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Abstract: This paper proposes a two-stage smart charging algorithm for future buildings equipped
with an electric vehicle, battery energy storage, solar panels, and a heat pump. The first stage
is a non-linear programming model that optimizes the charging of electric vehicles and battery
energy storage based on a prediction of photovoltaïc (PV) power, building demand, electricity,
and frequency regulation prices. Additionally, a Li-ion degradation model is used to assess the
operational costs of the electric vehicle (EV) and battery. The second stage is a real-time control
scheme that controls charging within the optimization time steps. Finally, both stages are incorporated
in a moving horizon control framework, which is used to minimize and compensate for forecasting
errors. It will be shown that the real-time control scheme has a significant influence on the obtained
cost reduction. Furthermore, it will be shown that the degradation of an electric vehicle and battery
energy storage system are non-negligible parts of the total cost of energy. However, despite relatively
high operational costs, V2G can still be cost-effective when controlled optimally. The proposed
solution decreases the total cost of energy with 98.6% compared to an uncontrolled case. Additionally,
the financial benefits of vehicle-to-grid and operating as primary frequency regulation reserve
are assessed.

Keywords: smart charging; electric vehicle; vehicle to grid; V2G; battery degradation; Li-ion;
real-time; moving horizon window

1. Introduction

In 2015, transportation accounted for 19% of global energy consumption, almost all of which was
powered by fossil fuels (including electric vehicles (EVs) and plug-in hybrid EVs) [1]. Fortunately,
the cost of EVs is drastically reducing and their market share is increasing. However, for EVs to be truly
sustainable, they have to be charged from a sustainable energy source. Photovoltaïc (PV) solar energy
is now being investigated as a primary energy source for EV charging due to the synergies which exist
between EV and PV. As both are inherently DC, directly charging an EV from PV power increases
charging efficiency and charger density. Furthermore, an EV in combination with vehicle-to-grid
(V2G) can act as a storage, can reduce the intermittent character of PV, can provide ancillary services,
and can act as a primary energy source for other loads [2,3]. Finally, charging an EV from local PV
power reduces the stress which EV charging is imposing on the future grid.

Another significant part of global energy consumption is the built environment; In [4,5] it is
stated that the built environment emits up to 40% of all global greenhouse gasses. In the future,
the phasing out of natural gas will increase the electrical demand of buildings as heat pumps (HPs)
will be used for building heating. However, often, the existing distribution grid is unable to provide
this increase in electrical demand caused by HPs and EVs. Luckily, Battery Energy Storage (BES)
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systems, EV/V2G, and locally produced PV power can help in providing this power and therefore can
reduce the grid stresses while at the same time increase the renewable energy consumption. However,
getting the most out of these mutual benefits requires complex charging algorithms based on load and
PV power forecasts.

In this paper, a real-time building smart charging algorithm is presented, which, based on
forecasts and Li-ion battery degradation, minimizes the operational costs of a PV-EV-BES-HP
system while at the same providing a supporting role in the future smart grid by ancillary services
and demand-side management.

1.1. Literature Study

The most straightforward control scheme of any EV/BES-PV system is to use a rule-based control
scheme, where the current state of the system determines the next action, such as that presented
in [6,7]. However, the effectiveness of rule-based schemes is limited, as future supply or demand is not
anticipated and their operation is not close to optimal. Therefore, these systems are not investigated
further. In [8–13], residential building-based smart charging systems are presented in which the
energy costs are minimized. In [8,9], a time-series model is used to predict PV power and residential
electrical demand; however, a coarse resolution of 1 h is used, which can lead to significant forecasting
errors. In [9,10], also thermal storage and shiftable appliances are taken into account. In this study,
these are considered non-flexible due to the low amount of flexibility which can be obtained and
the high amount of comfort which is compromised. In [14], a mixed-integer linear programming
problem that minimizes the charging costs with 30 min time steps is presented. However, forecasts
or battery degradation costs are not taken into account. A hierarchical distributed smart charging
station is proposed in [15]. Here, the individual systems try to stabilize their average available capacity
of the battery storage bank, while the objective of a single EV is to maximize their charging power.
Also, here, no regard for forecasting or degradation is taken into account. In [16], first, a two-stage
optimization problem day-ahead scheduling is performed based on stochastic programming. Next,
a deterministic optimization is performed in a moving horizon. However, the accuracy of a day-ahead
forecast using a one-hour resolution and, therefore, the effectiveness of the optimization is limited.
A real-time stochastic programming approach is presented in [17], which can be used to overcome the
uncertainty of the PV forecast. Also, in [18], a real-time control is incorporated in an algorithm that
tries to maximize the customer satisfaction-involved operational cost while balancing the supply and
demand by scheduling EVs, battery storage, grid power, and other flexible loads. Battery degradation
is not taken into account here. A range anxiety approach is taken in [11], which penalizes low state of
charges (SoC). Here, battery ageing is calculated based on energy throughput. However, no regard has
been given to PV/load forecasting. Also, in [12], residential energy costs are minimized with battery
degradation taken into account. However, optimized using a one-hour resolution assuming perfect
forecasts without adjusting for errors as a result comprising the effectiveness of the optimization.
In [19], a method where the charging of EVs at a parking station is controlled based on real-time
electricity prices and PV forecast is presented. Here, battery degradation costs are taken into account
using a levelized cost of energy approach.

Another important aspect of EV-PV integration in the future smart grid is the provision of ancillary
services based on EV storage. This is investigated in [20–27], where fleets of EVs are used as storage
and where the scheduling of ancillary services or demand-side management is optimized. However,
all of these studies do not take battery/EV degradation into account, and therefore, a significant part
of the operating costs is neglected. In addition, scheduling will be skewed after a while when the
actual capacity is smaller than taken into account. In [28], the operational costs of V2G are calculated
using a simplified battery degradation calculation but are not minimized by the optimization. In [29],
an accurate BES degradation model incorporated in a dynamic programming problem is used to
optimize the power flows in order to minimize the costs in a PV-EV-BES nano-grid. However, only one
BES stress factor is taken into account at the same time. Furthermore, no V2G and no degradation of
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the EV itself are taken into account. Summarizing the review, it can be concluded that the operational
costs of EV/BES are often neglected. PV/load forecasts are only occasionally performed, often in
a coarse resolution. Ancillary services are usually only taken into account for larger fleets of EVs,
and most papers do not take into account a real-time control scheme. Due to the negligence of costs,
coarse resolutions, and lack of error handling mechanisms, the effectiveness of the papers mentioned
above is limited.

1.2. Contribution

The main contribution of this study is the combination of several components which previous
studies have not combined, together maximizing the effectiveness and accuracy of the proposed
solution. This is done by integrating the following:

• a Lithium-ion degradation model used to accurately assess and optimize the operational costs
of EV and BES. It will be shown that the degradation costs are equal to 68% of the total grid
electricity costs and are therefore nonnegligible;

• a two-stage model predictive controller consisting of an optimal charging algorithm and
real-time controller implemented in a moving horizon control scheme to compensate forecasting
and estimation errors, such as PV power or SoC estimation, at a one-minute resolution. It was
found that using a moving horizon window and real-time control scheme furthers reduces the
costs by 9.7% compared to the reduction in cost of only optimal scheduling;

• a forecast of PV power and load demand in 15-min resolution up to 48 h ahead. Even using
advanced irradiance forecasting, root mean square errors can be up to 45% [30], showing the
necessity of a model predictive controller; and

• Smart grid implementation in order for the system to be integrated into a future smart grid,
allowing for power curtailment and optimization of available reserved capacity for primary
frequency regulation, further reducing the cost by 7.8%.

Using the above components, the actual cost of energy can be accurately assessed and minimized
based on forecasts and EV/BES degradation, after which possible errors are compensated and charging
can be controlled up to a resolution of one minute while taking into account ancillary services to help
increase the EV and PV penetration rate.

1.3. Paper Organization

The paper is organized as follows: In Section 2, the smart charging system and its place in the
smart grid paradigm will be elaborated, after which the integration of forecasts will be presented in
Section 3. The control scheme will be presented in Section 4. Finally, the obtained results are presented
in Section 5.

2. System Description and Smart Grid Implementation

The proposed smart charging system consists of two stages: first, an optimization algorithm finds
the optimal charging strategy based on a 15-min resolution. Secondly, a real-time scheduling algorithm
operates in real-time within the optimization timesteps. This is integrated into a moving horizon
window used to take care of forecast and estimation errors, such as PV/load power, EV arrival times,
SoC estimation, etc. The smart charging system is designed to control a multi-port power converter
that integrates a PV maximum power point tracker (MPPT), bidirectional BES charger, bidirectional
EV charger, and grid-connected inverter on the same DC-link [31,32]; see Figure 1. By connecting
these on the same DC-link, several inverting/rectifying power steps can be omitted, achieving higher
efficiency and power density. All specifications are given in Table 1; the voltages of the EV and BES
are based on [33,34]. Since the inverter is maintaining the power balance on the DC link, it does not
require any additional setpoints from the smart charging system. Furthermore, a heat pump connects
to the AC side for building heating and tap water. This study assumes that the state-of-charge (SoC) of
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the BES and EV are known according to the ISO 15118 standard. Finally, as part of the future smart
grid, a Smart Grid Operator (SGO) is taken into account, which acts as an aggregator and intermediary
between the ancillary services, wholesale market, and small-scale prosumers. This SGO provides
the real-time electricity price (λbuy/sell) as well as up/downregulation prices (λup/dwn). As a result,
the smart charging algorithm can take place in regulatory services and can take this into account in the
optimization. Finally, the SGO can also limit the grid power of the system as part of a demand-side
management program, for which the user will be financially compensated afterwards.

Figure 1. Schematic representation of the system: A multi-port converter including electric vehicle (EV),
BES charger, photovoltaïc (PV) maximum power point tracker (MPPT), and grid connected inverter.
On the AC side, a heat pump and residential load are connected.

Table 1. Multi-port system parameters.

Symbol Quantity Value

Prated
PV installed PV capacity power 10 kWp
Pev Maximum EV (dis)charging power 10 kW
P Maximum battery (dis)charging power 10 kW

Eev Initial full EV capacity 80 kWh
EBES Initial full battery capacity 10 kWh
Voc,ev EV voltage 325–430 V

Voc,BES BES voltage 325–430 V

3. Second-Life Batteries

Due to the increasing amount of EVs, new markets for second-life EV batteries emerge as EV
batteries often have 70–80% remaining capacity left at the end of their EV lifetime [35]. These second-life
batteries are then repurposed for stationary applications such as grid reinforcement or demand
response systems. This reduces the cost of EV/BES ownership as well as increases the sustainability of
the Li-ion batteries. In this study, the second-life value of both the EV and the BES is taken into account
and used to assess the operational costs of EV/BES ownership more accurately. Additionally, in [36],
it was found that second-life battery performance and state-of-health estimation is strongly influenced
by its first-life performance. This motivates the use of a battery degradation model, which minimizes
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and monitors the degradation such that the performance of the battery in its second-life is increased
and more easily assessed.

4. Materials and Methods

The proposed smart charging algorithm can be divided into three subsection: 1. forecasting,
2. optimal scheduling, and 3. moving horizon and real-time control scheme.

4.1. Forecasting

Solar PV and load demand forecasts are required in order to schedule the charging of EV and BES
accurately. The forecasting of PV energy can be divided into three categories: statistical data-based
methods such as Auto Regressive Integrating Moving Average (ARIMA) [37,38] and machine learning
based methods such as neural networks. The disadvantage of the methods mentioned above is that
their accuracy solely relies on historical data, as there are no environmental inputs. The third category
is a hybrid method based on historical data as well as weather data and satellite images. This study
uses the solar radiation forecasts of the royal dutch weather institute. The advantage of this is that the
computation of the forecasts is being performed outside the moving horizon controller and is based on
previous data, satellite images, weather prediction modelling, and radiative transfer modelling [39].
The forecast is a combination of a short-term forecast (0–6 h) (SEVIRI) and a long-term forecast up to
48 h (HARMONIE) and includes Global Horizontal Irradiance (GHI) and Direct Normal Irradiance
(DNI) [30]. In combination with the moving horizon control, good accuracy on the short term can
be obtained, while at the same time, scheduling up to 48 h ahead can be performed. Then, using the
approach presented in [32], the produced PV power can be calculated based on the orientation of
the solar panels. Forecasting the load demand is done based on an aggregated residential profile
obtained from [40]. Here, both appliance and heating demand are taken into account. An example of
the forecasted and actual powers is shown in Figure 2. Even though the forecasted trend of PV power
is accurate, sudden clouding can still cause significant errors of several kilowatts. Similarly, for the
load demand profile, its highly stochastic nature is not captured by the aggregated data. However,
daily and seasonal variations are incorporated. Due to the existence of these errors combined with
a relatively coarse resolution of 15 min in most optimal scheduling problems, significant deviations
from the actual optimal solution would occur. This motivates the use of a real-time control scheme.

Figure 2. Example of the resulting PV and load forecasts and the actual powers for a summer day.

4.2. Optimal Charging Algorithm

In this section, the optimization model is discussed. All variables are denoted and described
in the nomenclature at the end of this article. The optimal charging algorithm’s goal is to find the
optimal charging schedule based on the forecasts of load and PV while taking into account battery
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degradation and ancillary services. The main contribution of the proposed optimization problem
is the use of a Li-ion battery degradation model. Because of the good balance of power density,
energy density, and lifetime, Nickel-Manganese-Cobalt (NMC) based batteries are being used for both
vehicle and stationary applications [41]. Therefore, the same ageing model can be used for both the
stationary and vehicle battery. Similarly, the costs of V2G, regulatory services, and degradation can be
determined based on the actual operating conditions. Furthermore, since the model is included in the
objective, the solver will minimize the degradation and the resulting costs. The non-linear behaviour
of these cells makes the optimization problem a non-linear programming (NLP) model. The problem
was solved using the CONOPT solver (part of BARON/Antigone [42]) using the generic algebraic
modelling system (GAMS) platform on a PC with 3.6 GHz, Intel Xeon 4 core and 16 GB RAM.

4.2.1. Objective Function

The objective of this optimization is to minimize the total cost of energy. Here, the total cost of
energy Ctotal is made up out of battery energy storage costs CBES, electric vehicle costs CEV , PV energy
costs CPV , grid energy costs Cgrid, and regulatory revenue Creg. Mathematically, this can be expressed
as follows:

min
(

Ctotal

)
= min

(
CBES + CEV + CPV + Cgrid − Creg

)
(1)

The battery costs are operational costs, which are determined by assessing the remaining value of the
degraded battery. This is done by calculating the degraded capacity ∆Etot

BES and by subtracting this
from the initial capacity Emax

BES, both in kWh. Next, the remaining value per kWh, VBES in euro/kWh,
is calculated according to the model presented in [43]. The decay of VBES versus the remaining capacity
is shown in Figure 3. This study assumes that the battery is still in its first life, which ends at 80%
remaining capacity, and that the value at the start of second-life V2nd

BES equals 50% of a new BES:
V2nd

BES = 0.5Vnew
BES [43]. VBES can than be calculated according to the formula presented in Equation (2).

The costs are then equal to the difference between a new BES and the degraded BES as shown in
Equation (3).

VBES =
(V2nd

BES −Vnew
BES)

0.2
∆Etot

BES + Vnew
BES (2)

CBES = Vnew
BES Emax

BES −VBES

(
Emax

BES − ∆Etot
BES

)
(3)

Figure 3. Model of remaining value per kWh as presented in [43]: Here, V2nd
BES, Vend

BES, C2nd
BES, and Cend

BES
represent the value at the start of second life, value at the end of its lifetime, capacity at the start of
second life, and capacity at the end of lifetime, respectively.

The costs related to the EV are related to the degradation costs of charging and V2G. A similar
notation of variables as for the BES is used. Here, the degradation due to driving is not taken into
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account, as it is not under the control of the smart charging system. Furthermore, it is assumed that
the 2nd life of an electric vehicle battery starts at 80% remaining capacity at 50% of its original value
per kWh [43]. This is described in Equations (4) and (5).

VEV =
(V2nd

EV −Vnew
EV )

0.2
∆Etot

EV + Vnew
EV (4)

CEV = Vnew
EV Emax

EV −VEV

(
Emax

EV − ∆Etot
EV

)
(5)

In this study, the cost of PV energy is not assumed to be zero, to take into account the installation and
investment costs of the PV system, or to simulate a contractual power purchase agreement. These costs
are levelled per kWh to make them independent of the simulation time, without neglecting the related
costs. Here, λPV = 0.03 e/kWh [12] is assumed. The costs for PV energy are then determined
according to the following:

CPV =
T

∑
t=1

PPV∆tλPV (6)

Here, PPV(t) is the generated PV power, ∆t is the simulation timestep, and λPV is the levelized cost of
PV energy. The next part of the objective function is the revenue obtained by acting as a frequency
containment reserve (FCR) and demand-side management. Here, it is assumed that an SGO acts as an
aggregator and mediator between the frequency regulation market and the prosumer, aggregating
several flexible systems such that the combined power meets the minimum power requirements for
the FCR market. Here, the revenue is obtained by reserving a part of the available power capacity for
primary frequency regulation. The up/downregulation prices are λupandλdn, respectively. Based on
these prices, the operational costs, and the current demand, the optimization will determine how much
of the available capacity will be reserved for frequency regulation. The revenue obtained from this is
calculated according to the following:

Creg = (1− ε f c)ηinvηch

T

∑
t=1

(
Pup

reg(t)λup(t) + Pdwn
reg (t)λdwn(t)

)
+ Ccomp (7)

Here, ε f c is the maximum forecasting error; this is taken into account to limit the error between
actual and reserved capacity caused by forecasting errors. Due to the moving horizon control, a good
short-term accuracy can be achieved. However, as errors will still occur, compensation factor Ccomp is
introduced such that any difference in revenue caused by differences in actual and reserved capacity
or in scheduled and used capacity is compensated using Ccomp. This makes Ccomp dependent on
the bidding process in the regulation market. Therefore, it is assumed that the smart grid operator
calculates this compensation factor based on the actual operation. Additionally, Ccomp could be the
compensation obtained for curtailing PV power as part of demand-side management. Here, Ccomp

could be equal to the curtailed energy multiplied by the energy price. Next, ηinv/ch are the efficiencies
of the inverter and BES/EV charger, respectively. Finally, Pup/dwn

reg (t) are the reserved capacities for
regulation. The calculation of these capacities will be explained later in Section 4.2.2.6. The final
part of the objective function is the grid energy cost. In this study, a dynamic pricing tariff is used,
where the selling price λsell(t) is 10% lower than the buying price λbuy(t). This is done to simulate a
future environment where electricity prices are a function of demand and supply, optimizing costs and
separating buying/selling grid energy results in energy being taken out of the grid when demand and
price are low while the energy fed back to the grid is fed in during a time of high demand and high
price. The calculation of grid energy costs is shown in Equation (8).

Cgrid =
T

∑
t=1

Pbuy
grid(t)∆tλbuy(t)−

T

∑
t=1

Psell
grid∆tλsell(t) (8)
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Here, Pbuy/sell
grid (t) are the powers drawn and fed from the grid, respectively.

4.2.2. Constraints

4.2.2.1. Lithium-Ion Degradation Model

The battery degradation model is valid for both the EV and the BES, and therefore, the
identifier X = EV = BES is used. In order to calculate the capacity lost per time step (∆Etot

X (t)),
the battery degradation model presented in [44] is used. The model is semi-empirical based on
18650 Nickel-Manganese-Cobalt (NMC) cells. It takes into account temperature, current rate (Icell

X (t)),
and ampere-hours processed (Icell

X (t)δt). In this study, the cell temperatures are assumed constant at
35 ◦C, assuming that the EV has a battery temperature control system and because the inside ambient
temperature setpoint of the heat pump varies between 18◦ and 20.5 ◦C [45]. A distinction between
cyclic and calendar ageing is made, denoted as ∆Ecycle

X (t) and ∆Ecal
X (t). Since calendar ageing is mostly

dependent on time and temperature [44] and cell temperature is assumed constant, the equation can
be simplified to a constant degradation per time step. Here, a minimum lifetime of 5 years is assumed.
This is shown in Equation (12).Furthermore, the model is based on the behaviour of a single cell.
Therefore the EV/BES power needs to be scaled into the voltage and current of a single cell. To do this,
the open-circuit voltage of an NMC cell is used, which can be described by the curve fitted equation
shown in Equation (9) [46]. Here, SoCx(t) denotes the state of charge of x at time t. The resulting
curve is shown in Figure 4. Furthermore, it is assumed that Nparallel

X by Nseries
X of these cells are placed

in parallel and series respectively, such that the total open-circuit voltage Voc,X resembles existing
EV/BES systems [33,34].

Voc,X(t) = Nseries
X

(
a1eb1SoCx(t) + a2eb2SoCx(t) + a3SoCx(t)2) , ∀ t (9)

icell
X (t) =

PX(t)

Nparallel
X Voc,X(t)

, ∀ t (10)

Then, using the calculated cell voltage and current from Equation (9) and (10), the lost capacity per
cell can be calculated according to Equations (11) and (13) [44]. Note that the model presented in [44]

calculates the percentage of lost charge in ampere hour and is therefore multiplied with Emax
BES

100 in order
to get the actually lost capacity. The values of the curve fitted parameters in Equations (9)–(13) can be
found in Table 2.

∆Ecycle
X (t) =

(
c1ec2|icell

X (t)||icell
X (t)|∆t

)
Emax

BES
100

, ∀ t (11)

∆Ecal
X (t) =

(
c3
√

te−24kJ/RT
)

Emax
BES

100
=

(
c4∆t

)
Emax

BES
100

, ∀ t (12)

∆Etot
X =

T

∑
t=0

(
∆Ecycle

X (t) + ∆Ecal
X (t)

)
(13)
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Figure 4. Open circuit voltage for a Nickel–Manganese–Cobalt (NMC) battery cell [46]: Since both the
electric vehicle and the stationary battery are made of NMC technology, this cell voltage is applicable
for both.

Table 2. Battery model parameters.

Symbol Quantity Value

Nparallel
cell Number of battery cells in parallel 14

Nseries
cell Number of battery cells in series 100
a1 Voc(t) curve fit parameter 3.679
b1 Voc(t) curve fit parameter −0.1101
a2 Voc(t) curve fit parameter −0.2528
b2 Voc(t) curve fit parameter −6.829
a3 Voc(t) curve fit parameter 0.9386
c1 ageing curve fit parameter 0.00054
c2 ageing curve fit parameter 0.35
c3 ageing curve fit parameter 14,876
c4 averaged calendar ageing per ∆t 2.64 × 10−4

4.2.2.2. Battery Energy Storage Constraints

The BES power PBES(t) is limited between [−10, 10] kW. Additionally, the maximum power
Pmax

BES (t) is SoC dependent such that the maximum power drops linearly below a SoC of 10% (Ddis = 0.1)
and above a SoC of 80% (Dch = 0.8), representing the constant-current constant-voltage regions of a
battery. This is ensured using Equations (14)–(20). The round-trip efficiency is considered constant
over power and lifetime and is equal to 95 % [34]. Therefore, the efficiency of a single charge/discharge
cycle equals ηch/dis =

√
0.95 = 0.975. Due to this efficiency, the model recognizes the loss of energy

and therefore prevents both Pneg
BES(t) and Ppos

BES(t) from having nonzero values at the same time.

Ppos
BES(t) ≤ Pmax

BES (t) , ∀ t (14)

Pmax
BES (t) ≤ Prated

BES (t) , ∀ t (15)

Pmax
BES (t) ≤

Pmax
BES

1− Dch

(
EBES(t)

Emax
BES

− 1
)

, ∀ t (16)

Pneg
BES(t) ≤ Pmin

BES(t) , ∀ t (17)

Pmin
BES(t) ≤ Prated

BES , ∀ t (18)
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Pmin
BES(t) ≤

Prated
BES

Ddis

EBES(t)
Emax

BES
, ∀ t (19)

PBES(t) = ηchPpos
BES(t)−

1
ηdis

Pneg
BES(t) , ∀ t (20)

In the above constraints as well as all the following constraints, the superscripts “max”, “min”,
“pos”, “neg”, and “rated” declare the maximum allowable, minimum allowable, actual positive,
actual negative, and rated powers.The energy stored inside the BES EBES(t) can then be calculated
according to Equation (21). Here, the BES capacity is fixed for t = 1 and t = t f inal at capacities

Einit
BES = E f inal

BES , respectively, in order to have a fair comparison between costs.

EBES(t) =


Einit

BES, for t = 1

EBES(t− 1) + PBES(t)∆t, for 1 < t < t f inal

E f inal
BES , for t = t f inal

(21)

Furthermore, the SoC of the BES is calculated using Equation (22). Here, Elimit
BES (t) is a variable

which represents the actual maximum capacity at time t, which equals the initial maximum capacity
Emax

BES minus the capacity lost by cycling for that time step ∆EBES(t). This is modelled using Equation (23)
and Equation (24).

SoCBES(t) =
EBES(t)
Elimit

BES (t)
, ∀ t (22)

Elimit
BES (t) =

{
Emax

BES, for t = 1

Elimit
BES (t− 1)− ∆EBES(t), for t > 1

(23)

EBES(t) ≤ Elimit
BES (t) , ∀ t (24)

4.2.2.3. Electric Vehicle Constraints

The electric vehicle constraints are given in Equations (25)–(36), where the constraints up to
Equation (34) are similar to the BES constraints. The electric vehicle is assumed to be unavailable
from tdepart = 08:00 till tarrive = 18:00 during the day; this is denoted by the binary parameter EVav(t),
which equals 0 for tdepart ≤ t ≤ tarrive. These departure and arrival times are based on the distribution,
as presented in [47]. During that time, it is estimated that the EV is commuting between work and
home, where a single trip is 30 km with an efficiency of 15 kWh/100 km [48], resulting in a 9 kWh
decrease in charge at arrival; note that the arrival time and charge are only estimations and that
possible errors will be compensated after arrival as a result of the moving horizon window.

Ppos
EV (t) ≤ Pmax

EV (t) , ∀ t (25)

Pmax
EV (t) ≤ Prated

EV (t) , ∀ t (26)

Pmax
EV (t) ≤

Pmax
EV

1− Dch

(
EEV(t)
Emax

EV
− 1
)

, ∀ t (27)

Pneg
EV (t) ≤ Pmin

EV (t) , ∀ t (28)

Pmin
EV (t) ≤ Prated

EV , ∀ t (29)

Pmin
EV (t) ≤

Prated
EV

Ddis

EEV(t)
Emax

EV
, ∀ t (30)

PEV(t) = EVav(t)
(

ηchPpos
EV (t)− 1

ηdis
Pneg

EV (t)
)

, ∀ t (31)
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SoCEV(t) =
EEV(t)

Elimit
EV (t)

, ∀ t (32)

Elimit
EV (t) =

{
Emax

EV , for t = 1

Elimit
EV (t− 1)− ∆EEV(t), for t > 1

(33)

EEV(t) ≤ Elimit
EV (t) , ∀ t (34)

Finally, the user can state a minimum departure charge Edepart and departure time tdepart,
which ensures that the EV always has enough charge at the time of departure. This is modeled
using Equation (36):

EEV(t) =


Einit

EV , for t = 1

EEV(t− 1) + PEV(t)∆t, for t ≤ tdepart

& t > tarrive

(35)

EEV(t) ≥ Edepart
EV , for t = tdepart (36)

4.2.2.4. Power Balance Constraints

For the given system (Figure 1), two power balances exist: 1. on the DC link of the multi-port
converter. Here, a positive inverter power Pinv(t) equals feeding power to the grid. 2. The second
power balance exists on the AC side between the inverter and the meter. This is modeled using
Equations (37) and (38).

Pinv(t) = PPV(t)− PBES(t)− PEV(t) , ∀ t (37)

Pgrid(t) = ηinvPinv(t)− Pload(t) , ∀ t (38)

Here, the total load Pload(t) consists of the load from all appliances in the building Pappl(t) and
the power required for heating Pheat(t), in the form of a heat pump. In this study, both Pappl(t) and
Pheat(t) are considered non-flexible.

Pload(t) = Pappl(t) + Pheat(t) , ∀ t (39)

4.2.2.5. Grid Constraints

The resulting grid power Pgrid(t) differentiates between positive and negative grid powers since
both have different prices. This is done using the efficiency ηcable, which models the power loss
in the cable between the meter and converter. This efficiency is assumed to equal 99%. However,
more importantly, it ensures that the Pbuy

grid(t) and Psell
grid(t) do not have nonzero values simultaneously,

as the efficiency loss is recognized. This allows for grid power arbitration without the use of binary
variables, drastically increasing the solving time. Here, Pmax

grid is the maximum power of a 3-phase
25A connection.

Psell
grid(t) ≤ Pmax

grid , ∀ t (40)

Pbuy
grid(t) ≤ Pmax

grid , ∀ t (41)

Pgrid(t) = ηcablePsell
grid(t)−

1
ηcable

Pbuy
grid(t) , ∀ t (42)

4.2.2.6. Regulation Market Constraints

Part of the objective function is the revenue obtained from reserving the capacity for primary
frequency regulation. Here, it is assumed that the system is part of a smart grid as described in Section 2.
Using Equations (43)–(47), it is ensured that the maximum available capacity for regulation does not
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exceed the actual maximum capacity in the system. Here, it is important to note that the maximum
available EV/BES capacity is SoC dependent. Therefore, the available up/down capacity per converter
port Px

up/dwn(t) (x = EV/BES/PV) is denoted using Pmax/min
x (t), as calculated in Sections 4.2.2.2 and

4.2.2.3. Similarly, it has been done for down regulation in Equations (48)–(53).

PEV
up (t) ≤ EVav(t)

(
Pmin

EV (t) + PEV(t)
)

, ∀ t (43)

PBES
up (t) ≤ Pmin

BES(t) + PBES(t) , ∀ t (44)

Pup(t) ≤ ηinv

(
PEV

up (t) + PBES
up (t)

)
, ∀ t (45)

Pup(t) ≤ Prated
inv (t) , ∀ t (46)

Pup(t) ≤ Pmax
grid (t) + Pload(t) , ∀ t (47)

PEV
dwn(t) ≤ EVav(t)

(
Pmax

EV (t)− PEV(t)
)

, ∀ t (48)

PBES
dwn (t) ≤ Pmin

BES(t)− PBES(t) , ∀ t (49)

PPV
dwn(t) ≤ PPV(t) , ∀ t (50)

Pdwn(t) ≤ ηinv

(
Pdwn

EV (t) + Pdwn
BES (t) + Pdwn

PV (t)
)

, ∀ t (51)

Pdwn(t) ≤ Prated
inv (t) , ∀ t (52)

Pdwn(t) ≤ Pmax
grid (t) , ∀ t (53)

In case of symmetric reserve offers, Equation (54) should also be used.

Pup(t) = Pdwn(t) , ∀ t (54)

4.2.2.7. Inverter Constraints

To account for the efficiency of the inverter, the inverter power is also split into positive and
negative parts. The inverter efficiency is assumed equal for both directions of power: 97% and over
the entire power range [24].

Pneg
inv (t) ≤ Pmax

inv , ∀ t (55)

Ppos
inv (t) ≤ Pmax

inv , ∀ t (56)

Pinv(t) = ηinvPpos
inv (t)−

1
ηinv

Pneg
inv (t) , ∀ t (57)

4.2.2.8 Photovoltaic Constraints

As part of demand-side management as well as for cases with a negative feed-in tariff, it should
be possible to curtail PV power. Therefore, in order to allow PV power curtailment, Equation (58) is
introduced. Here, the efficiency of the maximum power point tracker is assumed to be ηmppt = 98% [49].

Here, P f orecast
PV (t) denotes the forecasted PV power. This concludes the optimization model section.

In the next section, the proposed real-time control is discussed.

PPV(t) ≤ ηmpptP
f orecast
PV (t) , ∀ t (58)
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4.3. Moving Horizon Window and Real-Time Control

In Section 4.2, the optimal charging algorithm is discussed. The goal of the optimal
charging algorithm is to find the optimal charging schedule within a 24-h optimization window
while anticipating future demand and supply based on forecasts and taking into account battery
degradation, and primary frequency regulation reserve. However, as shown in Figure 2, the resulting
forecasting errors can still be in the range of several kWs. To minimize the effect of these errors,
a moving horizon model predictive controller is implemented, which reoptimizes every 15 min (i.e., one
optimization timestep). Additionally, a new forecast is obtained every hour to improve accuracy.
To compensate for the errors within these 15-min timesteps, such as PV power, SoC estimation, and EV
time of arrival, a real-time control scheme is implemented. Here, a rule-based control scheme is
implemented such that it can act almost instantly. It should be noted that the real-time control only
deals with the errors on top of what is optimally scheduled. For example, if the battery is directly
charging from PV power in the optimal solution but the PV power turns out to be less than forecasted,
the battery power can be changed accordingly. If no real-time control is implemented, this error
needs to be compensated using grid power to maintain the power balance on the DC-link inside the
multi-port converter, which could lead to nonoptimal solutions. Figure 5 shows the flowchart of the
moving horizon control and the real-time control scheme. First, the irradiance forecasts are obtained,
and the resulting PV power is calculated. Then, after the optimization, the output at t = 1 is saved
and the sample rate is increased 15 times, such that the resolution is now one minute. The interpolated
variables are indicated with index k. Furthermore, superscripts f c and act denote the forecasted and
actual powers, respectively. In practice, the resolution can be as small as computation time allows
to get actual real-time operation. The new real-time charging schedule is determined based on the
amplitude of the error, the available EV/BES power, and the current electricity price. The error is
calculated according to Equations (59)–(61).

∆PPV(k) = P f c
PV(k)− Pact

PV(k) (59)

∆Pload(k) = P f c
load(k)− Pact

load(k) (60)

Perror(k) = ∆Pload(k)− ∆PPV(k) (61)

Here, a positive error means an excess of power. For example, when the actual PV power is higher
as forecasted (i.e., ∆PPV(k) > 0) while the actual load is lower as anticipated (i.e., ∆Pload(k) < 0),
the resulting error is positive Perror(k) > 0. Next, the power limitations of the EV/BES converter at time
k are determined based on power rating, SoC, and power balance inside the multi-port system. This is
done using Equations (62)–(65). A rule-based control scheme then determines how the error should be
compensated based on Perror, the power limitations, current electricity price, and the mean electricity
price calculated according to Equation (66), as shown in Figure 5. The goal of the real-time control
scheme is to prevent feeding in power to the grid at times of low electricity prices or drawing power
during high electricity prices. For example, when the error is positive (meaning an excess of power)
and the electricity price λbuy is above average (λmean), the power is fed to the grid. If the price would be
below average, the control first checks whether the BES can absorb the power and, if not, whether the
EV can absorb the power; if both are not able to absorb the excess power, it is fed to the grid. After the
real-time powers have been calculated, the actual degradation is calculated and the corresponding
variables are adjusted. This will then be used for initializing the next optimization instance.

Pmax,neg
BES (k) = max

(
0, min

(
Pmax

BES ,
EBES(k)− Emin

BES
∆k

, Pmax
inv − PPV(k) + PEV(k)

))
(62)

Pmax,pos
BES (k) = max

(
0, min

(
Pmin

BES,
Emax

BES − EBES(k)
∆k

, Pmax
inv + PPV(k)− PEV(k)

))
(63)
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Pmax,neg
EV (k) = max

(
0, min

(
Pmax

EV ,
EEV(k)− Emin

EV
∆k

, Pmax
inv − PPV(k) + PBES(k)

))
(64)

Pmax,pos
EV (k) = max

(
0, min

(
Pmin

EV ,
Emax

EV − EEV(k)
∆k

, Pmax
inv + PPV(k)− PBES(k)

))
(65)

λmean =
∑t=T

t=t λbuy(t)
T

, T ∈ [t, t + 24h] (66)

Figure 5. Moving horizon and real-time control flowchart.

5. Use Case and Price Mechanism

The system specifications can be found in Table 1 above. The proposed optimal control scheme
can be applied to any building with an EV, solar panels, heat pump, and BES. In this study, a residential
building has been chosen as a use case. The building appliance load is obtained from a Dutch
distribution system operator and represents a building with a medium to high demand. Both heating
and appliance loads are assumed to be non-flexible such that no compromise is given to the user.
The power profile of the heat pump is interpolated hourly data obtained from a study performed
by the Dutch Organization for Applied Scientific Research [45]. Here, a medium isolated residential
building is used with an inside temperature setpoint that varies between 18 ◦C and 20.5 ◦C during
night and day, respectively. It is assumed that a time-varying electricity price is obtained from the SGO.
The price signal is equal to the Amsterdam Power Exchange market [38,50] only averaged around
0.20 e/kWh, see Figure 6. Additionally, up/downregulation prices λup/down are obtained from the
SGO and shown in Figure 7. The model has been formulated such that it can operate with any kind of
regulation market. In this case, the German primary frequency control market was chosen because
it resembles the Dutch frequency control market. The German Frequency Regulation market is a
symmetrical market, so both up- and downregulation are equally priced. Figure 7 displays the prices
obtained for every week in 2018 [51].
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Figure 6. Electricity price based on the 2018 Amsterdam Power Exchange (APX) spot market, averaged
around 0.2 e/kWh.

Figure 7. Up- and downregulation prices of the 2018 German market.

6. Results and Discussion

The results for summer and winter days are shown in Figures 8–11, respectively. Here,
the electricity buying price and forecasted and actual PV/load powers are included as well. From both
Figures 8 and 10, it is clear that the optimal charging stage trades energy in between times of high
and low prices. Similarly, it decides when to store PV energy and when to feed it back to the grid.
During winter, the energy demand is much higher, mainly because of the increased heating demand.
Additionally, the PV production is much lower and, therefore, less energy is fed to the grid. Without an
appropriate control scheme, the BES would only be used in case of excess PV energy, therefore resulting
in poor utilization of the BES. However, the proposed model still fully utilizes the available BES capacity
in order to reduce the cost of energy. This is also shown in Figures 9 and 11. The EV is charged at night
above the required departure charge of 50 kWh, such that it can utilize V2G when prices are high in
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the morning and again in the evening up to the point where prices are low again at the end of the
day. Note that the usable EV capacity is not completely utilized, as the inverter power rating limits
the possible power exchanged with the grid, whereas outside the instances of peak/valley prices,
the difference between feed-in and retail price is probably not enough to overcome the additional
losses caused by the degradation of charging at higher powers. The role of the real-time control scheme
can be seen in Figure 8; as PV forecasting errors occur, the algorithm decides whether to use the BES,
EV, or grid to compensate for these errors. The grid is used for positive errors (excess of power) and
high prices, while the BES/EV is used when errors are positive but prices are low (if possible to store
energy) and vice versa for high prices and negative errors. Finally, the effect of the degradation model
is seen by the peak powers of the EV/BES. Both are rated at 10 kW. However, their powers only exceed
the [−6 kW, 6 kW] range at 3.44% of the time (at 1-min resolution).

Figure 8. (left axis:) Optimized power flows for a summer day and (right axis:) energy buying price.

Figure 9. Resulting charge from optimized power flows inside electric vehicle and stationary storage
for a summer day.



Energies 2020, 13, 3415 17 of 25

Figure 10. (left axis:) Optimized power flows for a winter day and (right axis:) energy buying price.

Figure 11. Resulting charge from optimized power flows inside electric vehicle and stationary storage
for a winter day.

6.1. Comparison

From the literature review presented above, it can be concluded that most of the existing studies
only discuss the optimal scheduling of EV/BES charging. However, within a 15-min forecasting
resolution, large forecasting errors can occur due to the fast changing intermittent character of PV
power. Additionally, other estimations such as tarrival can lead to more errors. Therefore, a moving
horizon window including real-time control scheme is an important part for a smart charging algorithm,
as errors are compensated and the optimization is iterated. In order to assess the effectiveness of all
the different components, several case studies are performed over a half-year period:

• case 1: Uncontrolled case (only EV, PV, and load)
• case 2: Proposed optimal and real-time control scheme
• case 3: Proposed optimal control and error compensation using grid power
• case 4: Proposed optimal and real-time control scheme without V2G.
• case 5: Proposed optimal and real-time control scheme without up/downregulation.
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Here, it is assumed that a half-year simulation period is enough to capture all seasonal variations
and that the forecasting error ε f c = 0 in order to assess the maximal potential of acting as a FCR.
Furthermore, the moving horizon control will operate with a 24-h window in a 15-min resolution.
The first uncontrolled case consists only of a PV installation, EV charger, and load. Here, it is assumed
that the EV starts charging upon arrival with a 3 kW charger for 3 h to meet its daily demand.
The second case is the complete proposed control scheme. The third case is similar to having only an
optimal scheduling algorithm; here, all deviations from the obtained optimal solution are compensated
using grid energy. The fourth case does not utilize V2G, and the fifth case does not take into account a
primary frequency regulation reserve revenue. Figure 12 shows the resulting grid power for use case 2
and 3. Here, case 3 is comparable with having only an optimal control scheme (no real-time control).
It can be seen that the errors are dealt with differently, in the end, increasing costs. In Figure 13,
the total cumulative costs for every use case over a half year period is shown. Using the proposed
control scheme (case 2), the total costs can be reduced by 98.6% compared to the uncontrolled case.

Figure 12. Comparison of grid powers for case 2 and case 3 (with and without real-time control).

A breakdown of all cost components is shown in Figure 14 and Table 3. Here, it can be seen
that the optimized EV and BES degradation costs for case 2 are still equal to 91.87 euro and 64.6
euro, respectively. Similarly, the total cost of PV energy equals 168.15 euro. From this, it can be
concluded that all these costs are a nonnegligible part of an objective function when minimizing the
total cost of energy in an EV-PV-BES-HP system. However, although these costs are relatively high,
from Figure 13 and Table 3, it can be concluded that V2G still is a cost-effective method for storing
renewable and demand-side management, as the revenue obtained from trading energy exceeds the
costs of degradation. Furthermore, it can be seen that the EV charging costs of case 1 are actually the
lowest. This is because the average charging power for case 1 is lower compared to the other cases,
resulting in lower degradation, however, resulting in more grid electricity costs.
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Figure 13. Total costs for all 5 cases over a half-year simulation period.

Figure 14. Cost breakdown for all 5 cases: Here, the black line indicates the total costs.

Table 3. Cost comparison of the presented 5 use cases.

Use Case Cgrid [e] CPV [e] CBES [e] CEV [e] CReg [e] CTotal [e]

1 679.5 169.14 0 10.38 0 859.01
2 −247.27 169.14 64.61 91.88 −66.74 11.76
3 −163.09 169.14 64.34 91.7 −66.74 95.24
4 93.4 169.14 65.68 16.94 −66.83 278.3
5 −230.74 169.14 65.54 98.367 0 102.3

6.1.1. Demand-Side Management: Power Curtailment

Besides operating as a primary frequency regulation reserve, the smart charging algorithm is also
capable of power curtailment. For example, when the smart grid operator foresees an over-voltage
occurring in the near future, it can choose to limit the grid feed-in power of the system. An example
of this is shown in Figure 15. Here, the SGO reduces the maximum allowable feed-in power to 5 kW
between 09:30 and 18:00. A comparison with the same day without power curtailment is shown
in Figure 16.
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Figure 15. Curtailment of PV power due to reduced maximum allowable grid feed-in between 08:00
and 18:00.

Figure 16. Comparison of the same day without power curtailment.

7. Conclusions

In this paper, a building smart charging algorithm was presented for a multi-port system
integrating EV, PV, BES, and a HP. Here, the HP and appliance load were assumed fixed. Then, based
on forecasts of PV production and load, the smart charging algorithm minimizes the total cost of
energy incorporating grid electricity costs, PV investment and installation costs, EV/BES operational
costs, and revenue obtained from operating as primary frequency regulation reserve. It has been
shown that the proposed algorithm is very effective as it reduced 98.6% of the total cost of energy
compared to an uncontrolled EV-PV-HP case. Additionally, the potential of V2G and the importance of
forecasting error handling using a real-time moving horizon control scheme are discussed. Finally,
it has been shown that EV/BES degradation costs as well as PV investment/installation costs are
nonnegligible parts of an objective function which tries to minimize the total cost of energy in an
EV-PV-BES-HP system.
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Abbreviations

The following abbreviations are used in this manuscript:
t optimization time index (-)
∆t optimization time step (-)
k real-time control time index (-)
Ctotal Total cost of energy (Euro)
CBES BES costs (Euro)
CEV Electric vehicle costs (Euro)
CPV PV costs (Euro)
Cgrid Grid energy costs (Euro)
Creg up/downregulation revenue (Euro)
Vnew

BES New BES price per kWh (500 Euro)
VEV

new New EV price per kWh (500 Euro)
V2nd

BES 2nd life BES price per kWH (250 Euro)
V2nd

EV 2nd life EV price per kWH (250 Euro)
λPV PV energy price (0.03 Euro)
λbuy Grid energy buying price (Euro)
λsell Grid energy buying price (Euro)
λup up regulation price (Euro)
λdown down regulation price (Euro)
EBES(t) BES capacity at time t (kWh)
Emax

BES Initial maximum BES capacity (10 kWh)
Elimit

BES (t) Max BES capacity at time t (kWh)
Einit

BES Initial BES capacity (5 kWh)
∆Etot

BES Total degraded BES capacity (kWh)
∆Etot

EV Total degraded EV capacity (kWh)
EEV(t) EV capacity at time t (kWh)
Emax

EV Initial maximum EV capacity (80 kWh)
Elimit

EV (t) Max EV capacity at time t (kWh)
Einit

EV Initial EV capacity (35 kWh)

E f inal
EV Final EV capacity (35 kWh)

Edepart
EV EV departure charge (50 kWh)

Pinv(t) inverter power at time t (kW)
Pmax

inv Max inverter power (10 kW)
Pneg

inv negative (draw) inverter power (kW)
Ppos

inv positive (feed-in) inverter power (kW)
PBES(t) BES power at time t (kW)
Pmax

BES Max BES power (10 kW)
Pneg

BES discharging BES power (kW)
Ppos

BES charging BES power (kW)
PEV(t) EV power at time t (kW)
Pmax

EV Max EV power (kW)
Pneg

EV discharging EV power (kW)
Ppos

EV charging EV power (kW)
PPV(t) produced PV power at time t (kW)

P f orecast
PV (t) forecasted PV power at time t (kW)
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Pact
PV(t) forecasted PV power at time t (kW)

Pload(t) total load power at time t (kW)
Pgrid grid power at time t (kW)
Pmax

grid Maximum grid power (kW)

Psell
grid feed-in grid power (kW)

Pbuy
grid buying grid power (kW)

Pup
reg available up-regulation capacity (kW)

Pdwn
reg available down-regulation capacity (kW)

Vcell
BES Average BES cell voltage (3.7 V)

Voc,BES open circuit voltage BES (V)
Voc,EV open circuit voltage BES (V)
Icell
BES BES cell current (A)

Icell
EV BES cell current (A)

SoCBES BES Energy Storage State of Charge (-)
SoCEV Electric vehicle State of Charge (-)
ηmppt MPPT efficiency (98%)
ηinv Inverter efficiency (96%)
ηch EV/BES charging efficiency (97.5%)
ηdis EV/BES discharging efficiency (97.5%)
ηcable cable efficiency (99%)
tdepart Electric vehicle departure time (8:00 h)
interest Bank account interest rate (1%/year)
a1 Voc(t) a1 (3.679)
a2 Voc(t) a2 (−0.2528)
a3 Voc(t) a3 (0.9386)
b1 Voc(t) b1 (−0.1101)
b2 Voc(t) b2 (−6.829)
c1 Voc(t) c (0.00054)
c2 Voc(t) c (0.35)
c3 Voc(t) c (14,876)
c3 Voc(t) c (2.64 × 10−4)

Nparallel
EV Amount of EV battery cell groups in parallel (145)

Nseries
EV Amount of EV battery cell in series (100)

Nseries
BES Amount of cells in series in BES (100)

Nparallel
BES Amount of cells in parallel in BES [18]
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