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Abstract9

In the presence of unmodelled dynamics and uncertainties with no a priori constant bounds, conventional
robust adaptation strategies for switched systems cannot allow the control gains of inactive subsystems to
remain constant during inactive intervals: vanishing gains are typically required in order to prove bounded
stability. As a consequence, these strategies, known in literature as leakage-based adaptive methods, might
introduce poor transients at each switching instant. Leakage-based adaptive control becomes even more
problematic in the switched nonlinear case, where non-conservative state-dependent upper bounds for un-
certainties and unmodelled dynamics are required. This work shows that, for a class of switched Euler-
Lagrange systems, such difficulties can be mitigated: a novel leakage-based stable mechanism is introduced
which allows the gains of inactive subsystems to remain constant. At the same time, unmodelled dynam-
ics and uncertainties with no a priori bounds can be handled by a quadratic state-dependent upper bound
structure that reduces conservativeness as compared to state-of-the-art structures. The proposed design is
validated analytically and its performance is studied in simulation with a pick-and-place robotic manipulator
example.

Keywords: Robust adaptive control, Euler-Lagrange systems, Switched systems, Vanishing inactive gains10

1. Introduction11

Switched systems represent an important class of hybrid systems consisting of subsystems with con-12

tinuous dynamics and a switching law to regulate the switching among subsystems. The switching can13

be state-dependent or time-driven, being dwell-time (DT) or average dwell-time (ADT) the most studied14

classes of time-driven switching [1, 2]. Over the last decade, several works have been reported for control15
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of linear [3–6] and nonlinear [7–13] switched systems (see also references therein). Here, we focus specif-16

ically on adaptive control of uncertain switched systems, i.e. control of switched systems with possibly17

large parametric uncertainties. Recent advances in the field include [14–17] for switched linear systems and18

[18–24] for classes of switched nonlinear systems.19

1.1. The issue of robust adaptation and inactive gains20

In the presence of unmodelled dynamics and uncertainties with no a priori constant bounds, it is well21

known that leakage-based adaptive control is the only robust adaptive mechanism able to prove bounded22

stability [25, Chap. 8], since projection, switching σ -modification, dead-zone and dynamic normalization23

all require knowledge of the bounds of the unmodelled dynamics/uncertainties. Efforts have been made24

recently to design leakage-based adaptive methods for uncertain switched systems. However, it was re-25

cently demonstrated that switched leakage-based strategies face serious drawbacks as compared to their26

non-switched counterpart [26–28]. Most notably, [26] showed that the control gains of the inactive sub-27

systems should decrease exponentially as a consequence of leakage, otherwise bounded stability cannot be28

proven. This will create poor transients whenever a subsystem that remained inactive for sufficiently long29

time is activated again. One would desire a situation in which the inactive gains are kept fixed during in-30

active intervals. Unfortunately, this was shown to be possible only in restrictive cases, such as the class of31

globally Lipschitz nonlinear dynamics in [28].32

1.2. The issue of upper bounding uncertainty33

Leakage-based adaptive control becomes even more challenging for switched nonlinear systems, where34

the presence of unmodelled dynamics and uncertainties with no a priori constant bounds requires suitable35

(possibly non-conservative) state-dependent upper bound structures. It is worth mentioning that conserva-36

tive upper bound structures typically require high inputs, e.g. achieved by monotonically increasing control37

gains [19, 20, 28]. This work focuses on how conservative structures arise for the class of switched Euler-38

Lagrange (EL) systems, relevant in many application domains and recurring motif in adaptive switched39

literature. For example, the switched linear uncertain systems considered in [14, 15, 17, 26] (aircraft, elec-40

tromechanical systems etc.) are linearized switched dynamics that should be more appropriately described41

as switched EL dynamics. Even the state-space linear-in-the-parameter (LIP) dynamics in [18, 22–24] can42

cover only a small class of EL dynamics, since the state-space EL form is in general nonlinear-in-the-43

parameter (NLIP) due to the inversion of the mass matrix. Even the NLIP structures in [19, 20] might be44

conservative for EL systems: while being extremely useful to attain strong stability results, the EL examples45

in [19, 20] reveal that such structures, relying on the parameter separation method pioneered in [29], require46

detailed structural knowledge of the system dynamics and result in a state-dependent quartic polynomial47

upper bound to the uncertainties. But it is known that, under mild assumptions [30], uncertainties in EL48

dynamics can be upper bounded by a less conservative state-dependent quadratic polynomial.49

1.3. Main contributions50

In light of the above discussions, leakage-based adaptive switched control presents unsolved challenges.51

This work proposes a new adaptation method in this direction with the following contributions:52

• A novel leakage-based adaptive mechanism is proposed which avoids the undesirable phenomenon53

of vanishing control gains. This is achieved by introducing auxiliary gains specifically for leakage54

purpose, which allow the control gains of inactive subsystems to be kept at the same value they had55

at switch-out instant.56
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• Such leakage-based strategy is embedded in an adaptation framework for switched EL systems where57

uncertainties are upper bounded by a less conservative state-dependent quadratic polynomial struc-58

ture, requiring less structural knowledge than LIP or parameter separation-based structures proposed59

in literature.60

This work studies the same class of switched dynamics studied by some of the same authors in [31].61

In addition to proposing a new leakage-based adaptation law, this work also manages to remove some62

structural constraints present in [31]. More specifically, as compared to [31], the switching law and leakage63

terms proposed in this work are independent of system dynamics terms, thus freely tunable. The rest of the64

paper is organized as follows: Section 2 describes the uncertain switched EL dynamics; Section 3 details the65

proposed control framework, with stability analysis carried out in Section 4; a simulation study is provided66

in Section 5, while Section 6 presents concluding remarks.67

The following notations are used throughout the paper: λmin(•), λmax(•) and || • || represent minimum68

eigenvalue, maximum eigenvalue and Euclidean norm of (•) respectively; I denotes identity matrix with69

appropriate dimension; R+,N+ denote the set of positive real numbers and set of positive integers, re-70

spectively; Ω = [1,2, · · · ,N] denotes the set subsystems and N (p) denotes the set of inactive subsystem71

corresponding to an active subsystem p ∈Ω.72

2. System Dynamics and Problem Formulation73

Consider the following class of switched Euler-Lagrange (EL) systems74

Mσ (q)q̈+Cσ (q, q̇)q̇+Gσ (q)+Fσ (q̇)+dσ = τσ , (1)

where q ∈ Rn is the system state and σ(t) : [0 ∞) 7→ Ω is a piecewise constant function of time, called the75

switching signal, taking values in Ω= [1,2, · · · ,N]; for each subsystem σ , Mσ (q)∈Rn×n is the mass/inertia76

matrix; Cσ (q, q̇)∈Rn×n are Coriolis/centripetal terms; Gσ (q)∈Rn denotes the gravity vector; Fσ (q̇)∈Rn
77

represents the vector of damping and friction forces; dσ (t) ∈ Rn denotes bounded external disturbance and78

τσ ∈ Rn is the generalized control input. The switching signal σ make the system terms Mσ , Cσ , Gσ , Fσ79

and the signals dσ , τσ possibly jump: however, notice that the variables q, q̇ are continuous (i.e. do not80

jump) at the switching instants.81

Assumption 1. Each subsystem in (1) obeys the following two properties, which hold for many EL systems82

of practical interest [30]:83

Property 1: ∃cσ ,gσ , f σ ,dσ ∈ R+ such that ||Cσ (q, q̇)|| ≤ cσ ||q̇||, ||Gσ (q)|| ≤ gσ , ||Fσ (q̇)|| ≤ f σ ||q̇|| and84

||dσ (t)|| ≤ dσ .85

Property 2: The matrix Mσ (q) is symmetric and uniformly positive definite for all q. This implies that86

∃mσ ,mσ ∈ R+ such that87

0 < mσ I≤Mσ (q)≤ mσ I. (2)

Further, let Mσ be decomposed as Mσ , M̂σ +∆Mσ , where M̂σ and ∆Mσ represent the nominal and88

perturbation terms of Mσ , respectively. The nominal mass matrix is given, while the perturbation term89

(or better, its upper bound) is calculated accounting for the uncertainty in the physical parameters. The90

control design challenge in terms of available knowledge of EL system (1) stems from the fact that only91

the knowledge of M̂σ and an upper bound for ∆Mσ are available; the terms Cσ ,Fσ ,Gσ and dσ (and their92

upper bounds cσ , f σ ,gσ and dσ ) are completely unknown. The following assumption defines the allowed93

uncertainty around M̂σ :94
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Assumption 2. There exist known scalars Ēσ such that for Eσ ,
(
M−1

σ M̂σ − I
)

the following holds95

||Eσ || ≤ Ēσ < 1, ∀σ ∈Ω. (3)

Remark 1. Assumption 2 is not proposed here, but extensively used in literature dealing with EL systems96

such as inverse dynamics (cf. [30, §11]) and adaptive sliding mode [32, 33] designs. Such literature shows97

that the nominal mass matrix M̂σ can be selected such that (3) is satisfied by making use of Property 298

(cf. [30, §11]). Essentially, Ēσ depends on the size of uncertainty around the nominal value of the mass99

matrix. The larger the uncertainty, the larger Ēσ (subject to the fact that Ēσ should be below 1 for stability100

analysis).101

For ease of control design, system (1) is represented as102

q̈ = fσ (q, q̇)+M−1
σ τσ , σ(t) ∈Ω (4)

where fσ ,−M−1
σ (Cσ +Fσ +Gσ +dσ ).103

Let us define x , [qT q̇T ]T which we assume to be available as feedback. Using Properties 1 and 2, the104

system dynamics term fσ (x) can be upper bounded as:105

||fσ (x)|| ≤ θ0σ +θ1σ ||x||+θ2σ ||x||2 , YT
σ (||x||)Θσ , (5)

where Yσ (||x||) = [1 ||x|| ||x||2]T , Θσ = [θ0σ θ1σ θ2σ ]
T and θiσ ∈ R+ i = 0,1,2 are finite but unknown106

scalars, according to the available knowledge of system (1).107

Remark 2. In the presence of unmodelled dynamics and uncertainties with no a priori bounds, the quadratic
upper bound (5) finds its rationale in reduction of conservativeness when minimal structural knowledge is
available. In fact, the quadratic structure (5) is general, i.e. it holds for many EL systems irrespective of
their specific structure [30, 32, 33]. On the other hand, let us consider an alternative upper bound structure
proposed in [19, 20]

||fσ (x)|| ≤ ϕσ (x)φσ (θσ ) (6)

where ϕσ (x) ≥ 1, φσ (θσ ) ≥ 1 are two scalar functions and θσ denotes the set of unknown system param-108

eters. The structure (6) is extremely useful to attain strong (asymptotic) stability results, but there is no109

general procedure for deriving appropriate scalar functions in (6). In particular, for EL dynamics (4), deep110

structural knowledge of the system is required to derive such scalar functions (cf. the examples in [19, 20]).111

We use the notation {(σ(tl), tl) | l ∈ N+∪{0}} to denote the set of (subsystem, switching instant) pairs.112

The sequence of switch-in and switch-out instants of subsystem p, p∈Ω is given as {tp1 , tp2 , · · · , tpl , · · · | l ∈113

N+} and {tp1+1, tp2+1, · · · , tpl+1, · · · | l ∈ N+}, respectively. The following class of switching signals is114

considered:115

Definition 1. Average Dwell Time (ADT) [2]: For a switching signal σ(t) and each t2≥ t1≥ 0, let Nσ (t1, t2)
denote the number of discontinuities in the interval [t1, t2). Then σ(t) has an average dwell time ϑ if for a
given scalar N0 > 0

Nσ (t1, t2)≤ N0 +(t2− t1)/ϑ , ∀t2 ≥ t1 ≥ 0

where N0 is termed as chatter bound.116
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3. Controller Design117

Let us consider the tracking problem for a desired trajectory qd(t) satisfying the following assumption.118

Assumption 3. The desired trajectories are smooth enough, in particular qd , q̇d , q̈d ∈L∞.119

Let e(t) , q(t)−qd(t) be the tracking error and ξ (t) , [e(t), ė(t)]. We define a filtered tracking error
variable rσ as

rσ , BT Pσ ξ , σ ∈Ω (7)

where Pσ > 0 is the solution to the Lyapunov equation AT
σ Pσ +Pσ Aσ = −Qσ for some Qσ > 0, Aσ ,120 [

0 I
−K1σ −K2σ

]
and B ,

[
0 I

]T . Here, K1σ and K2σ are two user-defined positive definite gain matrices121

and their positive definiteness guarantees Aσ to be Hurwitz.122

The switched control law is designed as

τσ = M̂σ (−Λσ ξ −∆τσ + q̈d), (8a)

∆τσ = ωρσ

rσ√
||rσ ||2 + ε

, (8b)

where Λσ , [K1σ K2σ ]; ∆τσ tackles the uncertainties utilizing the gain ρσ ; ε > 0 is a small scalar to
avoid control chatter and ω > 1 is a user-defined scalar. The design of ρσ will be discussed later. Let
ησ , (−Λσ ξ −∆τσ + q̈d). Now, substituting (8a) in (4) yields

ë = q̈− q̈d

= fσ +M−1
σ τσ − q̈d

= fσ +
(
M−1

σ M̂σ − I
)

ησ +ησ − q̈d

=−Λσ ξ −∆τσ −Eσ ∆τσ +Ψσ , (9)

where Ψσ , fσ +Eσ (q̈d −Λσ ξ ) is treated as the overall uncertainty. Hence, using Assumptions 1 and 2,123

one can verify the existence of θ ∗iσ ∈ R+ i = 0,1,2 such that for all σ ∈Ω124

||Ψσ || ≤ θ
∗
0σ +θ

∗
1σ ||ξ ||+θ

∗
2σ ||ξ ||2 , YT

σ (||ξ ||)Θ∗σ , (10)

where θ ∗iσ ’s are unknown finite scalars and Θ
∗
σ = [θ ∗0σ

θ ∗1σ
θ ∗2σ

]T . After defining the structures of the upper
bound of ||Ψσ || in (10), the gain ρσ in (8b) is proposed as

ρσ =
1

1− Ēσ

{(θ̂0σ + γ0σ )+(θ̂1σ + γ1σ )||ξ ||+(θ̂2σ + γ2σ )||ξ ||2},
1

1− Ēσ

YT
σ (||ξ ||)(Θ̂σ +Γσ ), (11)

where Θ̂σ , [θ̂0σ θ̂1σ θ̂2σ ]
T is the estimate of Θ

∗
σ ; Γσ , [γ0σ γ1σ γ2σ ]

T is an auxiliary gain which has a125

crucial role in closed-loop system stabilization and it will be detailed later.126

Let p denote the index of the subsystem active for t ∈ [tl tl+1) and N (p) denote the set of inactive
subsystems. The gains θ̂ip,γip are evaluated using the following laws:

˙̂
θip = ||rp||||ξ ||i−αipθ̂ip, γ̇ip = 0 (12a)
˙̂
θip = 0, γ̇ip =−

(
βip +ν ipθ̂

4
ip
)

γip +βipνip, (12b)

with θ̂ip(t0)> 0, γip(t0)> νip, (12c)
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where p ∈N (p); αip,βip,νip,ν ip ∈ R+, i = 0,1,2 are static design scalars and t0 is the initial time. Inves-
tigating the adaptive laws (12a)-(41) and the initial gain conditions (12c), it can be verified that there exists
a positive fixed scalar γ

ip
such that

θ̂ip(t)≥ 0 and γip(t)≥ γ
ip
> 0 ∀t ≥ t0. (13)

The above condition is later exploited during the stability analysis. The following remark illustrates the ma-127

jor differences between (11)-(12) and state-of-the-art robust adaptive laws for uncertain switched systems.128

Remark 3. In [26], bounded stability requires that the gains for the inactive systems (corresponding to θ̂ip129

in our case) vanish exponentially, as an effect of leakage. This implies that, if a system remains inactive for130

sufficiently long time, its gains drop to zero, generating a new transient at switch-on times. This vanishing-131

gain scenario is avoided by (41) where the adaptive gains of inactive subsystems are kept at the same132

value before switch-off time. In [27] bounded stability requires the adaptive laws for all active and inactive133

subsystem to be constantly active as the tracking error drives all of them simultaneously. A more preferable134

situation arises in (11)-(12), where only a limited set of the adaptive laws is actively driven by the tracking135

error.136

We define ζMp , λmax(Pp), ζmp , λmin(Pp), ζ̄M , maxp∈Ω ζMp and ζ
m
, minp∈Ω ζmp. Following

Definition 1 of ADT [2], the switching law is proposed as

ϑ > ϑ
∗ = ln µ/κ, (14)

where µ , ζ̄M/ζ
m

; κ is a scalar defined as 0< κ < ζ where ζp , (λmin(Qp)/λmax(Pp)) and ζ ,minp∈Ω{ζp}.137

Note that the proposed leakage terms in (12) and switching law in (14) are independent of system parame-138

ters.139

4. Stability Analysis of The Proposed Switched Controller140

From the definitions of Λσ and ξ we have Λσ ξ = K1σ e+K2σ ė. Using this relation, the following error
dynamics is obtained from (9)

ξ̇ = Aσ ξ +B(Ψσ −∆τσ −Eσ ∆τσ ) . (15)

Before presenting the closed-loop stability result, let us recall the stability concept sought in switched robust141

adaptive control [26]:142

Definition 2 (Uniform Ultimate Boundedness (UUB)). The switched system (15) under switching signal143

σ(·) is uniformly ultimately bounded if there exists a convex and compact set C such that for every initial144

condition ξ (t0) = ξ 0, there exists a finite time T (ξ 0) such that ξ (t) ∈ C for all t ≥ T (ξ 0). Further, a145

constant b, independent of initial time t0, is said to be the ultimate bound if ||ξ (t)|| ≤ b for all t ≥ T (ξ 0).146

Theorem 1. Under Assumptions 1-3, the closed-loop trajectories of system (4) employing the control laws147

(8) and (11) associated with adaptive law (12) and switching law (14) are UUB if the gains αip and βip are148

designed as αip > ζp/2 and βip > ζp/2.149
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Proof. The closed-loop stability analysis follows similar lines as the proof of Theorem 1 of [31], with the
difference that the following Lyapunov-like candidate is considered

V (ξ (t), θ̃ip(t),γip(t), t) = (1/2)ξ T (t)Pσ(t)ξ (t)+(1/2)
N

∑
p=1

2

∑
i=0
{(θ̂ip(t)−θ

∗
ip)

2 + γ
2
ip(t)}, (16)

where θ̃ip(t) = (θ̂ip(t)−θ ∗ip). For brevity, we will sometimes express V (ξ (·), θ̃ip(·),γip(·), ·) =V (·) to high-150

light the time evolution of (16). Note that the function (16) depends explicitly on time, due to the active151

subsystem σ(t). This implies that (16) is a multiple Lyapunov-like function, popular in switched systems152

literature [2]. In fact, Pp can be designed differently for different subsystems due to the requirements, in-153

dicating that V (·) might be discontinuous at the switching instants and only remains continuous during the154

time interval of two consecutive switchings. Such a switched framework requires to study the behaviour of155

(16) at and in between switching instants, as carried out subsequently.156

157

Analysis of the Lyapunov function at switching instants: We denote with σ(t−l+1) the active sub-158

system when t ∈ [tl tl+1) and with σ(tl+1) the active subsystem when t ∈ [tl+1 tl+2). Then, although the159

Lyapunov-like candidate is different, one can still follow similar lines as the proof of Theorem 1 in [31],160

obtaining that the following behaviour of V (·) is true at the switching instant tl+1, l ∈ N+:161

V (tl+1)−V (t−l+1)≤
ζ̄M−ζ

m
ζ

m

V (t−l+1)

⇒V (tl+1)≤ µV (t−l+1), (17)

with µ = ζ̄M/ζ
m
≥ 1 and t−l+1 denotes the time instant right before switching at t = tl+1 (i.e. the limit from162

the left of tl+1).163

164

Analysis of the Lyapunov function in between switching instants: This analysis refers to the be-165

haviour of V (·) when t ∈ (tl tl+1). Note that V (·) is piecewise differentiable, and differentiable for166

t ∈ (tl tl+1), l ∈ N+, so that its time-derivative is well defined.167

Using (7), (15) and the Lyapunov equation AT
σ Pσ +Pσ Aσ =−Qσ , the time derivative of (16) yields

V̇ (t) = (1/2)ξ T (t)(AT
σ(t−l+1)

P
σ(t−l+1)

+P
σ(t−l+1)

A
σ(t−l+1)

)ξ (t)+ξ
T (t)P

σ(t−l+1)
B
(

Ψ
σ(t−l+1)

− (I+E
σ(t−l+1)

)∆τ
σ(t−l+1)

)
+

N

∑
p=1

2

∑
i=0

{
(θ̂ip(t)−θ

∗
ip)

˙̂
θip(t)+ γip(t)γ̇ip(t)

}
=−(1/2)ξ T (t)Q

σ(t−l+1)
ξ (t)+ rT

σ(t−l+1)

(
Ψ

σ(t−l+1)
− (I+E

σ(t−l+1)
)∆τ

σ(t−l+1)

)
+

N

∑
p=1

2

∑
i=0

{
(θ̂ip(t)−θ

∗
ip)

˙̂
θip(t)+ γip(t)γ̇ip(t)

}
≤−(1/2)ξ T (t)Q

σ(t−l+1)
ξ (t)+ ||Ψ

σ(t−l+1)
||||r

σ(t−l+1)
||− (1− Ē

σ(t−l+1)
)ρ

σ(t−l+1)

||r
σ(t−l+1)

||2√
||r

σ(t−l+1)
||2 + ε

+
N

∑
p=1

2

∑
i=0

{
(θ̂ip(t)−θ

∗
ip)

˙̂
θip(t)+ γip(t)γ̇ip(t)

}
. (18)
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Notice that, here and in the following, the time index t is kept only for ξ (t), θ̂ip(t),γ(t) and otherwise
omitted for brevity. For the ease of analysis, we define a region such that

ω
||rσ ||2√
||rσ ||2 + ε

≥ ||rσ || ⇒ ||rσ || ≥
√

ε

ω2−1
, ϕ. (19)

The condition (19) implies that one needs to select ω > 1, which is always possible since ω is a user defined168

scalar.169

170

Establishing exponential decrease of the Lyapunov function: Up to now we have established (17) at171

switching instants, and (18) in between switching instants. A crucial mechanism for establishing stability172

of a switched system is that the possible jump of the Lyapunov function at (17) is compensated by some173

exponential decrease of the Lyapunov function via (18). Therefore, in the following we will rewrite (18) to174

highlight the exponential decrease. Subsequently, we proceed with the stability analysis for two scenarios:175

S1: ||rσ || ≥ ϕ and176

S2: ||rσ ||< ϕ .177

We study the behaviour of the Lyapunov function for these two scenarios as below.178

Scenario S1: The adaptive law (12) reveals that the gains θ̂ip and γip remain constant during inactive
and active intervals, respectively. Therefore, utilizing these observations and the upper bound structure (10)
of uncertainty, (18) is simplified for t ∈ (tl tl+1) as

V̇ (t)≤−(1/2)ξ T (t)Q
σ(t−l+1)

ξ (t)−YT
σ(t−l+1)

(Θ̂
σ(t−l+1)

−Θ
∗
σ(t−l+1)

)||r
σ(t−l+1)

||

+
2

∑
i=0,p=σ(t−l+1)

(θ̂ip(t)−θ
∗
ip)

˙̂
θip(t)+ ∑

p∈N (p)

2

∑
i=0

γip(t)γ̇ip(t). (20)

Using (12a) we have for p = σ(t−l+1)

2

∑
i=0

(θ̂ip−θ
∗
ip)

˙̂
θip =

2

∑
i=0

(θ̂ip−θ
∗
ip)(||rp||||ξ ||i−αipθ̂ip)

=
2

∑
i=0
||rp||(θ̂ip−θ

∗
ip)||ξ ||i +αipθ̂ipθ

∗
ip−αipθ̂

2
ip

= YT
p (Θ̂p−Θ

∗
p)||rp||+

2

∑
i=0
{αipθ̂ipθ

∗
ip−αipθ̂

2
ip}. (21)

Similarly, (41) leads to

γipγ̇ip =−
(
βip +ν ipθ̂

4
ip
)

γ
2
ip +βipνipγip. (22)

From (13) we have γip ≥ γ
ip
∀t ≥ t0. Applying this relation to the second term of (22) yields

γipγ̇ip ≤−βipγ
2
ip− γ

2
ip

ν ipθ̂
4
ip +βipνipγip. (23)

Note that the following equality holds

−γ
2
ip

ν ipθ̂
4
ip +(ζp/2)θ̂ 2

ip =− (γ
ip

√
ν ipθ̂

2
ip− (ζp/(4γ

ip

√
ν ip)))

2 +ζ
2
p/(16ν ipγ

2
ip
). (24)
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Substituting (21), (23) and (24) in (20) yields for t ∈ (tl tl+1)

V̇ (t)≤− (1/2)λmin(Qσ(t−l+1)
)||ξ (t)||2 +

2

∑
i=0

αipθ̂ip(t)θ ∗ip−αipθ̂
2
ip(t)−

(
∑

p∈N (p)

2

∑
i=0

βipγ
2
ip + θ̂

2
ip−βipγ

ip
γip

)
− (1/2)θ̂ 2

ip +ζ
2
p/(16ν ipγ

2
ip
). (25)

Since θ̂ip ≥ 0 by design (13), the definition of Lyapunov function (16) yields

V (ξ (t), θ̃ip(t),γip(t), t)≤
1
2

λmax(Pσ )||ξ ||2 +
1
2

N

∑
p=1

2

∑
i=0

(θ̂ 2
ip +θ

∗
ip

2 + γ
2
ip), ∀t. (26)

The definitions of ζ ,ζMp,αip,βip and and the use of (26), allows to simplify the condition (25) into

V̇ (t)≤−ζV (t)+
2

∑
i=0, p=σ(t−l+1)

αipθ̂ip(t)θ ∗ip− ᾱipθ̂
2
ip(t)+ γ

2
ip(t)+

N

∑
p=1

2

∑
i=0

ζp

2
θ
∗
ip

2

+ ∑
p∈N (p)

2

∑
i=0
{βipγ

ip
γip(t)− β̄ipγ

2
ip(t)+ζ

2
p/(16ν ipγ

2
ip
)}, t ∈ (tl tl+1) (27)

where ᾱip , (αip− ζp
2 )> 0 and β̄ip , (βip− ζp

2 )> 0. Note that the following equality holds

αipθ̂ipθ
∗
ip− ᾱipθ̂

2
ip =−ᾱip

(
θ̂ip−

αipθ ∗ip
2ᾱip

)2

+

(
αipθ ∗ip

)2

4ᾱip
. (28)

The adaptive laws (12) reveals that γip decreases for the inactive systems and remains unchanged for the
active system. Together with inequality γip ≥ γ

ip
∀t ≥ t0, we obtain that γip ∈L∞ ∀p ∈Ω. Therefore, there

exists γ̄ip ∈R+ such that γip(t)≤ γ̄ip. Using κ such that 0 < κ < ζ and using (28), we have that V̇ (t) in (27)
simplifies to

V̇ (t)≤−κV (t)− (ζ −κ)V (t)+ ς + ς2, t ∈ (tl tl+1) (29)

with ς , ∑
N
p=1 ∑

2
i=0

ζp
2 θ ∗ip

2 + βipγ
ip

γ̄ip +(ζ 2
p/(16ν ipγ2

ip
)) and ς2 , ∑

2
i=0,p=σ(t−l+1)

(αipθ ∗ip)
2

4ᾱip
+ γ̄2

ip. Note that179

(29) highlights, for Scenario 1, the exponential decrease of the Lyapunov function in a region around the180

origin.181

Scenario S2: In this scenario we have ||rσ ||< ϕ . Therefore, we have for t ∈ (tl tl+1)

V̇ (t)≤− (1/2)ξ T (t)Q
σ(t−l+1)

ξ (t)− (1− Ē
σ(t−l+1)

)ρ
σ(t−l+1)

||r
σ(t−l+1)

||2√
||r

σ(t−l+1)
||2 + ε

+YT
σ(t−l+1)

Θ
∗
σ(t−l+1)

||r
σ(t−l+1)

||

+
2

∑
i=0,p=σ(t−l+1)

(θ̂ip(t)−θ
∗
ip)

˙̂
θip(t)+ ∑

p∈N (p)

2

∑
i=0

γip(t)γ̇ip(t)

≤−(1/2)ξ T (t)Q
σ(t−l+1)

ξ (t)+YT
σ(t−l+1)

Θ
∗
σ(t−l+1)

||r
σ(t−l+1)

||

+
2

∑
i=0,p=σ(t−l+1)

(θ̂ip(t)−θ
∗
ip)

˙̂
θip(t)+ ∑

p∈N (p)

2

∑
i=0

γip(t)γ̇ip(t). (30)
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Then, following similar lines as in Scenario S1, we have for t ∈ (tl tl+1)

V̇ (t)≤−κV (t)− (ζ −κ)V (t)+YT
σ(t−l+1)

Θ
∗
σ(t−l+1)

||r
σ(t−l+1)

||+ ς + ς2. (31)

From (7) one can verify ||r||< ϕ⇒||ξ || ∈L∞ and consequently, the adaptive law (12a) implies ||r||, ||ξ || ∈
L∞⇒ θ̂ip(t) ∈L∞. Therefore, ∃ς1 ∈ R+ such that YT

σ(t−l+1)
Θ
∗
σ(t−l+1)

≤ ς1 ∀σ ∈ Ω when ||rσ || < ϕ . Hence,
replacing this relation in (32) yields

V̇ (t)≤−κV (t)− (ζ −κ)V (t)+ϕς1 + ς + ς2, t ∈ (tl tl+1). (32)

Note that (32) highlights, for Scenario 2, the exponential decrease of the Lyapunov function in a region
around the origin. Further, define the scalar

B ,
ϕς1 + ς + ς2

(ζ −κ)
. (33)

From the two possible scenarios S1 and S2, it can be concluded that V̇ (t) ≤ −κV (t) when V (t) ≥B for182

t ∈ (tl tl+1).183

184

Overall behavior of the Lyapunov function: In light of this, further analysis is needed to observe the185

overall behaviour of V (t), t ∈ (tl tl+1) for two possible cases:186

(i) when V (t)≥B, we have V̇ (t)≤−κV (t) from (29) implying exponential decrease of V (t);187

(ii) when V (t)< B, V (t) may increase.188

The analysis of the overall behaviour of V (t) (i.e. the combined behaviour at and in between switching189

instants) follows similar steps as the analysis of cases (i), (ii) in the proof of Theorem 1 in [31]. Therefore,190

we do repeat the analysis to avoid repetitions. At the end of such analysis, one obtains that once V (t) enters191

the interval [0,B], it cannot exceed the bound cµB any time later with the ADT switching law (14), where192

c , exp(N0 ln µ) is a constant.193

Ultimate bound on tracking error: Further, based on this analysis, we have

V (t)≤max{cV (t0),cµB} , ∀t ≥ t0. (34)

Again, the definition of the Lyapunov function (16) yields

V (ξ (t), θ̃ip(t),γip(t), t)≥ (1/2)λmin(Pσ(t))||ξ (t)||2 ≥ (ζ
m
/2)||ξ (t)||2, ∀t. (35)

Using (34) and (35) we have

||ξ (t)||2 ≤ (2/ζ
m
)max{cV (t0),cµB} , ∀t ≥ t0. (36)

Therefore, using the expressions of µ , B and c from (14), (33) and (30), an ultimate bound b on the tracking
error ξ can be found from (36) as

b =

√√√√2ζ̄
(N0+1)
M (ϕς1 + ς + ς2)

ζ
(N0+2)
m

(ζ −κ)
. (37)

Observing the stability arguments, it can be concluded that the closed-loop system is UUB with the control194

laws (8) and (11) in conjunction with the adaptive law (12) and switching law (14).195
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Remark 4. The importance of the auxiliary gain γip in system stability can be realized from the following196

two observations: first, the term θ̂ 2
ip on the right hand side of (26) was specifically cancelled by the similar197

term on the right side of (25), a consequence of the relations (22)-(24), to arrive at (27). In absence of198

γip this would not have been achieved and, system stability could not be ensured. The second observation199

concerns the selection of a positive lower bound for γip in (13). Note that the second term on the right200

side of (23) comes from the corresponding term of (22), by utilizing the condition γip ≥ γ
ip

. This validates201

the utility of the selection of a positive lower bound for γip while the lower bounds for the other gains θ̂i202

i = 0,1,2 are designed as zero.203

Remark 5. The gain (11) reveals that if Ēσ is taken close to 1, then the gain ρσ increases (as 1
1−Ēσ

204

increases); higher values of ω in (8b) also increase the effective weight of ρσ in ∆τσ : these higher gain205

conditions lead to faster robust adaptation (via ∆τσ ) at the cost of higher control input τσ (cf. (8a)).206

Therefore, these parameters should be tuned according to the trade-off between tracking performance and207

control effort depending on application requirements.208

5. Simulation Results209

This section studies the effectiveness of the proposed controller using a simplified scenario with pick-210

and-place robotic manipulator, often modelled via switched EL dynamics with two subsystems with differ-211

ent system parameters (one for the pick phase and one for the place phase) [34]:212

Mσ (q)q̈+Cσ (q, q̇)q̇+Gσ (q)+Fσ (q̇)+dσ = τσ , (38)

Mσ =

[
Mσ11 Mσ12

Mσ12 Mσ22

]
,q =

[
ql
qu

]
,

Mσ11 = (mσl +mσu)l
2
σu
+mσu lσl (lσl +2lσu cos(qu)),

Mσ12 = mσu lσu(lσu + lσl cos(qu)),Mσ22 = mσu l2
σu
,

Cσ =

[
−mσu lσl lσusin(qu)q̇u −mσu lσl lσusin(qu)(q̇l + q̇u)

0 mσu lσl lσusin(qu)q̇u

]
,

Gσ =

[
mσl lσl gcos(ql)+mσug(lσucos(ql +qu)+ lσlcos(ql))

mσuglσucos(ql +qu)

]
,

Fσ =

 fσvl
q̇l√

q̇2
l +0.1

fσvu
q̇u√

q̇2
u+0.1

 ,dσ =

[
0.5sin(0.05t)
0.5sin(0.05t)

]
,

where (mpl , lpl ,ql) and (mpu , lpu ,qu) denote the mass, length and position of link 1 and 2 respectively for213

subsystem p with p = [1,2]. Note that the term Fσ approximates an unknown static friction. The actual214

(and unknown) parametric values of the manipulator subsystems are taken as215

1. m1l = m1u = 2.4kg, l1l = l1u = 1m, f1vl = f1vu = 0.6,216

2. m2l = m2u = 3.6kg, l2l = l2u = 1m, f2vl = f2vu = 0.8,217

with g = 9.8m/sec2 for both subsystems. Note that each of the subsystems satisfies Properties 1-2 in As-218

sumption 1, whereas the objective is to track a desired trajectory defined as {qd
l ,q

d
u}= {sin(0.5t),0.5sin(0.5t)}rad.219
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Figure 1: The switching signal.

Selection of K11 = 150I,K21 = 90I,K12 = 200I,K22 = 100I,Q1 = Q2 = 0.2I yields the ADT ϑ ∗ =220

7.70sec according to (14) when κ = 0.9ζ . Therefore, a switching law σ(t) is designed as in Fig. 1 (fast221

switching is compensated by slower switching).222

To design M̂p in (8a), we select the nominal parameter as m1l = m1u = 2.0kg, l1l = l1u = 0.9m and223

m2l = m2u = 3.0kg, l2l = l2u = 0.9m: for such nominal values, Assumption 2 is satisfied with Ē1 = Ē2 = 0.7.224

The terms Cσ ,Fσ ,Gσ and dσ are considered to be completely unknown. Other control design parameters225

are selected as ε = 0.1,ω = 2,αip = βip = 0.5, ν̄ip = 1,νip = 10−4 with i = 0,1,2. The initial gain and link226

positions are selected as θ̂0p(0) = 1.5× 10−4, θ̂1p(0) = 5× 10−5, θ̂2p(0) = 3× 10−5,γip(0) = 1.5× 10−4
227

and ql(0) = qu(0) = 0.5rad, respectively.228

time (sec)
0 5 10 40 70 80

-3

0

3

10

15

20

25

30
Tracking error (degree)

el = ql − qdl (proposed)
eu = qu − qdu (proposed)
el = ql − qdl (vanishing gain)
eu = qu − qdu (vanishing gain)

Figure 2: Tracking performance comparison.

To properly judge the performance of the new leakage mechanism against state-of-the-art vanishing
gain mechanism, we have compared the proposed controller with the following one, inspired from [26]

ρσ =
1

1− Ēσ

{θ̂0σ + θ̂1σ ||ξ ||+ θ̂2σ ||ξ ||2} (39)

˙̂
θip =||rp||||ξ ||i−αipθ̂ip, (40)
˙̂
θip =−αipθ̂ip, (41)

with θ̂ip(t0), θ̂ip(t0)> 0, i = 0,1,2, (42)

while (8) remains unchanged. Note that (39)-(42) is a vanishing gain scheme, where the inactive gains θ̂ip229

decrease exponentially. For parity in comparison, the same control parameters and initial gain conditions230
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are selected for both controllers with αip = 0.5.231

The tracking performance of the proposed controller is depicted in Fig. 2, in comparison with the232

vanishing gain scheme. It is clear that, beside having worse steady-state performance, the vanishing gain233

scheme has worse transient behaviour at each switching instants. This can be clearly explained by the234

evolutions of control gains for these two control schemes, as shown in Figs. 3-5. For all these figures it is235

worth mentioning that θ̂0σ , θ̂1σ , θ̂2σ have different orders of magnitude but similar trends (θ̂0σ is the largest236

gain and one should zoom in to better see the trends of θ̂1σ and θ̂2σ ).237
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Subsystem 1 (vanishing gains)

θ̂01 θ̂11 θ̂21

time (sec)
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15
Subsystem 2 (vanishing gains)

θ̂02 θ̂12 θ̂22

Figure 3: Evolution of gains under ‘vanishing gain’ scheme.
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Figure 4: Gains for subsystem 1 with the proposed controller.

Fig. 3 clearly shows the state-of-the-art vanishing gain mechanism during inactive times: for example,238

during t = [5−10)sec and t = [40−70)sec when subsystem 1 was switched-off, θ̂01 kept decreasing (i.e.,239

kept vanishing); as a result, when it was again switched on at t = 10sec and t = 70sec, it had to adapt itself240

again, causing a transient at every switch-on instances. Similar situation can be noticed for θ̂02 as well.241

Control gains dropping to zero essentially means no control, which is in general not desirable. Whereas,242

for the proposed scheme, Figs. 4 and 5 highlight that the vanishing trend has been removed. The different243

orders of magnitude also show that the upper bound structure in (5) is adaptively shaped in such a way to244

give more weight to low power coefficients (i.e. θ̂0σ ). To further demonstrate robustness against noise, the245

tracking performance of the proposed controller is depicted in Fig. 6 when a Gaussian noise of variance246

0.001 is inserted in the feedback path for both q and q̇.247
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Figure 5: Gains for subsystem 2 with the proposed controller.
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Figure 6: Tracking performance of the proposed controller with noise.

6. Conclusions248

A new concept of robust adaptation with leakage mechanism for uncertain switched EL systems was249

presented in this paper. The issue of vanishing gains of inactive subsystems was completely eliminated250

by virtue of properly designed auxiliary gains. At the same time, unmodelled dynamics and uncertainties251

with no a priori bounds could be handled by a quadratic state-dependent upper bound structure that reduces252

conservativeness as compared to state-of-the-art structures. Bounded stability analysis and simulations with253

a pick-and-place robotic manipulator example have been provided.254

Relevant future work would be to consider state-dependent switching or impulsive behaviour, or larger255

classes of nonlinear systems such as underactuated or nonholonomic systems [35, 36].256
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