

Delft University of Technology

Secure multiparty quantum computation with few qubits

Lipinska, Victoria; Ribeiro, Jérémy; Wehner, Stephanie

DOI
10.1103/PhysRevA.102.022405
Publication date
2020
Document Version
Final published version
Published in
Physical Review A

Citation (APA)
Lipinska, V., Ribeiro, J., & Wehner, S. (2020). Secure multiparty quantum computation with few qubits.
Physical Review A, 102(2), Article 022405. https://doi.org/10.1103/PhysRevA.102.022405

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1103/PhysRevA.102.022405
https://doi.org/10.1103/PhysRevA.102.022405

PHYSICAL REVIEW A 102, 022405 (2020)

Secure multiparty quantum computation with few qubits

Victoria Lipinska,* Jérémy Ribeiro , and Stephanie Wehner
QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

and Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

(Received 28 April 2020; accepted 14 July 2020; published 7 August 2020)

We consider the task of secure multiparty distributed quantum computation on a quantum network. We propose
a protocol based on quantum error correction which reduces the number of necessary qubits. That is, each of
the n nodes in our protocol requires an operational workspace of n2 + 4n qubits, as opposed to the previously
shown �((n3 + n2s2) log n) qubits, where s is a security parameter. Additionally, we reduce the communication
complexity by a factor of O(n3 log(n)) qubits per node compared to existing protocols. To achieve universal
computation, we develop a distributed procedure for verifying magic states, which allows us to apply distributed
gate teleportation and which may be of independent interest. We showcase our protocol in a small example for a
seven-node network.

DOI: 10.1103/PhysRevA.102.022405

I. INTRODUCTION

Secure multiparty computation is a task which allows n
nodes of a network to jointly compute a function on their
inputs [1]. The inputs are private, meaning that they are only
known to the nodes who supplied them. What is more, the
only information that can be inferred about the private inputs
is whatever can be inferred from the outputs of the com-
putation and the computation itself. Multiparty computation
allows for distributed evaluation of any function, and hence
it is a powerful cryptographic primitive with many practical
(e.g., clearing a commodity derivative market) and theoretical
(e.g., zero-knowledge proofs) applications [2].

In the domain of quantum computation the problem of
multiparty quantum computation (MPQC) on quantum data
was first introduced in [3]. It can be defined as follows: each
node i = 1, . . . , n gets one, possibly unknown, input quan-
tum state ρi. The nodes jointly perform an n-input arbitrary
quantum circuit R on their inputs ρ1, . . . , ρn. The output
of the circuit is divided into n parts and each node i gets
the ith part of the output state (see Fig. 1). In MPQC there
can be nodes who do not follow the protocol (cheaters). We
then require that an MPQC protocol satisfies the following
informal requirements:

(a) Correctness: If there are no cheaters, then the protocol
implements the intended circuit R on the inputs of the nodes.

(b) Soundness: Cheaters cannot affect the outcome of the
computation of the other nodes, beyond their ability to choose
their own inputs.

(c) Privacy: Cheaters do not learn anything about private
inputs and outputs of the other nodes.

Throughout this paper we consider that an input ρi of each
node is a single-qubit state.

The approach taken in the original work [3] is based on a
subroutine called verifiable quantum secret sharing (VQSS)

*v.lipinska@tudelft.nl

and is a generalization of a classical multiparty computation
[4]. The security achieved by the protocol is information
theoretical, meaning that the cheaters are not constrained by
computational assumptions. However, the number of cheaters
has to be strictly smaller than n

6 . This bound was later lifted to
n
2 in [5], where authentication schemes and approximate error
correction were used. However, this solution requires signif-
icantly more qubits to be realized. At the same time, there
exist parallel approaches that tolerate a cheating majority and
whose security relies on computational assumptions, for ex-
ample, for the case of n = 2 [6] or its recent generalization to
n > 2 [7]. Note that a protocol tolerating more than n

2 cheaters
is not possible without additional computational assumptions,
since that would imply the existence of unconditionally secure
bit commitment [8,9].

In this work we are interested in the former approach to
MPQC, namely, the one based on VQSS from [3]. Our objec-
tive is to perform MPQC on a quantum network with n nodes
using as few qubits as possible. The approach we take is based
on [3] and extensively relies on techniques from fault-tolerant
quantum error correction. It can be intuitively understood as
follows. Nodes use a chosen quantum error correcting code
and create a global logical state �̄ by encoding each of the
single-qubit input states. Each node holds a part of this logical
state; we call this part a share. They verify the encoding of
each state using a verifiable secret sharing protocol, perform
local operations to evaluate a logical version of the circuit R,
and then locally reconstruct their outputs.

To be able to apply any circuit R this way, we need two
properties. First, R must be composed of gates which form
a universal set, i.e., any circuit can be decomposed into gates
from that set. Second, if the nodes apply only local operations
� from the universal set, it should yield a meaningful logical
operation �̄ for the global state �̄. This property is called
transversality. However, for any error correcting code, it is
impossible to perform universal quantum computation using
only transversal gates [10]. For this reason, it is common
to extend a transversal set of gates (for example, Clifford

2469-9926/2020/102(2)/022405(15) 022405-1 ©2020 American Physical Society

https://orcid.org/0000-0003-2116-9721
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.022405&domain=pdf&date_stamp=2020-08-07
https://doi.org/10.1103/PhysRevA.102.022405

LIPINSKA, RIBEIRO, AND WEHNER PHYSICAL REVIEW A 102, 022405 (2020)

FIG. 1. Each of the nodes 1, . . . , n provides a single-qubit in-
put ρ1, . . . , ρn. The goal of the multiparty quantum computation
(MPQC) protocol is to implement circuit R such that each node gets
an output ω1, . . . , ωn without gaining any knowledge of the other
inputs or outputs beyond their ability to choose their own inputs.
Note that the inputs (and outputs) can be entangled.

gates) with a nontransversal gate (for example, the T gate
or the Toffoli gate). Note that there exist methods to realize
single nontransversal gates in a distributed way, for example,
by using ancilla states [11] or locally modifying the error
correcting code [12].

In particular, Ref. [3] considers quantum polynomial codes
and a universal set of gates with the Toffoli gate [12]. This
solution is very expensive in qubits. First, the polynomial
codes require local shares whose dimension scales with the
number of nodes and, therefore, require �(log n) qubits per
share. Moreover, the nodes need to perform a distributed
encoding of the shares in order to apply the Toffoli gate.
This means that each input state must be encoded three
times using the polynomial code. Performing the three-level
encoding serves one more purpose, namely, it localizes all of
the errors in the encoding to the positions of the cheaters.
As a result, the cheaters cannot force the protocol to abort,
since any error they introduce will always be corrected by the
underlying polynomial code. All in all, each node needs an
operational workspace of �((n3 + n2s2) log n) qubits, where
s is the security parameter of the protocol (see Table I). We
remark that in schemes based on exact error correcting codes,
the number of cheaters t is intrinsically constrained by the
distance d of the underlying code as t � � d−1

2 �, which in
principle can reach n

4 [13,14]. However, the technique for
applying the Toffoli gate in [3] puts a constraint on the number
of cheaters to n

6 .

Since near-term quantum networks will be able to support
only a small number of qubits, it would be preferable to
implement an MPQC protocol with as few qubits as possible.
So far, reducing quantum resources has received a lot of at-
tention in the domain of nondistributed quantum computation
and simulation (see, for example, [15–19]). Recently, in [20]
we considered a problem of reducing quantum resources for
a distributed protocol, namely, verifiable secret sharing of a
quantum state. Here we address a similar issue of whether
distributed multiparty quantum computation can be performed
on a quantum network with fewer quantum resources. We
answer this question positively by proposing a scheme for
universal distributed computation which uses fewer qubits
compared to the existing approach from [3] outlined above.

This paper is organized as follows. In Sec. II we summarize
our contributions; in Sec. II A we discuss the implications of
our protocol for resource reduction and in Sec. II B we give
an explicit example of the protocol in a seven-node network.
In Sec. III we zoom in on the technical aspects of our work.
There we present the protocol in detail and provide formal
security statements. We leave our technical proofs for the
Appendix.

II. RESULTS

We propose a protocol for secure multiparty quantum
computation where each node holds single-qubit shares. Our
approach is based on quantum error correcting codes, similar
to the idea in [3,5,21]. The key to our results is using error cor-
recting codes which encode a single qubit into n single qubits.
Since our interest lies in reducing the quantum resources
necessary to realize the protocol, we abandon the original idea
of three-level encoding at the cost of allowing the protocol
to abort if the initial encoding of the shares is incorrect.
Thanks to this, we are able to execute the protocol with fewer
qubits per node in the workspace and a lower communication
complexity (see Table I). Moreover, we develop a procedure
for the distributed verification of any logical state which
is stabilized by a Clifford gate. This allows us to perform
distributed gate teleportation and implement a universal set
of gates without creating three levels of encoding. What is
more, we follow the approach outlined in [20], which allows
for a sequential execution of the verification of the inputs. This
solution reduces the operational workspace to n2 + 4n qubits
per node. We elaborate on these techniques in the next section,
Sec. II A. We show that our protocol is secure in the presence

TABLE I. Summary of qubit savings presented in this paper. s denotes the security parameter of the protocol, #ancillas denotes the number
of ancillas in circuit R, #T denotes the number of T gates, and #Toff is the number of Toffoli gates. The size of the workspace in our protocol
does not depend on the security parameter, because of the sequential execution of the verification phase (see Sec. III B 1). Note that here we
do not list the work in [7], since the protocol there does not use techniques based on error correction and achieves computational security
guarantees.

Our protocol Crepeau et al. [3]

Size of the input, in qubits per node 1 �(log n)
Size of an individual share during the computation,

in qubits per node 1 �(log n)
Number of qubits in workspace per node n2 + 4n �((n3 + n2s2) log n)
Number of qubits sent per node O((n + #ancillas + #T)ns2) O((n2 + #ancillas + #Toff)n3s2 log(n))

022405-2

SECURE MULTIPARTY QUANTUM COMPUTATION WITH … PHYSICAL REVIEW A 102, 022405 (2020)

of active nonadaptive cheaters (see paragraph “Adversary
model,” below), where the number of cheaters is constrained
by the distance d of the underlying error correcting code,

i.e., t � � d−1
2 �. Finally, we showcase our protocol in a small

example for seven nodes using Steane’s seven-qubit code
[22].

Outline 1 (multiparty quantum computation).
Input: single-qubit state ρi from each node, CSS code Ĉ with transversal Cliffords, circuit R.

1. Sharing and verification
Each node i = 1, . . . , n encodes her input ρi using code Ĉ into an n-qubit logical state and sends one qubit (i.e., one
single-qubit share) of the logical state to every other node, while keeping one for herself. The nodes jointly verify the
encoding done by node i using a verifiable quantum secret sharing protocol (see Protocol 1; Sec. III B 1).

2. Computation
(a) For every Clifford gate in circuit R:

The nodes apply transversal Clifford gates locally to qubits specified by circuit R.
(b) For every T gate in circuit R applied to qubit i:

Node i prepares the magic state |m〉 = 1√
2
(|0〉 + ei π

4 |1〉). The nodes verify it using the Verification of
Clifford-Stabilized States protocol (see Protocol 3; Sec. III B 3). If the verification is successful, the nodes
perform Distributed Gate Teleportation (see Protocol 2; Sec. III B 2).

Every |0〉 ancilla state required for circuit R, which is prepared by node i, is jointly verified by the nodes using
verifiable quantum secret sharing, Protocol 1 (Sec. III B 1).

If the verification of any step fails, the nodes substitute their shares for |0〉 and abort the protocol at the end of the
computation.

3. Reconstruction
Each node i collects all shares of her part of the output. She corrects errors using code Ĉ and reconstructs her output.

Network model. We consider a quantum network with n
nodes. Each node can locally process O(n2) qubits and can
perfectly process and store classical information. Each pair
of nodes is connected via private and authenticated classical
[23] and quantum [24] channels. Additionally, we assume that
the nodes have access to an authenticated classical broadcast
channel [25] and a public source of randomness. Note that a
source of randomness can be created, for example, by running
a classical multiparty computation protocol [26].

Adversary model. We say that t out of n nodes are active
cheaters during the protocol. This means that they can act
maliciously throughout the entire execution of the multiparty
computation and perform arbitrary joint quantum operations
on their shares, possibly with quantum side information.
Therefore, the security of our protocol does not rely on com-
putational assumptions. We assume that the active cheaters
are nonadaptive, meaning that they are determined prior to
the beginning of the protocol and stay fixed throughout its
execution. On the other hand, the nodes which follow the
protocol exactly are honest. A protocol tolerates the presence
of t active cheaters if they cannot influence the output of the
protocol beyond choosing their own inputs.

A. Techniques

Thanks to using single-qubit error correcting codes, dis-
tributed verification of magic states, and the possibility of
aborting the protocol and sequential verification of the inputs,
our MPQC protocol lowers the number of qubits that each
node needs to control and send. Here we discuss in detail all
the reductions made by our protocol. Then we give an explicit
example of a protocol based on Steane’s seven-qubit code.

(1) Single-qubit Calderbank-Shor-Steane (CSS) codes. We
consider a class of CSS error correcting codes [22,27], which
encode a single logical qubit into n physical qubits and for
which applying Clifford gates is transversal (see Sec. III A
for details). In particular, this means that each input state
and each encoded ancilla are encoded and distributed using
single-qubit shares. For comparison, the protocol in [3] uses a
class of polynomial codes, called Reed-Solomon codes [12],
where the size of individual shares increases with the number
of nodes n in the network as �(log n) qubits.

(2) MPQC with abort. We introduce an “abort” event in
the MPQC protocol. That is, the protocol aborts if there are
more than t errors introduced by the cheaters, accumulated
over all inputs. This condition is necessary, since applying
a transversal gate between different logical inputs can still
propagate errors between them. As a result, we are able
to perform the MPQC protocol on the two-level encoding
created by the VQSS subroutine (see Sec. III B). This allows
us to achieve a lower communication complexity: in our
protocol each node sends O((n + #ancillas + #T)ns2) qubits,
as opposed to O((n2 + #ancillas + #Toff)n3s2 log(n)) qubits
in [3], where s denotes the security parameter of the protocol,
#ancillas denotes the number of ancillas in circuit R, #T
denotes the number of T gates, and #Toff is the number of
Toffoli gates. Note that in our protocol we can avoid the
abort event by creating the third level of encoding, following
the idea from [3]. This approach confines the errors of all
inputs only to the positions of t cheaters (see Sec, IV for
discussion). However, this solution significantly increases the
quantum communication complexity. Since our objective is to
reduce the number of qubits, we do not consider this approach
here.

022405-3

LIPINSKA, RIBEIRO, AND WEHNER PHYSICAL REVIEW A 102, 022405 (2020)

(3) Verification of Clifford-stabilized states. We develop a
distributed method for verifying states stabilized by Clifford
gates, which, in particular, can be applied to verify magic
states. This solution allows us to perform distributed gate
teleportation and apply the T gate in a distributed way. Recall
that for our MPQC protocol we choose CSS codes with
transversal Clifford gates. This, together with distributed gate
teleportation and transversal measurements, provides a way to
apply a universal set of gates in a distributed way. Thanks to
using magic-state ancillas, we can perform the computation on
a two-level encoding created during the verification phase (see
Protocol 4; Sec. III C). This means that each node controls n2

single-qubit shares of all inputs. In contrast, in the approach
in [3] the nodes need to apply a nonlinear Toffoli gate to
achieve universality of computation. This, in turn, requires a
workspace of �((n3 + n2s2) log n) qubits per node.

(4) Sequential verification. We use the verifiable quantum
secret sharing protocol from [3] to verify that the encoding
was carried out correctly and that at the end of the compu-
tation there will be a state to reconstruct. The verification
procedure requires ancillary states. However, following the
idea developed in [20], we perform the verification in a
sequential way. That is, to verify each input we use the ancillas
one by one instead of all at once as in [3]. In particular, the
nodes use at most 2n single-qubit ancillas at a time to verify
the input states (or ancillas in R) and at most 4n single-qubit
ancillas to apply the T gate.

All in all, this amounts to an operational workspace of at
most n2 + 4n single-qubit shares for our protocol. Of those, n2

shares correspond to the input states on which the distributed
computation is performed. For comparison, the protocol in
[3] requires simultaneous control over �((n3 + n2s2) log n)
qubits per node, where s is the security parameter of the proto-
col. Moreover, due to the possibility of aborting the protocol,
our MPQC scheme lowers the communication complexity.
That is, our protocol reduces the number of qubits that each
node has to send by a factor of O(n3 log(n)) compared to the
protocol in [3].

Finally, when the number of cheaters t is restricted by
the distance d of the CSS code, i.e., when t � � d−1

2 �, we
prove that our protocol satisfies the usual security require-
ments (soundness, completeness, and privacy; see Sec. I).
Our statements follow from the fact that any error correcting
code has the ability to correct at most � d−1

2 � arbitrary errors,
and therefore, any errors introduced by the cheaters can be
corrected by the honest nodes. What is more, the inputs
and outputs of honest nodes will also be private, since if
they recover the outputs exactly, then the cheaters get no
information about inputs or outputs [28]. Our statements hold
with a probability exponentially close to 1 in the security
parameter s.

B. Example for seven nodes

Let us consider a network of n = 7 nodes and assume that
the nodes want to perform a CNOT between input ρ1 and input
ρ2 of nodes “1” and “2” of the network. For the execution of
this protocol we need a workspace of 28 qubits per node. For
the sake of the example, we also assume that the inputs are
pure single-qubit states, ρ1 = |ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2|,

and that the protocol does not abort. The seven-qubit Steane’s
code [22] is the smallest example of a qubit CSS code with
transversal Cliffords. This code has distance d = 3, meaning
that it can correct � d−1

2 � = 1 arbitrary error. This also means
that in an MPQC protocol built on the seven-qubit code, we
can tolerate t = 1 cheater.

Sharing and verification. Node 1 encodes her single-qubit
pure input |ψ1〉 into seven physical qubits using Steane’s code
encoding map E . She sends one qubit to each of the remaining
six nodes, while keeping one qubit to herself. Each node again
encodes the received qubit using Steane’s code and shares six
qubits of that encoding with other nodes. At this point the
input state |ψ1〉 has been encoded twice, i.e.,

¯̄�1 = E⊗7 ◦ E (|ψ1〉〈ψ1|), (1)

Each node holds seven qubits in total (Fig. 2).
The nodes run the verification procedure according to [20],

verifying that the encoding of each node i was done correctly.
The encoding of each input state can be verified one at a
time. In one round of verification of a single input, each node
uses at most 14 local ancilla qubits. The ancilla shares are
encoded twice with the seven-qubit code and distributed in
the same way as the input states. The nodes randomly perform
the CNOT gate between ¯̄�1 and an ancilla, to identify errors
possibly introduced by cheating nodes. These ancillas are then
measured and the outcome of the measurement allows the
nodes to jointly conclude whether verification of the encoding
was correct, i.e., whether the distributed input states have at
most t = 1 error on the same position. If so, then the errors
are correctable by the seven-qubit code, and the nodes hold
a valid logical state of the code. This procedure is repeated
s2 + 2s times in total, where s is the security parameter.

The same sharing and verification procedure is carried out
for node 2 and her single-qubit pure input |ψ2〉: it is first
shared, as the logical state

¯̄�2 = E⊗7 ◦ E (|ψ2〉〈ψ2|), (2)

and then verified. As before, the verification requires at most
14 local ancilla qubits at a time. After the second verification
each node holds 14 verified data qubits corresponding to the
logical inputs ¯̄�1 ⊗ ¯̄�2. Note that the input states are never
measured.

Computation. Each node applies the CNOT gate locally to
shares coming from nodes 1 and 2. The CNOT gate is a Clifford
gate. Therefore, since the inputs are verified to be logical
states of the seven-qubit code, applying the CNOT locally is
well defined and yields a logical operation between logical
inputs ¯̄�1 ⊗ ¯̄�2. Let us define the output of the computation
¯̄ω,

¯̄ω = CNOT(¯̄�1 ⊗ ¯̄�2). (3)

Reconstruction. Nodes 1 and 2 get all of the shares corre-
sponding to their own outputs, i.e.,

¯̄ω1 = tr2(¯̄ω), ¯̄ω2 = tr1(¯̄ω). (4)

They separately run the local error correcting circuit of the
seven-qubit code on ¯̄ω1 and ¯̄ω2, respectively. They identify er-
rors [see Reconstruction in Protocol 4 (Sec. III C) for details].
This is necessary, since the cheater might have introduced

022405-4

SECURE MULTIPARTY QUANTUM COMPUTATION WITH … PHYSICAL REVIEW A 102, 022405 (2020)

FIG. 2. Two-level encoding of the input qubit state ρ1 of node 1. The double-encoded distributed state is denoted ¯̄�1. Each circle represents
a single-qubit share.

errors during or after the computation, and right before the
reconstruction. Each of nodes 1 and 2 corrects errors and
reconstructs her output, ω1 and ω2, respectively. The outputs
are single-qubit states and are such that

ω1 = tr2(CNOT(|ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|)), (5)

ω2 = tr1(CNOT(|ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|)). (6)

We remark that to tolerate a larger numbers of cheaters t
one can use CSS error correcting codes Ĉ with a larger dis-
tance for which implementation of Clifford gates is transver-
sal. For example, using the so-called color codes [29], one can
construct MPQC with the total number of nodes expressed
in terms of the number of cheaters t as n = 2t2 + 4t + 1,
n = 3t2 + 3t + 1, and n = 6t2 + 1.

III. METHODS

In this section we discuss our MPQC protocol in detail.
We lay down the framework by first discussing properties
of CSS codes which will be useful for the distributed com-
putation in Sec. III A. Then we introduce a few important
subroutines, namely, verifiable secret sharing (Sec. III B 1),
distributed gate teleportation (Sec. III B 2), and verification of
Clifford-stabilized states (Sec. III B 3). Finally, we discuss our
multiparty quantum computation protocol in Sec. III C and
state its security in Sec. III D.

A. CSS codes

In our considerations we focus on a class of error correcting
codes called Calderbank-Shor-Steane codes [22,27]. A CSS
code C is defined through two binary classical linear codes, V
and W , satisfying V ∗ ⊆ W , where V ∗ is the dual code of V .
Then C := V ∩ FW is a set of states of n qubits which yield
a code word in V when measured in the standard basis and a
code word in W when measured in the Fourier basis. A code
encoding one logical qubit into n physical qubits is commonly
denoted by double square brackets, [[n, 1, d]]. Here d is the

distance of the code, which relates to the maximum number
of arbitrary errors t which the code can correct as t � � d−1

2 �.
In distributed computation each node can only apply local

operations. Therefore, we want logical operations �̄ to be
implemented by applying local operations � on the individual
qubits held by the nodes and encoded with C, i.e., �̄ = �⊗n.
This property is called transversality. For our construction of
the MPQC protocol we choose specific CSS codes Ĉ with
transversal operations, which satisfy the following.

(1) Ĉ uses the same classical code to correct X and Z
errors, i.e., V = W .

(2) The weight of the stabilizer generators of Ĉ is a multi-
ple of 4, and the logical Pauli operators X and Z have weight
1 mod 4 or 3 mod 4.

Property 1 guarantees that the Hadamard gate H can be
applied transversally, while property 2 guarantees that the
phase gate P = (1 0

0 i) can be applied transversally. Addition-
ally, note that the CNOT gate is transversal for any CSS code.
Since H , P, and CNOT generate the Clifford set, one can apply
any Clifford gate on the code Ĉ transversally [30]. Finally,
any CSS code has the property that measurements can be
performed qubitwise, but the measurement outcome of every
qubit must be communicated classically to obtain the result of
the logical measurement.

B. Subroutines

Here we list and describe the subroutines we use later as
building blocks in our MPQC protocol. We start by reviewing
an existing construction of verifiable quantum secret sharing
used for verifying inputs in MPQC. Next we discuss two
of our contributions: distributed gate teleportation and veri-
fication of states stabilized by Clifford gates. The latter two
subroutines are essential for implementing universal circuits
in MPQC.

1. Verifiable quantum secret sharing

One of the first ingredients of our MPQC protocol is
verifiable quantum secret sharing, first introduced in [3] (see
Protocol 1, above). Here we use a modified version of the

022405-5

LIPINSKA, RIBEIRO, AND WEHNER PHYSICAL REVIEW A 102, 022405 (2020)

scheme, which we introduced in [20] to reduce the qubit
workspace required for each node. A VQSS scheme is one
which shares a quantum state among n nodes in a verifiable
way using quantum shares. The scheme we use is based on a
CSS code C with distance d and tolerates at most t � � d−1

2 �
nonadaptive active cheaters. We remark that the scheme works
for any CSS code C.

Let us describe the task in detail. In VQSS the dealer D
encodes her input state ρ using the code C. The encoding
produces an n-qubit entangled state. D shares this state among
the nodes by sending one qubit to each node. Each node then
encodes the received one-qubit share again, with the same
error correcting code, into n qubits and sends one qubit to
each of the n nodes. This way each node holds n single-qubit
shares. We denote a double-encoded logical global state of
the nodes with a double bar, ¯̄�. Henceforth throughout the
paper we use the index i = 1, . . . , n to denote the encoding
performed by node i and 	 = 1, . . . , n to denote the share
held by node 	. The share held by node 	 and coming from
encoding performed by node i is denoted ¯̄� i	 .

The nodes run a verification procedure to verify that ¯̄� is
a valid code word of the code C. The verification is a general-
ization of Steane’s error correction method to the distributed
setting [31]. More specifically, the nodes publicly check that
there are at most t � � d−1

2 � errors at the first level of encoding,
i.e., the encoding done by the dealer. To do so, they use ancilla
qubits encoded twice with the same code C. These ancillas
are measured during the verification. Since C is a CSS code,
the measurement outcomes yield a code word from a classical
code V (code W) when measured in the standard (Fourier)

basis. Using an error correcting procedure for the classical lin-
ear codes allows the nodes to identify shares of the first-level
encoding which carry errors. The positions of these shares are
collected in a public set B of apparent cheaters (indeed, there
is no way to distinguish errors introduced by the dealer from
errors introduced by the cheaters in the first-level encoding).
If there are at most t first-level errors (i.e., |B| � t), the dealer
passes the verification. Moreover, since the protocol assumes
the existence of at most t cheaters, there can be at most t errors
in each second-level encoding. Therefore, if the dealer passes
the verification, at the end of the protocol there will always be
a state to reconstruct, since errors in both first- and second-
level encoding can be corrected by the code C. Following
the idea introduced in [20], this verification procedure can be
performed by encoding and measuring one ancilla qubit at a
time. There are s2 + 2s iterations of the verification procedure,
where s is the security parameter. Additionally, similarly to
[20], we use CSS codes which encode a single qubit into n
single qubits. The sequential VQSS protocol requires a 3n-
qubit workspace per node to verify one single-qubit input state
(see [20] for details). Each node needs to send O(n2s2) qubits.

Verification of logical 0 [VQSS(0)]. In the following sec-
tions we make use of a handy property of the VQSS protocol
in [3]. Namely, the protocol can verify that the state shared by
the nodes is exactly the logical | ¯̄0〉 of code C (see [3,20,21]).
The verification phase is almost the same as in the VQSS pro-
tocol in [3], except now the nodes check whether the classical
measurement outcomes interpolate to 0 after decoding them
twice with a classical decoder (see [3,21] for details). We refer
to this verification procedure as VQSS(0).

Protocol 1 (verifiable quantum secret sharing (VQSS) [3,20]).
Input: Single-qubit state ρ of dealer D to share, CSS error correcting code C.
1. Sharing

The dealer D encodes her input ρ into a logical state using code C and sends each qubit of the logical state to every
other node, while keeping one for herself. Each node encodes the share received from D again using C and shares
among the nodes, keeping one qubit for herself. Therefore, the nodes create a two-level encoding of ρ. At this point
each node holds n single-qubit shares coming from every other node.

2. Verification
The nodes verify whether D is honest, i.e., that the shares held by the nodes are consistent with a code word of C and at
the end of the protocol a state will be reconstructed. The nodes construct a public set B which records the positions of
nodes with inconsistent shares in the first level of encoding.

Each node uses at most additional 2n ancilla qubits for one iteration of the verification procedure. There are s2 + 2s
iterations of verification, where s is the security parameter. If |B| � t , the dealer passes the verification phase.

2. Distributed gate teleportation

To perform universal computation, we need a universal
set of gates. However, Clifford gates by themselves are not
a universal set. An example of a set that is universal is the
set generated by the Clifford gates extended with the T = √

P
gate [32], denoted Cliff + T .1 On the other hand, for any error

1One can efficiently approximate any gate G within distance ε

using polylog(1/ε) gates from the set Cliff + T [33].

correcting code, it is impossible to perform universal quantum
computation using only transversal gates [10]. In particular,
for the class of CSS codes under consideration, Ĉ, the Clifford
gates can be applied transversally (see Sec. III A), but the T
gate cannot.

To remedy this problem in the domain of quantum (nondis-
tributed) computing, one can use a technique called gate
teleportation [11]. In particular, for the T gate, the idea is to
use a specially created ancilla state, measure, and apply a cor-
rection depending on the measurement outcome (see Fig. 3).
Importantly, this correction is done with XP†, and since XP†

022405-6

SECURE MULTIPARTY QUANTUM COMPUTATION WITH … PHYSICAL REVIEW A 102, 022405 (2020)

|m

{0, 1}

I or XP †

|ψ

T |ψ

FIG. 3. Gate teleportation of the T gate. The circuit applies the
T gate to an arbitrary single-qubit state ρ. Each state may be logical
and each operation may be applied transversally.

is a Clifford gate, it can be applied transversally. The cost of
this procedure is to create the special ancilla state, which is
commonly referred to as a magic state. In the case of the T
gate it is |m〉 = 1√

2
(|0〉 + eiπ/4|1〉).

We generalize this procedure to a distributed setting (see
Protocol 2, below). Our protocol takes two states as an input,
logical ¯̄� and logical | ¯̄m〉, each encoded twice (two-level

encoding) with code Ĉ. We assume at this point that both states
are verified with respect to the same dealer D. The verification
of ¯̄� can be performed with VQSS. However, verifying that
| ¯̄m〉 is exactly the magic state is nontrivial and we introduce it
in the next section.

To apply a logical T gate to ¯̄� the nodes first perform
a logical transversal CNOT operation on their shares, taking
shares of | ¯̄m〉 as a control and shares of ¯̄� as a target.
Then each node i = 1, . . . , n measures the target qubit in
the standard basis and announces the measurement outcome.
The nodes publicly check whether the measurement collapsed
the target state onto a classical string corresponding to a
logical | ¯̄0〉 or a logical | ¯̄1〉. To do so, they check whether
the resulting string of measurement outcomes vi interpolates
to 0 or to 1 using the classical decoder twice. At the same
time the nodes update the set of errors B. If the interpolated
value is 0, then no correction is necessary. If the interpo-
lated value is 1, then the nodes apply the correction XP†

transversally.

Protocol 2 [distributed gate teleportation (GTele)].
Input: ¯̄�, | ¯̄m〉 distributed by D to the nodes and verified by the nodes using VQSS (Protocol 1; Sec. III B 1), set of apparent
cheaters B from verification of ¯̄� and | ¯̄m〉.
Output: Logical T gate applied to the input logical state, ¯̄T (¯̄�).

1. Each node 	, for a share coming from node i:
(a) applies CNOT with | ¯̄m〉i	 as the control qubit and ¯̄� i	 as the target qubit;
(b) measures the target qubit in the Z basis and broadcasts the result using the secure broadcast channel (see

paragraph “Network model”; Sec. II).
2. Broadcasted values yield words vi. Nodes publicly check at which positions the errors occurred using the classical

decoder and update set B with the positions of errors. They decode the classical value a:
(a) If a = 0, the nodes do not apply any correction.
(b) If a = 1, the nodes apply XP† to their shares.

3. Verification of Clifford-stabilized states

One last ingredient we need to perform distributed compu-
tation is to verify that the logical magic state | ¯̄m〉 is indeed the
logical magic state. This is necessary since we want to be sure
that when we apply the T gate in a distributed way, the result
will be the T gate on the shares of honest nodes.

Here we present a protocol, Protocol 3, to verify the magic
state in a distributed way. In fact, our protocol works for any
qubit state |g〉 stabilized by a single-qubit Clifford gate G.
Our idea is inspired by the so-called stabilizer measurement
in quantum error correction (see Fig. 4). Consider a single-
qubit gate XP† with a +1 eigenstate |m〉. Then it holds that
state |+〉|m〉 is stabilized by the controlled XP† gate, C-XP†,
where |+〉 is used as a control and |m〉 is used as a target.
That is,

C-XP†(|+〉|m〉) = |+〉|m〉. (7)

This gives us an insight into how the verification of |m〉
should work: if the target state was the magic state, then after
performing C-XP† we will always measure the control in |+〉
(or, equivalently, first apply H and measure 0). Additionally,

if the target was not in the magic state and we measure the
control in |+〉, we will project the target onto |m〉. For this to
work, we need to make sure that the control qubit was in |+〉
before applying the controlled gate.

We adapt this procedure to run on the logical level in a
distributed way as follows. Using VQSS(0), the nodes first
verify a logical | ¯̄0〉 encoded and shared by D. They also
share | ¯̄m〉 and verify that it is a valid code word of Ĉ using
the VQSS protocol (Protocol 1; Sec. III B 1). This step is

H H|0

|m

0

|mXP †

FIG. 4. Verification of the magic state using stabilizer measure-
ment. The circuit verifies that the target input is the magic state
using the fact that state |+〉|m〉 is stabilized by the controlled C-XP†

gate.

022405-7

LIPINSKA, RIBEIRO, AND WEHNER PHYSICAL REVIEW A 102, 022405 (2020)

necessary since we want the transversal operations which
the nodes will perform in the next steps to be well defined.
Each of the nodes now applies the Hadamard gate to her
share of | ¯̄0〉 to turn it into a logical | ¯̄+〉 and subsequently
performs C-XP† between her shares of | ¯̄+〉 and | ¯̄m〉. Then
the nodes apply the Hadamard gate to the control qubits one
more time and measure in the standard basis. They announce
their measurement results and use the classical decoder to get
the value a, just as in VQSS(0) and GTele. Note that the
protocol works as long as the gate C-XP† can be applied

transversally with respect to the code used to encode | ¯̄0〉
and | ¯̄m〉.

Protocol 3 requires an operational workspace of 4n qubits
per node. First, the verification of | ¯̄m〉 requires a 3n-qubit
workspace per node. After this verification step, each node
needs to store n qubits of | ¯̄m〉 and uses an extra 3n-qubit
workspace to verify | ¯̄0〉. This amounts to a 4n-qubit workspace
per node. The communication complexity is the same as in the
sequential VQSS protocol, that is, O(n2s2) qubits per node,
where s is the security parameter.

Protocol 3 [verification of Clifford-stabilized states (VMagic)].
Input: |0〉 and |g〉 prepared by D, single-qubit Clifford gate G stabilizing |g〉, error correcting code Ĉ, set of apparent
cheaters B.

Output: verified logical states | ¯̄0〉 and | ¯̄g〉.
1. The nodes run VQSS(0) with |0〉 as an input and VQSS with |g〉 as an input with dealer D. They update set B with

apparent cheaters B0 revealed in verifying |0〉 and apparent cheaters Bg revealed in verifying |g〉.
2. Each node 	, for all shares coming from node i:

(a) applies H to | ¯̄0〉i	 ;
(b) applies C-G with | ¯̄0〉i	 as the control qubit and | ¯̄g〉i	 as the target qubit;
(c) applies H to control qubit;
(d) measures the control qubit in the Z basis and broadcasts the result using the secure broadcast channel

(see paragraph “Network model”; Sec. II).
3. Broadcasted values yield words vi. Nodes publicly check at which positions the errors occurred using the classical

decoder and update set B with the positions of errors. They decode the classical value a:
(a) If a = 0, continue.
(b) If a = 1, set B = [n] (this will cause the MPQC protocol to abort after the computation phase).

C. Multiparty quantum computation

We are now ready to perform a distributed computation us-
ing the ingredients from the previous sections. Recall that the
goal of the protocol is to perform a circuit R in a distributed
way on n single-qubit private inputs ρ1, . . . , ρn, each coming
from one node 1, . . . , n. Note that the inputs can possibly be
entangled. In universal MPQC we compute an arbitrary circuit
R. We choose Clifford gates supplemented with a T gate to be
our universal set of gates.

Sharing and verification. During this phase the nodes
jointly verify whether dealer Di is honest, i.e., whether there
are fewer than t � � d−1

2 � errors in the first-level encoding
performed by Di. They publicly record the positions at which
the errors occurred in the set of apparent cheaters Bi corre-
sponding to dealer Di. After all of the dealers are verified,
they publicly construct a global set of apparent cheaters B (see
step 2 of Protocol 4, below). If |B| � t , the protocol continues.
Note that |B| � t implies that each of the honest nodes holds
shares with at most t errors at the same positions of the
first level of encoding. Otherwise, when |B| > t , the honest
nodes know they will abort the protocol after the computation
and replace their shares with |0〉. This step is necessary to
complete the security proof.

In this phase each node requires a workspace of n2 + 2n
qubits to verify all of the inputs in a sequential way and sends
(n + 1)ns2 qubits, where s is the security parameter. The size
of the workspace for our MPQC protocol does not depend

on s since the verification phase of VQSS is performed in a
sequential way.

Computation. In the computation phase, the goal is to
compute circuit R on the twice-encoded (see Fig. 2) and
verified inputs. Note that the set B of apparent cheaters created
during the verification is public and cumulative throughout
the protocol. This means that it accumulates errors from exe-
cutions of VMagic, VQSS(0), and GTele in the computation
phase. If at any point |B| > t during these protocols, the
honest nodes proceed in the same way as in the verification
phase: they replace their shares with |0〉. At the end of the
computation phase the nodes look at set B. If |B| > t , the
protocol aborts. Otherwise, the nodes proceed to the recon-
struction phase.

The inputs require a workspace of n2 qubits per node.
For application of the T gate, each node needs a workspace
of an additional 4n qubits (see Protocol 3; Sec. III B 3).
Additionally, the verification of every ancilla in R requires
a workspace of 3n qubits per node. This means that each node
requires a workspace of at most n2 + 4n qubits in total. In this
phase, each node sends O((#ancillas + #T)ns2) qubits.

At this point the nodes hold a global state ¯̄ω. Let ¯̄ωk =
tr[n]\i(¯̄ω) be the outcome of each node i.

Reconstruction. After the computation phase the cheating
nodes can still introduce errors to the shares they hold before
sending them back to the corresponding dealers. Therefore,
each of the dealers, after receiving her original shares back,

022405-8

SECURE MULTIPARTY QUANTUM COMPUTATION WITH … PHYSICAL REVIEW A 102, 022405 (2020)

runs an error correcting circuit for the code Ĉ and identi-
fies further errors. If there are no more than t errors, she
reconstructs her output state ωi. In this phase, the nodes

just exchange the existing qubits, therefore the operational
workspace does not increase from n2 + 4n. Each node sends
n2 qubits.

Protocol 4 (multiparty quantum computation (MPQC)).
Input: private input ρi for every node i, circuit R, error correcting code Ĉ.

Sharing and verification

1. Each node i = 1, . . . , n runs sequential verifiable quantum secret sharing (VQSS; Protocol 1; Sec. III B 1) with
single-qubit input ρi and code Ĉ, acting as dealer Di. This way nodes create logical ¯̄� i encoded twice with Ĉ
(see Fig. 2).

2. The nodes publicly create sets Bi,	 containing all second-level errors from all n executions of sequential VQSS
(see [3] and [20] for details). For each node 	, if |Bi,	| > t , then they add node 	 to the set of apparent cheaters Bi for
dealer Di. After all n executions of VQSS, they create a global set of apparent cheaters B = ⋃

i Bi. If |B| > t , the
nodes know they will abort after the computation. They replace all the shares they hold with |0〉.

Computation

3. For every Clifford gate C of circuit R the nodes apply C transversally to their local qubits. For every T gate in R

applied to the input of Di:
(a) Di creates |0〉 and |m〉. The nodes run verification of Clifford-stabilized states (VMagic; Protocol 3; Sec. III B 3).

The nodes update set B with apparent cheaters from execution of VMagic. If |B| > t , the nodes replace all the
shares they hold with |0〉.

(b) The nodes apply distributed gate teleportation (GTele; Protocol 2; Sec. III B 2) to their shares of ¯̄� i and verified
| ¯̄m〉. The nodes update set B with apparent cheaters from execution of GTele. If |B| > t , the nodes replace all the
shares they hold with |0〉 and do not apply a correction in GTele (treating the measurement outcome as 0).

4. For every |0〉 ancilla necessary to perform circuit R, a node i /∈ B chosen at random using the public source of
randomness runs VQSS(0) acting as a dealer. She updates B with the set of apparent cheaters from the execution of
VQSS(0). The nodes use the verified | ¯̄0〉 to perform R. If |B| > t , the nodes replace all the shares they hold with |0〉.

5. If |B| > t , the protocol aborts. Otherwise, continue.
Let the logical global outcome of the computation be ¯̄ω, with ¯̄ωi = tr[n]\i(¯̄ω) corresponding to the outcome of each node i.

Reconstruction

6. Each node sends all of the shares of ¯̄ωi to Di.

7. Each Di:
(a) For each share coming from node j /∈ B, Di runs an error correcting circuit for code Ĉ. She creates a set of errors

B̃i, j such that it contains Bi, j , i.e., Bi, j ⊆ B̃i, j . If |B̃i,i| � t , then errors are correctable, and Di corrects them and
decodes the ith share obtaining ω̄i. Otherwise, Di adds j to the global set B.

(b) For all j /∈ B, Di randomly chooses n − 2t shares of ω̄i and applies an erasure-recovery circuit to them. She
obtains ωi.

Altogether, each node requires an operational workspace of
n2 + 4n qubits and sends O((n + #ancillas + #T)ns2) qubits
throughout the execution of the MPQC protocol, Protocol 4
(above).

D. Security statements

In this section we prove the security of our MPQC pro-
tocol. To do so, we first state the security framework and
definition following the work of [34–37]. We employ the
simulator-based security definition (see Definition 1, below).
It implies that the three properties—correctness, soundness,
and privacy—defined in Sec. I are automatically satisfied. Our
security definition uses two models of the protocol: “real” and
“ideal.” The real model corresponds to the execution of the

actual MPQC protocol. In the ideal model the nodes interact
with an oracle that perfectly realizes the MPQC task and is
incorruptible. The general idea is that the protocol is secure
if one cannot distinguish a real execution of MPQC from the
ideal one.

In the ideal model the honest nodes can only interact with
the oracle. What is more, they do so in a so-called “dummy”
way, i.e., they simply forward their input to the oracle and
output whatever they receive from the oracle. The cheating
nodes can collude and perform any joint operation on their
inputs before sending it to the oracle. Similarly, they can
perform any joint operation on whatever they receive from
the oracle before they output their state. Recall that we do
not make any assumption about the computational power of
the cheaters. For the purpose of the proof we will say that

022405-9

LIPINSKA, RIBEIRO, AND WEHNER PHYSICAL REVIEW A 102, 022405 (2020)

the cheaters can be corrupted by an adversary A who can
corrupt at most t nodes but otherwise is arbitrarily powerful.
Moreover, by Areal we denote the adversary in the “real”
protocol, and by Aideal the adversary in the “ideal” protocol.

Definition 1 (ε-security). We say that an MPQC protocol �

is ε secure if, for any input state ρ and any real adversary Areal,
there exists an ideal adversary Aideal, such that the output state
ωreal := �real(ρ) of the real protocol is ε close to the output
state ωideal := �ideal(ρ) of the ideal protocol, that is,

1
2 ‖ωreal − ωideal ‖1� ε. (8)

To prove the security of the MPQC protocol, Protocol 4
(Sec. III C), we first restate the soundness of the VQSS
protocol [3,20,21].

Lemma 1 (soundness of VQSS). In the verifiable quantum
secret sharing protocol, Protocol 1 (Sec. III B 1), either the
honest parties hold a consistently encoded secret or the dealer
is caught with a probability of at least 1 − 2−�(s).

Theorem 1. The multiparty quantum computation protocol,
Protocol 4 (Sec. III C), is κ2−�(s) secure, where κ = n + #T
gates + #ancillas in R.

Idea of the proof. Our proof is inspired by the approach
taken in [3] and [21], on which we expand and explicitly
show that the outputs of the real and ideal protocol are ε

close (see the Appendix). We construct an ideal protocol
using a common simulation technique, where Aideal locally
simulates the MPQC protocol, Protocol 4 (Sec. III C), with
honest nodes interacting with the cheaters. This means that for
any real adversary Areal we construct an ideal adversary Aideal

by saying that it internally simulates the execution of a real
protocol with the real adversary Areal. Then we formally write
the execution of the real protocol. We show that the outputs of
both protocols are equal in the case where the encoding in the
sharing phase of Protocol 4 is done correctly. We also prove
that the ε error in the security comes from the fact that the
verification of inputs and any ancillas needed for MPQC can
fail with a probability defined by Lemma 1 (above).

We remark that our security definition follows the
paradigm of sequential composability, formalized by the real-
vs-ideal security definition, Definition1 (above). The extend-
ability of our security definition to the more general frame-
work of universal composability [36,37] is left as an open
problem.

IV. DISCUSSION

In our protocol we allow an abort event when there are
too many errors introduced by the cheaters (see Protocol 4;
Sec. III C). However, this condition can be removed following
the approach outlined in [3] and [21] (there called top-level
sharing), at the cost of more rounds of quantum communi-
cation. Given that our objective is to save resources, we did
not pursue this path in this paper. However, we can introduce
a step before computation, in which the nodes perform a
distributed encoding (creating the third level of encoding) of
the verified inputs. In the following we expand on how the dis-
tributed encoding works and how it modifies the subsequent
steps of our MPQC protocol.

The nodes run the VQSS verification procedure for every
input state ρi but do not create a global set of cheaters. Instead,

they create a set Bi recording first-level errors in input state
ρi. To perform the distributed encoding of input ρi the nodes
use ancilla states prepared and encoded by the corresponding
dealer Di. The nodes also verify the ancillas using VQSS and
add the errors that occurred in the first level of encoding of
ancillas to Bi. If |Bi| � t , the nodes perform the distributed
encoding with the verified ancillas. The encoding can be done
transversally, since for any stabilizer error correcting code the
encoding procedure is a Clifford operation [38].

If a dealer is caught cheating, |Bi| > t , the protocol does
not abort. Instead, a node which has not been caught cheating
yet prepares an encoding of |0〉 and the nodes proceed to
verify it in the same way as before. Note that there will
be at most t failed tries in preparing a valid encoding of
|0〉 since there are at most t cheaters. Otherwise, upon a
successful verification of the encoded |0〉, the nodes proceed
to the distributed encoding. This step replaces the invalid
input from the cheater with a valid encoding of |0〉. The same
procedure, “try until you succeed,” can be adapted to verify
magic states and |0〉 ancillas needed to perform circuit R. The
nodes simply try until the verification of an ancilla has at most
t errors.

Performing the distributed encoding of the inputs adds the
third level of encoding before the computation phase. To per-
form the computation, the shares initially dealt by dealer Di

are then sent back to Di, who reconstructs them and corrects
the errors using the reconstruction step from VQSS (as in
Reconstruction of the MPQC protocol; Sec. III C). Note that
this reconstruction procedure removes two levels of encoding.
As a result, each node holds a single qubit corresponding to a
correctly encoded input state ρi, with at most t errors confined
to the cheaters’ positions. The protocol proceeds with the
distributed computation, but now the circuit is performed on
a single level of encoding. Since the errors are only on the
shares held by the cheaters, the errors will not propagate to
the honest shares during the computation. Therefore, after the
computation it will be possible to reconstruct outputs for the
honest nodes.

We remark that implementing the distributed encoding in
our MPQC protocol, Protocol 4, can be done in a sequential
way, similar to the execution of VQSS we present in Proto-
col 1 (Sec. III B 1). In fact, this does not increase the qubit
workspace per node; no node will exceed the workspace of
n2 + 4n. However, this approach has a significantly higher
quantum communication complexity. Specifically, in this ver-
sion of the protocol, each node needs to send O(n5s2) qubits.

Finally, an implementation of our MPQC protocol in a
quantum network can suffer from noise, for example, in
the communication channels or in local gates and storage.
Therefore, a careful analysis of the influence of noise on the
MPQC protocol and the security statements is still required.
Some steps towards analyzing the influence of noise in the
sending channels have already been taken in the context of
the verifiable quantum secret sharing protocol [39]. The work
analyzes the correctness and soundness of the VQSS protocol
in the presence of depolarizing and erasure noise in the
communication channels. It also proposes ways to improve
the performance of the protocol under these conditions. We
expect that these results should generalize to the MPQC
setting.

022405-10

SECURE MULTIPARTY QUANTUM COMPUTATION WITH … PHYSICAL REVIEW A 102, 022405 (2020)

ACKNOWLEDGMENTS

We thank B. Dirkse for useful discussions and K.
Chakraborty and M. Skrzypczyk for detailed feedback on
the manuscript. This work was supported by an NWO VIDI
Grant, an ERC Starting Grant, and NWO Zwaartekracht QSC.
This project (QIA) has received funding from the European
Union’s Horizon 2020 research and innovation program under
Grant Agreement No. 820445.

APPENDIX: SECURITY PROOF

Here we provide the security proof of our protocol based
on the simulator definition (see Definition 1; Sec. III D). We
first construct the ideal protocol step by step and model each
operation performed in this protocol by general maps and,
finally, express the output of this protocol ωideal in terms of
these maps. Then we analyze the real protocol and similarly
express its output ωreal in terms of the maps modeling the
real protocol. Finally, we compare the two outputs, ωideal and
ωreal, and show that they are exponentially close in the security
parameter s.

To prove security of the MPQC protocol, Theorem 1
(Sec. III D), we first state the following useful lemma. Intu-
itively, it says that sharing and verifying the input, performing
the distributed circuit, and decoding are equivalent to applying
the circuit to the inputs directly. Note that we consider the
decoding to be “hypothetical”: after the computation phase in
MPQC the nodes send all of the shares coming from input of
node i to node i, and node i reconstructs it.

Lemma 2. Let B be a set of apparent cheaters at the end
of the computation phase, such that |B| � t , and A be a set of
cheaters. Let D denote the decoding procedure for code Ĉ and
D̂ denote the erasure recovery circuit for code Ĉ. If the state ¯̄ρ
encoded twice with the code Ĉ is decodable, i.e.

ρ =
⊗
i∈[n]

⎛
⎝D̂B∪A ◦

⊗
	∈B∪A

D	

⎞
⎠(¯̄ρ), (A1)

then applying a logical gate ¯̄G (G ∈ Cliff + T) on ¯̄ρ is also
decodable, i.e.,

G(ρ) =
⊗
i∈[n]

⎛
⎝D̂B∪A ◦

⊗
	∈B∪A

D	

⎞
⎠(¯̄G(¯̄ρ)), (A2)

where ¯̄G is gate G applied transversally on the CSS code Ĉ if
G ∈ Cliff, or ¯̄G is the implementation of the T gate described
in Protocol 2 (Sec. III B 2) if G = T . The same property holds
when replacing G with the projective measurement in the Z
basis denoted P and where ¯̄P corresponds to measuring each
qubit of the double-encoded state in the Z basis followed by
broadcasting the outcome classically.

Proof. Lemma 2 follows from the fact that to realize a
logical gate ¯̄G it is sufficient to apply G honestly on shares
in B ∪ A. Indeed, applying a Clifford gate transversally on
shares in B ∪ A realizes a logical Clifford gate [30]. For a
CSS code Ĉ measuring each qubit in the Z basis and broad-
casting the measurement result realizes the logical transversal
measurement. Additionally, we implement the T gate by
composing an ancilla state, the Z measurement, and a Clifford

operation. Therefore, the transversal properties of Cliffords
and Z measurement can be transferred to this implementation
of the T gate.

Property 1. Let R be a circuit implementing a completely
positive trace preserving (CPTP) map. Lemma 2 holds when
replacing G with any circuit R,

R(ρ) =
⊗
i∈[n]

⎛
⎝D̂B∪H̄ ◦

⊗
	∈B∪H̄

D	

⎞
⎠(¯̄R(¯̄ρ)). (A3)

This follows from the fact that any circuit R can be repre-
sented as R = P ◦ U , where U can be decomposed into gates
from the set Cliff + T and P is a measurement.

As a reminder, let us restate the security of our MPQC
protocol.

The multiparty quantum computation protocol, Protocol 4
(Sec. III C), is κ2−�(s) secure, where κ = n + #T gates +
#ancillas in R.

Proof of Theorem 1. This proof is inspired by the approach
taken in [3] and [2]. In the following we construct a proof aim-
ing to show that the outputs of the real and ideal protocols are
ε close. We first construct an ideal protocol using a simulator
approach and formally state every step of the simulation. We
then formally write the execution of the real protocol.

Box 1. Registers used in the security proof.
Ideal protocol:

HS: registers of “dummy” inputs of the honest nodes in
the simulation.

AS: registers of the cheaters’ inputs.
H0: registers of the simulated honest nodes.
A0: registers of the simulated cheaters.

Real protocol:
HR: registers of honest nodes.
AR: registers of cheaters.

1. Ideal protocol

Aideal will locally simulate the MPQC protocol, Protocol 4
(Sec. III C), with honest nodes interacting with the cheaters.
The cheaters are controlled by Areal, and Areal is simulated
within Aideal (see Fig. 5). In the ideal model Aideal and the
honest nodes interact with an oracle that perfectly realizes
the MPQC task and is incorruptible. The oracle requires two
types of inputs: first, the input registers HS, A0 on which the
computation of the circuit will occur; second, a flag input
indicates whether the oracle should abort or continue. If the
flag input is “abort,” the oracle outputs | ⊥〉〈⊥ |. If the flag
input is “continue,” the oracle outputs the evaluation of circuit
R on the inputs HSA0. At any moment in this simulated
execution, the ideal adversary has access to all the simulated
registers, in particular, the set B of apparent cheaters. Let the
input to the simulation be

ρHSAS ⊗ |0〉〈0|H0A0 , (A4)

where ρHSAS denotes the input state of all nodes, such that
tr[n]\i(ρHSAS) = ρi.

(1) Aideal locally simulates sharing and verification with
simulated honest nodes using |0〉 as their input. The input

022405-11

LIPINSKA, RIBEIRO, AND WEHNER PHYSICAL REVIEW A 102, 022405 (2020)

FIG. 5. Schematic of our simulator-based security proof of the MPQC protocol, Protocol 4 (Sec. III C).

registers H0AS given to Aideal are forwarded to the simulated
Areal, i.e.,

σ
(1)
H0A0HSAS

= SVH0AS

(
ρHSAS ⊗ |0〉〈0|H0A0

)
, (A5)

where SVH0AS denotes the sharing and verification (see Proto-
col 4; Sec. III C) performed on registers H0 and AS . We assume
that the identity operation is applied on all the registers that are
not on the map SV , i.e., 1HSA0 .

(2) Before Aideal proceeds with the simulation of the com-
putation phase, for each input of the cheaters Aideal creates an
encoding of |0〉 in register A0. Then Aideal performs a swap
gate between A0 and cheaters’ input AS .

(a) In the case where set |B| � t , there are sufficiently
few errors on both levels of encoding. Then Aideal can apply
an erasure-recovery circuit twice (for the double encoding),
denoted D̃A0 , to the input of nodes not in B and pass it to the
oracle. Applying decoding D̃A0 is necessary, since the oracle
accepts only single-qubit inputs.

(b) Otherwise, when |B| > t , Aideal simply passes previ-
ously prepared |0〉 states as inputs of the cheaters to the oracle
and the simulated honest nodes HS replace their shares with
|0〉. The simulated cheaters apply an arbitrary map MAS to
their shares.

We therefore describe this step as

σ
(2)
H0A0HSAS

=
{
D̃A0 ◦ SwapA0AS

◦ EA0

(
σ

(1)
H0A0HSAS

)
if |B| � t,

MAS ⊗ trH0

[
σ

(1)
H0A0HSAS

] ⊗ |0〉〈0|H0 if |B| > t .
(A6)

(3) Aideal proceeds with the simulation of the computation phase on registers H0 and AS . At the same time, the oracle computes
the ideal circuit Rideal

HSA0
on the simulated honest shares HS and register A0 of the cheaters. The state after this step is, therefore,

σ
(3)
H0A0HSAS

=
{(

Rideal
HSA0

⊗ ¯̄RH0AS

)(
σ

(2)
H0A0HSAS

)
if |B| � t,(

Rideal
HSA0

⊗ ¯̄RH0AS

)(
σ

(2)
H0A0HSAS

)
if |B| > t .

(A7)

(4) If |B| > t , Aideal sends the flag “abort” to the oracle, and otherwise sends “continue.”
(a) If the oracle receives “abort,” it outputs a flag | ⊥〉〈⊥ | to all nodes.
(b) Otherwise, it outputs the computation of the ideal circuit on the inputs.

(5) The nodes in HS output whatever they received from the oracle. Upon receiving the oracle’s output, Aideal does the
following:

(a) If “abort” was sent in the previous step, then it must be that |B| > t . The simulated protocol aborts. Therefore,
Aideal outputs the output of the Areal. Note that the simulated cheaters could have applied an arbitrary map M′

AS
on their

register.

022405-12

SECURE MULTIPARTY QUANTUM COMPUTATION WITH … PHYSICAL REVIEW A 102, 022405 (2020)

(b) If “continue” was sent in the previous step, then Aideal applies double encoding EA0 to all shares of the cheating nodes
A0. Then Aideal applies the swap gate between the simulated registers of cheaters AS and A0 and proceeds to the next step.

SwapA0AS
◦ EA0 ◦ (

Rideal
HSA0

⊗ ¯̄RH0AS

)(
σ

(2)
H0A0HSAS

) ⊗ |cont〉〈cont| if |B| � t,

|⊥〉〈⊥|HSA0 ⊗ trHSA0

[
M′

AS

(
σ

(3)
H0A0HSAS

)] ⊗ |abort〉〈abort| if |B| > t .
(A8)

Let us denote the following expression by σ
(5)
H0A0HSAS

, where we use the explicit form of σ
(2)
H0A0HSAS

for |B| � t , Eq. (A7):

σ
(5)
H0A0HSAS

= SwapA0AS
◦ EA0 ◦ (

Rideal
HSA0

⊗ ¯̄RH0AS

) ◦ D̃A0 ◦ SwapA0AS
◦ EA0

(
σ

(1)
H0A0HSAS

)
. (A9)

We now simplify the above expression. For this we first state the following useful property.
Property 2. For any operation OABCD on registers ABCD, the following identity holds:

SwapBC ◦ OABCD ◦ SwapBC = OACBD. (A10)

Using this property for σ
(5)
H0A0HSAS

we get that

SwapA0AS
◦ EA0 ◦ (

Rideal
HSA0

⊗ ¯̄RH0AS

) ◦ D̃A0 ◦ SwapA0AS
◦ EA0 = EAS ◦ Rideal

HSAS
◦ D̃AS ⊗ ¯̄RH0A0 ◦ EA0 . (A11)

This means that that the composition of the swaps with the ideal circuit performed by the oracle is equivalent to applying the
ideal circuit to registers HSAS by the oracle. Therefore, we can simplify σ

(5)
H0A0HSAS

to

σ
(5)
H0A0HSAS

= (
EAS ◦ Rideal

HSAS
◦ D̃AS

) ⊗ (¯̄RH0A0 ◦ EA0

)(
σ

(1)
H0A0HSAS

)
, (A12)

and using Eq. (A5) we obtain

σ
(5)
H0A0HSAS

= (
EAS ◦ Rideal

HSAS
◦ D̃AS

) ⊗ (¯̄RH0A0 ◦ EA0 ◦ SVH0AS

)(
ρHSAS ⊗ |0〉〈0|H0A0

)
(A13)

= (
EAS ◦ Rideal

HSAS
◦ D̃AS ◦ SVAS (ρHSAS)

) ⊗ (¯̄RH0A0 ◦ EA0 ◦ SVH0

(|0〉〈0|H0A0

))
. (A14)

(6) If the protocol did not abort, Aideal proceeds to the
reconstruction phase, in which the simulated honest nodes H0

first use the decoding procedure for code Ĉ and then apply
an erasure recovery circuit, as in the Reconstruction phase of
Protocol 4 (Sec. III C). We denote this procedure D̃H0 . On the
other hand, the simulated cheaters AS apply an arbitrary map
WAS . Aideal outputs whatever is the output of the simulated
Areal. Therefore, the output of the ideal protocol is

ωideal = trH0A0

[
D̃H0 ⊗ WAS

(
σ

(5)
H0A0HSAS

)]
. (A15)

Using Eq. (A14) and the fact that the sharing and verification
followed by the double decoding, D̃AS ◦ SVAS , is equivalent to
1AS , we obtain

ωideal = WAS ◦ EAS ◦ Rideal
HSAS

(ρHSAS). (A16)

Similarly, for later comparison with the real protocol, we write
the identity map on HS as 1AS = D̃HS ◦ EHS and get

ωideal = (
D̃HS ⊗ WAS

) ◦ EHSAS ◦ Rideal
HSAS

(
ρHSAS

)
. (A17)

2. Real protocol

In the real protocol whenever the honest nodes observe
|B| > t they replace all of their shares with |0〉. This is
necessary because in the ideal protocol the oracle receives
“abort” at the end of the computation phase. Therefore, in
the real protocol we also abort at the end of the computation
phase. However, it could happen that in the case where |B| > t ,
continuing the computation leaks some information about the
honest nodes’ inputs. To avoid this situation, we make the
honest nodes substitute their shares with |0〉.

(1) The protocol starts with the sharing and verification
phase, which we describe by the map SV acting on inputs
of all the nodes ρHRAR . The state after this step is

SVHRAR (ρHRAR). (A18)

(2) The protocol continues:
(a) In the case where |B| � t , the nodes apply the

distributed circuit ¯̄RHRAR .
(b) In the case where |B| > t , the honest nodes replace

their shares with |0〉 and the cheaters apply an arbitrary
map MAR .
At the end of the computation phase the state is,

therefore,

σ
(2)
HRAR

=
{

¯̄RHRAR ◦ SVHRAR (ρHRAR) if |B| � t,

MAR (trHR [SVHRAR (ρHRAR)]) ⊗ |0〉〈0|HR if |B| > t .
(A19)

(3) The nodes check the size of set B.

022405-13

LIPINSKA, RIBEIRO, AND WEHNER PHYSICAL REVIEW A 102, 022405 (2020)

(a) If |B| � t , then the protocol continues to the reconstruction phase, where the honest nodes apply first a decoding
operator for code Ĉ and then an interpolation circuit, denoted DHR . At the same time, the cheaters can apply an arbitrary map
on their registers, which we denote WAR .

(b) In the case where |B| > t , the nodes output the abort flag | ⊥〉〈⊥ | and the cheaters output their part of σ
(2)
HRAR

, possibly
with an arbitrary map M′

AR
. The protocol aborts.

We can describe this step as

(DHR ⊗ WAR) ◦ ¯̄RHRAR ◦ SVHRAR (ρHRAR) ⊗ |cont〉〈cont| if |B| � t,

|⊥〉〈⊥|HR ⊗ M′
AR

(
trHR

[
σ

(2)
HRAR

]) ⊗ |abort〉〈abort| if |B| > t .
(A20)

We introduce the identity map as encoding followed by double encoding on both registers, i.e., 1HRAR = D̃HRAR ◦ EHRAR . Then,
plugging in this 1HRAR between ¯̄RHRAR and (DHR ⊗ WAR), the first case can be rewritten as

ωreal = (
DHR ⊗ WAR

) ◦ EHRAR ◦ D̃HRAR ◦ ¯̄RHRAR ◦ SVHRAR

(
ρHRAR

)
, (A21)

which defines the output of the real protocol when it does not abort.
Now we aim to simplify ωreal to compare it to the output of the ideal protocol. Our goal is to show that sharing and verifying

the input, performing the distributed circuit, and decoding are equivalent to applying the circuit to the inputs directly:

D̃HRAR ◦ ¯̄RHRAR ◦ SVHRAR (ρHRAR) = RHRAR (ρHRAR). (A22)

Indeed, this follows from Lemma 2 and Property 1. By security of the VQSS [3,20,21], if the protocol does not abort, there exists
a unique double-encoded state after the verification phase, i.e., SVHRAR (ρHRAR). By definition the decoding D̃HRAR is exactly the
one performed in Lemma 2. Therefore, we have that

ωreal = (
DHR ⊗ WAR

) ◦ EHRAR ◦ D̃HRAR ◦ ¯̄RHRAR ◦ EHRAR

(
ρHRAR

)
(A23)

= (
DHR ⊗ WAR

) ◦ EHRAR ◦ RHRAR

(
ρHRAR

)
. (A24)

This, together with Eq. (A17), gives us that the outputs of the ideal and real protocols are equal for |B| � t ,

ωideal = ωreal. (A25)

Similarly, when |B| > t , one can compare (A7) with (A8) and obtain that the states are the same for the real and ideal protocols.
What we have described so far considers that the encoding in the sharing phase was performed correctly in the real protocol.

However, this does not have to be the case. Every verification performed during the MPQC has a probability of error inherited
from the VQSS. Recall that from Lemma 2 (Sec. III D) the probability of unsuccessful verification in VQSS is lower-bounded
by 2−�(s). In MPQC we verify:

(a) each of the n inputs,
(b) each | ¯̄0〉 and | ¯̄m〉 necessary to perform the T gate, and
(c) each | ¯̄0〉 necessary for circuit R.
Let κ = n + #T gates + #ancillas for R. Then the total probability of error in MPQC is κ2−�(s). �

[1] A. C. Yao, in Proceedings of the 23rd Annual Symposium on
Foundations of Computer Science, SFCS ”82 (IEEE Computer
Society, New York, 1982), pp. 160–164.

[2] R. Cramer, I. B. Damgard, and J. B. Nielsen, Secure Multiparty
Computation and Secret Sharing, 1st ed. (Cambridge University
Press, New York, 2015).

[3] C. Crépeau, D. Gottesman, and A. Smith, in Proceedings of the
Thirty-fourth Annual ACM Symposium on Theory of Computing,
STOC ’02 (ACM Press, New York, 2002), pp. 643–652.

[4] D. Chaum, C. Crépeau, and I. Damgard, in Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing,
STOC ’88 (ACM Press, New York, 1988), pp. 11–19.

[5] C. Crépeau, D. Gottesman, and A. Smith, in Advances
in Cryptology—EUROCRYPT 2005, edited by R. Cramer
(Springer, Berlin, 2005), pp. 285–301.

[6] F. Dupuis, J. B. Nielsen, and L. Salvail, in Proceedings
of the 32nd Annual Cryptology Conference on Advances in

Cryptology—CRYPTO 2012 (Springer-Verlag, Berlin, 2012),
Vol. 7417, pp. 794–811.

[7] Y. Dulek, A. B. Grilo, S. Jeffery, C. Majenz, and C. Schaffner,
in Advances in Cryptology—EUROCRYPT 2020, edited by A.
Canteaut and Y. Ishai, Lecture Notes in Computer Science Vol.
12107 (Springer, Cham, 2020).

[8] D. Mayers, Phys. Rev. Lett. 78, 3414 (1997).
[9] H.-K. Lo and H. F. Chau, Physica D: Nonlin. Phenom. 120, 177

(1998).
[10] B. Eastin and E. Knill, Phys. Rev. Lett. 102, 110502 (2009).
[11] D. Gottesman and I. L. Chuang, Nature 402, 390 (1999).
[12] D. Aharonov and M. Ben-Or, in Proceedings of the Twenty-

ninth Annual ACM Symposium on Theory of Computing, STOC
’97 (ACM Press, New York, 1997), pp. 176–188.

[13] E. M. Rains, IEEE Trans. Inf. Theor. 45, 1827 (1999).
[14] M. Grassl, T. Beth, and M. Rotteler, Int. J. Quantum Inf. 02, 55

(2004).

022405-14

https://doi.org/10.1103/PhysRevLett.78.3414
https://doi.org/10.1016/S0167-2789(98)00053-0
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1038/46503
https://doi.org/10.1109/18.782103
https://doi.org/10.1142/S0219749904000079

SECURE MULTIPARTY QUANTUM COMPUTATION WITH … PHYSICAL REVIEW A 102, 022405 (2020)

[15] S. Bravyi, G. Smith, and J. A. Smolin, Phys. Rev. X 6, 021043
(2016).

[16] M. Steudtner and S. Wehner, New J. Phys. 20, 063010
(2018).

[17] N. Moll, A. Fuhrer, P. Staar, and I. Tavernelli, J. Phys. A 49,
295301 (2016).

[18] S. Bravyi, J. M. Gambetta, A. Mezzacapo, and K. Temme,
arXiv:1701.08213.

[19] T. Peng, A. Harrow, M. Ozols, and X. Wu, arXiv:1904.00102.
[20] V. Lipinska, G. Murta, J. Ribeiro, and S. Wehner, Phys. Rev. A

101, 032332 (2020).
[21] A. Smith, arXiv:quant-ph/0111030.
[22] A. Steane, Proc. R. Soc. London A 452, 2551 (1996).
[23] R. Canetti, in Proceedings of the 17th IEEE Computer Security

Foundations Workshop (IEEE, New York, 2004), pp. 219–233.
[24] H. Barnum, C. Crepeau, D. Gottesman, A. Smith, and A.

Tapp, in Proceedings of the 43rd Annual IEEE Symposium on
Foundations of Computer Science (IEEE, New York, 2002),
pp. 449–458.

[25] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B.
Pinkas, in Proceedings of the Eighteenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies:
IEEE INFOCOM 99, The Future Is Now (IEEE, New York,
1999), Vol. 2, pp. 708–716.

[26] T. Rabin and M. Ben-Or, in Proceedings of the Twenty-first
Annual ACM Symposium on Theory of Computing, STOC ’89
(ACM Press, New York, 1989), pp. 73–85.

[27] A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098 (1996).
[28] D. Gottesman, Phys. Rev. A 61, 042311 (2000).
[29] A. J. Landahl, J. T. Anderson, and P. R. Rice, arXiv:1108.5738.
[30] D. Gottesman, Phys. Rev. A 57, 127 (1998).
[31] A. M. Steane, Phys. Rev. Lett. 78, 2252 (1997).
[32] G. Nebe, E. M. Rains, and N. J. A. Sloane, Designs Codes

Cryptogr. 24, 99 (2001).
[33] A. Y. Kitaev, Russ. Math. Surv. 52, 1191 (1997).
[34] D. Beaver, in Advances in Cryptology—CRYPTO ’91, edited by

J. Feigenbaum (Springer, Berlin, 1992), pp. 377–391.
[35] S. Micali and P. Rogaway, in Advances in Cryptology—

CRYPTO ’91, edited by J. Feigenbaum (Springer, Berlin, 1992),
pp. 392–404.

[36] R. Canetti, in Proceedings of the 42nd IEEE Symposium on
Foundations of Computer Science (IEEE, New York, 2001),
pp. 136–145.

[37] D. Unruh, in Advances in Cryptology—EUROCRYPT 2010,
edited by H. Gilbert (Springer, Berlin, 2010), pp. 486–505.

[38] D. Gottesman, arXiv:0904.2557.
[39] A. G. Iñesta, Master’s thesis, Delft University of Technology

(2020).

022405-15

https://doi.org/10.1103/PhysRevX.6.021043
https://doi.org/10.1088/1367-2630/aac54f
https://doi.org/10.1088/1751-8113/49/29/295301
http://arxiv.org/abs/arXiv:1701.08213
http://arxiv.org/abs/arXiv:1904.00102
https://doi.org/10.1103/PhysRevA.101.032332
http://arxiv.org/abs/arXiv:quant-ph/0111030
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.61.042311
http://arxiv.org/abs/arXiv:1108.5738
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevLett.78.2252
https://doi.org/10.1023/A:1011233615437
https://doi.org/10.1070/RM1997v052n06ABEH002155
http://arxiv.org/abs/arXiv:0904.2557

