφ

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

= − − − −∑∑∑ ∑ ∑ ∑∑∑V,S N,
 (19) 

Subject to: 
Constraints (14), plus 

( )  ,  it ijt ijt
j I

V q N i I t T
∈

≥ + ∀ ∈ ∈∑  (20) 
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( )

( ){ }

 ,  

where : ;

it jim jim i
m M j I

jim jim

V q N S i I t T

M m m+ g t m+ g 1+ > tβ
α

∈ ∈

+ + ≤ ∀ ∈ ∈

= ≤

∑∑
 (21) 

( ) ( )

( ){ }
1  ,  1,2,... 1

where : 1

it it ijt ijt jim jim
j I m M j I

jim

V V q N q N i I t T

M m t m g 1+ tβ
α

+
∈ ∈ ∈

= − + + + ∀ ∈ = −

= < + < +

∑ ∑∑
 (22) 

, , 0,  integer,  , ,ijt i itN S V i I j I t T≥ ∀ ∈ ∈ ∈  (23) 

 
The objective function (19) maximizes total profit of the operator. Here, itV  denotes the number of 
vehicles with full battery capacity (SOC = 100%) in traffic zone i  at time instant t . Consequently, itV  
are vehicles available for use by clients because vehicles must be fully charged before departure. 
Constraints (20) ensure that the number of available vehicles is larger than the total demand ijtq  and 

vehicle relocations ijtN  leaving a particular station. Constraints (21) are the parking capacity 

constraints. The parked vehicles in traffic zone i  at time instant t  include those fully recharged, itV , 

as well as those that need charging, ( )jim jimj I
q N

∈
+∑ . The set { }M m=  derives the departure times of 

vehicles that have arrived in zone i  before time instant t , jimm+ g t≤ , and those that have not been 

fully charged at time instant t , ( )jimm+ g 1+ > tβ α . Constraints (22) calculate the number of 

available vehicles with full SOC in traffic zone i  at time instant 1t + , and is equal to the available 
vehicles itV  minus the vehicles going out ( )ijt ijtj I

q N
∈

+∑ , plus the vehicles arriving in traffic zone i  

in time step t  ( )jim jimj I
q N

∈
+∑ . Constraints (23) specify the domain of the decision variables. We take 

the optimization results for fleet size 1max ii I
V V

∈
=∑  as the upper bound value for the number of vehicles 

required for the carsharing system.  
 
Proposition 2. The profit lbφ  obtained from P2 is a lower bound to the optimal profit φ  from P1. 
Proof. See Appendix. 
Proposition 3. Satisfying all demand and having vehicles fully charged before departure can provide 
the upper bound of the optimal fleet size in P1. 
Proof. See Appendix. 
 
2) Fleet size lower bound minV   
To calculate a lower bound of the fleet size, we remove all the SOC related constraints (1)–(10) in P1. 
The optimization model is the following MILP 
 
P3 

1min i
i I

V
∈
∑,NS,V,Q

 (24) 

Subject to: 
Constraints (13)–(18), plus 

( )

( )

0 1

                                              

lb e ijt ijt s i f i r ijt ijt
t T i I j I i I i I t T i I j I

p ijt ijt
t T i I j I

c c Q g c S c V c N g

c q Q

φ
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈

≤ − − − −

− −

∑∑∑ ∑ ∑ ∑∑∑

∑∑∑
 (25) 
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The objective function (24) minimizes the vehicle fleet size. Constraints (25) require the total profit in 
P3 to be larger than the minimum profit of P1. MILP P3 aims to derive the minimum fleet size for 
obtaining a profit of at least lbφ . Using EVs without battery capacity constraints indicates that the 
vehicles do not need to be recharged in carsharing operations. The cost parameters are the same as in 
P1.  
 
Proposition 4. Minimizing the fleet size by removing battery capacity constraints in the carsharing 
system can obtain the lower bound of the optimal fleet size in P1. 
Proof. See Appendix. 
 
The optimization results in P3 1min ii I

V V
∈

=∑  are taken as the lower bound. The obtained station 

capacity { } min iS  can serve as an initial value in the operational level problem. 
 
3.2 Operational level decisions 
Given a fleet size sumV  and station capacity{ } min iS , the operational level decides the satisfied travel 

demand ijtQ , relocations ijtN , and vehicle allocation itV . A rolling horizon approach is developed to 
relax the non-linear constraints caused by the time-varying SOC of the vehicles. The operation decisions 

are divided into T  horizons. One horizon contains K  time steps. Fig. 3 illustrates the rolling 

procedure. For example, the horizon t  problem considers the optimization from time steps t  to 
1t K+ − . After the horizon t  problem is solved, we roll to the next, horizon 1t +  taking the 

optimization results before time instant 1t +  as inputs (Berbeglia et al., 2010; Nielsen et al., 2012; 
Bertazzi and Maggioni, 2018; Liang et al., 2018).  
 

0 1

Output 1

Input 1

2 Time steps

Horizon 1

Output 2

Input 2

Horizon 2

Output t

Input t
Horizon t

t t+1 t+K-1

...

...
K

......
K+1

...
t+2 T

...

 
Fig. 3 Rolling horizon scheme 

 

In the horizon t  problem, the inputs include station capacity { } min iS , available vehicles ,itV i I∀ ∈  at 

time instant t , average SOC ,it i Iµ ∀ ∈  at time instant t , demand ijkq  and travel time ijkg  from time 

steps t  to 1t K+ − , and all vehicle movements in previous time steps: ijmQ  and ijmN , , ,i j I m t∀ ∈ < . 

The aim of horizon t  is to derive the optimized vehicle movements at time instant t  (i.e., ijtQ , ijtN , 

,i j I∀ ∈ ) such that the profits at time step t  and the estimated profits at time steps 1t +  to 1t K+ −  
can be maximized.  
 
The carsharing operational model at horizon t  is formulated as the following LP model 
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P4-horizon-t 

( ) ( )

( ) ( )

0

1 1 1

0
1 1 1

max e ijt ijt r ijt ijt p ijt ijt
i I j I i I j I i I j I

t K t K t K

e ijk ijk r ijk ijk p ijk ijk
k t i I j I k t i I j I k t i I j I

c c Q g c N g c q Q

c c Q g c N g c q Qζ

∈ ∈ ∈ ∈ ∈ ∈

+ − + − + −

= + ∈ ∈ = + ∈ ∈ = + ∈ ∈

− − − −

 
+ − − − 

 

∑∑ ∑∑ ∑∑

∑ ∑∑ ∑ ∑∑ ∑ ∑∑

Q,N

-
 (26) 

Subject to: 
1 1  i i Iµ = ∀ ∈  (27) 

1i sum
i I

V V
∈

=∑  (28) 

( )( ) ( )
1

1
+ 1 +    ,  1,..., 1

r r it r n n

I

ij t ij t it E ij t ij t ij t
n r

Q N V F g Q N i I r Iβ
−

= +

≤ − − ∀ ∈ ∈ −∑  (29) 

  , ,..., 1ik iV S i I k t t K≤ ∀ ∈ = + −  (30) 

  ,  , ,..., 1ijk ijkQ q i I j I k t t K≤ ∀ ∈ ∈ = + −  (31) 

( )+    ,  ,..., 1ijk ijk ik
j I

Q N V i I k t t K
∈

≤ ∀ ∈ = + −∑  (32) 

( ) ( )

{ }
1

,  ,... 2,  0, 1

ik ik ijk ijk jim jim
j I j I

jik

V V Q N Q N

i I k t t K m = max k g

+
∈ ∈

= − + + +

 ∀ ∈ = + − + −  

∑ ∑
 (33) 

, 0,  ,  ,  ,..., 1ijk ijkN Q i I j I k t t K≥ ∀ ∈ ∈ = + −  (34) 
 
The objective function (26) maximizes the total profit for the operator from time steps t  to 1t K+ − . 
We use ζ  to weight the corresponding profits obtained from the estimated travel demand at time steps 

1t +  to 1t K+ − . Constraints (28) allocate the given number of vehicles sumV  to I  traffic zones. 
Constraints (27) and (28) are required only for the first horizon. Constraints (30)–(34) capture the 
restrictions from time steps t  to 1t K+ − on parking space capacity, travel demand, vehicle 
movements, vehicle conservation over time, and the variable domain, respectively. 1ikV +  is the number 
of shared EVs in zone i  at time instant 1k + . In Eq. (29), the limited EV battery capacity restricts 

vehicle movement at time instant t  only. As the average SOC ( itµ ) is known, its PDF ( )
itEF x  at time 

t  is also known. Constraints (29) thus become linear. To circumvent the non-linear problem caused by 
the time-varying SOC of the vehicles, we eliminate the electricity conservation constraint when 
optimizing vehicle relocation from time steps 1t +  to 1t K+ − . The LP P4 can be readily solved using 
commercial solvers such as Gurobi, CPLEX (IBM), or Xpress (FICO). 
 
By solving P4, we can obtain the satisfied travel demand ijtQ  and vehicle relocations ijtN  at time 

instant t , which are taken as outputs of horizon t . The next step is to calculate the average SOC 1itµ +  
at the next time instant 1t +  using Eq. (10), and obtain available vehicles 1itV +  using Eq. (33). These 

are used as inputs to the next horizon 1t + . The process is repeated until all horizons T  are optimized.  
 

The total profit, given a fleet size sumV  and station capacity { } min iS  can thus be obtained as 
 

( ) ( )0 1e ijt ijt s i f i r ijt ijt p ijt ijt
t T i I j I i I i I t T i I j I t T i I j I

c c Q g c S c V c N g c q Qφ
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

= − − − − − −∑∑∑ ∑ ∑ ∑∑∑ ∑∑∑  (35) 
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where ijtQ  and ijtN  take their values from the corresponding horizon t .  
 

The next step is to derive the optimized sumV  and { }iS  to achieve a maximum total profit *φ . 
 
3.3 Shadow price and golden line search algorithm 
We develop a shadow price algorithm to optimize the station capacity, and a golden section line search 
method to derive the optimized fleet size. The two searching routines iterate until the stopping criteria 
are satisfied.  
 

We consider a given fleet size sumV  and derive the optimized { }iS first. In the rolling horizon 
framework, the dual value itπ  to Constraints (30) provide information on the shadow price of the station 
capacity iS . In other words, itπ  indicates by how much the profit will increase if we have one more 
parking space 1iS + . Adding up the shadow prices over all the time steps, the increase in the total profit 
by having one more parking space in traffic zone i  is 
 

i it
t T

π π
∈

=∑  (36) 

 
If a profit increase of iπ  is larger than the cost of renting parking space sc , i.e., i scπ > , the number of 
parking spaces iS  in traffic zone i  should increase in the next iteration 

:i iS S δ= +  (37) 
where δ  is the number of added parking spaces. When iπ  equals sc , a near-optimal station capacity iS  
is obtained (An and Lo, 2014; 2015).  
 
The fleet size is optimized in the next step. We take the lower bound and upper bound of fleet size in 
P2 and P3 as the initial values and apply the golden section line search method to identify the near-
optimal fleet size (Loxton et al., 2012). First, the lower bound and upper bound of fleet sizes are set as 
two boundary points. Second, two intermediate points are calculated based on the golden ratio: one is 
0.618*(upper bound − lower bound) + lower bound, and another one is 0.382*(upper bound − lower 
bound) + lower bound. The corresponding profits at the two intermediate points are obtained by solving 
P4. Third, we find the intermediate point with the lower profit, and this is set as a new boundary point 
(upper bound or lower bound) to replace the original boundary point, whichever is closer. Finally, we 
repeat the second and third steps until meeting the stopping criteria: a small difference in profit between 
two boundary points.  
 
The shadow price obtained in the rolling horizon framework helps with optimizing the strategic 
decisions on station capacity. At the operational level, both the satisfied travel demand ijtQ  and vehicle 

relocations ijtN  are relaxed to continuous variables. However, the optimization results show that only 

0.01% of the variables ijtQ  and 13.42% of variables ijtN  take continuous values, based on the case 

study section. Furthermore, as most of ijtQ  and ijtN take a value larger than 100, the continuous 

simplification has a marginal impact on the optimization results. 
 
The following pseudo-code explains the proposed solution algorithm. 
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Step 1: Solve P2 to get the fleet size maxV ; solve P3 to get the fleet size minV  and initial station 

capacity { } min iS . The four golden section points are denoted by , , ,a b c dV V V V  where ,a bV V are 
the two boundary points, and ,c dV V  are the intermediate points. 

Step 2: Initialization. Set minaV V= , maxbV V= , and ,ai i bi iS S S S= =  

Step 2.1: Given aV  and { }aiS , solve P4, get the objective value aφ . For the first iteration, 
*
a aφ φ= , otherwise, update the *

aφ  if *
a aφ φ≤ . 

Step 2.2: Calculate the marginal costs of aiπ .  

Step 2.3: If ai scπ ≤ , go to Step 3; otherwise, set :ai aiS S δ= +  and go back to Step 2.1;  

Step 3: Given bV , biS , repeat Steps 2.1–2.3 to get the profits *
bφ . 

Step 4: Calculate ( )( )1c a b aV V V Vτ= + − − , ( )d a b aV V V Vτ= + −  where ( )5 1 2τ = − . Given 

cV  and dV , repeat Steps 2.1–2.3 to get the profits * *,c dφ φ , respectively. 

Step 5: If b aV V ε− ≤ , take ( )* * * 2c dφ φ φ= + , ( )* 2c dV V V= +  and stop. Otherwise proceed to 

Step 6. 

Step 6: If * *
c dφ φ≥ , discard the segment d bV V→ , set * *

b dφ φ= , b dV V= , * *
d cφ φ= , d cV V= , go to 

Step 4; otherwise, discard the segment a cV V→ , set * *
a cφ φ= , a cV V= , * *

c dφ φ= , c dV V= , go to 
Step 4. 

 
4 Application to the network at Suzhou Industrial Park  
4.1 Setting up the case study 
We implement the proposed electric carsharing optimization model at SIP in Suzhou, China. It contains 
54 zones with a total area of 278 km2, as shown in Fig. 4. The 54 zones are divided into three categories 
based on land use (residential zones: from zone #1 to zone #20, industrial zones: from zone #21 to #40, 
and commercial zones: from zone #41 to #50). Zones #51 to #54 correspond to undeveloped land with 
zero travel demand. According to the traffic census of 2017, 1.03 million citizens in the SIP region had 
generated 620 thousand trips per day by the end of 2016 (SIP, 2017). In this case study, those trips are 
taken as the potential carsharing travel demand. The upper bound of parking spaces is 5,000. We 
consider 13 hours of operation time in a typical working day for the electric carsharing system, from 
7:00 to 20:00, which are further divided into 26 time steps with a duration of 30 minutes each. The 
distribution of the average departures per time step is constructed considering the time variation of trips 
and the land use features (Fig. 5). Given the average value, the actual travel demand to the other 49 
zones from each zone is randomly generated following a uniform distribution between zero and two 
times the average value. The proposed model is solved using Python calling Gurobi 7.0.2 solver on a 
3.40 GHz i7 processor, 28 GB RAM computer running the Windows 7 64-bit operating system.  
 



17 
 

 

            Fig. 4 Zoning of the SIP area                                      Fig. 5 Distribution of departures 
 
The free-flow travel time of the shortest path is taken as the base travel time, which comes from the SIP 
road network as of 2012. The ArcGIS network analyst software is used to calculate the shortest distance 
between any two zone centroids. During a day, the traffic flow travel time is impacted by traffic 
congestion. Hence, the real-time traffic fluctuations are considered by setting growth factors for 
different time steps, as shown in Table 2. 
 

Table 2 Growth factors of the travel time in relation to the shortest travel time 
Time 7:00–7:59 8:00–9:59 10:00–10:59 11:00–11:59 12:00–13:59 

Growth factor 1.0 1.5 1.3 1.1 1.2 
Time 14:00–15:59 16:00–17:59 18:00–18:59 19:00–19:59 20:00–20:59 

Growth factor 1.1 1.5 1.3 1.0 1.0 
 
In this study, the parameters to be applied in the model are based on the operation of a one-way 
carsharing company (EVCARD) operating in China (http://www.evcard-sh.com) (Table 3).  
 

Table 3 Parameters of the case study application 

Parameter 0c  ec  rc  fc  sc  pc  K  α  β  ζ  
Value 60 20 45 56 12 15 2 25 16.67 1 
Unit ￥/h ￥/h ￥/h ￥/veh*day ￥/space*day ￥/trip - % per time step % per time step - 

 
The rental price of a shared EV, 0c , the electricity consumption costs, ec , vehicle fixed costs, fc , 

vehicle relocation costs, rc , and parking space rental costs, sc , are taken from a previous research (Huang 

et al., 2018). The penalty for rejecting one trip is fixed at pc =  ￥15, which is taken as being the 

allowance for unserved clients to pay for a public transport ticket. K =  2 indicates that two time steps 
are looked at per horizon in the rolling horizon framework. The recharging speed α =  25% per time 
step indicates that vehicles can get fully charged in 4 time steps (2 hours). The discharging speed β  is 
16.67% per time step. The weight for the future profits, ζ , is considered to be 1, which indicates that 
the future profits have the same weight as the profits in the current time step. The SOC of the vehicles 
parked in traffic zone i  at time step t  obeys a uniform distribution based on the given average value 
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itµ . At the operational level, we set the step size for the increase in station capacity (δ ) as 100, and this 
is reduced to 10 in local searches, and we set the stopping criteria (ε ) to be 500. 
4.2 Optimization results 
At the strategic level, the upper bound and lower bound of the fleet size obtained from P2 and P3 are 
44,464 and 12,387, respectively. The two models are directly solved using Gurobi with computation 
times of 20 seconds and 162 seconds, respectively. The initial number of parking spaces obtained from 
P3 is 42,064. At the operational level, the computation time is 3.93 hours using the proposed solution 

algorithm. Given a fleet size sumV  and station capacity { } min iS , it takes an average of 3.89 seconds to 
solve the rolling horizon problem P4 for one horizon, which adds up to 101 seconds to solve all the 26 
horizons in a day to obtain the total profit. Given a fleet size sumV , the shadow price algorithm iterates 

10 times to identify the station capacity { }iS  in 0.28 hours. On the outer circle (Fig. 2), in finding fleet 
size sumV , the golden section method is executed 14 times with a total computation time of 3.93 hours. 
The optimization results show that the maximum profit is ￥4,488,400 ($718,144 at the current 
exchange rate) with a fleet size of 41,542 and 103,088 parking spaces. Fig. 6 illustrates the distribution 
of allocated vehicles and parking spaces in the SIP area. The numbers represent the fleet size at the 
beginning of a day, and the different shades of gray indicate station capacity. For daily operations, one 
vehicle services 11 trips a day, with an average driving time of 7.40 hours. Hence, the average vehicle 
usage rate is 56.92% during a 13-hour operation. 
 
This case study considers an ideal carsharing market, and we consider all the trips in one typical 
workday in SIP as the potential carsharing demand. Travelers will choose carsharing if it is available 
and if no competition is considered. Thus, we investigate the performance of the electric carsharing 
system for the operator in a large-scale urban area. Currently, the market share of such systems is quite 
small compared with other modes of transport, such as private cars and public transport, owing to the 
price and convenience of the different competing modes of transportation. 
 
Moreover, the operation costs in China may be lower than in other countries. For example, the costs of 
purchasing vehicles and renting parking spaces are low due to government subsidies promoting green 
travel in Suzhou. Consequently, the profit obtained in this case study may be quite high compared with 
operations in countries in Europe or operations in the United States. It is easy to adapt the proposed 
model and algorithm to any network given all the exogenous parameters. 

 
Fig. 6 Allocated vehicles and parking space distribution 
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4.2.1. Carsharing demand service ratio 
We take the carsharing demand service ratio as a metric for measuring the effectiveness of the 
carsharing system. It is calculated as the ratio of satisfied demand to total demand. The results show 
that 77.12% of the demand is satisfied. We then further investigate the ratio in each zone at each time 
step (Fig. 7). Most of the values are above 60% for daily operations. In Fig. 7, low satisfied travel 
demand ratio occurs during the morning peak hours, noon, and afternoon peak hours. This happens 
owing to high travel demand being concentrated in short periods, which, in turn, means that the number 
of available vehicles is not sufficient to satisfy the demand for the service. Most notably, at 8:30 am 
and 9:00 am, the ratio in residential zones plummets to 40, which is caused by highly concentrated 
carsharing demand and limited available vehicles. There are only 9,191 parked vehicles attempting to 
service 21,907 carsharing requirements during this time step. Most vehicles parked in residential zones 
are rented at an early time during morning peak hours between 7:00 am and 8:30 am. However, they 
are relocated back in time, such that only 2,863 vehicles are relocated to the residential zones before 
8:30 am. This causes significant vehicle shortage between 8:30 am and 9:00 am. 
 

 
Fig. 7 Ratio of satisfied travel demand 

 
The number of satisfied trip requests per trip duration are presented in Table 4. We divide the 
optimization results into 6 groups according to the trip duration ≤0.5, 0.5–1.0, 1.0–1.5, 1.5–2.0, 2.0–
2.5, and ≥2.5 in time steps (where a time step has a duration of 30 minutes). Because vehicles use 16.67% 
electricity for driving during each time step, a fully charged vehicle can service a trip with a travel time 
of at most 6 time steps. In this selected case of SIP, the maximum travel distance is 2.85 time steps. The 
average patronage increases quickly with the increase of trip duration. It indicates that the operator can 
obtain larger profits when servicing long-duration trips.  
 

Table 4 Ratio of satisfied demand for trips with different trip durations 
Travel time ≤0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5 ≥2.5 

Average patronage 46.63% 73.06% 86.55% 89.69% 95.56% 100% 
 
4.2.2. Vehicle relocations  
Fig. 8 shows the number of relocated vehicles in the 50 traffic zones that constitute the urbanized region, 
indexed from 1 to 50. The ID of the traffic zones increases from left to right and from top to bottom. 
We selected 12 representative time steps in which the number of relocations is larger than 2,500. The 
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blue/green color denotes the vehicles relocated from/to the zone. A darker color indicates more vehicle 
relocations. The gray colors indicate that no relocation operation occurs from/to the zone.  
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Fig. 8 Relocation operations 
 
There are 54,469 relocations in this study area during an entire day of operation and they occur during 
three main periods: morning, noon, and afternoon peak hours. At the beginning of the day, citizens rent 
vehicles from home to the workplace, school, shopping center, etc. A large number of vehicles are 
relocated to the residential zones in the morning peak hours, from 7:30 to 9:29. The red arrow indicates 
the direction of vehicle relocations that come from industrial zones and commercial zones to residential 
zones. The travel demand in the commercial zones rises quickly at noon. Many vehicles are relocated 
to these zones from other zones in the period between 11:00 and 13:29. In the afternoon peak hours, 
from 16:00 to 18:29, many vehicles are relocated to both the industrial zones and commercial zones. 
Vehicle relocation operations are highly consistent with the three demand peaks shown in Fig. 5.  
 
4.3 Sensitivity analysis 
4.3.1 System performance under random demand 
The rolling horizon framework can also handle random demand. As shown in Fig. 3, in a horizon, the 
satisfied travel demand is calculated based on the realized travel demand. The vehicle relocation 
operations are optimized based on the predictive travel demand. 
 
To investigate the system performance under stochastic demand, we randomly generate 200 groups of 
travel requests. The carsharing requirements leaving one traffic zone per time step follows a normal 
distribution, in which the mean value is real departures in SIP and the coefficient of variation (CV) is 
10%. CV is the ratio of standard deviation to the mean value. The fleet size and station capacity in the 
strategic level obtained from the baseline study are 41,542 vehicles and 103,088 parking spaces. The 
computation time was about 110 seconds for one demand scenario. Fig. 9 shows the optimization results. 
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                                       (a)                                                                              (b) 

 
                                       (c)                                                                              (d) 

Fig. 9 Results under random demand, with a CV of 10% 
We can see that the peak frequencies of the total profit (Fig. 9a), satisfied travel demand (Fig. 9b), 
average SOC (Fig. 9c), and the number of relocations (Fig. 9d) all happen around the mean values. The 
resultant CVs are as low as 0.80%, 0.10%, 0.16%, and 0.67%, respectively. Comparing to the base case, 
the average satisfied demand and the average SOC change marginally by +0.11% and −0.08%, 
respectively, whereas the average profit and average number of relocations change more significantly 
by +1.16% and −0.93%, respectively. Random demand seems to have a substantial impact on profit and 
vehicle relocation.  
 
We further increase the CV to 30% and find that the distributions reported in Fig. 10 have higher 
variances and their peak frequencies still concentrate around the mean values. When increasing the CV 
of total demand to 30%, the CVs of total profits, satisfied travel demand, average SOC, and relocations 
increase to 1.32%, 0.26%, 0.28%, and 0.72%. Larger variations in demand (30%) yield only a relatively 
small fluctuation of the system performance metrics (0.28%, −1.32%). 

 
(a) (b) 

 
                                        (c)                                                                            (d) 

Fig. 10 Results under random demand, with a CV of 30% 



22 
 

4.3.2 System performance under various recharging speeds 
This section analyzes the EV charging characteristics by setting different recharging speeds α =  50%, 
25%, 16.67%, and 12.5% per time step, with a fixed discharging speed β  of 16.67% per time step 
(one time step in this case study is 0.5 hour). The optimization results are presented in Table 5.  
 

Table 5 Optimization results under different EV charging speeds 
α   

(% per time step) 
Profit  

(1000￥) 
Fleet size 

No. of parking 
spaces 

Satisfied 
demand 

Vehicle 
relocations 

Average 
SOC 

50 5,376 39,689 79,922 76.32% 70,490 95.81% 
25 4,488 41,542 103,088 77.12% 54,469 87.72% 

16.67 4,441 39,650 105,073 75.66% 52,399 71.89% 
12.5 -855 31,785 89,982 37.24% 13,021 38.26% 

 
In Table 5, the total profit drops substantially from ￥5,375,960 to ￥-855,307 when the charging speed 
decreases from 50% to 12.5% per time step. In practice, using slow chargers can significantly increase 
the vehicle charging time, thus lowering turnaround rates. This explains the decline in profits. At the 
same time, we find that the parking space-to-fleet size ratio increases, while the average SOC drops 
steeply. This happens because when charging speed is decreased, vehicles have to be parked for longer 
durations to be recharged. To provide carsharing service in a timely manner, more parking spaces are 
required. Furthermore, an interesting finding is that the allocated vehicles and satisfied travel requests 
do not continuously increase or decrease. When the recharging speed decreases from 50% to 25% per 
time step, both the fleet size and the percentage of satisfied demand drop. However, when the recharging 
speed decreases from 25% to 16.67% per time step, the fleet size increases, but the number of parking 
spaces decreases. This appears to suggest the need for the carsharing operator to weigh the costs of 
purchasing more vehicles against the demand loss penalty and the income generated by servicing more 
demand.  
 
Furthermore, we find that vehicles have higher average SOC when faster charging speeds are considered. 
When fast chargers are used, it takes a shorter time for vehicles to recharge. Thus, they are able to obtain 
a sufficient battery capacity to service trip requests. Fig. 11 shows the average SOC over time. With a 
decrease in the charging speed, SOC fluctuates more drastically. The error bars in Fig. 11 show one 
standard deviation of the SOCs for the vehicles in the 53 traffic zones at each time step. We observe 
that the variance of the SOC also becomes larger when the charging speed decreases. When the charging 
speeds are lower than or equal to 12.5% per time step, we see an obvious decreasing trend in SOC over 
time, and the SOC cannot be recovered at the end of the daily operation after 13:00. In this study, we 
use the same installation price for different types of chargers although fast chargers are still more 
expensive. In practice, the operator can choose the most suitable charging technology to strike a proper 
balance between capital investment costs and market share. 

 
                         α  = 50% per time step                                              α  = 25% per time step 
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                    α  = 16.67% per time step                                            α  = 12.5% per time step 

Fig. 11 Average SOC and standard deviation 
 
4.4 Verifying the continuous SOC distribution 
An optimization model via tracking individual vehicle SOC and a discrete simulation model are 
proposed to figure out and verify the continuous SOC distribution. The optimization model applies to 
a small-scale traffic network while the simulation model verifies whether the uniform distribution is 
sensible in a large-scale traffic network. 
 
4.4.1. Verification using an optimization model via tracking individual vehicle SOC  
We built an optimization model P5. where the SOC of each vehicle can be traced (Gambella et al., 
2018). We conducted a comparative analysis of the optimization results obtained by the original model 
P1 (the continuous SOC distribution model) and the new model P5, which tracks the SOC of each 
vehicle. Considering the computation burden, we randomly chose a small number of zones (8, 10, or 
13 zones) with 5 consecutive time steps in the SIP traffic network, and fix the fleet size. The original 
carsharing demand between OD pairs is used: 932, 1515, and 2,376 requirements in the selected 8 zones, 
10 zones and 13 zones, respectively. Two different fleet sizes are provided in each traffic network: 250 
and 300 in 8 zones, 400 and 450 in 10 zones, and 450 and 500 in 13 zones. Fast charge technology and 
slow charge technology are tested in each network. Combining these elements together, we construct 
12 scenarios. 
 
It is found that both the optimization results and SOC distributions are similar in the two models. Table 
6 shows that the differences in profits, satisfied demand, and average SOC between the two models are 
lower than 3.2%, 5.0%, and 5.3%, respectively. In the two results, different groups of trips are satisfied, 
despite the percentage of satisfied trips being the same, which results in different profits. The two 
models are solved by different solution algorithms. Model P5 is directedly solved using the Gurobi 
solver, which can be seen as the optimal results. For model P1, a rolling horizon is first used to simplify 
it by relaxing the non-linear constraints caused by the time-varying SOC of the vehicles. We calculate 
the difference in SOC for each vehicle obtained from model P5 and the proposed model with a 
continuous SOC distribution. We find that about 65% of the SOC difference is within ±10% for the 10 
scenarios. Especially in Scenarios 3, 4, 7, 8, 9, and 10, over 75% of the difference in SOC is within 
±10%. This indicates that the continuous SOC distribution model can describe the battery capacity of 
vehicles parked at stations with a high level of accuracy. Hence, we believe that the proposed continuous 
SOC distribution model solved using the rolling horizon method is an effective method for reducing the 
computation burden, which aims to track the SOC of vehicles in groups without incurring a large error 
with such simplification.  
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Table 6 Differences between two optimization models 
Scenario No. of 

zones 
Total 
demand 

Fleet 
size 

Charging/Disch
arging speed (% 
per time step) 

Model P1 (Continuous SOC distribution) Model P5 (tracking individual vehicle SOC) 
Profits Satisfied 

demand (%) 
Average 
SOC (%) 

Computati
on time (s) 

Profits 
(%) 

Satisfied 
demand (%) 

Average 
SOC (%) 

Computati
on time (s) 

1 8 932 250 25/33 45,665 93.03 94.12 8 +1.1 0 +0.8 361 
2 8 932 300 25/33 46,602 98.50 95.35 7 +1.1 0 +0.6 415 
3 8 932 250 13/66 44,832 88.95 68.33 11 +3.2 +4.6 +1.9 2,137 
4 8 932 300 13/66 46,207 95.06 73.26 11 +2.0 +3.6 +3.1 2,968 
5 10 1,514 400 25/33 75,308 91.74 93.90 8 +0.9 −0.2 +0.6 2,896 
6 10 1,514 450 25/33 76,427 96.30 94.70 8 +0.9 0 +0.7 3,224 
7 10 1,514 400 13/66 73,984 87.22 64.36 14 +2.7 +5.0 +5.1 49,227 
8 10 1,514 450 13/66 75,873 94.78 68.02 13 +1.5 1.5 +5.3 13,828 
9 13 2,376 450 25/33 101,495 81.73 92.68 8 +0.9 0 +0.3 12,631 
10 13 2,376 500 25/33 104,982 86.53 93.61 8 +0.9 −0.4 +0.4 20,202 
11 13 2,376 450 13/66 -- -- -- 13 -- -- -- -- 
12 13 2,376 500 13/66 -- -- -- 13 -- -- -- -- 
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4.4.2. Verification by discrete event simulation 
A discrete event simulation model was developed to analyze the distribution of the SOC of vehicles 
parked at a station, and to check the assumption of a continuous uniform SOC distribution. We use the 
fleet size, station capacity, and vehicle movements from the optimization results of our proposed models 
as input for the simulation. The inconsistent vehicle movements are all recorded. For example, 10 
vehicles are supposed to move from zone A to zone B. However, only 8 vehicles have enough SOC to 
do so. Thus, the other 2 vehicles will be retained in zone A. Three simulations are performed: Case 1 
with the base case, Case 2 with low charging speed (α =  12.5%), and Case 3 with a low travel demand 
ratio of 20%.  
 
For a better understanding of the SOC distribution, Fig. 12 shows the difference in vehicle SOC between 
our proposed continuous SOC distribution model P1 and the discrete simulation. The horizontal axis 
represents the difference between the SOC of each vehicle in the 50 zones at 26 time steps in the 
proposed model P1, and the SOC in the discrete simulation. The vertical axis indicates the proportion 
of each group. In all the three cases, we can see that over 70% of the vehicles are within the range of 
±5% of SOC difference and over 80% vehicles are within ±10%. This indicates that the continuous 
SOC distribution model can describe the battery capacity of vehicles parked at stations with a relatively 
high level of realism. In this study, the assumption of a uniform distribution is therefore regarded as 
acceptable. 
 

 

Fig. 12 Difference in SOC between the continuous SOC distribution and the discrete simulation 
results 

 
4.4.3. Further improvement of the continuous SOC distribution model 
In the cases that failed the uniform distribution test, we found that most had an extremely high 
percentage of vehicles having a SOC larger than 95%. We also observed that these exceptions only 
occur when the average SOC is larger than 90%. To verify this, in Fig. 13, we plot the percentage of 
vehicles with the highest SOC range against the average SOC in this station. The highest SOC range is 
calculated as follows: the SOC is divided into ranges with a size of 5%. If the vehicles at a station have 
an SOC from 50%–82%, the highest SOC range would be 77%–82%. Fig. 13 shows that when the 
average SOC is over 90%, the percentage of vehicles with extremely high SOC increases significantly 
with the increase in average SOC. This demonstrates that the exception occurs only when the average 
SOC is relatively high. Regardless of these exceptions, the overall performance of the proposed model 
is acceptable when compared with the discrete simulation results, as seen in Fig. 12.  
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                      Case 1                                             Case 2                                         Case 3 

Fig. 13 Distribution of the percentage of vehicles in the last SOC 
 
To rectify such errors, we amend the SOC distribution when the average SOC is larger than 90% by 
separating the continuous SOC distribution model into two parts. One part follows a uniform 
distribution (UD1) with mean upper

itµ , and the second part follows another uniform distribution (UD2) 

with mean lower
itµ . Let ( )100% 2upper

it itµ µ= + , where itµ is the average SOC of vehicles in zone i  at 
time instant t. The revised continuous SOC distribution model is designed such that 60% of the vehicles 
belong to UD1 when the average SOC is higher than 90%. The metrics for measuring the exceptions 
(average SOC larger than 90%, 60% of vehicles belong to UD1) are obtained from the statistics in Fig. 
13, and are applied only in this case study. Table 7 presents the optimization and simulation results 
before and after these changes. 
 

Table 7 Optimization and simulation results 

Scenario Optimization 
/simulation 

Profit 
(1000￥) 

Penalty 
(1000￥) 

Satisfied 
demand 

Vehicle 
relocations 

Average 
SOC 

Computation 
time (h) 

Before Optimization 4,488 647 77.1% 54,469 87.72% 3.93 
Simulation 3,855 822 72.4% 53,321 91.06% 4.78 

After Optimization 4,651 590 78.7% 54,114 85.53% 4.05 
Simulation 4,019 764 74.1% 52,718 91.40% 4.70 

 
Before the changes, considering the SOC difference, the simulation method cannot ensure that all the 
vehicle movements from the optimization are performed. The proportion of satisfied demand dropped 
from 77.1% to 72.4% (4.7% difference) in the simulation, and 5.54% vehicle movements (either for 
demand satisfaction or relocation) cannot be performed in the simulation. Consequently, the profit also 
drops 14.10%. The reason is that the uniform distribution in the SOC estimation is not compatible with 
some trips in the simulation. When rolling 26 time steps, the error gradually accumulates over time. 
Hence, the satisfied demand and profit are low and the penalty apparently high in the simulation model.  
 
After the changes are applied to the model, the proportion of satisfied demand dropped from 78.7% to 
74.1% (4.6% difference) in the simulation, and 5.52% of vehicle movements cannot be carried out in 
the simulation. The profit also drops 13.61%. The number of available vehicles in the simulation is 
closer to the optimization due to the lower error in the SOC estimation, which is shown in Fig. 14b. We 
can see that the profits and satisfied demand become larger, and the differences in the profits and vehicle 
movements are smaller. However, the average SOC in the optimization model decreases to 85.53% 
after these changes. These results indicate that separating the SOC distribution into two parts has 
marginal impact on the results.  
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                       a. Before the changes                                        b. After the changes 

Fig. 14 Available vehicles tii I
V

∈∑  over time 
 

Here, we present only one possible way to further improve the approximation accuracy of the SOC 
model. Because its small impact in this case study, we decided to use the original model with no SOC 
distribution changes in all the analyses. 
 
4.5 Remarks on the continuous SOC distribution and solution methods 
The goal of this study is to determine the station capacity and fleet size of a one-way carsharing system 
using EVs. Considering the non-linear problems in the MINLP, the SOC distribution and solution 
algorithms, including the rolling horizon framework and shadow price, are introduced at the operational 
decision level. Those relaxations make this model solvable. A near-optimal solution can be obtained 
for the entire problem. Moreover, the small differences between the two optimization models, tracking 
the SOC of each vehicle, and the continuous SOC distribution, also indicate that using a rolling horizon 
to relax the non-linear integral functions delivers high-quality solutions. The average differences are 
1.50%, 1.50%, and 1.82% of profits, satisfied demand, and average SOC, respectively. In this study, 
the satisfied travel demand is determined by maximizing the profits yielded at the current time step. 
The number of relocations is determined by maximizing the estimated profits generated at future time 
steps. Thus, different horizons are connected through the vehicle relocations.  
 
As shown in Table 6, when the fleet size is larger than 500, we could not obtain results in 24 hours in 
Scenario 11 and Scenario 12. Therefore, the method of tracking the SOC of each vehicle is only 
applicable when the fleet size is very small. However, studies show that carsharing companies are 
expanding rapidly. For example, EVCARD, the largest one-way carsharing company in China, had 
1,739 parking stations and over 5,000 vehicles as of March 2017, in Shanghai, China alone (Wang et 
al., 2019). The number of parking stations owned by EVCARD have increased to more than 3,600 in 
two years. It is very challenging for the exact optimization model with individual vehicle tracking to 
handle those existing 5,000 vehicles. Therefore, the proposed method in this study enables us to handle 
a relatively large network with over 5,000 vehicles. 
 
We can only ensure the local optimum of the results obtained via the golden section line search in this 
study. Because there is no strict limit on the computation time for the strategic level problem, we can 
also use a heuristic search algorithm to find a better solution. For example, we can adopt an enumeration 
algorithm with a step size of 500. When there are 65 iterations, we find that the largest profit happens 
at the fleet size of 41,500, which is close to the optimal fleet size derived in our study. A smaller step 
size can be used to enhance the solution quality further, although at the expense of longer computation 
time. 
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5 Conclusion 
This study proposes an MINLP model for maximization the profit of a station-based one-way electric 
carsharing system operator by determining the EV fleet size and station capacity. To solve the 
computation challenges caused by demand fluctuations and the time-varying SOC of the vehicles, we 
divide the MINLP model into two subproblems: one for the strategic level and the other for the 
operational level. The station capacity and fleet size are optimized in the strategic level problem via a 
shadow price and the golden section line search method, which are taken as inputs to the operational 
level problem. The operational decisions are optimized using a rolling horizon framework. A practical 
case consisting of 54 traffic zones for 13 hours of operation with 26 time steps is constructed to 
demonstrate the efficiency of the proposed model and algorithm.  
 
The optimization results show that a maximum total profit of ￥4,488,400 ($718,144) is obtained when 
the rate of satisfied demand reaches 77.12%. The fleet size and station capacity are optimized after 140 
iterations with 3.93 hours computation time, which cannot be obtained in 24 hours when tracking the 
individual vehicle SOC. Using the proposed continuous SOC distribution model rather than tracking 
every EV simplifies the MINLP model and relieves the heavy computation burden. The results from an 
optimization model via tracking individual vehicle SOC and a discrete event simulation demonstrate 
that the SOC model can adequately capture the SOC distribution of vehicles at a station. Charging 
speeds have significant impact on vehicle turnaround rates. Using fast charging technology, the operator 
can obtain large profits by cutting operation costs and increasing service rate. Thus, the operator has to 
weigh the opportunity for increased carsharing service income against the costs of vehicle purchase.  
 
This study can be improved in the following ways: This study assumes that a parking space should be 
installed with a charging pile. This, however, may result in resource waste because not all parked 
vehicles require charging. Optimizing the number of charging piles needed in a parking station is a 
relevant challenge for the one-way carsharing system. Furthermore, the problem of considering 
stochastic travel demand is very challenging. In this study, the demand for carsharing is fixed and given. 
However, in reality, carsharing competes with other travel modes whose shares are typically estimated 
using discrete choice models. The travel mode of choice is eventually decided by the users’ utility 
functions. Carsharing pricing is an effective tool for encouraging potential users or reducing their 
enthusiasm (Angelopoulos et al., 2018). Finding an appropriate pricing strategy that strikes a balance 
between demand and vehicle supply is another possible extension. 
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