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Summary	
Illuminating the functional part of the genome of livestock species has the potential to facilitate 
precision breeding and to accelerate improvements. Identifying functional and potentially 
deleterious mutations can provide breeders with crucial information to tackle inbreeding depression 
or to increase the overall health of their populations and animal welfare. By performing Genome 
Wide Association Studies (GWAS) the genome can be interrogated for mutations that co-occur with 
a phenotype of interest. However, every GWAS delivers a large number of potentially functionally 
important single nucleotide polymorphisms (SNPs). The exact effect of each of these SNPs is often 
not known, especially for SNPs in noncoding sequences. Investigating each candidate SNP variant 
in detail is laborious and, eventually, infeasible, given the sheer number of variants. Thus, there is 
a strong need for approaches to select the most promising SNP candidates. Prioritizing variants, in 
particular, SNPs, has seen major developments in recent years which led to several discoveries and 
insights inheritable diseases of humans. Despite their great economical value, for livestock and 
other non-human species, this development is lagging behind.  

A major contributing factor to the deficit in prioritization tools for non-human species is a lack of 
genomic annotations. In this thesis, we translated one of the currently popular SNP prioritization 
tools, CADD (Combined Annotation-Dependent Depletion), to mouse (mCADD) and performed an 
experiment in which we simulated a decrease in the number of available genomic annotations. 
These results showed that following the CADD approach to predict the putative deleteriousness of 
SNPs is meaningful in a non-human species, even when fewer genomic annotations are available 
than for the human case. This motivated us to build various CADD-like SNP prioritization tools for 
livestock species, in particular for pig (pCADD) and chicken (chCADD). We validated the pig 
prioritization tool on a set of well-known functional pig variants. Further, we showed how functional 
and non-functional parts of the pig genome are scored differently by pCADD. In collaboration with 
the breeding industry, we built upon the pCADD scores and implemented them in a pipeline to 
identify likely causal variants in GWAS. To this end, we utilized SNPs that were found significant in 
GWAS based on SNP-array data and found variants with high pCADD scores in whole genome 
sequence data that are in linkage disequilibrium with high GWAS-scoring SNPs. Thus, these 
pCADD-identified SNPs are likely (causal) functional candidates for the phenotypes tested. We also 
identified several expression quantitative loci (eQTL) variants, SNPs that explain observed 
differences in gene expression, which we were able to validate using RNA-seq data. This 
demonstrated the power of this new tool and its usefulness in identifying novel, functional variants. 
For chicken, we used the chCADD to interrogate highly conserved elements in the chicken genome. 
Here we found that, despite being highly conserved, not all parts of these elements might be 
functionally active. chCADD differentiates between regions within each conserved element that are 
predicted to be functionally different. Taken together, the results presented in this thesis 
demonstrate SNP prioritization can successfully be done in non-human species, which can greatly 
assist breeders and animal geneticists in their work to illuminate the functional genome. 
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1.1. Effects	of	in-silico	genome	science	on	animal	breeding		
Humans have domesticated animals for around 12000 years [1] for the purpose of food production 
(e.g. livestock), protection (e.g. guard dogs), pest control (e.g. cats) and other functions. With 
these goals in mind, humans selected in particular the offspring of animals which displayed 
conducive traits to enhance these in future populations. In this way domestication differs from 
taming of animals, in which humans do not control the selection of mates to produce subsequent 
generations. By amplifying desirable traits in each generation, they become predominant in the 
controlled populations until the domesticated animals are clearly distinguishable from their wild 
counterparts, with their own characteristics.  

For millennia, desirable traits have been selected based on visual inspection and evaluation of the 
mating candidates and their pedigrees. Statistical models were developed to predict breeding 
outcome (estimated breeding value (EBV) [2]) between two animals, to properly select the parent 
animals that have the highest potential to give birth to a generation of animals with improved 
phenotypes. Through this, animal breeding became more and more a theoretical subject in the 
natural sciences, with the constant goal of generating more accurate EBVs, to better select parent 
animals. One of the most widely used statistical models to calculate EBVs is the so-called best 
unbiased predictor (BLUP) [3]. It utilizes phenotype information and family relationships to 
calculate weighted phenotype averages that are corrected for potential systematic biases. Such 
biases include e.g. variation between farms, when differences in phenotypes are not due to 
differences in genetic value but differences in feed etc.  

Breeders can use these predictions to formulate a breeding plan, which optimises the development 
of a trait in their populations. Through improvements in genomics, the development of genetic 
selection (GS) [4] and the ever decreasing costs of genome-wide single nucleotide polymorphism 
arrays (SNP arrays), this approach has been drastically enhanced in recent history. GS suggests 
the use of genetic markers rather than pedigree to identify the relatedness between individuals. 
This yields more accurate relationship estimates and more accurate EBVs. This progress helped to 
achieve major genetic improvements. From 1961 to 2008, egg, milk and meat production of major 
livestock species have increased by 20-30% due to improvements in genetics and other factors 
[5]. Broiler chickens in particular grew around three times faster in 2001 than in 1957, while 
consuming only a third of the feed [6].  

Despite these improvements and the continuously growing amount of genomic data, the exact 
expression of a trait in any individual remains difficult to predict. This can be due to non-additive 
inheritance [7], underestimation of environmental effects that cause variations in the phenotype or 
absence of predictive genetic markers [8]–[10].  

For genomic prediction, usually many tens or hundreds of thousands of SNPs measured in high 
throughput (genome wide association study (GWAS)) are considered as genetic markers. In these 
studies, associations between the genome and a phenotype of interest are usually found by 
analysing the overrepresentation of SNPs between two different cohorts of individuals. Livestock 
species usually carry 2 to 4 times more mutations than humans [11]–[14]. Combined with the fact 
that 25-50% of rare non-synonymous mutations in humans are predicted to have an adverse effect 
on the survivability of the individual [15], a relatively larger number of genomic variants with 
adverse effects on survivability or phenotype can be assumed to be present in any genome of 
livestock species. These mutations, especially heterozygous occurrences of homozygous recessive 
variants, can stay present in the population at low frequencies. Due to high rates of inbreeding in 
breeding plans to emphasize the expression of a particular trait, even low frequency, heterozygous 
variants can frequently become homozygous and have adverse effects on the phenotypes. They 
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jointly lower the performance and fitness of the population, but due to their low frequency they are 
hard to identify and remove. 

GWAS are the go-to approach to investigate associations between the genotype and phenotype. 
Even though at first view the approach to look for over-/under representations of alleles in two 
cohorts seems relatively straight forward, it is based on a number of assumptions and may be 
difficult to conduct without introducing biases. To find all variants in a GWAS that have an effect on 
the phenotype, all variations of all individuals need to be tested. In humans, persons differ by 
around 8-10 million SNPs from each other and around 40 million base pairs are affected by 
structural variations [16], which may differ between cohorts as well. This means the number of 
tested people need to be enormous, otherwise there is no chance that any variation may be 
identified due to low statistical power. In animal GWAS, the same problem of low statistical power 
occurs. To increase power, either more samples can be used or fewer alleles. Most often the 
number of samples cannot be increased, thus fewer alleles are chosen. A selected number of 
marker SNPs can still be informative about the genotype because SNPs in close proximity are often 
inherited together, so a SNP can give information (SNP imputation) [17] on nearby SNPs even if 
they are not measured directly. The mutual inheritance of SNPs is called linkage disequilibrium [18] 
(LD). The sizes of these LD-blocks, which are inherited together, depend on the degree of 
inbreeding, with more inbreeding leading to larger LD-blocks. For this reason, marker SNPs should 
be carefully selected for GWAS to represent LD blocks associated with the phenotype of interest 
[19]–[21]. Still, errors may accumulate and the observed change of phenotype, caused by each 
marker, does not necessarily sum up to change that would be expected [22], [23]. 

SNPs constitute the most common and most easily measured type of genetic variation, hence the 
strong emphasis on these in GWAS. In GWAS, SNPs located in the same LD-block are highly scored 
if that LD-block segregates between the two tested cohorts of animals. Generally, it is assumed 
that there is only one variant per highly scored LD-block which affects the investigated phenotype, 
while the other marker SNPs are only linked to that causal/functional mutation through LD. Due to 
the low likelihood of truly causal SNPs being selected in the subset of measured SNPs, the results 
of GWAS have to be further scrutinized. LD-blocks differ in size and can range over several millions 
of base pairs (Mbp), covering numerous genes. As manual identification of the causal variant is 
infeasible, in silico SNP prioritization tools have been developed. These tools often calculate a 
specific metric for each SNP; one of these is its expected deleteriousness. Deleteriousness is not 
clearly defined and can have several meanings. First there is the gene-centric definition of 
deleteriousness. It states that the SNP has an adverse effect on a gene, either by lowering its 
expression or disrupting the structure of the encoded protein, rendering it incapable of performing 
its function. Another definition is centered around evolution, identifying deleteriousness as the 
likelihood of a SNP to be under negative selection due to a disadvantageous effect on the 
phenotype that decreases the probability of the individual to reproduce.  

Besides the use of SNP prioritisation tools in GWAS, they may be able to help to study functional 
elements across the genome which would eventually support selection in breeding plans. So far, in 
animal breeding, the genome has been used as a black box, emphasizing genomic loci rather than 
individual functional mutations. Illuminating the genomic black box could lead to improved 
weighting of SNPs in genomic breeding, which has the potential to greatly increase genetic gains in 
of the studied animals.  

The identification of functional elements and SNPs depends on the region of the genome in which 
they are supposed to be located. Until recently this has been the reason why great emphasis was 
put on the identification of functional SNPs in exonic regions, while SNPs in other regions have 
been neglected due to the difficulty to infer causality for their function. In the past, this has led to 
the incorrect assumption that sequences which do not code for a gene were unimportant. This 
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assumption was coined in the term “junk DNA” [24]. Since then, many regulatory active regions 
that are essential for survival of the individual, have been identified within the non-coding part of 
the genome [25]–[28]. Thus, there is a great need to investigate variations in all parts of the 
genome. SNP prioritisation tools, capable of scoring variants genome-wide, may be able to help 
identify and discriminate functional from non-functional DNA sequences. In this way they provide 
an order of importance, to study variations that could complement and improve existing breeding 
methods.  

1.2. Metrics	and	methods	for	SNP	prioritization		
To prioritize SNPs, we first have to identify properties of SNPs related to the evaluation metric 
used. A SNP in itself has only three distinct properties: its location on the genome, frequency 
within the population and the nucleotide substitution it represents. The most informative property 
is its location. When researchers investigate the effect of a particular SNP on a phenotype, they can 
derive conclusions based on additional annotations known at that location. The number and 
diversity of these additional annotations differ greatly between genomic regions and species. A SNP 
located in a known exon may have many more annotations than SNPs in other parts of the 
genome; moreover, by taking advantage of the nucleotide substitution which the SNP represents, 
potential effects downstream of protein production can be inferred. The first and most common 
kind of SNP effect prediction and prioritization tools are specific for these information-rich genomic 
positions. Tools such as SIFT [29], PolyPhen & PolyPhen-2 [30], [31], SNAP & SNAP2 [32], [33] 
and Provean [34] make use of amino acid conservation and the potential effect of an amino acid 
substitution on the function of the protein. Unfortunately, in mammals only roughly 1%-3% of the 
genome codes for protein [35], which limits the overall use of missense specific SNP prioritisation 
tools. Further, it has been estimated that non-synonymous mutations only account for 20% of the 
genetic variation that influences a change of phenotype [36]. The majority of the genome does not 
code for a protein and the majority of influential loci, identified in GWAS, are located in regions that 
are not annotated with any genes or that belong to the noncoding part of a gene. Regulatory 
elements which have an effect on gene expression and phenotype are often located in these 
regions. This is the main motivation behind the push to develop more elaborate SNP prioritization 
tools capable of annotating mutations in noncoding DNA sequences. 

Due to the complexity of any trait, its expression depends on a plethora of interacting regulatory 
programs that work together and create the observable phenotype. At each stage, from DNA to 
RNA to protein, regulatory effects manifest themselves. These regulatory effects are caused either 
by cis- or trans-regulatory elements. Cis regulatory elements are located in the DNA sequence, 
most likely in close proximity to the regulated gene, i.e. promoter regions of a gene. While 
promotors are always close to their associated gene, enhancer and silencer regions may be more 
distant to their target and have to be identified via measurements of the quaternary structure of 
the DNA or other specific characteristics of those regions such as their methylation and acetylation 
status. Trans-regulatory elements are elements such as transcription factors or miRNAs which are 
not located on the same DNA molecule as the regulation target. Each of these elements can be 
measured in various ways, resulting in many different data types. SNP prioritisation tools usually 
capitalize on this data to prioritize variants in non-coding regions. 

DNA quaternary structure is of importance because of the densely packed nature of DNA which 
only allows for the binding of transcription factors (TF) at exposed sites. These can be 
experimentally identified via FAIRE-seq, DNase-seq and ChiP-seq assays [37]–[39]. Due to the 
relative importance of these regulatory regions, several methods have used the rich data sets of 
the ENCODE data base [40] to learn predictors for sequence motifs which indicate DNA accessibility 
and TF binding sites. Three of these methods (DeepBind, DeepSea, Basset [41]–[43]) are suitable 
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to varying degrees to make predictions about the putative effect of SNPs in predicted regulatory 
active regions. DeepBind is the least optimized for the prioritization of SNP: based on ChiP-seq 
data, it predicts sequence motifs and scores sequences containing those. It then uses these 
sequence scores to score individual SNPs contained in them. DeepSea is more tailored to predict 
the functionality of SNPs at single bp resolution. It is a deep learning approach that uses a 
convolutional layer to learn features from the DNA sequence which are informative for DNase 
activity, TF binding and histone marks. Then it predicts how these features change when the 
investigated sequence harbours a SNP relative to the reference sequence. Basset takes a similar 
approach but predicts only DNA accessibility via DNase activity. It sets itself apart from the other 
two methods by predicting the change of DNA accessibility per cell type, which allows for the 
prioritization of SNPs with respect to cell type specific traits.  

Disadvantages of all these methods are that they are limited to specific regions, similar to the 
previously mentioned missense specific methods. Missense specific methods are limited to amino 
acid changing mutations; DeepBind, DeepSea and Basset are limited to accessible noncoding 
regions but ignore SNPs in other regions. Further, epigenetics differs from cell type to cell type and 
can change with age and other environmental circumstances, thus SNPs functional for the trait of 
interest may not be detected in the investigated sample. It has been shown that in some cases, the 
epigenome influences gene expression more than sequence and that some epigenetic markers are 
more strongly conserved than the sequence in that region, which allows for the introduction of 
SNPs without major changes in gene expression [44]. This means SNP effects are hard to derive 
from genome sequence alone. Finally, the three methods rely to a large extent on the vast amount 
of data available in public databases for human genome research. For the purpose of creating a 
SNP prioritization tool for non-human species, these approaches are less suitable due to a lack of 
publicly available data. This is even true for model organisms. ENCODE v93 (accessed 06-12-2019) 
contains the results of 10,485 assays for human while for mouse there are only 1916; the database 
which is supposed to be established as part of the FAANG project [45], aiming to be the 
counterpart to ENCODE for livestock genomes, is at the beginning of December 2019 [46] still in its 
early development.  

A similar problem is observed when one wants to recreate models for non-human species that are 
trained on known disease SNPs. Human examples of such models are FATHMM-MKL [47] or GWAVA 
[48]. Both use data sets of experimentally validated disease-associated variants for training. Such 
data sets are not available to the same extent for other species, which limits the portability of 
these methods. Moreover, problems may arise due to the variants used for training. It can be 
hypothesized that these represent an extreme subset of functional variants and therefore any 
model learned on them would have difficulty to differentiate well among less extreme variants.  

SNP prioritization approaches such as Combined Annotation Dependent Depletion [49] (CADD) and 
linear-INSIGHT [50] (LINSIGHT) avoid these kinds of problems. Instead of training a model on a 
small set of already validated variants, they use evolutionary models to capture signals of natural 
selection over many generations. In this way, they obtain large numbers of variants that can be 
used to train models which emphasize the discrimination of variants under purifying selection. 
LINSIGHT uses the INSIGHT [51] evolutionary model that estimates which regions are under 
purifying selection by contrasting them to neutrally evolving regions. To do this, it uses differences 
between population and outgroup variants. Then a generalized linear model is trained to predict 
the INSIGHT classification based on genomic annotations such as conservation scores, TF binding 
sites and epigenetic markers. The resolution of the score can range from single bp to several kbp. 
CADD on the other hand does not make assumptions about entire regions of negative selection. It 
relies more strongly on the inference of past ancestral states, since it derives a nucleotide 
substitution model from substitutions between different ancestral genomes. This substitution model 
is then employed to simulate de novo variants which are more likely to have experienced negative 
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selection and therefore are enriched in deleterious variants. This set of simulated variants is used 
as a positive set and the negative set contains derived alleles which are (almost) fixed in the 
species of interest. These alleles have experienced many generations of selection pressure and 
should be depleted of variants with an adverse effect on the phenotype. As in the previously 
discussed methods, all variants are annotated with a wide range of genomic annotations to train a 
machine learning model to differentiate between both classes. In CADD this is a penalized linear 
logistic model. In comparison to LINSIGHT, CADD has a single nucleotide resolution genome-wide, 
with individual scores for different alleles at the same site, and it incorporates coding and 
noncoding regions while LINSIGHT is trained particularly for non-coding DNA. 

1.3. Thesis	outline	/	contributions	
The research presented here focuses on the use of the CADD approach for non-human species. 
CADD is based on a single model for the entire genome and has been well received in the 
investigation of human genomes [52]–[56]. Its general framework can be reproduced for any 
species as long as whole genome sequences of at least three other closely related species are 
known. First, Chapter 2 presents a feasibility study in mouse, demonstrating that CADD 
methodology can be meaningfully reproduced for other non-human species, even when fewer 
genomic annotations are available. Chapter 3 follows up on these results and introduces the CADD 
methodology for pig. Chapter 4 shows the insights and value which can be generated by 
incorporating pig-CADD (pCADD) in the prioritisation process of SNPs in the breeding environment. 
Finally, Chapter 5 introduces chicken-CADD (chCADD) and exploits its single allele resolution to 
investigate highly conserved regions in chicken, for which detailed genomic annotations are 
missing. 
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2.1. Abstract	
Background: Predicting the deleteriousness of observed genomic variants has taken a step 
forward with the introduction of the Combined Annotation Dependent Depletion (CADD) approach, 
which trains a classifier on the wealth of available human genomic information. This raises the 
question whether it can be done with less data for non-human species. Here, we investigate the 
prerequisites to construct a CADD-based model for a non-human species. 

Results: Performance of the mouse model is competitive with that of the human CADD model and 
better than established methods like PhastCons conservation scores and SIFT. Like in the human 
case, performance varies for different genomic regions and is best for coding regions. We also 
show the benefits of generating a species-specific model over lifting variants to a different species 
or applying a generic model. With fewer genomic annotations, performance on the test set as well 
as on the three validation sets is still good. 

Conclusions: It is feasible to construct species-specific CADD models even when annotations such 
as epigenetic markers are not available. The minimal requirement for these models is the 
availability of a set of genomes of closely related species that can be used to infer an ancestor 
genome and substitution rates for the data generation. 

2.2. Background	
With the possibility of determining variation in genomes at large scale came an interest in 
predicting the influence of a mutation on a phenotype, in particular its pathogenicity. Initially, such 
predictions were restricted to missense mutations, as these cause a change in the corresponding 
amino acid chains and are thus most likely to have immediate functional effects. SIFT [1], 
PolyPhen2 [2], SNAP2 [3] and Provean [4] are examples of this kind of predictor. Recently, a 
number of methods for variant annotation were proposed that assign a single deleteriousness score 
to mutations throughout the entire genome, based on a large collection of genomic and epigenomic 
measurements. These methods – a.o. CADD [5], GWAVA [6], FATHMM-MKL [7] – are based on 
supervised classification. CADD (Combined Annotation Dependent Depletion) takes an interesting 
approach, in that it trains classifiers to distinguish between observed benign variants and inferred, 
putatively deleterious variants, instead of exploiting only known regulatory or disease-associated 
variants. This opens up the possibility to reproduce this approach for other non-human species as 
well. It shares similarities with fitCons [8] and LINSIGHT [9] by exploiting evolutionary models, 
which capture signals of natural selection over many generations in the generation of training data. 

Although the use of CADD is already well-established in human genetics research and clinical 
practice [10], [11], for non-human species the situation is quite different. While generic predictors 
such as SIFT, Provean and SNAP2 can be used, genome-wide variant annotation methods are 
generally not available. A major reason is that for non-human genomes fewer genomic annotations 
are available, complicating the construction of more advanced models. This is even the case for 
model organisms, such as zebrafish (Danio rerio), drosophila (Drosophila melanogaster) and 
mouse (Mus musculus). Additionally, extensive population studies similar to the 1,000 and 100,000 
Genomes Projects [12], [13] are lacking for non-human species, hampering the creation of good 
training data sets. Finally, models for non-human species are much more difficult to evaluate due 
to a lack of known disease-associated or phenotype-altering variants such as ClinVar offers for 
human [14]. 

Here, we explore the development of a functional prioritization method for SNVs located across the 
entire genome of a non-human species. The species we selected to investigate is mouse. As a 
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model species it is well studied, with relatively rich, publicly available, genomic annotation data 
sets [15]–[20]. Even though not all annotations used in the human CADD model are available for 
mouse, the large overlap of annotations allows performance evaluation and comparison between 
the original CADD and our mouse CADD. With this proof-of-principle, we aim to gain insight into 
design choices for porting such a methodology to non-human species. 

2.3. Results	
We trained a CADD model on mouse data (mCADD) and a CADD model on human data (hCADD). 
Performances of both are evaluated on test sets of variants located in different genomic regions. In 
addition, mCADD is evaluated on three validation sets (Fairfield, Mutagenetix, ClinVar-ESP data 
sets). We also compared mCADD to benchmark metrics such as SIFT and two PhastCons scores 
based on two phylogenies of different depth. Further, we trained mCADD and hCADD on four 
different annotation subsets to investigate the performance of a CADD-like classifier for species 
with fewer known annotations. These models are referred to as hCADD(n) and mCADD(n), with n 
the number of annotations used during training. To investigate the benefits of developing species-
specific CADD models, we compared mCADD to 1) CADD v.1.3. C-scores by lifting validation 
variants from mm10 to hg19 , and 2) a CADD model trained on human data which, without further 
adaptation, is applied on mouse data to evaluate the mouse SNVs (hCADD*). 

2.3.1. mCADD	performs	similarly	on	mouse	as	hCADD	does	on	human	

The ROC-AUC performance of mCADD(931) on the entire test set equals 0.668 (Figure 1), which is 
similar to the performance of hCADD(1000) applied on human data (Figure 2). Overall, 
mCADD(931) has a better performance across all genomic regions, with the most pronounced 
difference for the translated missense variants. Both models, mCADD(931) and hCADD(1000), 
discriminate between simulated and derived better than SIFT and PhastCons scores. 
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Figure 1: a-d) ROC-AUC scores of the four different mCADD models evaluated on seven 
different subsets of the mouse held-out test set reflecting different genomic regions 
and/or functional annotations. e, f) Seven different subsets of the mouse held-out test 
set evaluated by glire- and vertebrate based PhastCons scores, respectively. g) Missense 
mutations of the mouse held-out test set evaluated by SIFT. h) The subsets of the mouse 
held-out test set evaluated by hCADD*.: I) all data, II), not-transcribed, III) transcribed, 
IV) transcribed but not translated, V) translated, VI) translated and synonymous, and 
VII) translated and missense. The different models are indicated at the top of the panel. 
All displayed scores are ROC-AUC. 
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Figure 2: ROC-AUC scores of the four different hCADD models evaluated on the human 
held-out test set. e, f) Seven different subsets of the human held-out test set evaluated 
by primate- and vertebrate based PhastCons scores, respectively. g) Missense mutations 
of the human held-out test set evaluated by SIFT. (see caption Figure 1 for remaining 
explanation). 

It is known that the distribution of CADD scores differs between genomic regions, and that the 
disruptive effect of variants in exonic regions can be estimated more precisely than that of variants 
in non-coding regions [21], [22] We observe a similar trend for mCADD(931) as well as 
hCADD(1000). Most of the performance increase from genomic regions I, III, V to VII (Figure 1) is 
even due to the high performance on correctly classifying missense mutations that become more 
enriched in these regions. This is in contrast to the performances in genomic regions II, IV and VI 
which do not contain any missense mutations. 

2.3.2. Models	 trained	 on	 selected	 annotation	 subsets	 experience	
performance	drop	in	coding	Regions	

To see whether models behave differently when less information is available, we reduced the 
number of annotations to train human and mouse models. The first subset of annotations (872) 
was chosen based on the idea that epigenetic measurements and species-specific annotations 
might not be available for some species. The performances of mCADD(931) and hCADD(1000) as 
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well as mCADD(872) and hCADD(872) are very similar, with the mCADD models performing 
slightly better than the hCADD models (Figure 1 and Figure 2). 

The second subset of annotations consist of 229 annotations derived from sequence only, i.e. 
conservation scores and VEP consequences (mCADD(229), hCADD(229)). The situation is now 
different. The trend is still that performance increases from non-coding to coding to missense 
mutations. Also, SNVs in non-coding regions can still be classified with a performance comparable 
to that of models with more annotations. However, with the loss of particular information about 
coding regions and SIFT as an annotation, the performance of mCADD(229) to evaluate missense 
mutations drops below that of SIFT. 

The smallest subset (44 annotations) excludes the VEP consequences and solely contains 
conservation scores and sequence features (mCADD(44), hCADD(44)). Now performances drop 
even further, but mCADD(44) shows that a simple combination of sequence based features and 
conservation scores outperforms the PhastCons scores for all genomic regions. 

Interestingly, hCADD* (the human trained model applied on mouse data) performance lays 
between mCADD(229) and mCADD(44) for all translated regions (see Figure 1 V-VII) and is better 
than the PhastCons scores for those variant sets. On the other hand, hCADD* shows mostly 
random performance when non-translated regions are considered, indicating it is necessary to 
adapt the CADD model to species-specific data. 

Taken together, decreasing the number of available annotations decreases performance, which 
drops relatively faster in coding regions than in non-coding regions. The drop in performance 
between mCADD(931) and mCADD(872) is, however, negligible, suggesting that epigenetic and 
species-specific annotations can be safely ignored. 

2.3.3. Evaluation	of	phenotype	affecting	SNVs	by	mCADD	

To show that mCADD is capable of accurately scoring real data and not only differentiates between 
simulated and derived variants, we evaluated the different mCADD models on three independent 
validation sets (see Figure 3). mCADD(931) and mCADD(872) perform extremely well on all three 
validation sets (ROC-AUC > 0.95) and hardly differ (see Figure 3). mCADD(229) performs 
comparably well on the ClinVar-ESP data set and shows a drop in performance on the Fairfield and 
Mutagenetix data sets. The drop increases when fewer annotations are considered for training 
(mCADD(44)). All mCADD models and hCADD* perform better than the two conservation scores, 
except for mCADD(44) on the Mutagenetix data. On all validation sets, the hCADD* performance 
lays between the performances of mCADD(229) and mCADD(44) and has relatively good 
performance on the ClinVar-ESP data set. 
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Figure 3: ROC-AUC scores of mCADD models evaluated on three 
different validation sets: the a) Fairfield, b) Mutagenetix and c) 
ClinVar-ESP data sets. The numbers below the bars indicate the 
number of annotations used during model training. Roman 
numbers indicate: I) the glire-PhastCons score, II) the vertebrate 
PhastCons score, and III) the hCADD* score. The numbers above 
the bars show the exact ROC-AUC of that particular model and 
validation set combination. 
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Figure 4: ROC-AUC scores of mCADD models and C-
scores evaluated on three different validation sets 
(a) Fairfield, b) Mutagenetix, c) ClinVar-ESP) lifted 
from mouse to human. Arabic numbers underneath 
the bars indicate the number of annotations used for 
model training. The numbers above the bars show 
the exact ROC-AUC of that particular model and 
validation set combination. 
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Figure 5: Comparing the ranks of the absolute weights assigned 
to annotations when training mCADD (horizontal axis) with those 
when training hCADD (vertical axis). A lower rank indicates an 
annotation with larger impact on the log-odds of a model. 

2.3.4. Species-specific	CADD	model	improves	performance	

To learn whether it is necessary to develop a mouse-specific model, we additionally lifted all three 
validation data sets from mm10 to GRCh37 and annotated the variants with CADD v.1.3 C-scores. 
We took care to only lift variants which have the same reference allele, thus displaying the same 
nucleotide substitution. Some variants could not be lifted due to a missing homozygous region. 
Negative samples were more often not lifted than positive ones, i.e. the Fairfield data set loses 50 
negative samples and 27 positive ones, the Mutagenetix data set loses 235 positive and 398 
negative samples, and for the ClinVar-ESP data set we had to omit 5 positive sample and 103 
negative ones, due to the requirement of having the same reference allele. 

For the Fairfield data set, the performance of all mCADD models dropped due to the removal of 77 
samples (see Figure 4.A). The C-scores perform between mCADD(229) and mCADD(872). For the 
Mutagenetix data set, the mCADD models did not suffer from the removal of 633 SNVs, instead all 
computed ROC-AUCs increased (Figure 4.B). The C-scores perform again between mCADD(229) 
and mCADD(872). For the Clinvar-ESP data set, the mCADD model performances are hardly 
affected (see Figure 4.C). Applied on the ClinVar-ESP data set, mCADD(229) performs better than 
C-scores. Taken together, the species-specific mCADD model outperform lifting variants to human 
and using the hCADD model to score the variants, especially if considered that not every SNV can 
be easily lifted. 

2.3.5. Annotation	 weights	 are	 moderately	 correlated	 between	 mCADD	
and	hCADD	

We examined whether different annotations are used by mCADD and hCADD. The absolutes of 
weights, assigned to each annotation by the logistic regressor, were ranked and the ranks of 595 
annotations with a non-zero weight in both models were plotted against each other (see Figure 5), 
having a Spearman's rank correlation of 0.4.  
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Top-ranking mCADD annotations are enriched in combinations of DNA secondary structure 
predictions of DNAshape [23] (see Table S4). Furthermore, predictions of intronic and intergenic 
regions seem to be important, together with the neutral evolution score of GERP++ (GERPN) [18]. 

Top-ranking hCADD annotations are PhastCons and PhyloP conservation scores, all based on 
different phylogenies. Of these, the most influential annotations are PhastCons scores based on a 
primate alignment [5], [19]. The second most important group of annotations are predictions on 
intronic regions. 

The combination of primate-based PhastCons scores in hCADD with predicted VEP consequences 
indicating intronic and intergenic regions is similar to the combination of the same VEP 
consequences and the neutral evolution score of GERP++ in mCADD. From this, we conclude that 
the primate-based PhastCons scores are replaced by GERPN in mCADD. 

Vertebrate-based PhastCons scores are ranked high for both mCADD and hCADD. Top ranked 
annotations in hCADD which are ranked low in mCADD are enriched in mammalian-based 
PhastCons and mammalian-based PhyloP scores. Vice versa, feature combinations with DNA 
secondary structure predictions are exclusively used by mCADD. 

2.4. Discussion	
We demonstrated the possibility of creating a CADD-based model for the mouse genome, capable 
of predicting the deleteriousness of variants. We created a model trained on mouse data (mCADD) 
and evaluated it on a held-out test set and validation sets of phenotype altering SNVs. We 
compared the performance of our model to that of other metrics, such as conservation scores and 
the variant prioritization tool SIFT, as well as to C-scores for which we lifted the annotated variant 
locations to the human genome. We also compared performances on mouse test set variants to 
deleteriousness estimates of human test set variants, a.o. scored with a human CADD model that 
we trained ourselves (hCADD). As a final approach we trained a model on human data and 
evaluated it on mouse data (hCADD*). 

Performances of mCADD and hCADD were very similar, with the mouse model performing better on 
the hold-out test sets. In addition, validation on three experimentally annotated data sets showed 
that the mCADD model is clearly capable of prioritizing deleteriousness of SNVs. Scoring lifted 
variants with hCADD performed reasonably well on these validation data sets, but less so than 
mCADD, whereas the generic hCADD* model had a consistent performance between mCADD(229) 
and mCADD(44). Together, this shows the importance of generating species-specific models when 
more annotations are available than only sequence specific ones, especially when lifting is not an 
option. 

Evaluating the trained models on variants located in different genomic regions, we observed that 
mCADD and hCADD display the same trend, with increasing performance from non-coding to 
coding variants, and the best performance for missense mutations. Strikingly, mCADD, hCADD as 
well as other metrics all performed poorly on synonymous variants within coding regions. 

We further assessed the annotation weightings in the human and mouse models. Despite a 
moderate correlation, both models rely on different annotations. This may explain the poorer 
performance of hCADD when evaluated on mouse data sets (i.e. hCADD*). Among the most 
important annotations are different conservation scores and/or combinations of these scores with 
VEP consequence annotations. It seems that hCADD relies relatively more on conservation scores 
than mCADD, while mCADD puts more emphasis on DNA structure predictions. 
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2.4.1. Performance	depends	on	genomic	region	

Previous studies indicated that performance of the CADD classifier is not constant over the entire 
genome [21], [22]. We also observed changing performances between the investigated genomic 
regions. This may be due to intrinsic differences in the SNVs, but it might also be due to a 
difference in the number of annotations between non-coding and coding regions. When evaluating 
the distribution of putative deleterious and benign SNVs across genomic regions (Table S2), we 
find an imbalance in class labels of the held-out test set, but these do not explain the changes in 
performance. A striking difference in performance is found between the translated missense 
variants and translated synonymous variants. Annotations that help to differentiate between 
positive and negative missense mutations, such as SIFT, are not available for synonymous 
mutations. Hence, the main predictors for translated synonymous SNVs are the same as those for 
non-coding regions, namely different conservation scores, suggesting that the lack of meaningful 
annotations available for synonymous and other mutations limits the performance. 

Note that CADD models are trained with putative benign and deleterious variants, as derived from 
the ancestor genome, and not with variants for which their effect is experimentally established. 
Although training variants are proxies, the trained CADD models perform extremely well on the 
experimentally validated SNVs as shown by the good performance on the validation sets. 
Apparently, the training variants are informative, and we, consequently, believe that the 
performances on the held-out test set can be interpreted at least qualitatively. 

Together, this makes us believe that differences in observed performance between genomic 
regions are due to intrinsic properties of these regions such as the number of available 
annotations. This does, however, influence the applicability of any CADD-like model to prioritize 
disruptive SNVs truly genome wide. 

2.4.2. Models	based	on	limited	numbers	of	annotations	can	be	predictive	

One of the objectives of this study was to investigate the predictive power of CADD-like models in 
the case of incomplete annotation sets when compared to the human case. For that purpose, we 
defined four different sub annotation sets: all annotations (mCADD(931), hCADD(1000)), all but 
epigenetic and species-specific annotations (m/hCADD(872)), annotations including VEP's 
(m/hCADD(229)), and annotations including only conservations scores (m/hCADD(44)). 

The general trend is that mCADD models perform worse with fewer annotations, on the held-out 
test set as well as on the three validation sets. This is most pronounced for variants within coding 
regions. Differences in performance between mCADD(931) and mCADD(872) are negligible. For the 
Fairfield and Mutagenetix validation sets, mCADD(872) even performs better. The biggest drop in 
performance is observed between mCADD(872) and mCADD(229), even though the performance of 
mCADD(229) on all three validation sets is still above ROC-AUC > 0.91. These results indicate that 
a reliable model can be built, even if only very few annotations are known. Moreover, if only 
conservation scores and sequence features are available, it is still possible to outperform individual 
conservation scores. 

hCADD shows a similar, but lower, trend, although the performance of hCADD(872) improves over 
that of hCADD(1000) using all subsets of the held-out test set. One of the main differences 
between mCADD and hCADD is that when generating training variants, mCADD uses an 
evolutionary older ancestor genome than hCADD. Thus, the time window over which mouse-
derived variants have experienced purifying selection is longer than in the human case. Equally, 
substitution rates for the simulated SNVs are derived from evolutionary more distant ancestors, 
resulting in a larger proportion of deleterious SNVs in mouse than in human data. The impact of 
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the evolutionary observed differences is, however, poorly understood and warrants further 
investigation. 

2.4.3. Limited	interpretability	of	scores	mapped	between	different	species	

An established method to evaluate different alleles in the genome of any species is to compare 
them with known orthologous regions in other species for which annotations are known. Although 
annotating lifted variants with human-based C-scores worked well, evaluating the same variants 
with a species-specific model gave better results. In addition, not every variant position in the 
validation sets could be annotated by C-scores as they have to be located in sequences that can be 
aligned to human. Further, similar variants in different species may differ in the phenotype they 
cause. This has to be considered for any comparative genomic analysis [24]. 

2.5. Conclusions	
We have shown that the CADD approach for prioritizing variants can be applied to non-human 
species, and that it is important to train species-specific models. Interestingly, not all original 
annotations used by CADD are necessary to achieve good performance: only conservation scores 
and VEP consequences of variants (the set of 229 annotations we explored) may suffice to make 
meaningful predictions. These annotations are available for many species. Nevertheless, if possible, 
adding additional annotations for coding regions will help to improve the trained models. 
Altogether, our work has shown that species-specific CADD models can be successfully trained, 
opening new possibilities for prioritizing variants in other less well-studied species. 

2.6. Methods	

2.6.1. Overview	of	the	CADD	approach	

We construct a CADD model for mouse, mCADD, as well as a CADD model based on human data, 
here denoted by hCADD. In contrast to the original CADD approach, mCADD and hCADD are 
trained specifically on single nucleotide variants. We also construct a model trained on human data 
and evaluated it on mouse variants, which will be further referred to as hCADD*. The purpose of 
this model is to learn about the performance to be expected if one wants to evaluate variants for 
which no model exists and that cannot be lifted between genomes. The SNVs and their annotations 
used for hCADD and hCADD* originate from the data set used for CADD v.1.3. Annotations that are 
specific for insertions or deletions were removed from the data set. Briefly, the original CADD 
model [5] is trained to classify variants as belonging to the class of simulated or derived variants. 
To train the CADD model, simulated and derived variants were generated based on the human-
chimpanzee ancestral genome and mutation rates derived from a 6-taxa primate alignment [25]. 

Derived variants are variant sites with respect to the ancestral genome that are fixed in the human 
lineage, or nearly fixed with a derived allele frequency of above 95% in the 1000 Genomes Project. 
Due to the purifying selection they experienced, derived variants are assumed to be depleted in 
deleterious variants. 

Next to observed derived variants, variants are simulated that do not occur in the human lineage. 
Hence, simulated variants did not experience purifying selection, therefore fitness reducing variants 
are not depleted in this group. All variants are annotated with a large number of genomic features, 
ranging from sequence features, conservation scores, variant effect predictor annotations to 
epigenetic measurements. 
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2.6.2. Derived	and	simulated	variants	in	mouse	

Due to a lack of sufficient sequencing data of large, freely reproducing mouse populations, we 
focused on identifying differences between an inferred mouse-rat ancestral genome and the most 
recent mouse reference assembly (mm10) [26]. The mouse-rat ancestral genome is based on the 
EPO 17-eutherian-mammal alignments [25], [27], [28] (Figure S2) provided by Ensembl release 
83 [29]. In total we observed 33,622,843 sites with a derived allele in the mouse reference that 
were not adjacent to another variant site. 

To generate an equal number of simulated variants we made use of the CADD variant simulator 
[5]. Based on the mm10 reference, it uses an empirical model of sequence evolution derived from 
the EPO 17-eutherian-mammal alignments, with CpG di-nucleotide specific rates and locally 
estimated mutation rates within windows of 100kb. Only SNVs with a known ancestral site were 
selected. In this way, we generated 33,615,003 SNVs. The final dataset contains an equal number 
of simulated variants, equally divided over 11 folds (10 for cross-validation and training, the 
remaining for testing), yielding a total of 67,229,998 SNVs. Table S2 gives an overview of these 
SNVs and their distribution over different genomic regions. 

2.6.3. Genomic	annotations	

An overview of all annotations that we assembled for mouse can be found in Supplementary Data 
2,3. Histone modifications, transcription factor binding sites, DNAase Seq peaks and RNAseq 
expression measurements were downloaded from ENCODE [16]. The mm10.60way vertebrate 
alignment was retrieved from the UCSC Genome Browser [30]. This multiple sequence alignment 
was used to calculate four different PhyloP and PhastCons scores based on differently sized 
subalignments, in particular an 8-taxa Glire alignment, a 21-taxa Euarchontoglire alignment, a 40-
taxa Placental alignment and a 60-taxa Vertebrate alignment (Figure S1). PhyloP and PhastCons 
scores were computed without taking the mouse reference sequence into account. Furthermore, 
information about regulatory motifs, micro-RNA predictions (microRNA binding [31], microRNA 
targets [32]) and chromatin state predictions (ChromHMM [33]) were taken into account. GERP++ 
neutral evolution and rejected substitution scores, GERP Elements scores and GERP Elements p-
values were taken from [18] and mapped from mm9 to mm10 via CrossMap [34]. All 5-mer 
combinations of the 4 nucleotides were generated and based on that the DNA secondary structure 
was predicted for each 5-mer [23]. Differences in the predicted scores for the reference 5-mer and 
alternative 5-mer at the investigated positions were used as annotation. Summaries of 
consequences predicted by the Ensembl Variant Effect Predictor (VEP v.87 [27]) were used in 
combination with other annotations to create additional composite annotations (Table S3, 
Supplementary Data 2, Supplementary Note). Additional annotations that rely on a gene build such 
as the SIFT protein score, reference and alternative amino acid, variant position within a transcript 
and coding region are also generated by VEP v.87. 

Human annotations were downloaded from the original CADD publication v.1.3. [5] (download: 17-
2-2016). Annotations which are by definition only available for InDels were removed. 

2.6.4. Annotation	subsets	

From the annotations, four subsets were created of decreasing size and increasing likelihood of 
availability in non-human species (see Supplementary Data 2 for a complete overview). The first 
set consists of all available annotations, i.e. 1,000 for hCADD, 931 for mCADD and 902 for 
hCADD*. The annotations used to train hCADD* are those which can be meaningfully compared 
between mouse and human. The second subset has 872 annotations. It excludes all epigenetic 
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annotations and species-specific ones, leaving annotations available for both mouse and human. 
The third subset incorporates 229 annotations, including conservation scores, nucleotide sequence 
features and VEP consequence/annotation combinations. Annotations specific for coding regions 
were excluded, with the exception of coding region-specific VEP consequence values. The fourth 
subset of 44 annotations can be entirely generated from the sequence information itself. It includes 
conservation scores and nucleotide sequence annotations, such as the GC% within a 75bp window 
upstream and downstream of the variant position. 

2.6.5. Training	and	evaluating	the	mCADD	model	

The CADD model is centered on a logistic regressor trained to differentiate between simulated and 
derived variants. This was done using the logistic regression module of Graphlab v2.0.1 [35], the 
same tool the CADD authors have used since CADD v1.1. Before training we standardized the 
human and mouse data by dividing each feature by its standard deviation. We did not center the 
features, in order to preserve sparsity. The mouse data set was split into 11 partitions of equal size 
(6,111,818 SNVs). The 11th partition was used as held-out test set. On the remaining 10 partitions 
we performed 10-fold cross validation to determine the number of training iterations for the logistic 
regressor and the L2 regularization parameter. The cross validation results are shown in Table S3. 
The final model was trained on the joined ten partitions with a maximum number of 100 iterations 
and a regularization parameter set to 0.1. 

To obtain the human held-out test set, we selected 2,851,642 SNVs. Similar to the mouse case, 
this amounts to every 11th SNV from those available in the CADD v.1.3 data set. The hCADD and 
hCADD* models are trained with a maximum number of 10 iterations and an L2 regularization 
parameter of 1, to keep the settings as similar as possible to CADD v.1.3. 

All model performances were evaluated with the area under the receiver operating characteristic 
(ROC-AUC). Trained classifiers were assessed based on their performances on their respective 
held-out test sets. These sets were further divided according to the genomic regions from which 
each variant originates. An overview and description of the resulting 7 subsets can be found in 
Table S2.  

We further evaluated the classifiers on three additional data sets: (i) 60 SNVs associated with 
changes in phenotype as obtained from an exome sequencing study of 91 mouse strains with 
Mendelian disorders (Fairfield data set) [36]; (ii) 481 N-ethyl-N-nitrosourea (ENU) induced SNVs 
(Mutagenetix data set) [37]; (iii) 9,348 variant sites lifted from the ClinVar-ESP validation set 
utilized in CADD v.1.3 (ClinVar-ESP data set) [5]. Similar to the training data, all data sets were 
standardized but not centered, using the scaling factors for each annotation which were obtained 
from the whole mouse data set. 

Data for the Fairfield validation set is provided by Table S4 [38] of the Fairfield et al. publication. 
The Mutagenetix data set was provided by several labs and downloaded from the Mutagenetix data 
base [37], [39]. All data were checked for the reported reference allele and, in the case of 
uncertainty, manually verified with the records on the website. If the reported allele could not be 
found in close proximity of the reported genomic location, the variant was discarded. Both the 
Fairfield and Mutagenetix validation sets contain phenotype altering SNVs, therefore all of these 
were considered as potentially deleterious without differentiating between the exact nature of the 
phenotype change (positive data set). To find an equal number of variants that can be used as a 
negative data set, we made use of SNVs identified in 36 mouse strains from the Wellcome Trust 
Sanger's Mouse Genomes Project [15], filtered for an allele frequency (AF) ≥ 90%. We sampled to 
have a matching number of negative SNVs for both data sets, we took care that the proportions of 
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transcribed, synonymous and non-synonymous mutations are the same among the positive and 
negative SNVs. 

The ClinVar-ESP data set contains curated variants from the ClinVar database [14] that were 
identified to have a pathogenic effect in human. As a negative set (5,635 SNVs), variants from the 
Exome Sequencing Project (ESP) [40] were selected with a derived allele frequency of ≥ 5%. We 
lifted the variants from GRCh37 to mm10 and selected SNVs which introduce the same amino acid 
substitution or stop codon change in human and mouse. 

2.6.6. Analysis	of	model	weights	

The logistic regressor assigns weights (betas) to each annotation used for training. These weights 
indicate the effect of one unit change on the log odds of success of the trained model. A zero 
weight implies that the annotation is not used. We compared the weights assigned to each 
annotation by mCADD and hCADD to derive information about annotations of general importance 
for CADD-like models. As different regularization terms were applied in hCADD and mCADD, 
causing the beta's to be on different scale, we compared ranks instead of weights. Ranks were 
computed for non-zero beta's and based on the absolute weight. Annotations of mCADD and 
hCADD were compared with each other when they have a non-zero weight in both models. Three 
types of annotations were not identical between mouse and human, but considered comparable: 

• Primate-based PhastCons&PhyloP [19], [20] scores in hCADD were compared with glire-
based PhastCons&PhyloP scores of mCADD. These are the smallest alignments used to 
compute conservation scores in both species. 

• Mammalia based PhastCons&PhyloP scores in hCADD were compared to scores based on a 
placentalia alignment for mCADD. 

• CHROMHMM [33] chromatin state predictions were mapped based on the overlap of their 
predicted consequences in human and mouse. 

2.7. Declarations	/	Statements	
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Data and scripts to reproduce the results can be downloaded from the following link. 
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2.8. Appendix	–	Supplementary	Data	
Supplementary files “supplementary_data2-4.xlsx” are available online under:  

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2337-5 

2.8.1. Supplementary	Note	

2.8.1.1. Annotation	pre-processing	
To train mCADD and hCADD models only SNV were considered. Differences between the inferred 
ancestor genome and the mouse reference were utilized as negative class for training. Differences 
were considered when they were not adjacent to another site that was different between the 
ancestor and reference. These mutations are directed back in time while simulated variants are 
orientated forward in time. Therefore annotations that are sensitive to these differences have to be 
swapped in the set of derived variants. Namely, the nucleotide reference and alternative columns 
(Ref, Alt ), the amino acid substitutions (nAA, oAA) and the variant effect consequence predictions 
made by the ENSEMBL Variant Effect Predictor v87 for the labels (STOP_Gained, STOP_LOST). 

motifEHIPos, GerpRS, SIFTval, GerpRSpval, mirSVR-Score, mirSVR-E, mirSVR-Aln, targetScan, 
Expression, DNAseSig, H3K27ac, H3K4me1, H3K4me3, tOverlapMotifs, motifDist, motifECount, 
motifEScoreChng, TFBS, TFBS-Peak, TFBSPeaksMax, cDNApos, relcDNApos, CDSpos, relCDSpos, 
prot-Pos, relprotPos, Dst2Splice, Grantham 

The following annotations were mean imputed based on the mean of the simulated variants: 

GC, CpG, dnaRoll, dnaProT, dnaMGW, dnaHelT, GerpN, GerpS, GerpRS, euaPhCons, euaPhyloP, 
gPhCons, gPhyloP, minDistTSS, minDistTSE, plaPhCons, plaPhyloP, verPhCons, verPhyloP 

For the following annotations, another category (UD = undened) was introduced to indicate missing 
values: 

Domain, Dst2SplType, SIFTcat, oAA, nAA 

Missing values in the annotation (isTv) were replaced by 0.5. 

For the set of following annotations, an indicator feature was created which is set to 0 if the 
annotation is dened and set to 1 if undefined: 

Dst2SplType_ACCEPTOR, Dst2SplType_DONOR, mirSVR-Score, targetScan, cDNApos, CDSpos, 
protPos, SIFTval, Grantham 

The annotations (minDistTSE ,minDistTSS) were capped at 10000. 

The following annotations were log-transformed: 

minDistTSE ,minDistTSS, GerpRS 

All categorical annotations were OneHotEncoded. Further annotation combinations were created. 
Namely, all possible combinations of Ref and Alt, representing an annotation for each possible 
nucleotide substitution. The same was done for nAA and oAA, thus there is one annotation for each 
possible amino acid substitution. Lastly, combinations of the set of the following annotations were 
made with each of the 15 summarized consequences (Supplementary Data 2) of the Ensembl 
Variant Effect Predictor. 
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cDNApos, CDSpos, Dst2Splice, GerpS, GerpN, plaPhCons, plaPhyloP, minDistTSE, minDistTSS, 
euaPhCons, euaPhyloP, protPos, relcDNApos, relCDSpos, rel-protPos, verPhCons, verPhyloP, 
dnaHelT, dnaMGW, dnaProT, dnaRoll, gPhCons, gPhyloP 
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2.8.2. Supplementary	Tables	

Table S1: VEP consequences are summarized in 15 categories. If multiple annotations 
exist for the same variant, the consequence is selected according to the displayed 
hierarchy, with STOP-GAINED being the most important and UNKNOWN the least 
important category. 

Hierarchy Abbreviation VEP Consequence 
categories 

1 SG STOP-GAINED 
2 CS CANONICAL-SPLICE 
3 NS NON-SYNONYMOUS 
4 SN SYNONYMOUS 

5 SL STOP-LOST 

6 S SPLICE-SITE 

7 U5 5PRIME-UTR 

8 U3 3PRIME-UTR 

9 R REGULATORY 

10 IG INTERGENIC 

11 NC NONCODING-CHANGE 

12 I INTRONIC 

13 UP UPSTREAM 
14 DN DOWNSTREAM 
15 O UNKNOWN 

 

Table S2: This table gives a description about the genomic regions which were selected 
to evaluate the mCADD and hCADD models. Underneath the Genomic region, the total 
number of SNVs located in that region is displayed. H=Human, M=Mouse. 

Genomic Region  
Total number SNV 

Description Class distribution 
Human 

Class distribution 
Mouse 

entire genome 
H:31,368,062, 
M:67,229,998 

randomly selected SNVs 
taken from the entire 
genome. 

Derived: 0.5 
Simulated: 0.5 

Derived: 0.5 
Simulated: 0.5 

not transcribed 
H:30,592,093, 
M:64,278,844 

randomly selected SNVs 
which are located outside of 
known transcript regions. 

Derived: 0.5 
Simulated: 0.5 

Derived: 0.5 
Simulated: 0.5 

Transcribed 
H:775,969, M:2,951,154 

randomly selected SNVs 
which are located in known 
transcript regions. 

Derived: 0.4 
Simulated: 0.6 

Derived: 0.46 
Simulated: 0.54 

transcribed not translated 
H:461,057, M:1,684,821 

randomly selected SNVs 
which are located in 
transcript regions but not 
translated. (5'UTR, 3'UTR, 
Intron) 

Derived: 0.47 
Simulated: 0.53 

Derived: 0.5 
Simulated: 0.5 

translated 
H:314,912, M:1,266,333 

randomly selected SNVs 
which are located in known 
translated regions (Exon). 

Derived: 0.29 
Simulated: 0.71 

Derived: 0.42 
Simulated: 0.58 

translated synonymous 
H:126,103, M:625,183 

randomly selected SNVs 
which are located in 
translated regions but do 
not code for a missense 
annotations with an 
associated SIFT value. 

Derived: 0.41 
Simulated: 0.59 

Derived: 0.62 
Simulated: 0.38 

Translated missense 
H:188,809, M:641,150 

randomly selected SNVs in 
translated regions that have 
a missense annotation with 
an associated SIFT value. 

Derived: 0.21 
Simulated: 0.79 

Derived: 0.23 
Simulated: 0.77 
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Table S3: 10-fold cross validation performance of mCADD models. Each row is showing a 
different number of iterations, each column a different L2-penalization. 

Iteration | L2-
Penalization 

0.1 1 10 

10 Mean: 0.623 
Std: 0.01 

Mean: 0.625 
Std: 0.011 

Mean: 0.626 
Std: 0.009 

100 Mean: 0.668 
Std: 0.001 

Mean: 0.634 
Std: 0.104 

Mean:0.667 
Std: 0.003 

1000 Mean: 0.638 
Std: 0.06 

Mean: 0.638 
Std: 0.076 

Mean: 0.653 
Std: 0.042 

 

Table S4: Top performing predictors in hCADD and mCADD 

top 10 mCADD top 10 hCADD top 10 hCADD 
and mCADD 

hCADD>500 
and 
100>mCADD 

hCADD<100 
and 
500<mCADD 

GerpN 
IGxGerpN 
dnaRoll 
SIFTval 
IxGerpN 
IGxdnaRoll 
dnaMGW 
IxdnaRoll 
verPhCons 
GC 

priPhCons 
mamPhCons 
verPhCons 
verPhyloP 
mamPhyloP 
priPhyloP 
IxpriPhCons 
IGxpriPhCons 
GerpS 
IxverPhyloP 

verPhCons UPxdnaMGW 
DNxdnaMGW 
RxdnaHelT 
IxdnaRoll 

IGxmamPhyloP 
IGxmamPhCons 
RxmamPhCons 
oAAxUD 
IND_protpos 
mamPhCons 
nAAxUD 
IND_CDSpos 
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2.8.3. Supplementary	Figures	

 

Figure S1: Phylogenetic tree, displaying the Vertebrate, Placental, Euarchontoglire and 
Glire sets which were used to compute PhastCon and PhyloP conservation scores. 
Furthermore, the last common ancestor between Mouse and Rat is indicated. 
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Figure S2: Phylogenetic tree, displaying the taxa used in the 17-eutherian mammal EPO 
alignment. That alignment was used to infer the mouse ancestral sequence and to derive 
substitution rates to simulate variants. 
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3.1. Abstract	
Background: In animal breeding, identification of causative genetic variants is of major 
importance and high economical value. Usually, the number of candidate variants exceeds the 
number of variants that can be validated. One way of prioritizing probable candidates is by 
evaluating their potential to have a deleterious effect, e.g. by predicting their consequence. Due to 
experimental difficulties to evaluate variants that do not cause an amino-acid substitution, other 
prioritization methods are needed. For human genomes, the prediction of deleterious genomic 
variants has taken a step forward with the introduction of the combined annotation dependent 
depletion (CADD) method. In theory, this approach can be applied to any species. Here, we 
present pCADD (p for pig), a model to score single nucleotide variants (SNVs) in pig genomes. 

Results: To evaluate whether pCADD captures sites with biological meaning, we used transcripts 
from miRNAs and introns, sequences from genes that are specific for a particular tissue, and the 
different sites of codons, to test how well pCADD scores differentiate between functional and non-
functional elements. Furthermore, we conducted an assessment of examples of non-coding and 
coding SNVs, which are causal for changes in phenotypes. Our results show that pCADD scores 
discriminate between functional and non-functional sequences and prioritize functional SNVs, and 
that pCADD is able to score the different positions in a codon relative to their redundancy. Taken 
together, these results indicate that based on pCADD scores, regions with biological relevance can 
be identified and distinguished according to their rate of adaptation. 

Conclusions: We present the ability of pCADD to prioritize SNVs in the pig genome with respect to 
their putative deleteriousness, in accordance to the biological significance of the region in which 
they are located. We created scores for all possible SNVs, coding and non-coding, for all autosomes 
and the X chromosome of the pig reference sequence Sscrofa11.1, proposing a toolbox to prioritize 
variants and evaluate sequences to highlight new sites of interest to explain biological functions 
that are relevant to animal breeding. 

3.2. Background	
Since humans started breeding animals, a key challenge has been to control the inheritance of 
traits. In farm animals, genetic gain has been achieved using pedigree information and statistical 
models. Since the introduction of genomic selection (GS) [1], breeding is transitioning from 
selecting animals based on visual inspection and pedigree data to approaches that exploit genetic 
information. However, given the complexity of genomes and the generally low level of knowledge 
about the relation between genotype and phenotype, undesirable alleles may accumulate, through 
genetic hitchhiking or genetic drift [2], [3] because of the small effective population size in 
livestock breeds under artificial selection. 

Recent approaches incorporate whole-genome sequence data to improve genetic predictions. 
Because the number of tested single nucleotide variants (SNVs) is larger in whole-genome 
sequence data compared to array-based assays, truly causal genetic variants are more likely to be 
identified. While the use of whole-genome sequence data has improved genetic prediction, the 
improvements fall short of expectation and yield only moderate performance increases [4], [5], 
partly due to the inclusion of noise. Therefore, current strategies involve pre-weighting of potential 
candidate SNVs that have a higher probability of being causal. Several methods have been 
developed to score variants according to their putative deleteriousness and identify those that may 
have a detrimental effect on the fitness of individuals. Well-known variant prioritization tools 
include SIFT [6], PolyPhen2 [7], SNAP2 [8] and Provean [9]. However, these are limited to scoring 
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(non-synonymous) variants in coding regions. In contrast, the combined annotation dependent 
depletion (CADD) [10] model that was developed to investigate SNVs in human populations, can 
score variants at any location in the genome. CADD is comparable to methods such as fitCons [11] 
and Linsight [12]: it captures signals of evolutionary selection across many generations and 
combines this with annotations—genomic features, epigenetic data, other predictors etc.—to 
estimate a deleteriousness score for a given variant. While CADD and similar models are well 
established and used to predict the effects of variants in the human genome [13]–[18], to date, 
they have not been applied to non-human species. In recent work [19], we applied CADD to 
mouse, and studied the effect of having a limited number of annotations, which is expected for 
non-model species, compared to the human case. The results demonstrated that applying the 
CADD methodology to non-human species is valid and powerful. 

Here, we introduce pCADD (p for pig), a model based on the CADD methodology to create scores 
for the prioritisation of SNVs with respect to their putative deleteriousness in the genomes of wild 
and domesticated pigs (Sus scrofa). The aim of this paper is to assess the ability of pCADD to 
prioritize individual SNVs and genomic regions relative to their biological function. The ability of 
pCADD to score any SNV in the entire pig genome with respect to its predicted deleteriousness 
helps researchers and breeders to evaluate (newly) observed SNVs and rank potentially harmful 
SNVs that are propagated by breeding. 

3.3. Methods	
Briefly, the CADD model, which is a logistic regressor, assigns a deleteriousness score to a SNV 
based on a set of 867 genomic annotations such as DNA secondary structure, conservation scores, 
protein function scores and many more (see Additional file 1 and Additional file 2: Table S1). Model 
parameters are fitted based on a large training set, containing two classes of SNVs: derived (proxy 
benign/neutral) and simulated (proxy deleterious) SNVs. The set of derived SNVs is generated by 
identifying (nearly) fixed alleles in the species of interest that differ from those of a reconstructed 
ancestral genome (Figure 1a). Proxy deleterious SNVs are simulated de novo mutations, which 
have not experienced any selection, thus deleterious variants are not depleted in this set (Figure 
1b, c). 
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Figure 1: A. Fixed or almost fixed differences between an 
inferred ancestor sequence and the investigated pig population 
are used as proxy benign/neutral SNVs. B. Simulation, first 
step: differences between differently deep ancestor sequences 
are identified and substitution rates are derived. C. Simulation, 
second step: the derived substitution rates are used to simulate 
de novo variants that have not experienced any selection and 
therefore are not depleted in the number of deleterious 
variants. 

With the pCADD model, every position in the pig genome can be scored with respect to its 
predicted deleteriousness. To differentiate more easily those SNVs that are potentially of interest, 
we created a PHRED-like score, which is similar to that in the original CADD approach [10]. To this 
end, the outcomes of the logistic regressor for all variants are ordered and transformed. The 
pCADD score is a log-rank score that ranges from ~95 to 0, with higher scores indicating more 
deleterious variants. The top 1% and 0.1% highest scored SNVs have a pCADD score higher than 
20 and 30, respectively, thus the most deleterious variants are differentiated from the likely 
neutral ones. In the following, we describe the data used to train the pCADD model and 
demonstrate its use by performing several analyses. 
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3.3.1. Training	and	test	set	construction	

To create the set of derived variants, which consists of putatively benign/neutral variants, we 
identified (nearly) fixed alleles in a pig population that differ from those of the reconstructed 
ancestral genome of pig, cow and sheep (Figure 1a, Sus scrofa [20], Bos taurus [21] , Ovis aries 
[22] ]). These alleles have become fixed in the pig population due to genetic drift or positive 
selection, thus they are depleted in deleterious variants and can be assumed to have a benign or 
neutral effect. The ancestral sequence was obtained from the 25-eutherian-mammals EPO (Enredo, 
Pecan, Ortheus) [23], [24] multiple alignment files (MAF), downloaded from the Ensembl v.91 
database. To avoid errors due to misaligned InDels, only SNVs that are not adjacent to another 
variant site, between the pig population and the inferred ancestor, were retained. The pig 
population used in our study included 384 individuals, representing 36 breeds, e.g. Asian and 
European, wild, commercial and local breeds (see Additional file 2: Table S2). For each site in the 
inferred ancestor, we selected an allele when its frequency was higher than 0.9 in the pig 
population and when it differed from the ancestral allele. Because the population includes pigs from 
many breeds, the number of functional variants that may have reached fixation due to founder 
effects in individual populations is limited. In addition, we removed sites that carry an allele at a 
frequency higher than 0.05 in the population and for which the alternate allele is equal to the 
ancestral allele. To simulate variants for the proxy deleterious set, substitution rates were derived 
from observed differences between more distant ancestors of pig (Figure 1b, c). In particular, rates 
for nucleotide substitutions and CpG sites in window sizes of 100 kb were computed based on the 
inferred substitutions between the ancestral sequences of pig-cow, pig-horse and pig-dog. Only 
SNVs that were located at a site with a known ancestral allele of the pig-cow-sheep ancestor were 
simulated. These SNVs are de novo mutations that have a larger than uniform chance, with respect 
to other de novo mutations, to occur in the populations. Although these variations may have never 
occurred by chance along the evolutionary branch of pig, they may have also been actively 
selected against. In other words, these random mutations have a greater chance of being 
deleterious than benign [25], therefore the set of simulated variants is expected to be enriched in 
deleterious variants in comparison to the derived proxy benign/neutral set. 

In total, 61,587,075 proxy benign/neutral SNVs were derived and a similar number of SNVs was 
simulated. To form the training and test sets, the dataset was randomly split into two sets with an 
equal number of samples from both classes. The training dataset contained 111,976,500 SNVs 
whereas the test set consisted of 11,197,650 SNVs. To assess the dependency on the genomic 
location of the variants, the test set was split into six overlapping subsets: (i) intergenic (non-
cDNA) variants; (ii) all transcribed sites (cDNA); (iii) transcribed but not translated sites (5′UTR5, 
3′UTR3 and introns); (iv) coding regions; (v) synonymous SNVs in coding regions and (vi) non-
synonymous SNVs in coding regions. 

3.3.2. Variant	annotation	

Genomic annotations were obtained from the Ensembl Variant Effect Predictor (VEP v91.3) 
database [26] and supplemented by PhyloP [27], PhastCons [28] and GERP [29] conservation 
scores as well as Grantham [30] amino-acid substitution scores and predictions of secondary DNA 
structure (DNAshape) [31]. 

VEP-predicted consequences of SNVs were summarised in 14 categories. They were either used 
directly or combined with other data to create composite annotations (see Additional file 1 and 
Additional file 2: Table S3). Annotations that rely on a gene build, such as the SIFT protein score, 
reference and alternative amino-acid, variant position within a transcript and coding region were 
also used. 
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PhyloP and PhastCons scores are based on three differently sized multiple species alignments: a 6-
taxa laurasiatheria, a 25-taxa eutherian-mammals and a 100-taxa vertebrate alignment. The 
laurasiatheria and eutherian-mammals alignments were downloaded from Ensembl [32] v91 
whereas the 100-taxa vertebrate alignment was downloaded from UCSC [33], [34] (December 29, 
2017). Next, PhyloFit [35] phylogenetic models were created for the laurasiatheria and eutherian-
mammals alignments to compute PhastCons and PhyloP scores for pig. PhyloFit models for the 
100-taxa vertebrate alignment were downloaded from the UCSC genome browser and used to 
compute PhastCons and PhyloP scores. PhastCons and PhyloP scores based on the 6- and 25-taxa 
alignments were directly computed for pig, while the scores for the 100-taxa alignment had to be 
first computed for the human reference GRCh38 and then mapped to Sscrofa11.1 using CrossMap 
[36]. To avoid a positive bias in predictive power in favour of PhastCons and PhyloP scores, the pig 
sequence was excluded from the generation of both sets of scores. Genomic evolutionary rate 
profiling (GERP) neutral evolution, GERP conservation, GERP constrained element and GERP 
constrained element p-values were retrieved from Ensembl91 using a custom Perl script. 

Predicted differences in the secondary DNA structure between reference and alternative alleles 
were added as annotations to the dataset, as computed by DNAshape [31]: minor gap width 
(MGW), Roll, propeller twist (ProT) and helix twist (HelT). 

After computing all annotation combinations, imputing missing values and recoding all categorical 
values to binary variables (see Additional file 1), the final number of features was equal to 867. 
Each feature was scaled by its standard deviation obtained from the variants in the training set. 

3.3.3. Construction	of	the	model	

We assigned class label 0 to the proxy benign/neutral variants and 1 to the proxy deleterious 
variants. Then, we trained a logistic regression classifier to predict the posterior probability of a 
variant being proxy deleterious. We used the logistic regression module provided by Graphlab v2.1 
[37]. Based on previous experience and given the lack of a sufficiently large validation set, we 
applied the set of hyper parameters that were found to be optimal for mouse CADD19, i.e. L2-
penalization was set to 0.1 and the number of iterations to 100. Feature rescaling, performed by 
the logistic regression function by default, was deactivated. 

3.3.4. Score	creation	

The pCADD scores were computed for all potential SNVs (3 per position) on the 18 autosomes and 
the X allosome. Each SNV was annotated with 867 genomic annotations and scored by the trained 
logistic regression model. Subsequently, these scores were sorted in descending order and 
assigned a pCADD score defined as −10 ∗ log!"(i/N), with i being the rank of a particular SNV and N 
the total number of substitutions (N = 7,158,434,598). 

3.3.5. Analyses	

3.3.5.1. Codon	analysis	
From the Ensembl v.93 pig gene build, we retrieved 10,942 genes with only one annotated 
transcript to avoid complications due to overlapping transcripts. We created three sets, consisting 
of the minimum pCADD score found at a site, per transcript, one for each of the three positions of 
a codon. We computed one-tailed Mann–Whitney U-tests between each of the three sets. The 
resulting p-values were Bonferroni corrected. All calculations were performed in Python version 3 
using SciPy v.1.1.0 [38] and Statsmodels v.0.9.0 [39]. 
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3.3.5.2. miRNA	analysis	
We obtained all annotated (pre-)miRNA sequences from the Ensembl v93 database, i.e. 484 
sequences, and, after removal of sequences that overlapped with any of the training SNVs, 294 
sequences remained. As a second set, equally long sequences up- and downstream of the miRNA 
sequence were selected. For each position in both sets, the miRNA sequences and surrounding 
sequences were annotated with the maximum pCADD score. To test whether miRNA sequences had 
a significantly higher pCADD score than their neighbouring sequences, we applied a one-tailed 
Mann–Whitney U-test using SciPy v.1.1.0 in Python 3. 

3.3.5.3. Intron	analysis	
We used the REST API of Ensembl v93 to download the intron coordinates of all 40,092 transcripts. 
We annotated all the sites in all the introns with the maximum pCADD score found at these sites. 
For each intron, we performed one-tailed Mann–Whitney U-tests to check if the investigated intron 
had a significantly higher pCADD score than all the other introns in the same transcript. p-values 
were Bonferroni corrected over all transcripts, per intron. To display the results, we normalized the 
number of rejected null-hypotheses by the number of conducted tests, which decreases as the 
number of introns increases. 

3.3.5.4. Tissue	analysis	
We downloaded porcine Affymetrix expression data of several tissues published by Freeman et al. 
[40]. We selected the genes that were clustered and associated with a particular tissue and had a 
robust multi-array average (RMA) [41] expression level of at least 100 or more to filter out genes 
with no activity. Of these genes, we considered all the coding DNA sequences (CDS); if a particular 
CDS was present in more than one transcript, it was selected only once. In addition to the 
housekeeping genes, genes specific for 16 tissues were selected (cartilage-tendon, blood, 
cerebellum, dermal, epithelium, eye, kidney, liver, lung, muscle, neurone, pancreas, placenta, 
salivary gland, testis, and vasculature). All CDS were annotated with the maximum pCADD score 
found at each site of the CDS and merged into one set per tissue. Tissue sets were tested for 
higher scores than those of the housekeeping set with one-tailed Mann–Whitney U-tests; p-values 
were Bonferroni corrected. All calculations were done in Python 3 using the SciPy v.1.1.0 and 
Statsmodels v.0.9.0. modules. 

3.4. Results	
In this study, we trained a CADD-like model for SNV prioritisation in the pig genome, which is 
referred to as pCADD. It is a linear regressor that is trained to differentiate between two classes of 
variants, a set of simulated variants, which is relatively more enriched in potentially deleterious 
variants than a set of derived variants, which is depleted in deleterious variants. The pCADD 
generated a score for every possible SNV of the Sscrofa11.1 reference genome on all autosomes 
and the X allosome. Then, these scores were tested on a held-out test set, they were used to 
evaluate seven SNVs with known functional effect and we examined whether they could 
discriminate between functional and non-functional sequences. 

3.4.1. pCADD	data	characteristics	

The class distribution in the training and test sets were balanced, but subsets of SNVs found in 
different genomic regions displayed varying proportions of simulated and derived SNVs (Table 1). 
These imbalances were similar to those found for the human (hCADD) and mouse (mCADD) 
datasets in our previous study [19]. The largest difference among the three models is the total 
number of SNVs used for model training: ~31 million for hCADD, ~67 million for mCADD and ~112 
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million for pCADD. This results from the use of a more distant ancestor of the pig than the 
ancestors used for mouse in mCADD (mouse and rat) and for humans in hCADD (human and 
chimpanzee). A more distant ancestor yields more differences between the inferred ancestor and 
the species of interest, resulting in a larger derived class and, thus, in a larger total number of 
SNVs to create a balanced dataset. 

Table 1: The number of SNVs and their relative proportions of the six subsets of the test 
set for pCADD. 

Pig 
partition 

Number SNVs / 
proportion of test set 

Num. 
Simulated 

Num. 
Derived 

Class distribution 
(Simulated/Derived) 

Test set 11,197,628 / 100.00% 5,598,814 5,598,814 50.00% / 50.00% 

Not cDNA 10,884,147 / 97.20% 5,404,059 5,480,088 49.65% / 50.35% 

cDNA 313,481 / 2.80% 194,755 118,726 62.13% / 37.87% 

Not CDS 154,622 / 1.38% 84,730 69,892 54.80% / 45.20% 

CDS 158,859 / 1.42% 110,025 48,834 69.26% / 30.74% 
Synonymous 75,216 / 0.67% 40,147 35,069 53.38% / 46.62% 

Missense 83,643 / 0.75% 69,878 13,765 83.54% / 16.46% 

3.4.2. Increased	discriminative	power	of	pCADD	with	increased	biological	
relevance	of	the	sequence	in	which	the	queried	SNVs	are	located	

The performance of pCADD is evaluated by computing the receiver-operator-area under the curve 
characteristic (ROC-AUC) on a test set, which consisted of simulated and derived SNVs, none of 
which were used for training. The overall ROC-AUC on the entire test set is ~ 0.683 but differs 
considerably for six subsets of SNVs (Figure 2a). The test sets are subsets of each other, with 
decreasing numbers of SNVs beginning with the whole test set and ending with the missense 
mutations. In transcribed regions of the genome, the scores are more discriminative than in non-
transcribed regions, while in coding regions they are more discriminative than in non-coding 
regions such as the 5′UTR, 3′UTR and introns. The scores are most discriminative for missense 
mutations, which have the largest number of genomic annotations, resulting in high discriminative 
performance of the pCADD model. 
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Figure 2: This figure displays the prediction performances of different prioritization tools 
on test sets, representing different regions of the genome for which different number of 
features are available. I: Whole test set; II: Intergenic SNVs; III: Transcribed SNVs; IV: 
SNVs in intron, 5’ & 3’ UTRs; V: Coding SNVs; VI: SNVs causing synonymous mutations; 
VII SNVs causing missense mutations. A) pCADD performance measured in ROC-AUC on 
the different subsets of the pig held-out test set. B) mCADD test performance measured 
in ROC-AUC on the same genomic subsets in the mouse genome. C) Performance of 6-
taxa laurasiatheria PhastCons conservation score on the pig test set. D) SIFT 
performance on missense causing SNVs in the pig test set. 

These observations are in strong accordance with the earlier reported observations for the mCADD 
model for mouse (reproduced in Figure 2b) [19], which was proven useful to identify truly 
deleterious mutations found in the Mutagenetix [42] data base, lifted from ClinVar [43] and others 
[19]. For all investigated SNV subsets, PhastCons [28] conservation scores based on the Ensembl 
6-taxa laurasiatheria [32] displayed the same pattern across all subsets, but performed worse than 
pCADD (Figure 2c). We used 6-taxa laurasiatheria PhastCons scores because, overall, they 
performed best on different subsets of the held-out test set (see Additional file 3: Figure S1). A 
similar difference in performance was observed when the performance of pCADD on missense 
mutations was compared to that of SIFT (Figure 2d), which indicates the added value of pCADD 
over conventional approaches of identifying potential candidates. 

3.4.3. Selecting	 candidate	 SNVs	 based	 on	 their	 total	 score	 and	 on	 their	
relative	rank	in	the	surrounding	region	is	meaningful	

When we assessed examples of known causal SNVs (Table 2), they were enriched in the upper 
percentile of pCADD scores and were likely to be picked up as potential. The exception is 
3:43952776T>G, one of two variants located in close proximity to a splice-site. In particular, it is 
located in an intron sequence, 4 bp upstream of an annotated splice site. Variants, which are 
located 1- and 2-bp upstream of the splice site have pCADD scores that range from 20.90 to 
21.93, whereas the remaining variants in the same intron sequence have on average a pCADD 
score of ~2.96. Only 13 (out of 3450) other potential SNVs in that intron have a higher pCADD 
score. This puts the 3:43952776T>G SNV into the 99.6th percentile of the intron sequence in  
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Table 2: Five well-known examples of causal SNVs with different effects on phenotype 
and their pCADD scores. The pCADD scores and percentiles both indicate their rank 
among all potential SNVs in the pig genome. 

Genomic 
location 

Substi
tution 

pCADD Percentile Gene Effect Citati
on 

6:146829589 G>A 22.868 99.5 LEPR missense: affects productive, 
fatness and meat quality traits 

in different genetic 
backgrounds 

[44]  

1:265347265 A>G 17.198 98.1 NR6A1 missense: affects number 
vertebrae 

[45]  

17:57932233 A>C 23.322 99.5 PCK1 missense: causal mutation 
associated to intramuscular fat 
content, backfat thickness and 

meat quality in pigs 

[46]  

7:31281804 G>A 21.589 99.3 PPARD missense: affects ear size, fat 
metabolism, skin and cartilage 

development 

[47]  

12:38922102 G>A 21.848 99.3 TADA2A splice-donor: lethal recessives [48]  

3:43952776 T>G 10.144 90.3 POLR1B splice-region: lethal recessives [48]  

6:54880241 T>C 28.767 99.9 PNKP missense: lethal recessives [48]  

which it is located. None of the 13 potentially higher scored variants were observed in our 
population of 384 pigs, which makes 3:43952776T>G the highest scored SNV in that region. 

3.4.4. The	third	position	of	a	codon	is	scored	lower	than	the	first	two	

To assess further if the model assigns different scores to sites with differing biological importance 
genome-wide, we tested whether the three positions in a codon are scored differently. Based on 
the fraction of non-synonymous mutations for each codon position, the second position should 
receive the highest score, followed by the first and third positions (see Additional file 3: Figure S2). 
To test this, we examined codons of genes that have only one known transcript, to avoid 
interference, which is expected by overlapping transcripts. 

The table displays the counts of significant p-values between the three different positions in a 
codon. The columns indicate the positions that are tested to have higher pCADD scores than the 
positions in the rows. The numbers indicate how often the null hypothesis was rejected in 10,942 
conducted tests. 

Table 3: Bonferroni corrected one tailed Mann-Whitney U tests were conducted to test if 
pCADD values are significantly larger in one codon position relative to another. The table 
displays the counts of significant p-values between the three different positions in a 
codon. The columns indicate the positions that are tested to be larger than the positions 
in the rows. The numbers indicate how often the null hypothesis was rejected in 10,942 
conducted tests. 

Smaller \ larger 1st 2nd 3rd 

1st NA 3066 189 

2nd 766 NA 340 

3rd 8830 8901 NA 

Table 3 shows the number of significant tests when comparing the pCADD scores between two 
codon positions, across a gene, with each other (Bonferroni corrected, one-tailed Mann–Whitney U-
tests). Among the 10,942 genes that were selected for this test, we found that the second codon 
position has a significantly higher pCADD score than the third for 8901 genes, and that the first 
codon position has a significantly higher pCADD score than the third for 8830 genes. Only for 3066  
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Figure 6: Histogram of pCADD score distribution of (pre-)miRNA transcripts and their 
surrounding up- and downstream regions. Vertical lines indicate the mean values of each 
distribution with a mean of 9.987 for miRNA and 7.205 for Up&Down. The One-tailed 
Mann-Whitney U-test between both distributions returned a p-value of 0.0 and a ROC-
AUC of 0.613 in favour of miRNA over the Up&Down stream regions. 

genes, did the second codon position score significantly higher than the first, while for 766 genes it 
was the opposite. Taken together, these results agree with our expectation, and indicate that 
pCADD scores do reflect deleteriousness. This was further confirmed by comparing the effect sizes, 
measured as ROC-AUC of the pairwise comparisons of codon positions (see Additional file 3: Figure 
S3). 

3.4.5. miRNA	 regions	 are	 scored	 differently	 from	 those	 of	 neighbouring	
regions	

We investigated whether pCADD scores are higher for functional non-coding sequences than for 
non-functional sequences up- and downstream. Variants in annotated (pre-)miRNA regions have 
significantly higher pCADD scores (p-value=0.0, one-tailed Mann–Whitney U test; ROC-
AUC=0.613) than sites in up- and downstream regions (average pCADD scores of ~10 vs. ~7.2) 
(Figure 3). This difference is largely due to an abundance of (pre-)miRNAs with pCADD scores 
around ~21 and a relatively smaller number of variants with a low score. For 164 miRNAs (~56%), 
the pCADD scores were significantly higher than those of the neighbouring regions (Bonferroni 
corrected, one-tailed Mann–Whitney U test). 

3.4.6. Among	the	introns	of	a	transcript,	the	first	one	has	the	highest	score	

Chorev et al. [49] showed that regulatory elements are enriched in the first few introns of a 
transcript and that their number decreases with increasing intron position. Consequently, we 
expected to see decreasing pCADD scores with increasing intron position. To test this, we 
annotated every position in the intron region with the highest pCADD score for that position and  
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Figure 7: pCADD scores per intron compared to all other introns, for the first 20 introns. 
The blue bar indicates the number of introns tested against the intron of interest, the red 
bar shows how many of these tests resulted in an adjusted p-value < 0.05 (scale on the 
left axis). With increasing intron position, the number of tests that can be conducted 
decreases (with the number of transcripts that have at least that many introns). The 
black line represents the normalised number of significantly enriched introns, 
normalized by the number of conducted tests per intron position (scale on the right 
axis). 

calculated how often the scores in a particular intron are significantly higher than those across all 
other introns in the same transcript (Bonferroni corrected one-tailed Mann–Whitney U test). The 
results clearly show that introns closer to the transcription start site of a gene have higher pCADD 
scores (Figure 4), which provide evidence for their biological relevance. 

3.4.7. Among	 all	 tested	 tissues,	 pCADD	 scores	 for	 salivary	 glands	 and	
neuronal	 tissue	 specific	 genes	 are	 the	 lowest	 and	 highest,	
respectively.	

Next, we investigated whether genes considered to be housekeeping genes have different (higher) 
pCADD scores than genes specifically expressed in certain tissues. The underlying assumption is 
that a mutation in a gene expressed in all tissue types has a much broader potential deleterious 
effect. We compared pCADD and PhyloP scores of genes specific for 16 tissues and also compared 
them (Bonferroni corrected one-tailed Mann–Whitney U test; ROC-AUC) to scores of a set of genes 
considered as housekeeping genes, i.e. expressed approximately equally in all tissues [40]. Based 
on pCADD scores, housekeeping genes had significantly higher scores for 12 of the 16 tissues 
examined (Table 4). Genes in three brain-derived tissues—cerebellum, eye, neuronal tissue—and in 
muscle tissue (smooth and skeletal) have on average a higher pCADD score than housekeeping 
genes. A ROC-AUC of 0.5 is the expected performance if the pCADD scores are randomly assigned 
to the genes of each set. This means that the larger the absolute difference is from 0.5, the clearer 
is the signal supporting that one set is larger than the other. We compared all tissue gene sets to 
housekeeping genes, this means that when the ROC-AUC is smaller than 0.5, the pCADD scores of 
the tissue associated gene set are generally larger than those of the housekeeping one and vice 
versa. In all the comparisons, the total effect size was small and did not differ from 0.5 by more 
than 0.122 (dermal tissue). The four tissues that displayed higher pCADD scores than 
housekeeping genes have in common that their cells do not divide anymore once they are fully 
differentiated. Mutations in these tissues may have a larger effect than in tissues with a high rate 
of cell division due to the inability of the tissue to replace cells, which leads to scarring and 
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eventually tissue failure. Thus, genes specific to these four tissues are more likely conserved than 
those specific to other tissues, resulting in overall higher pCADD scores. This is supported by the 
analysis with conservation scores (Table 4), which showed that these genes were more conserved 
than the housekeeping genes. Tissues such as dermal and salivary gland show the lowest pCADD 
scores and high rates of cell division. These tissues are likely more tolerant to germline mutations 
since they must adapt to changes in diet and climate, thus their tissue-specific genes have a higher 
variability, resulting in lower pCADD scores. 

Table 4: Test results between tissue specific gene sets and house-keeping genes. We 
tested if tissue specific genes are significantly lower scored than house-keeping, using 
pCADD and PhyloP scores (25-taxa mammalian alignment). The ROC-AUC scores display 
the likelihood that a random sample from the scores of the house-keeping genes is 
larger than one from the scores of tissue specific genes. 

Tissue 
pCADD p-value 

(tissue < 
house-keeping) 

pCADD ROC-AUC 
(house-keeping 

vs tissue) 

PhyloP p-value 
(tissue < house-

keeping) 

PhyloP ROC-
AUC (house-

keeping vs 
tissue) 

All tissues 2×10-1 0.5 1 0.467 

Blood 3×10-122 0.512 1 0.481 

Cartilidge-
tendon 3×10-35 0.511 1 0.453 

Cerebellum 1 0.48 1 0.487 

Dermal 0 0.622 0 0.681 

Epithelial 0 0.538 1×10-29 0.515 

Eye 1 0.475 1 0.456 

Kidney 2×10-100 0.515 1 0.468 

Liver 1×10-54 0.51 9×10-1 0.49 

Lung 6×10-8 0.506 1×10-2 0.503 

Musculature 1 0.491 1 0.468 

Neuronal 1 0.443 1 0.4 

Pancreas 1×10-310 0.558 3x10-81 0.559 

Placenta 1×10-145 0.529 1 0.469 

Salivary-gland 7×10-48 0.519 1 0.478 

Testis 0 0.558 1 0.478 

Vasculature 0 0.558 1 0.454 

3.4.8. Differentiation	between	functional	and	non-functional	sequences	is	
greater	with	pCADD	than	conservation	scores	

Conservation scores are often used to evaluate the potential importance of sequences and to 
evaluate if a particular candidate SNV may have a deleterious effect. They are also useful to put 
our own results into perspective and assess conventional sequence prioritisation methods. 

Similar to the section “miRNA regions are scored differently from those of neighbouring regions”, 
we annotated the pre-miRNAs and their associated up- and downstream regions with PhyloP 
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conservation scores (based on 25-taxa mammalian alignment) and performed the same analysis by 
computing significance tests to check if miRNA sequences have higher pCADD scores than those in 
their neighbouring regions. We chose 25-taxa PhyloP scores because these have the largest 
coverage of the pig genome among all conservation scores used in this study (see Additional file 2: 
Table S4). The results are in Additional file 3: Figure S4 and are very similar to those from the 
analysis using pCADD scores, with an almost identical p-value close to 0 (1e−225) and a ROC-AUC 
value of 0.595, which indicates a slightly worse separation between both classes of sequences than 
when using pCADD. 

Likewise, we evaluated the intron positions relative to each other using the same PhyloP 
conservation scores to annotate intron sequences. The results in Additional file 3: Figure S5 show a 
similar pattern of decreasing importance with increasing intron position as observed when the 
introns are annotated with pCADD scores. Major differences between the analysis using pCADD and 
conservation scores is that the total number of introns, which can be annotated with conservation 
scores is smaller, resulting in 81,743 fewer tests compared with pCADD. Furthermore, the ratio 
between the total number of tests and the number of tests with an adjusted significant p-value is 
smaller when conservation scores are used, which indicates that conservation scores are less 
discriminative between different intron positions. 

We annotated tissue-specific and housekeeping genes with PhyloP conservation scores to 
investigate whether the differentiation between both sets of genic regions followed the same 
pattern. Twelve tissue-specific gene sets displayed significantly lower pCADD scores than 
housekeeping genes, whereas only four tissues had a significantly lower conservation score. The 
larger total differences in ROC-AUC scores obtained by using PhyloP scores compared to pCADD 
scores indicate that the variations between tissue gene sets are larger when using PhyloP. 

The worse performance of PhyloP scores to distinguish between pre-miRNA and surrounding 
regions is supported by the lower ratio of significant tests in the intron analysis, which indicates 
that PhyloP scores have less specificity for functional elements than pCADD scores. 

3.4.9. Predicted	 intergenic	 SNVs	 with	 high	 pCADD	 scores	 are	 often	
associated	with	lncRNA	and	may	indicate	missing	annotations	

To examine the utility of pCADD scores for the prioritization of SNVs, we investigated whether they 
can help in the identification of intergenic candidate SNVs that segregate between two closely 
related Large White pig breeding populations. We scored intergenic SNVs that were unique for 
either of these pig populations by multiplying their pCADD score with the allele frequency and 
selected the top 20 highest scored SNVs for each population. Since the pCADD model is based on 
the Ensembl pig annotations [50] (Ensembl gene annotation update e!90 Sscrofa11.1), we 
matched the selected 40 SNVs with NCBI’s pig gene build [51] to determine whether the model 
captures non-annotated genomic features. We found that 16 of the 40 SNVs are located within a 
(NCBI) coding region (one example shown in Figure 5) and six SNVs overlap with a (NCBI) long 
non-coding RNA (Table 5). 
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Figure 8: There are three different potential nucleotide substitutions at each position in 
the genome, each with their own predicted pCADD score. To visualize them in JBrowser 
[52] we created tracks for the maximum, median and minimum scores at each position. 
The fourth track is displaying the standard deviation among the three scores to identify 
more easily sites of variable deleteriousness. The yellow vertical bar is located at 
position 5:14463457, indicating the site of the top scoring SNV in Table 5. This SNV is 
considered intergenic according to the Ensembl gene build but located within a lncRNA 
according to the NCBI genebuild. A) NCBI gene build track, showing the genomic region 
belonging to lncRNA LOC102160723. B,C,D) the maximum, median and minimum pCADD 
scores for each position in the displayed region. E) The standard deviation of pCADD 
scores at each position. 

  



3.4 - Results 

48 

Table 5: Top 40 SNVs according to pCADD*Alt:Frq, which are presumably intergenic 
according to the Ensembl Sus scrofa gene build, annotated with NCBI. When no NCBI gene 
annotation was found they were mapped to hg38 and the Human Ensembl gene build was 
used. Blue: SNVs that are intergenic in the three gene builds, yet found in regions with 
conserved synteny. Red: SNVs located in a region unannotated in any gene build. 

Chr Pos Ref:Frq Alt:Frq pCADD pCADD*Alt:Frq NCBI-
gene 
build 

Human-
Ensembl-

gene 
build 

5 14463457 T:0.014 C:0.986 26.559 26.185 lncRNA  
10 45490687 G:0.007 T:0.993 24.175 24.000 RSU1  
9 88698813 C:0.021 G:0.979 24.433 23.909  lncRNA 
6 149549021 T:0.007 C:0.993 23.714 23.544   
18 30883512 G:0.045 A:0.955 24.211 23.111 lncRNA  
14 102653354 A:0.007 G:0.993 23.216 23.052 lncRNA  
3 35533299 C:0.029 T:0.971 23.729 23.041 RBFOX1  
8 16080284 T:0.021 G:0.979 23.540 23.035 KCNIP4  
8 16090742 A:0.007 C:0.993 23.188 23.0248 KCNIP4  
9 88631400 T:0.037 C:0.963 23.855 22.978  lncRNA 
13 11996804 A:0.068 G:0.932 24.518 22.846  miscRNA 
8 16069085 C:0.014 T:0.986 23.148 22.817 KCNIP4  
1 270976051 G:0.057 A:0.943 24.148 22.768   
12 10080096 C:0.029 T:0.971 23.417 22.738   
15 134154371 G:0.028 A:0.972 23.388 22.729   
17 15317464 T:0.035 C:0.965 23.437 22.611   
8 16126909 T:0.145 G:0.855 26.331 22.515 KCNIP4  
14 102708028 T:0.007 C:0.993 22.622 22.463  lncRNA 
17 8460314 T:0.007 A:0.993 22.607 22.448  FAT1 
3 2721065 C:0.016 T:0.984 22.794 22.438  SDK1 
8 2274651 T:0.006 C:0.994 24.861 24.721 lncRNA  
14 41547002 T:0.006 C:0.994 24.651 24.511 MYO1H  
9 88656584 T:0.023 C:0.977 24.606 24.047  lncRNA 
13 145274213 A:0.031 G:0.969 24.336 23.576 ZBTB20  
5 14463352 A:0.006 G:0.994 23.526 23.393 lncRNA  
2 135162568 A:0.011 C:0.989 23.305 23.043   
13 196634107 A:0.011 C:0.989 23.190 22.930  lncRNA 
13 203405436 G:0.006 A:0.994 23.046 22.917   
17 15317464 T:0.022 C:0.978 23.436 22.910   
13 203404345 T:0.017 G:0.983 23.239 22.842   
18 4227731 C:0.006 A:0.994 22.839 22.710   
13 203405428 T:0.006 G:0.994 22.663 22.535   
13 145279451 A:0.019 G:0.981 22.960 22.512 ZBTB20  
15 134347171 T:0.006 G:0.994 22.633 22.506   
5 25295998 A:0.011 G:0.989 22.731 22.476 lncRNA  
15 134154371 G:0.040 A:0.960 23.387 22.457   
18 42017803 T:0.017 G:0.983 22.811 22.427   
15 134347189 G:0.006 C:0.994 22.471 22.345   
8 16126909 T:0.152 G:0.848 26.331 22.337 KCNIP4  
14 138794865 A:0.006 G:0.994 22.411 22.285  lncRNA 

In addition, we mapped the genomic locations of the candidate SNVs to the human assembly 
GRCh38.p12 and Ensembl gene builds, which revealed nine additional genic regions that consisted 
of six lncRNAs, one region considered as a miscRNA and two genes. For all 40 SNVs, synteny of the 
surrounding genes was conserved except for 18:4227731C>A. The relatively large number of 
prioritized SNVs that overlap with lncRNAs can be explained in two ways. First, there might be a 
considerable number of missing annotations in the gene builds that we used because the RNA-seq 
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databases are incomplete and are the basis for lncRNA annotations. Second, although the lncRNA 
functions are conserved due to islands of strong conserved regions [53], the architecture of their 
sequences experience constant restructuring and weak sequence conservation across species [53], 
[54]. 

The highest scored SNVs (in terms of pCADD score multiplied by alternative allele frequency) for 
which no genic annotation was found (6:149549021T>C) (Table 5), is located in an island with 
high pCADD scores within a region that contains several of such small islands (see Additional file 3: 
Figure S6). This region starts with a highly H3K27Ac acetylated region, which indicates an 
enhancer site. Such a pattern is uncommon for intergenic regions and could indicate a missing 
annotation in the gene builds used in our study. 

3.5. Discussion	
We used a method that provides scores for the prioritization of SNVs with respect to their putative 
deleteriousness, from which we derived functional relevance for the genomes of pig. The method is 
based on the creation of a set of derived variants from an inferred common ancestor sequence that 
can be assumed to be depleted in deleterious variants and a set of simulated variants that are 
likely to be enriched in variants with a deleterious effect. It is important to note that while it is 
reasonable to assume that the proxy benign/neutral are truly benign/neutral variants, the 
simulated putative deleterious variants may also encompass a relatively large proportion of actually 
neutral variants. 

Founder effects in pig populations may lead to the accumulation of functional variants, with both 
benign and deleterious variants receiving a relatively high pCADD score. This means that pCADD 
scores are useful to prioritize SNVs of interest, but that assessing deleteriousness may need 
additional information or experiments. For example, the missense variant 1:265347265A>G 
(pCADD:21.848), which is responsible for an increased number of vertebrae and can be considered 
benign given current breeding goals, and the deleterious lethal recessive splice variant 
12:38922102G>A, have similar pCADD scores (pCADD: 17.198) (Table 2). 

We evaluated the generated pCADD scores on a held-out test set and reported performances on 
different genomic subsets, which we compared to results of our previous study on mouse. Due to 
the nature of the procedure, the test performance can only indicate if the training algorithm has 
picked up patterns of features that are predictive for the simulated variants and if the performance 
varies with the genomic region. It has to be emphasized that only performance trends can be 
meaningfully compared between the different mCADD/pCADD models due to the different datasets 
used for computation. In spite of the large number of neutral variants, which is expected in both 
sets of variants, the performance seems to indicate that patterns to differentiate between the 
derived and simulated datasets have been picked up and can be used to evaluate variants and 
regions based on their potential interest. 

The performance of pCADD scores to discriminate between simulated and derived variants in the 
test set increased as the number of features increased, depending on the genomic regions in which 
they are embedded. The consequence is that missense mutations are the best classified, although 
the most interesting application of pCADD is to annotate non-coding and intergenic variants, for 
which a plethora of functional candidates exist but there are only a few methods for further 
prioritization. As shown for the splice-region variant 3:43952776T>G, the ranking of a variant 
relative to its neighbouring sequence in the same sequence category (introns, exons, intergenic, 
etc.) can provide information that helps to prioritize such variants. 
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Furthermore, we used PHRED-like scores to rate different sequences with known biological 
function. We compared the scores for the three positions in a codon and found that less redundant 
positions achieve higher pCADD scores. Moreover, regulatory sequences could be clearly 
distinguished from their neighbouring regions (i.e. high scores in miRNAs). In addition, our model 
supports the higher frequency of regulatory elements in the first few introns of a transcript, and 
thus has the potential of scoring not only individual SNVs but also of using a summary score per 
site to annotate entire regions to identify potential sub-regions of interest. This is a clear 
advantage compared to alternative methods to evaluate non-coding sequences, such as 
conservation scores, which may not be available for the entirety of the genome. This was the case 
in the analysis of intron sequences, for which more than 80,000 fewer tests could be conducted 
due to missing conservation scores. Using pCADD, candidate regions in which annotations are 
potentially missing can be identified. For example, no annotation was found for the 
6:149549021T>C SNV, even though pCADD scores were within a range typical for exons and 
displayed patterns of islands of high importance (see Additional file 3: Figure S6), which is more 
compatible with coding regions than with intergenic regions. Ensembl gene annotations rely 
strongly on transcript data from public databases, which implies that incomplete databases may 
lead to missing gene annotations. This is especially the case for species that are less well studied 
than model organisms or humans. In addition, if the genes in question are not ubiquitously 
expressed, they can be absent from the data of the sequenced tissue. The same is true for genes, 
the expression of which depends on developmental-, disease- or physiological state, as is the case 
for many lncRNAs [54]. 

We compared genes specific for 16 different tissues against (presumed) housekeeping genes [40]. 
Our assumption was that the ubiquitously and generally more highly expressed housekeeping 
genes [55] should have globally higher scores than tissue-specific genes. Although the absolute 
effect size was small, significantly higher scores were attributed to genes specific to cerebellum, 
eye, neuronal and muscle tissue. Brain-derived tissues (cerebellum, eye, neuronal tissue), in 
particular, displayed the largest effect sizes. On the one hand, brain tissue has experienced major 
development changes during the time period between 535 and 310 Mya ago, i.e. increased 
expression and gain of functions of paralogs of brain-specific genes [56], [57]. Since then and 
during the entire mammalian development, the expression of paralogs of brain-specific genes is 
lower than that observed in other tissues [57], which indicates the fine balancing that acts to keep 
the brain functional. This emphasizes the extreme importance of brain-specific genes for survival 
and probably their low tolerance to mutations, compared to housekeeping genes. On the other 
hand, dermal tissue (epithelium) is one of the most ancient tissues in the evolution of metazoans 
and has highly conserved developmental pathways, which include genes that are involved in the 
adaptation to specific environmental changes and have overall lower pCADD scores than 
housekeeping genes. 

Among the most important features for the pCADD model are conservation scores. They are 
annotated for large fractions of the genome (see Additional file 2: Table S4), and thus they heavily 
influence training. This is supported by our investigation of various tissues, which showed that 
particularly high scores were assigned to expected strongly conserved regions. Deleterious effects 
that are not captured by sequence conservation, such as changes in the epigenome or in relatively 
variable regions, are expected to have lower scores. This becomes problematic when the species of 
interest has experienced recent genetic bottlenecks and has been subjected to very strong 
selection, which change the species’ genotype, as is the case for domesticated species. In this 
case, the patterns observed from evolutionary changes may not be accurate to evaluate recent 
changes. However, not all the regions in the genome are subject to substitution, neither in natural 
nor in domesticated environments. There are exceptions to this rule, such as the reported 
missense mutations in Table 2, which are causal for a change in the number of vertebrae, ear size, 
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meat quality and fat content, and have high scores, which support the use of pCADD for variant 
prioritization. 

3.6. Conclusions	
The CADD approach is widely used in humans [13]–[18] and, based on our findings, it seems to be 
a suitable approach for pig (and other non-human species). Variants that distinguish populations 
can be ranked with respect to their pCADD score and allele frequency to find potential candidates 
for phenotypes expressed in the studied populations. pCADD could become a valuable tool in pig 
breeding and conservation. It can be used to score variants with a potential negative effect in 
small-sized endangered local pig breeds, but also help prioritize high-impact variants in genomic 
prediction to further enhance genomic selection. 

3.7. Declarations	/	Statements	

3.7.1. Availability	of	data	and	material	

pCADD scores, partitioned per chromosome, compressed via bgzip and tabix indexed for fast 
access, can be downloaded following this link (~5–1 GB): 
http://www.bioinformatics.nl/pCADD/indexed_pPHRED-scores/ 

To create tracks for genome browsers we provide the maximum, median, minimum, and standard 
deviation summaries of each site, partitioned per chromosome. All files are compressed with bgzip 
and tabix indexed and can be downloaded following this link (~1.7 GB to ~350mb): 
http://www.bioinformatics.nl/pCADD/indexed_pPHRED-summary-scores/ 

Scripts and data to recreate the figures in this article can be downloaded from the following link: 
https://git.wur.nl/gross016/pcadd-scripts-data 
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3.8. Appendix	–	Supplementary	Data	
Supplementary data files available online: 

https://gsejournal.biomedcentral.com/articles/10.1186/s12711-020-0528-9 

3.8.1. Annotation	pre-processing	

To train the pCADD model, SNVs from the generated training set were annotated with features 
assembled from various genomic annotations. The set of putative benign SNVs (derived alleles) 
represent mutations that are directed back in time while simulated variants are orientated forward 
in time. Therefore, annotations that are sensitive to these differences have to be swapped in the 
set of derived variants. Namely, the nucleotide reference and alternative columns (Ref, Alt), the 
amino acid substitutions (nAA, oAA) and the variant effect consequence predictions made by the 
ENSEMBL Variant Effect Predictor v91.3 for the labels STOP Gained and STOP Lost). 

Not all SNVs were be able to be annotated with all genomic annotations, therefore missing values 
were imputed either by fixed values (such as 0.5, 1.0 or 0, False, UD) or by the mean of the SNVs 
in the simulated set. False was used for boolean values, UD (undefined) for factors. To deal with 
factors, all columns containing factor data were OneHotEncoded. This means factor data columns 
were replaced by as many columns with binary values as unique factors in these columns. In 
addition to the imputation, indicator columns were added to the data set which contain a 1 if a 
particular annotation is defined for a SNV or a 0 in the cases in which they do not. These genomic 
annotations for which indicator columns were created are: cDNApos, CDSpos, protPos, SIFTval, 
Grantham and Dst2SplType_ACCEPTOR & Dst2SplType_DONOR. The last two annotations are 
already OneHotEncoded data columns. 

The annotations minDistTSS and minDistTSE were capped at 10000 and log transformed. The VEP 
consequences were summarized into 14 categories/factors (Table 2) and if there are multiple 
consequences per SNV, the category was chosen, following the order in Table 2. 

Further, combinations of annotations were created. Namely, all possible combinations of Ref and 
Alt categories, generating an annotation for each possible nucleotide substitution. The same was 
done for nAA and oAA. Added to that, combinations of the 14 different VEP consequence 
summaries were formed with the following annotations: cDNApos, CDSpos, Dst2Splice, GerpS, 
GerpN, lPhCons_noPig, mPhCons_noPig, verPhCons_noPig, lPhyloP_noPig, mPhyloP_noPig, 
verPhyloP_noPig, minDistTSS, minDistTSE, cDNApos, CDSpos, protPos, relcDNApos , relCDSpos , 
relprotPos , dnaHelT, dnaMGW, dnaProT, dnaProT.  

Before model training, all data columns were scaled by dividing each value by their column 
standard deviation. 
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3.8.2. Supplementary	Tables	

Table S1: Overview of genomic annotations which build the basis for features used to 
train the pCADD model. Overview and short description of genomic annotations and their 
imputed values in the case of missing data. 

Annotation 
label 

Data 
type 

Imputed 
value Annotation description 

Ref factor  Reference allele 
Alt factor  Observed allele 
isTv bool 0.5 Is transversion? 
Consequence factor  VEP Consequence summaries 
GC num 0.414 Percent GC in a window of +/- 75bp 
CpG num 0.023 Percent CpG in a window of +/- 75bp 
motifECount int 0.0 Total number of overlapping motifs 

motifEHIPos bool False Is the position considered highly informative for 
an overlapping motif by VEP 

motifEScoreChng num 0.0 VEP score change for the overlapping motif site 

Domain factor UD 
Domain annotation inferred from VEP annotation 
(ncoils, tmhmm, sigp, lcompl, ndomain = "other 
named domain") 

Dst2Splice int 0.0 Distance to splice site in 20bp; positive: exonic, 
negative: intronic 

Dst2SplType factor UD Closest splice site is ACCEPTOR or DONOR 
oAA factor UD Amino acid of observed variant 
nAA factor UD Reference amino acid 
Grantham int 0.0 Grantham score: oAA,nAA 
SIFTcat factor UD SIFT category of change 
SIFTval num 0.0 SIFT score 
cDNApos int 0.0 Base position from transcription start 
relcDNApos num 0.0 Relative position in transcript 
CDSpos int 0.0 Base position from coding start 
relCDSpos num 0.0 Relative position in coding sequence 
protPos int 0.0 Amino acid position from coding start 
relProtPos num 0.0 Relative position in protein codon 
dnaRoll num 0.255 Predicted local DNA structure effect on dnaRoll 
dnaProT num 0.518 Predicted local DNA structure effect on dnaProT 
dnaMGW num 0.0365 Predicted local DNA structure effect on dnaMGW 
dnaHelT num -0.102 Predicted local DNA structure effect on dnaHelT 
GerpS num -0.805 Rejected Substitution' score defined by GERP++ 
GerpN num 1.384 Neutral evolution score defined by GERP++ 
GerpRS num 0.0 Gerp element score 
GerpRSpval num 1.0 Gerp element p-Value 

lPhCons_noPig num 0.143 6-taxa-Laurasiatheria PhastCons score (excl. 
pig) 

mPhCons_noPig num 0.135 25-taxa-Mammalian PhastCons score (excl. pig) 
verPhCons_noPig num 0.126 100-taxa-Vertebrate PhastCons score (excl. pig) 
lPhyloP_noPig num 0.078 6-taxa-Laurasiatheria PhyloP score (excl. pig) 
mPhyloP_noPig num 0.106 25-taxa-Mammalian PhyloP score (excl. pig) 
verPhyloP_noPig num 0.294 100-taxa-Vertebrate PhyloP score (excl. pig) 

minDistTSS int 10000000 Distance to closest Transcribed Sequence Start 
(TSS) 

minDistTSE int 10000000 Distance to closest Transcribed Sequence End 
(TSE) 
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Table S2: Overview of the pig populations used in this study. 
List of pigs whose high frequency SNPs were added to the 
set of the putative benign (derived) variants to generate the 
training set. SNPs were called based on whole genome 
sequence data.  

Number of individuals Race/Breed 

2 Angler Sattelschwein 
2 Berkshire 
2 British Saddleback 
2 Bunte Bentheimer 
1 Calabrese 
7 Cassertana 
2 Chato Murciano 
8 Chinese Wild boar 
2 Cinta Senese 
53 Duroc 
2 Gloucester Old Spot 
10 Hampshire 
11 Japanese Wild boar 
3 Jiangquhai 
2 Jinhua 
43 Landrace 
2 Large Black 
97 Large White 
2 Leping_spotted 
2 Linderodsvinn 
7 Mangalica 
10 Meishan 
2 Middle White 
3 Negro Iberico 
1 Nera Siciliana 
13 Pietrain 
3 Retinto 
38 Synthetic 
2 Tamworth 
2 Thai domesticated pig 
2 Thai Wild boar 
2 Wannan spotted 
37 European Wild boar 
2 Xiang pig 
1 Zang pig 
4 NA 
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Table S3: VEP consequences summaries. VEP consequences summarized to 14 
categories. If multiple annotations exist for the same variant, the consequence is 
selected according to the displayed hierarchy, starting at 1 and ending at 14. 

Hierarchy Abbreviation VEP Consequence Summary 
1 SG Stop Gained 
2 CS Canonical Splice 
3 NS Non-Synonymous 
4 SN Synonymous 
5 SL STOP Lost 
6 S Splice Site 
7 U5 5’-UTR 
8 U3 3’-UTR 
9 IG Intergenic 
10 NC Noncoding-change 
11 I Intronic 
12 UP Upstream 
13 DN Downstream 
14 O Unknown 

 

Table S4: Conservation score coverage of the pig genome. Coverage of the pig genome 
for the conservation scores used in the pCADD model (Supplementary Table 1). Y-
chromosome, mitochondrial and unplaced scaffolds were excluded in pCADD and the 
conservation score calculations.  

Conservation score Nr. of positions Fraction of the total 
genome 

6-taxa-Laurasiatheria PhyloP score (excl. pig) 1,777,718,741 0.71 
25-taxa-Mammalian PhyloP score (excl. pig) 1,978,673,774 0.79 
100-taxa-Vertebrate PhyloP score (excl. pig) 1,367,857,535 0.55 

GERP 1,043,440,638 0.42 
6-taxa-Laurasiatheria PhastCons score (excl. pig) 1,777,718,741 0.71 
25-taxa-Mammalian PhastCons score (excl. pig) 1,978,669,505 0.79 
100-taxa-Vertebrate PhastCons score (excl. pig) 1,390,499,379 0.56 

Golden Path Sscrofa11.1 2,501,912,388  
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3.8.3. Supplementary	figures	

 

Figure S1: Prediction performances of six conservation scores on test sets, representing 
different regions of the genome for which different number of features are available. I: 
Whole test set; II: Intergenic SNVs; III: Transcribed SNVs; IV: SNVs in intron, 5’ & 3’ 
UTRs; V: Coding SNVs; VI: SNVs causing synonymous mutations; VII SNVs causing 
missense mutations. 

 

 

Figure S2: Codon redundancy displayed in the JBrowser genome browser using pCADD 
scores.The third position in a codon is more redundant than either of the other two 
positions. This is reflected in the scores, here an example of the end of the 2nd exon of 
MACC1. MACC1 is located on the reverse strand.  
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Figure S3: Effect sizes measured as ROC-AUC between the difference of pCADD scores of 
the three codon sites for all transcripts. The pCADD scores for the third and second 
codon positions differ generally the most (mean of ~0.232), thus their effect sizes have 
the largest absolute distance to 0.5. A ROC-AUC of 0.5 would indicate that no set of 
scores is larger than the other. The score indicates that the third position has a generally 
lower pCADD scores than the second position. The effect sizes of pCADD scores between 
the third and first codon positions (mean ROC-AUC ~0.277) also indicate that the third 
position is generally evaluated to be less deleterious than the first. In contrast, effect 
sizes between the second and first codon position are on average larger than 0.5 (mean 
of ~0.554) with the second codon position having a generally higher pCADD score than 
the first, which confirms that the second codon position is the most consequential when 
mutated. The effect sizes between the third and second codon positions as well as the 
third and first codon positions are more dispersed than between the second and first 
codon positions, probably due to the relatively larger variance in impact of a change at 
the third position than at the other two positions. 
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Figure S4: Histogram of conservation score distribution of (pre-)miRNA 
transcripts and their surrounding up- and downstream regions. Vertical 
lines indicate the mean values of each distribution with a mean of 0.382 
for miRNA and 0.211 for Up&Down. The one-tailed Mann-Whitney U-test 
between both distributions returned a p-value of 1e-225 and a CLES of 
59.54%. The conservation score used to annotate the transcripts and their 
surrounding regions are the 25-taxa-Mammalian PhyloP score shown in 
Supplementary Table 4. 

 

 

Figure S5: Comparison of the 25-taxa-Mammalian PhyloP scores per intron compared to 
all other introns, for the first 20 introns. The blue bar indicates the number of introns 
tested against the intron of interest, the red bar how many of these tests resulted in an 
adjusted p-value < 0.05 (scale on the left axis). As the intron position increases, the 
number of tests that can be conducted decreases (with the number of transcripts that 
have at least that many introns). In black, the normalised number of significantly 
enriched introns, normalized by the number of conducted tests per intron position (scale 
on the right axis). 
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Figure S6: pCADD scores show a pattern of high scores in a presumably intergenic 
region. The yellow bar is indicating the location of the SNV 6:149549021T>C. It is 
embedded in a presumably intergenic region without any gene annotations in the pig 
genebuild of Ensembl and NCBI and the Ensembl genebuild of human when mapped to 
the human genome. The region is spiked with islands of high pPHRED scores, untypical 
for intergenic regions, and starts with an active enhancer region (peaks in H3K27Ac, 
data not part of this manuscript). The region 5’ of the enhancer site is displaying 
patterns as expected for intergenic regions. 
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4.1. Abstract	
The genotype-phenotype link is a major research topic in the life sciences but remains highly 
complex to disentangle. Part of the complexity arises from the polygenicity of phenotypes, in which 
many (interacting) genes contribute to the observed phenotype. Genome wide association studies 
have been instrumental to associate genomic markers to important phenotypes. However, despite 
the vast increase of molecular data (e.g. whole genome sequences), pinpointing the causal variant 
underlying a phenotype of interest is still a major challenge, especially due to high levels of linkage 
disequilibrium.  

In this study, we present a method to prioritize genomic variation underlying traits of interest from 
genome wide association studies in pigs. First, we select all sequence variants associated with the 
trait. Subsequently, we prioritize variation by utilizing and integrating predicted variant impact 
scores, gene expression data, epigenetic marks for promotor and enhancer identification, and 
associated phenotypes in other (well-studied) mammalian species. The power of the approach 
heavily relies on variant impact scores, for which we used pCADD, a tool which can assign scores to 
any variant in the genome including those in non-coding regions. Using our methodology, we are 
able to substantially narrow down the list of potential causal candidates from any association 
result. We demonstrate the efficacy of the tool by reporting known and novel causal variants, of 
which many affect (non-coding) regulatory sequences associated with important phenotypes in 
pigs.  

This study provides an approach to pinpoint likely causal variation and genes underlying important 
phenotypes in pigs, accelerating the discovery of new causal variants that could be directly 
implemented to improve selection. Finally, we report several pathways and molecular mechanisms 
affecting important phenotypes in pigs, that can be transferred to human phenotypes. 

4.2. Background	
Closing the gap between genotype and phenotype is a major goal in many life sciences, but 
remains extremely challenging [1]. Part of the complexity arises from the polygenicity of 
phenotypes, in which many (interacting) loci contribute to the observed phenotype. Genome wide 
association studies (GWAS) have been instrumental to associate genomic markers to important 
phenotypes reported as quantitative trait loci (QTL), and to get a better grip on the biology of the 
traits [2]. However, the resolution of GWAS is limited by the correlation between neighbouring 
markers in linkage disequilibrium (LD). Hence, unravelling the molecular drivers underlying 
phenotypes of interest requires the identification of the actual causal variants [3], which often 
reside in the noncoding regions of the genome, in particular in predicted transcriptional regulatory 
regions [4].  

In human genetics, a combination of statistical fine-mapping methods and expression QTL (eQTL) 
studies are used to further narrow down the list of candidate causal variants [5]. Further functional 
annotation, facilitated by large consortium efforts like the Encyclopedia of DNA Elements(ENCODE) 
[6], is used to prioritize variants based on likelihood of affecting a regulatory region, affecting gene 
expression. Despite this effort, identifying the causal variant remains difficult, partly because of the 
fundamental complexity of phenotype-genotype relations, in which also the environment plays an 
important role.  

Also, in livestock, economically important phenotypes are typically determined by a very large set 
of variants each explaining a small fraction of the phenotypic variation. However, for many traits 
there are also some QTLs explaining a larger fraction (>1%) of the variation. For such larger QTLs 
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it is of interest to identify the underlying causal variation. Due to intense selection, the effective 
population size (Ne) of most livestock populations is small [7]. This often leads to extended LD, 
comprising up to millions of base pairs (Mb) in length, especially in regions with low recombination 
rates [8]. High LD yields an additional layer of complexity to fine-map GWAS results in livestock 
populations, and the use of crossbreeding to break down the LD is a costly, labour-intensive and 
time-consuming procedure to fine map the QTL region. On the contrary, livestock populations are 
less confounded by population stratification (i.e. ancestry differences between cases and controls), 
which can be a major factor in human GWAS studies [9].  

Similar to human, further functional genomic information could help to prioritize the variants 
underlying the phenotypes of interest in livestock [10]. However, in pigs, the level of functional 
genomics information is limited. Fortunately, recent advances have been achieved in pigs by the 
publication of the pig Combined Annotation-Dependent Depletion (pCADD) tool [11], providing 
impact scores of any nucleotide substitution in the pig genome. CADD was developed to score 
variants with respect to their putative deleteriousness to prioritize potentially causal variants in 
genetic studies [12]. This tool is frequently used to score variants in human GWAS studies [5]. 
Subsequently, other species-specific CADD tools were developed [13]. The tool scores the 
deleteriousness (or functional impact) of single nucleotide variants (SNPs) and is built on many 
layers of annotations including sequence context, conservation scores, gene expression data, non-
synonymous mutation scores, and epigenomic data, if available for the investigated species. The 
pCADD scores are the -10log10 of the relative rank of the investigated SNP among all possible 
SNPs in the Sus scrofa reference genome, giving the predicted 90% least impactful SNPs a pCADD 
score between 0-10, the least 99% a score between 0-20, et cetera.  

Pig populations have been under a long-term biological experiment by animal breeders that use 
genomic selection to constantly improve their stock [14]. In general, genomic selection uses a 
variant panel on a chip to associate regions in the genome with important traits. This variant panel 
is distributed across the genome and allows within-population genetic variation to be captured  
[15]. However, genomic selection uses the genome as a “black box”, as the SNPs on the chip are 
mostly not causal, but genetically linked to the actual causal variants and genes [16]. Therefore, 
the efficacy of genomic selection can be substantially improved by adding new genetic markers 
comprising the actual causal variation [17], providing insight in the exact molecular drivers 
involved in the selection.  

The objective of this study is to bridge the genotype-phenotype gap in pig populations by 
pinpointing causal variants that are selected by genomic selection. More specifically, we will 
demonstrate that pCADD scores can be used to identify causal variants underlying GWAS peaks 
and QTLs. Being able to identify causal variants will have major implications for genomic selection 
and provides insights into the molecular biology and pathways affecting important phenotypes in 
pigs, that can be transferred to human phenotypes. 

4.3. Results	

4.3.1. Genome	 wide	 association	 studies	 in	 four	 elite	 pig	 populations	
reveal	many	QTLs	affecting	production,	reproduction,	and	health	

We analysed large scale genotype and phenotype data in four purebred pig populations: two boar 
breeds of Duroc and Synthetic origin, and two sow breeds of Landrace and Large White origin. In 
pigs, selection takes place on the purebred populations, while the final production animals are 
derived from three-way crosses. First, crossbred sows are created from populations selected for 
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high reproductivity and mothering abilities, which are subsequently crossed with a population 
especially selected for meat production traits. The examined traits can be grouped in three classes: 
(1) traits focussing on carcass and meat quality, including backfat, intramuscular fat, and growth; 
(2) reproduction traits, mainly focussing on litter size, number of liveborn, survival, and mothering 
abilities; and (3) health and welfare traits including disease resistance, osteochondrosis, umbilical 
hernia, and other conformation traits. A total of 129,336 animals with 552,000 imputed SNPs were 
subjected to a GWAS analysis for 83 traits. The analysis revealed a large set of QTL regions with a 
genome-wide association significance threshold of -log10(p)>6.0, and significant associations were 
observed for the majority of examined traits. The ‘lead’ SNP that showed the strongest association 
signal is used as a starting point for further analysis. 

4.3.2. A	pipeline	for	integrating	pCADD	scores	and	functional	information	
to	rank	sequence	variants	

4.3.2.1. pCADD	evaluates	all	possible	substitutions	from	the	Sscrofa11.1	pig	reference	

genome	
Our approach first relies on the lead SNP from a significant GWAS peak to extract sequence 
variants that are in high LD (r2>0.7). The whole-genome sequence variants are extracted from a 
total of 428 animals (Duroc: 101, Synthetic: 71, Landrace: 167, Large White: 89), sequenced to an 
average depth of 11.82. Next, we assigned pCADD scores to each sequence variant in high-LD with 
the lead SNP, to prioritize them on their likely impact. The sequence variants were assigned to a 
functional class using the Ensembl Variant Effect Predictor (VEP, release 98) [18]. The distribution 
of the pCADD scores for a set of variants depends on their functional class, and non-coding 
variants have on average lower scores compared to coding variants. The quantiles and further class 
statistics for the pCADD scores are presented in Table S1. In addition, three liver histone 
modification datasets were used (for modifications H3K27Ac and H3K4me3) to mark variation 
overlapping with regulatory sequences, including likely active promoter and enhancer elements in 
pig liver tissue [19]. 

4.3.2.2. Phenotype	and	pathway	information	provides	further	evidence	of	gene	causality	
Functional annotations, including pathways and gene-ontology information for the examined pig 
genes associated with the top-ranked variants, were extracted from the Uniprot database [20]. 
Moreover, we extracted associated phenotypes from orthologous genes from the Ensembl database 
for human (Homo sapiens), mouse (Mus musculus), and rat (Rattus norvegicus). The phenotypes 
are mainly based on (disease) association studies in human, and gene-knockouts in mouse and rat 
[21]. A complete overview of the pipeline is presented in Figure 1. 
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Figure 1: Pipeline overview. The pipeline takes the result of a GWAS as input (lead SNP) 
and identifies SNPs from WGS data that are in high LD with the lead SNP. Subsequently, 
the variants are prioritizes based on impact scores (pCADD), open chromatin information 
(liver), and gene expression (if available). The pipeline outputs a final list of candidate 
causal variants for each trait of interest, ranked on its likely importance. 

4.3.2.3. Gene	expression	information	allows	identification	of	possible	expression	

quantitative	trait	loci	
The combination of genotype and gene expression data provides an additional layer of evidence to 
find causal variation, as differences in expression of genes can be associated with a variant 
(expression quantitative trait loci; eQTL). In this study we use 59 RNA-sequenced samples [22] 
from Landrace (n=34) and Duroc (n=25) to test for differential expression between the genotype 
classes (homozygous reference, heterozygous, homozygous alternative) to associate the 
expression of genes with the genotypes. The samples were sequenced from testis tissue, further 
details about the sequenced samples and alignment depth are provided in Table S2. The 
combination of epigenomic marks (liver) and gene-expression data (testis) can, on top of the 
pCADD scores, facilitate in the discovery of functional variants. 



4.3 - Results  

67 

 

Figure 2: A) Manhattan plot for drip loss in Duroc showing a strong 
QTL on chromosome 15:121Mb. Only SNPs with a -log10(p) > 2 are 
plotted. B) Plot showing all sequence variants in high LD (red) with 
the lead SNP (blue), including the variants that are already on the 
chip (black), and the candidate causal variant (green). The bottom 
of the figure shows the gene annotation and location of the 
candidate causal variant, according to the Ensembl pig build v.98. 
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4.3.3. Accelerated	 discovery	 of	 potential	 causal	 variants	 from	 GWAS	
results	

To demonstrate the utility of our approach we first analysed several QTL regions with known causal 
variants reported in literature. This list includes a missense mutation in MC4R affecting production 
traits [23], a promoter variant affecting number of teats in the VRTN gene [24], and a missense 
mutation affecting meat quality in PRKAG3 [25]. The method returned the causal variant as top 
ranked for both the MC4R missense mutation (Text S1, Figure S1) and the VRTN promoter variant 
(Text S2, Figure S2), despite the fact that hundreds of variants were found in LD with the lead 
SNP.  

The mutation identified by Milan [25] does not segregate in our sequenced animals, however, we 
identified another missense variant (15:g.120865869C>T) in the PRKAG3 gene likely affecting 
meat quality in both boar breeds (Figure 2), as described by Uimari et al. 2014 [26]. The causal 
missense variant is highlighted in green, and the lead SNP in the GWAS results in blue in Figure 2B. 
The variant substitutes glutamic acid for lysine (ENSSSCP00000030896:p.Glu47Lys) and is 
segregating at a frequency of approximately 20%, and 36% in Synthetic and Duroc, respectively. 
PRKAG3 regulates several intracellular pathways, including glycogen storage [27]. The specific 
isoform (ENSSSCT00000036402.2) affected by the Glu47Lys missense mutation has a role in the 
metabolic plasticity of fast-glycolytic muscle and is primarily expressed in white skeletal muscle 
fibers [28]. Gain of function mutations in the PRKAG3 gene have been correlated with increased 
glycogen content in skeletal muscle in pig, negatively affecting meat quality [29]. The Lys47 
variant likely causes a gain-of-function of the 5'-AMP-activated protein kinase subunit gamma-3 
enzyme, resulting in increased glycogen content causing lower water holding capacity resulting in 
low meat quality. 
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Figure 3: A) Manhattan plot for backfat in Duroc showing a strong QTL on chromosome 
7:30Mb. Only SNPs with a -log10(p) > 2 are plotted. B) Plot showing all sequence 
variants in high LD (red) with the lead SNP (blue), including the variants that are already 
on the chip (black), and the candidate causal variant (green). The bottom of the figure 
shows the gene annotation and location of the candidate causal variant, according to the 
Ensembl pig build v.98. 

4.3.4. Large	scale	analysis	reveals	several	novel	variants	with	pleiotropic	
effects	on	important	phenotypes	

4.3.4.1. Promoter	variants	in	the	HMGA1	and	HMGA2	genes	affect	fat	deposition	and	

growth	in	pigs	
A strong QTL on chromosome 7 affects backfat, intramuscular fat, growth, feed intake and loin 
depth in Duroc (Figure 3A). The lead SNP in the GWAS result is located at position 7:30,116,227 
with a -log10(p) > 20 for backfat, feed consumption, and intramuscular fat (Figure S4). The 
analysis returns 485 variants in high LD with the lead SNP (Figure 3B). The two variants with the 
highest pCADD scores are annotated upstream of the HMGA1 gene, 566 bp apart (Figure 3B). Both 
mutations are in the promoter region of the HMGA1 gene, supported by signals on the H3K4me3 
and H3K27Ac histone marks (Figure S5). The A allele, segregating at 36% allele frequency, is 
associated with less backfat, faster growth, but also smaller loin and decreased intramuscular fat. 
We evaluated the expression of the HMGA1 gene in twenty samples for which both genotype and 
gene expression, as normalized fragments per kilobase per million (FPKM), were available within 
the three genotype classes GG, AG, and AA. The A allele causes increased expression of the gene 
in an additive manner (P=0.041, Figure S6) and suggests that increased expression of the HMGA1 
gene positively affects backfat and growth, but decreases intramuscular fat. In addition, we find 
two variants affecting the promoter region of the HMGA2 gene, to be associated with less backfat 
in the Synthetic breed (Table 1). Both HMGA1 and HMGA2, part of the High Mobility Group A gene 
family, are well-known genes to affect growth and stature in pigs [30]–[32], but no causal variant 
has been reported thus far. Our results suggest that the causal variants for both genes are 
regulatory. 
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Table 1: List of potential causal variants identified from the pipeline. Table shows the 
variants type, potential overlap with promoter or enhancer region (from liver [19]), the 
change in amino acid (for missense mutations) and the pCADD score for variants affecting 
one or more important selection traits (BFE: backfat, IMF: intramuscular fat, TGR: growth 
rate, DRY: drip loss, NTE: number of teats). The causal variant for genes in bold have 
already been reported in literature. 
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Figure 4: A) Manhattan plot for backfat in the Synthetic breed showing a strong 
QTL on chromosome 1:116Mb. Only SNPs with a -log10(p) > 2 are plotted. B) Plot 
showing all sequence variants in high LD (red) with the lead SNP (blue), including 
the variants that are already on the chip (black), and the candidate causal variant 
(green). The bottom of the figure shows the gene annotation and location of the 
candidate causal variant, according to the Ensembl pig build v.98. 
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Figure 5: Manhattan plot for drip loss in the Synthetic breed. The figure shows significant 
loci and likely causal genes identified. 

4.3.4.2. A	novel	missense	mutation	in	SCG3	likely	to	affect	backfat	and	growth	rate	
A strong QTL on chromosome 1 affects backfat, intramuscular fat, and drip loss in the Synthetic 
breed (Figure 4A). The lead SNP in the GWAS result is located at position 1:115,884,118. The 
analysis returns 874 variants in high LD with the lead SNP. The SNP with the highest pCADD score 
(1:g.120074006G>A), a single missense variant affecting the SCG3 gene is identified as the likely 
culprit (Figure 4B). The variant substitutes a threonine for a methionine at position 386 in the 
Secretogranin-III protein (ENSSSCP00000044507:p.Met386Thr). The Met386 allele is associated 
with increased intramuscular fat, more backfat and lower meat quality. Several variants affecting 
the SCG3 gene have been associated with obesity in humans [33], supporting its likely causality for 
the fat-associated phenotypes in pigs. 

4.3.4.3. A	novel	missense	mutation	in	COPS4	likely	to	affect	backfat	and	growth	rate	
A QTL on chromosome 1 affects growth and backfat in the Duroc breed (Table 1). The lead SNP in 
the GWAS result is located at position 1:265,017,724. The analysis returns 706 variants in high LD 
with the lead SNP. The second pCADD-ranked SNP (1:g.263595807G>T), a single missense variant 
affecting the COPS4 gene is identified as likely causal. The variant substitutes an alanine for an 
aspartic acid at position 252 in the COP9 signalosome complex subunit 4 protein 
(ENSSSCP00000056478:p.Ala252Asp). The Asp252 allele is associated with less backfat and slower 
growth. Variants affecting COPS4 have been associated with increased body weight in mice [34]. 

4.3.4.4. Balancing	selection	for	causal	variants	in	the	breeding	program	
Several identified variants exhibit pleiotropic effects for important selection traits, e.g. variants 
affecting HMGA1, SCG3, COPS4, and MC4R (Table 1). Variants that positively affect backfat often 
have negative consequences for growth, while variants that positively affect intramuscular fat often 
show detrimental effects on meat quality. The observed pleiotropic effects cause the variants to be 
under balancing selection in the breeding program, preventing population fixation of individual 
variants underlying strong QTL regions. 

4.3.5. Variants	affecting	production	and	meat	quality	 traits	enriched	 for	
specific	molecular	mechanisms	

4.3.5.1. Genes	affecting	meat	quality	involved	in	muscle	glycogen	storage	
We identified several candidate causal variants that affect meat quality. Especially in the Synthetic 
breed, we find 26 loci significantly associated with drip loss (-log10(p) > 6), a meat quality trait 
that measures the water holding capacity of the meat (Figure 5). The top ranked pCADD-scored 
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genes show a strong enrichment for pathways involved in glycogen synthesis and storage (Table 
1). Increased levels of muscle glycogen lead to increased drip loss, negatively affecting meat 
quality [59]. Examples of such variants include two regulatory variants affecting the MEF2C and 
GBE1 genes. MEF2C knockout mice accumulate glycogen in their muscles [36], while GBE1 codes 
for a glycogen branching enzyme associated with glycogen storage disease, if mutated [38]. 
Moreover, we identify two missense variants affecting the NEU3 
(ENSSSCP00000034065:p.Pro419Ser) and MAP1A (ENSSSCP00000005070:p.Gly1904Ser) genes, 
both directly involved in the glycogen deposition [35], [37]. 

4.3.5.2. Genes	affecting	growth	and	fat	deposition	traits	are	involved	in	energy	

metabolism	and	adipogenesis	
We identified several likely causal variants and genes affecting other important production traits 
(Table 1). The top-ranked genes are enriched in energy reserve metabolic processes, glycogen 
metabolic process, regulation of lipid biosynthetic process, and homeostasis (Table S3). More 
specifically, two identified regulatory variants in the SOD1 and PRKCE genes likely affect backfat. 
SOD1 is involved in glucose metabolism and prevents oxidative damage associated with obesity 
[46], while mutations in PRKCE decrease the amount of body fat [47]. Furthermore, we identified 
one regulatory variant in the CACUL1 gene affecting intramuscular fat. This gene inhibits 
adipogenesis via the peroxisome proliferator-activated receptor γ (PPARγ) [48]. In addition, two 
missense variants affect intramuscular fat via the LNPEP (ENSSSCP00000051249:p.Leu334Ser) 
and ABCA12 (ENSSSCP00000058038:p.Gly1693Cys) genes. LNPEP attenuates diet-induced obesity 
in mice through increased energy expenditure, and decreases the amount of adipose tissue [49], 
while the ABCA12 gene plays an important role in lipid transport, affecting carcass fat content in 
pigs [52]. We further identified regulatory variants in the NR1H3, NR1H4, and PRCP genes, all 
likely affecting growth (Table 1). NR1H3 and NR1H4 are paralogous genes both involved in lipid 
homeostasis [55], [56], while reduced levels of PRCP expression promote obesity by regulating the 
α-melanocyte-stimulating hormone (α-MSH) that regulates feeding behaviour. Finally, we found a 
missense variant in the SLC46A1 gene associated with increased intramuscular fat 
(ENSSSCP00000020843:Gly131Arg) in pigs, known to affect glucose and fat levels in knockout 
mice [34]. 

4.4. Discussion	
The aim of this study was to prioritize variants associated with important traits in pigs. The variants 
are ranked based on pCADD scores, and possibly further supported with respect to their function 
by epigenetic marks and gene expression data. The method is especially relevant because genomic 
variation underlying phenotypic variation mostly affects the non-coding part of the genome [4], 
and GWAS results often point to regions outside gene boundaries (Bartonicek et al. 2017). With the 
publication of the pCADD scores [11], a powerful resource is now available to rank any possible 
substitution variant in the genome based on the likelihood of being functional. This is a major step 
forward in livestock, as thus far only variation in the coding region could be scored. On top of the 
pCADD scores, we use epigenomics and gene expression data to annotate regulatory sequences 
and associate gene expression to the trait of interest. In human, many transcriptomic and 
epigenomic marks have already been incorporated in the CADD scores [12]. However, the pCADD 
scores are built on far less (epi)-genomics data, but with the accumulation of functional genomic 
data in pigs [60], these pCADD scores will further improve.  

Livestock populations generally have small effective population sizes (Ne: 50-200), far less 
compared to e.g. human (Ne ~ 10,000), leaving much longer blocks of variants in high LD. This 
high level of LD increases the power to detect QTL regions, even with relatively low SNP density. 
However, within large LD blocks, many variants will be associated, and a thorough variant 
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prioritization should be performed to point to likely causal variants within the (often) large variant 
set. For example, the LD block for the number of teats in Landrace spans about 1.8 Mb, leaving 
many thousands of variants in linkage, which increases the level of noise and hampers the 
detection of the causal variant. Nevertheless, in Large White and Duroc, which have smaller LD-
blocks (100-500 kb), the causal VRTN promoter SNP is among the top SNPs. In that sense, 
integrating the results from multiple breeds provides additional power to further narrow down the 
list of candidates, assuming that the same causal variant is segregating, but likely with a very 
different underlying haplotype structure. This example shows that the tool can be very powerful to 
prioritize variants, but with a trade-off for the level of LD, increasing the noise when many 
thousands of variants are in linkage.  

Although the development of genomic selection has revolutionized the world of animal breeding, 
the lack of functional genomic information currently limits further development [61]. The 
framework and associated pCADD scores provided within this study will accelerate the discovery of 
new functional variants, which can be directly implemented in genomic selection by adding the 
causal variants to the selection chip used for genomics selection. Moreover, the results provide 
further knowledge of the biological pathways associated with important phenotypic variation in 
livestock. For this, the (functional) genome annotation in livestock genomes is still of too low 
quality compared to other well-studied mammalian species [60]. Therefore, using annotations from 
human, mouse, and rat will often provide more detailed information on gene function, pathways, 
and associated genes compared to the pig annotation itself.  

The populations under study provide an interesting framework to study common pathways and 
molecular mechanisms involved in comparable phenotypes between pig and human. For example, 
we report the GBE1 gene affecting meat quality in pigs by accumulating glycogen in the muscle, a 
gene associated with glycogen storage disease in human [62]. Moreover, several of the identified 
genes affecting growth and fat deposition traits in pigs are involved in energy metabolism, glucose 
homeostasis, and adipogenesis, often associated with metabolic disease in human (e.g. HMGA1, 
SCG3 genes). In human, however, environmental factors play a very large role in the formation of 
metabolic disease, while in pigs the animals are kept under relatively stable conditions, which could 
make the pig an ideal model to study the effects of specific genic variants on these analogous 
phenotypes [63]. Pig breeding has led to extreme changes in animal production and efficiency, with 
very little negative consequences on health [14]. This remarkable robustness of the animals, and 
the molecular mechanisms involved, could help to understand metabolic disease in human. Finally, 
our study implicates that, despite the complexity of pathways, there are several key entry points 
(i.e. genes) with a large effect on specific phenotypes in pigs, likely to be similar in human. 
Understanding these ‘key’ genes, and how they function together would further help to unravel the 
(molecular) consequences of genomic selection. 

4.5. Conclusion	
This study integrates pig CADD scores and various sources of functional data to provide a 
framework to pinpoint causal variation associated with important phenotypes in pigs. We 
demonstrate our method by identifying novel causal mutations or substantially narrow down the 
list of potential causal candidates in various strong QTL regions, affecting both production and 
reproduction traits. The new regulatory variants can be utilized directly in the breeding program to 
improve selection substantially, and to better understand the biology and molecular mechanisms 
underlying the selected traits. Finally, the pig populations under study provide an interesting 
framework to study common pathways and molecular mechanisms involved in analogous 
phenotypes between human and pig. 
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4.6. Methods	

4.6.1. Ethics	statement	

Samples collected for DNA extraction were only used for routine diagnostic purpose of the breeding 
programs, and not specifically for the purpose of this project. Therefore, approval of an ethics 
committee was not mandatory. Sample collection and data recording were conducted strictly 
according to the Dutch law on animal protection and welfare (Gezondheids- en welzijnswet voor 
dieren). 

4.6.2. Genotype	data	and	breeds	

The dataset consists of 15,791 (Duroc), 28,684 (Synthetic), 36,956 (Large White), and 41,865 
(Landrace) animals genotyped on the (Illumina) Geneseek custom 50K SNP chip with 50,689 SNPs 
(50K) (Lincoln, NE, USA) and imputed to the Axiom porcine 660K array from Affymetrix (Affymetrix 
Inc., Santa Clara, CA, United States). The chromosomal positions were determined based on the 
Sscrofa11.1 reference assembly [64]. SNPs located on autosomal chromosomes were kept for 
further analysis. Next, we performed per-breed SNPs filtering using following requirements: each 
marker had a MAF greater than 0.01, a call rate greater than 0.85, and an animal call rate > 0.7. 
SNPs with a p-value below 1x10-12 for the Hardy-Weinberg equilibrium exact test were also 
discarded. All pre-processing steps were performed using Plink v1.90b3 [65]. 

4.6.3. Phenotypes	

The phenotypes consisted of 1,360,453 records of purebred and crossbred offspring of genotyped 
animals from four lines of different origin: Duroc, Synthetic, Landrace, Large White. 

4.6.4. Genome	wide	association	study	

A single SNP GWAS was performed with the software ASReml [66] by applying the following 
model: 

DEBV#$w = µ + SNP# + a$ + e#$ 

where DEBVij is the DEBV (deregressed estimated breeding value) of SNP i for genotyped animal j, 
µ is the overall DEBV mean of the genotyped animals, SNPi is the genotype of the SNP i coded as 
0, 1 or 2 copies of one of the alleles, aj is the additive genetic effect and eij the residual error. The 
weighting factor w was used in the GWAS to account for differences in the amount of available 
information on offspring to estimate DEBV [67]. Association results were considered significant if -
log10(p) > 6.0. 

4.6.5. Population	sequencing	and	mapping	

Sequence data was available for 101 (Duroc), 71 (Synthetic), 167 (Landrace), and 89 (Large 
White) animals from paired-end 150 bp reads sequenced on Illumina HiSeq. The sequenced 
samples are frequently used boars, selected to capture as much as possible of the genetic variation 
present in the breeds. The coverage ranges from 6.6 to 22.2, with an average coverage of 11.82. 
FastQC was used to evaluate read quality [68]. BWA-MEM (version 0.7.15 [69]) was used to map 
the WGS data to the Sscrofa11.1 reference genome. SAMBLASTER was used to discard PCR 
duplicates [70], and samtools was used to merge, sort, and index BAM alignment files [71]. 
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4.6.6. Variant	discovery	functional	class	annotation	

FreeBayes was used to call variants with following settings: --min-base-quality 10 --min-alternate-
fraction 0.2 --haplotype-length 0 --ploidy 2 --min-alternate-count 2 [72]. Post processing was 
performed using BCFtools [69]. Variants with low phred quality score (<20), low call rate (<0.7) 
and variants within 3 bp of an indel are discarded, leaving a total of 21,648,132 (Landrace), 
23,667,234 (Duroc), 23,286,212 (Synthetic), and 25,709,552 (Large White) post-filtering variants, 
respectively. The average per variant call rate is above 98% for all breeds and the ratio transitions 
to transversions is between 2.33-2.35 (Table S4). Variant (SNPs, Indels) annotation was performed 
using the Variant Effect Predictor (VEP, release 97) [18]. 

4.6.7. pCADD	scores	

pCADD scores were retrieved from Gross et al. [11]. Visualization of pCADD scores was performed 
using JBrowse 1.16.6 [73]. Integration of sequence variants with pCADD score was performed 
using PyVCF [74]. pCADD scores, partitioned per chromosome, compressed via bgzip and tabix 
indexed for fast access, can be downloaded following this link (~5GB-1GB): 
http://www.bioinformatics.nl/pCADD/indexed_pPHRED-scores/, and scripts to use these scores to 
annotate SNPs can be found here: https://git.wur.nl/gross016/pcadd-scripts-data/. 

4.6.8. Promoter	and	enhancer	elements	from	ChipSeq	data	

We retrieved three H3K27Ac, and three H3K4me3 libraries (ArrayExpress accession number: E-
MTAB-2633) from liver tissue from three male pig samples described by Villar et al. 2015. Data 
was aligned using BWA-mem [69] and visualized in JBrowse [73]. Coverage information on variant 
sites was obtained using PyVCF [74] and the PySAM 0.15.0 package. 

4.6.9. Phenotypes	and	gene	ontology	

Phenotype information from genes orthologous to pig in human, mouse, and rat were retrieved 
from the Ensembl database (release 97) [75]  using a custom bash script. Gene ontology and 
pathway information was obtained from the UniProt database [20]. 

4.6.10. RNA-sequencing	and	differential	expression	
We used 25 Duroc and 34 Landrace RNA-sequenced boars selected based on high and low sperm 
DNA fragmentation index, a measure of well packed double-stranded DNA vs single-stranded 
denatured DNA, which is an important indicator of boar fertility [22]. The boars were all born in the 
same period of time and a broad range of semen quality tests were conducted on ejaculates of 
these boars. Sequencing was done in two batches. Library preparation and sequencing strategy of 
the first batch can be found in van Son et al. 2017. The second batch was prepared using TruSeq 
mRNA stranded HT kit (Illumina) on a Sciclone NGSx liquid automation system (Perkin Elmer). A 
final library quality check was performed on a Fragment Analyser (Advanced Analytical 
Technologies, Inc) and by qPCR (Kapa Biosciences). Libraries were sequenced on an Illumina HiSeq 
4000 according to manufacturer’s instructions. Image analysis and base calling were performed 
using Illumina’s RTA software v2.7.7. The resulting 100 basepair single-end reads were filtered for 
low base call quality using Illumina’s default chastity criteria. We mapped the RNA-seq data to the 
Sscrofa11.1 reference genome using STAR [76] and called transcripts and normalized FPKM 
expression levels using Cufflinks and Cuffnorm [77]. We assigned the genotype class (homozygous 
reference, heterozygous, homozygous alternative) for each RNA-sequenced individual using the 
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660K genotype of the lead SNP in the GWAS result. We tested for differential expression between 
three genotype classes using the one-way ANOVA test. The Welch t-test was used to evaluate the 
differences between two genotype classes. A p value < 0.05 was considered significant. 
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4.7. Appendix	-	Supplementary	data	

4.7.1. Supplementary	note	

4.7.1.1. A	missense	mutation	in	the	MC4R	gene	affects	production	traits	in	the	Synthetic	

and	Duroc	breed.	
A QTL on SSC1 affects lifetime growth rate, backfat and feed intake (Figure S1) in the Synthetic 
and Duroc breed. The lead SNP in Duroc is located at 1:g.159884741A>C, and the C allele is 
associated with less backfat but also slower growth (AF=44%). The lead SNP in the Synthetic 
breed is located at position 1:g.159660303C>T, and the T allele is associated with less backfat and 
slower growth (AF=11%). The analysis reveals 526 and 315 variants in high LD with the lead SNP 
in the Synthetic and Duroc breed, respectively. A missense variant (1:g.160773437G>A) in the 
MC4R gene shows the highest pCADD score in both variant sets (score=27.48). The variant 
substitutes aspartic acid for an asparagine (ENSSSCG00000004904:p.Asp298Asn), segregating at 
a frequency of approximately 88%, and 55% in Synthetic and Duroc, respectively. This gene is 
well-known to affect obesity and fatness traits and the missense variant has been reported in 
various pig breeds [23], [30], [31]. The Asp298 allele is associated with less backfat, slower 
growth, and lower feed intake, while the Asn298 allele is associated with more fat, higher-feed 
consumption, and faster growth. 

4.7.1.2. A	promoter	mutation	in	the	VRTN	gene	affects	number	of	vertebrae	and	number	

of	teats.	
A QTL on SSC7 affects the number of teats and the number of vertebrae in Landrace, Duroc and 
Large White (Figure S3). The lead SNPs for all three breeds are found within a 100kb region 
(Duroc: 7:g.97614635A>G, Landrace: 7:g.97652632T>C, Large White: 7:g.97568284A>G). The 
analysis reveals 526, 6,553 and 315 variants in high LD with the lead SNP in the Duroc, Landrace 
and Large White breed, respectively. Two variants affecting VRTN expression are proven to 
increase the number of vertebrae, and thereby also the number of teats [24]. One variant affects 
the VRTN promoter (7:g. 97614602A>G) and the other is a PRE1 (7:97615896_ins291) insertion 
element in the first intron of the VRTN gene. The promoter variant is one of the top pCADD scored 
variants in Duroc (2nd) and Large White (4th), while the variant is not among the top variants in 
Landrace due to the large LD block covering 6,553 variants. The PRE1 element is not included 
because we cannot infer pCADD scores for such type of variants. This example shows that the tool 
can be very powerful to prioritize variants, but with a trade-off for the level of LD, increasing the 
noise if many thousands of variants are in linkage. 
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4.7.2. Supplementary	figures	

 

Figure S1: Plot showing all sequence variants in high LD (red) with the lead SNP of the 
SSC7 QTL for number of teats (blue), including the variants that are already on the chip 
(black), and the candidate causal variant (green). The bottom of the figure shows the 
gene annotation and location of the candidate causal variant, according to the Ensembl 
pig build v.98. 
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Figure S2: Manhattan plot for number of teats in Duroc, Landrace, and Large White. A 
strong QTL on chromosome 7 is observed across the breeds. 
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Figure S3: Manhattan plot for backfat, daily gain, and intramuscular fat in the Duroc 
breed. A single strong QTL on SSC7 affects all three traits. 
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Figure S4: JBrowse screen capture showing the coverage track of one heterozygous 
sample for the two HMGA1 upstream gene variants (indicated with the blue arrows). The 
variants overlap with the promotor region of the gene, supported by signals on the 
H3K4me3 and H3K27Ac in liver tissue [19]. 

 

 

Figure S5: FPKM expression values for different classes of genotypes for the HMGA1 
7:g.30319447G>A variant. HMGA1 expression increases additively for the A allele. 
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4.7.3. Supplementary	table	

Table S1: Statistics and percentiles of pCADD score per variant effect predictor (VEP) 
class. 
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Table S2: RNA-sequenced samples alignment and breed information 

RNAseq_ID  Birthdate  Breed  # Aligned 
reads  # Aligned to genes  

200982 19.06.2009  Landrace  81,072,871 50,707,721 
201267 30.06.2009  Landrace  77,004,472 45,680,563 

201839 20.07.2009  Landrace  80,925,045 49,181,261 

202393 04.08.2009  Landrace  77,882,188 47,046,576 
202517 25.08.2009  Duroc  99,035,646 58,171,426 
202553 02.09.2009  Duroc  67,649,946 40,056,978 
202889 08.09.2009  Landrace  83,764,698 53,617,685 
202956 22.08.2009  Landrace  79,990,131 50,997,185 
203757 07.10.2009  Landrace  88,166,223 53,139,698 
204120 30.10.2009  Landrace  85,272,052 53,810,459 
211478 13.08.2010  Duroc  88,652,551 52,520,221 
212051 29.08.2010  Landrace  93,711,956 54,912,183 
214807 16.12.2010  Landrace  70,420,072 42,079,270 
216352 23.02.2011  Duroc  77,037,167 44,240,695 

217000 25.02.2011  Duroc  85,948,543 50,676,113 

219433 03.06.2011  Duroc  78,895,825 46,292,107 
220011 26.06.2011  Duroc  68,126,200 40,688,175 

220166 25.06.2011  Duroc  90,856,057 53,930,696 
220199 09.07.2011  Landrace  87,849,053 53,145,870 
221522 13.08.2011  Duroc  76,362,846 46,013,378 

222375 07.09.2011  Duroc  70,498,201 42,717,332 

222726 27.09.2011  Landrace  97,524,851 58,333,275 

223984 17.11.2011  Duroc  76,542,504 44,902,014 
223989 16.11.2011  Duroc  91,391,099 54,432,619 

224059 29.11.2011  Duroc  66,451,777 38,339,124 

224396 20.11.2011  Landrace  103,566,935 63,129,636 

225577 27.12.2011  Duroc  84,992,811 49,850,466 

226260 18.01.2012  Duroc  74,843,271 43,972,824 

229039 04.05.2012  Duroc  88,647,993 53,712,798 
230319 26.06.2012  Landrace  86,080,717 50,725,416 
601979 09.07.2013  Landrace  116,786,753 67,559,389 
606695 21.07.2013  Landrace  143,196,072 87,965,328 
618265 02.11.2011  Landrace  97,827,095 57,921,236 
618292 10.12.2012  Landrace  131,790,646 82,814,520 
618315 01.06.2013  Duroc  78,829,116 50,107,043 
632533 14.11.2013  Landrace  144,901,184 82,206,500 
632566 01.10.2013  Landrace  85,825,439 53,844,726 
652024 02.11.2013  Landrace  140,421,410 87,491,329 
662985 18.12.2013  Landrace  87,012,842 51,000,123 
667317 19.12.2013  Duroc  89,667,304 54,426,898 
671867 01.08.2013  Landrace  82,551,158 49,932,527 
671868 18.02.2014  Landrace  91,297,409 52,777,850 
671879 03.08.2013  Landrace  124,472,518 74,334,920 
678115 03.09.2013  Landrace  96,432,147 58,449,186 
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679241 18.10.2013  Landrace  81,233,028 48,725,698 
679906 05.07.2013  Duroc  77,563,765 47,396,856 

679941 02.06.2013  Duroc  202,290,492 113,380,344 
679943 18.01.2014  Landrace  74,056,318 43,376,629 
687220 17.09.2013  Landrace  81,889,922 45,368,799 
716309 26.07.2013  Duroc  67,791,177 37,218,720 
721795 05.05.2014  Landrace  87,454,783 52,381,283 
740620 12.05.2014  Landrace  80,399,150 48,285,099 
761156 05.05.2014  Landrace  86,663,844 52,182,153 
765489 18.11.2013  Duroc  75,123,881 42,499,024 
775352 11.04.2014  Duroc  124,247,297 76,413,078 

787897 13.12.2013  Duroc  80,394,861 49,831,000 
793958 30.01.2014  Duroc  71,248,334 39,648,673 

793985 20.12.2013  Landrace  124,510,805 68,625,964 
822998 17.12.2013  Landrace  111,917,137 69,986,352 

 

Table S3: Gene ontology enrichment analysis for genes underlying important selection 
traits in pigs. 

Enrichme
nt FDR 

Genes in 
list 

Total 
genes 

Functional Category 

1.80E-05 15 2004 Homeostatic process 
1.80E-05 9 516 Multicellular organismal homeostasis 
5.00E-05 5 91 Energy reserve metabolic process 
5.00E-05 9 627 Behavior 
3.20E-04 2 2 Oncogene-induced cell senescence 
3.20E-04 5 147 Positive regulation of lipid metabolic process 
3.20E-04 5 148 Positive regulation of small molecule metabolic 

process 
3.20E-04 7 438 Muscle system process 
3.70E-04 4 72 Regulation of behavior 
3.70E-04 7 463 Regulation of small molecule metabolic process 
3.90E-04 4 78 Glycogen metabolic process 
3.90E-04 4 79 Cellular glucan metabolic process 
3.90E-04 4 79 Glucan metabolic process 
4.10E-04 5 183 Organ growth 
4.10E-04 2 3 Senescence-associated heterochromatin focus 

assembly 
4.10E-04 4 84 Positive regulation of lipid biosynthetic process 
4.10E-04 3 26 Regulation of feeding behavior 
4.20E-04 5 190 Regulation of lipid biosynthetic process 
4.40E-04 8 742 Cellular response to hormone stimulus 
6.00E-04 9 1040 Response to hormone 
6.90E-04 11 1681 Negative regulation of biosynthetic process 
6.90E-04 4 104 Cellular polysaccharide metabolic process 
7.20E-04 11 1704 Response to endogenous stimulus 
8.00E-04 3 36 Energy homeostasis 
8.30E-04 4 116 Polysaccharide metabolic process 
8.30E-04 6 401 Regulation of lipid metabolic process 
8.30E-04 3 38 Toll-like receptor 4 signaling pathway 
8.30E-04 10 1432 Cellular response to endogenous stimulus 
9.20E-04 15 3382 Regulation of multicellular organismal process 
1.10E-03 7 644 Carbohydrate metabolic process 
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Table S4: Population whole genome sequencing statistics 

Breed  # Samples  # SNPs  # Indels  Avg. per variant 
call rate  

Ts/Tv  

Landrace  167  17,899,503  3,759,040  98.85  2.33  
Duroc  119  19,696,060  3,946,140  98.92  2.34  
Synthetic  71  19,435,050  3,832,091  98.01  2.34  
Large White  89  25,709,552  4,085,600  98.46  2.35  
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5.1. Abstract	
The availability of genomes for many species has advanced our understanding of the non-protein-
coding fraction of the genome. Comparative genomics has proven to be an invaluable approach for 
the systematic, genome-wide identification of conserved non-protein-coding elements (CNEs). 
However, for many non-mammalian model species, including chicken, our capability to interpret 
the functional importance of variants overlapping CNEs has been limited by current genomic 
annotations, which rely on a single information type (e.g. conservation). We here studied CNEs in 
chicken using a combination of population genomics and comparative genomics. To investigate the 
functional importance of variants found in CNEs we develop a ch(icken) Combined Annotation-
Dependent Depletion (chCADD), a variant effect prediction tool first introduced for humans and 
later on for mouse and pig. We show that 73 Mb of the chicken genome has been conserved across 
more than 280 million years of vertebrate evolution. The vast majority of the conserved elements 
are in non-protein-coding regions, which display SNP densities and allele frequency distributions 
characteristic of genomic regions constrained by purifying selection. By annotating SNPs with the 
chCADD score we are able to pinpoint specific subregions of the CNEs to be of higher functional 
importance, as supported by SNPs found in these subregions are associated with known disease 
genes in humans, mice, and rats. Taken together, our findings indicate that CNEs harbor variants 
of functional significance that should be object of further investigation along with protein-coding 
mutations. We therefore anticipate chCADD to be of great use to the scientific community and 
breeding companies in future functional studies in chicken. 

5.2. Introduction	
The rapidly increasing availability of genomes has considerably advanced our understanding of the 
non-protein-coding fraction of the genome. With the sequencing of the human genome [1] and the 
first ENCODE project [2], [3] it was soon realized that protein-coding genes constitute a small 
fraction of a species functional genome and that the remaining non-protein-coding DNA is not 
simply ´junk´ DNA as initially thought. Nevertheless, the functional importance of these non-
protein-coding regions remained for long time unknown, as determining (molecular) function was 
far more difficult than for protein-coding genes [4]. A better understanding of the functional 
importance of these non-protein-coding regions comes from comparative genomics, which has 
allowed the systematic, genome-wide identification of conserved non-protein-coding elements 
(CNEs) [5], [6].  

Comparative genomics relies on the genome comparison of a group of species related by a narrow 
or wide time-scale (i.e. phylogenetic scope). Regions in the genome that share some minimum 
sequence similarity across two or more species are an indication of a selection constraint. 
Moreover, conservation often implies a biological function [7]. Based on this principle, CNEs can be 
identified in any species included in the alignment, as reported in recent studies in the collared 
flycatcher [8], fruit flies [9], and plants [6]. However, the phylogenetic scope [10] and species 
included in the alignment [11] can have important implications for the identification of CNEs. For 
instance, by including the spotted gar genome in their alignment, [11] recently identified numerous 
CNEs previously undetectable in direct human-teleost comparisons, supporting the importance of a 
bridging species in the alignment. 

CNEs have been the subject of intense recent interest. The identification of CNEs has had important 
implications in enhancing genome annotation [12], investigating signatures of adaptive evolution 
[13]–[15], and identifying putative trait loci [16]. CNEs and sequence conservation have also 
proven crucial in studying the genetic basis of phenotypic diversity. In fact, non-protein-coding 
SNPs have been linked to traits and diseases in genome-wide association studies [17], [18]. 
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Although the methodological advantages of a comparative genomic approach are well recognized, 
the functional interpretation of CNEs is incomplete if based on conservation alone, as conservation 
provides information on restrictions, but not on functionality. A possible solution is combining 
conservation with other complementary types of data that characterize the biological role of genetic 
sequences at a genome-wide scale [7]. Such data include, for instance, RNA sequencing (RNA-seq) 
for the identification of transcriptionally active regions [19] and chromatin immunoprecipitation 
followed by sequencing (ChIP-seq) for regulatory-factor-binding regions (RFBRs) [20]. In human 
genetics, integrative annotations such as Combined Annotation-Dependent Depletion (CADD) [21] 
have been developed. The main advantage of such frameworks is the combination, into a unique 
score, of diverse genomic features derived from, among others, gene model annotations, 
evolutionary constraints, epigenetic measurements, and functional predictions [21], [22]. 

Compared to humans, for many non-mammalian model species, including chicken (Gallus gallus), 
the situation is quite different. First, comparative genomic studies that made use of the very first 
genome assemblies [23]–[25] may have provided an incomplete and biased picture of avian CNEs 
and avian genome evolution, as recently pointed out by [26]. Second, the lack of species-specific 
methods that can identify and score functional non-protein-coding mutations throughout the 
genome has restricted most of the research interest to protein-coding genes. In fact, in the context 
of protein-coding genes generic predictors such as SIFT [27], PolyPhen2 [28], and Provean [29] 
can be used.  

We here addressed these limitations using a combination of comparative genomic and population 
genomic approaches to accurately predict CNEs in the chicken genome. Furthermore, we used 
machine learning to develop a ch(icken) Combined Annotation-Dependent Depletion (chCADD), in 
the tradition of previous CADD models for non-human species, including mouse (mCADD) [30] and 
pig (pCADD) [31]. As we show, chCADD has the potential of providing new insights into the 
functional role of non-protein-coding regions of the chicken genome at a single base pair 
resolution.  

Even though deciphering the function of the non-protein-coding portion of a species genome has 
been a challenging task, we expect our study to provide a new framework for decoding the still 
largely unknown function of CNEs and their relative variants in chicken, an ideal non-mammalian 
model and anchor species in evolutionary studies. 

5.3. Results	

5.3.1. Conserved	 non-protein-coding	 elements	 cover	 a	 large	 fraction	 of	
the	chicken	genome	

To define CNEs, we first identified conserved elements (CEs) using the UCSC PhastCons most 
conserved track approach [32]. PhastCons predicted in the 23 sauropsids multiple sequence 
alignment (MSA) 1.14 million CEs encompassing ~8% of the chicken genome for a total of 73 Mb. 
In line with the density of genes and regulatory features characteristic of the chicken genome [33], 
we found that most of the predicted CEs are on micro-chromosomes (GGA11-GGA33), followed by 
intermediate (GGA6-GGA10) and macro-chromosomes (GGA1-GGA5) (Figure S1). Even though the 
length of predicted CEs ranged from 4 bp to a maximum of ~ 2,000 bp, the vast majority was 
short (< 100 bp) (Figure S2). Therefore, we do not expect any length bias in our final set of CEs.  

We annotated CEs by genomic features, considering only genes for which the transcript had a 
proper annotated start and stop codon, as defined by the Ensembl´s annotation files (n = 14,828 
genes). Overall, we found that 23% of the predicted CEs were associated with exonic sequences  
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Table 1: Statistics of predicted conserved elements (CEs) based by gene annotations. 
The fraction of CEs per sites class is presented, for protein-coding gene annotations, in 
percentages of the exonic CEs (17,148,879 bp). For non-protein-coding gene 
annotations, the fraction is relative to the non-exonic CEs (51,224,645 bp). 
Abbreviations: CC, conserved coding; CNE, conserved non-protein-coding elements. 

Genomic 
feature 

No. 
overlapping 
CEs 

Total overlap 
(bp) 

Genome coverage 
(%) 

Fraction of site class 
conserved (%) 

CDS 213,787 14,683,183 1.38 85.62 
5’ UTRs 5,457 207,320 0.02 1.21 
3’ UTRs 23,721 1,460,144 0.15 8.51 
Promoters 16,022 761,504 0.08 4.44 
RNA genes 701 36,728 0.00 0.21 
LncRNAs 121,840 7,696,557 0.80 15.03 
Introns 328,579 18,520,675 1.93 36.16 
Intergenic 400,501 25,007,413 2.60 48.82 
Total CC 259,688 17,148,879 1.78 100.00 
Total CNE 850,920 51,224,645 5.33 100.00 

(i.e. CDS, 5’ UTR, 3’ UTR, promoter, and RNA genes) spanning 17.14 Mb of the chicken genome 
(Table 1). The majority of the exon-associated CEs overlapped known coding regions (85% of total 
exon-associated CEs), followed by 3’ UTRs (8% of total), and promoter regions (4% of total). 
Although we observed conservation in exon sequences, most CEs overlapped non-protein-coding 
sequences, including lncRNA (15% of total non-exon associated CEs), intronic (36% of total), and 
intergenic regions (49% of total). We further examined the biological processes and molecular 
functions of known genes overlapped by CEs in coding regions, 5’ UTRs, 3’ UTRs, and introns. 
These genes are associated with basic functions, including cell differentiation and development, 
anatomical structure development, morphogenesis, and growth (Table 2). Most of these GO 
categories have also been previously associated with mammalian and vertebrate ultraconserved 
elements (UCEs) [33], [34]. 

In total we identified 259,688 CEs in protein-coding regions, leaving 850,920 CNEs spanning over 
51 Mb of the chicken genome (Table 1), with a genome-wide distribution of 92.10 CNEs/100-kb. 
We further observed noticeable differences in the length distribution of CEs associated with 
different types of annotations. Among the conserved exon-associated CEs, those found in CDSs 
are, on average, the longest (~68 bp), followed by 3’ UTRs (61 bp), RNA genes (52 bp), promoters 
(47 bp), and 5’ UTRs (38 bp) (Figure S3). On the contrary, CEs found in non-protein-coding regions 
show a homogenous length distribution, ranging from 56 bp in introns to 63 bp in lncRNAs (Figure 
S4). 
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Table 2: GO term enrichment analysis of exonic-associated CE and intronic CEs 

Term 
ID 

Term 
description 

Targe
t size 

3 UTR Intron 

   Term 
size 

Query 
size 

Overlap 
size 

p-value Term 
size 

Query 
size 

Overlap 
size 

p-value 

GO:00
48856 

Anatomical 
structure 

development 

12,514 3,293 4,736 1,475 1.24 x 
10-17 

3,293 6,971 2,128 1.09 x 
10-29 

GO:00
10646 

Regulation of 
cell 

communication 

12,514 2,038 4,736 917 3.67 x 
10-09 

2,038 6,971 1,329 1.33 x 
10-17 

GO:00
10604 

Positive 
regulation of 

macromolecule 
metabolic 
process 

12,514 2,118 4,736 952 1.49 x 
10-09 

2,118 6,971 1,331 2.21 x 
10-09 

GO:00
23051 

Regulating of 
signaling 

12,514 2,056 4,736 926 2 x 10-09 2,056 6,971 1,339 1.88 x 
10-17 

GO:00
48583 

Regulation of 
response to 

stimulus 

12,514 2,332 4,736 1,032 1.44 x 
10-08 

2,332 6,971 1,477 9.79 x 
10-13 

GO:00
48468 

Cell 
development 

12,514 1,364 4,736 625 1.27 x 
10-06 

1,364 6,971 927 1.12 x 
10-18 

GO:00
31325 

Positive 
regulation of 

cellular 
metabolic 
process 

12,514 2,091 4,736 936 9.01 x 
10-09 

2,091 6,971 1,304 1.09 x 
10-07 

 

Term 
ID 

Term 
description 

Targe
t size 

CDS 5 UTR 

   Term 
size 

Query 
size 

Overlap 
size 

p-value Term 
size 

Query 
size 

Overlap 
size 

p-value 

GO:00
48856 

Anatomical 
structure 

development 

12,514 3,293 9,703 2,713 2.06 x 
10-11 

3,293 1,896 654 5.13 x 
10-14 

GO:00
10646 

Regulation of 
cell 

communication 

12,514 2,038 9,703 1,686 2.64 x 
10-06 

2,038 1,896 381 9.33 x 
10-03 

GO:00
10604 

Positive 
regulation of 

macromolecule 
metabolic 
process 

12,514 2,118 9,703 1,749 3.53 x 
10-06 

2,118 1,896 403 5.06 x 
10-04 

GO:00
23051 

Regulating of 
signaling 

12,514 2,056 9,703 1,699 4.46 x 
10-06 

2,056 1,896 384 9.24 x 
10-03 

GO:00
48583 

Regulation of 
response to 

stimulus 

12,514 2,332 9,703 1918 5.55 x 
10-06 

2,332 1,896 424 4.39 x 
10-02 

GO:00
48468 

Cell 
development 

12,514 1,364 9,703 1,142 1.78 x 
10-05 

1,364 1,896 282 3.38 x 
10-05 

GO:00
31325 

Positive 
regulation of 

cellular 
metabolic 
process 

12,514 2,091 9,703 1,723 1.91 x 
10-05 

2,091 1,896 388 1.60 x 
10-02 
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Figure 1: Correlation between exons and conserved non-
protein-coding elements (CNEs) along the chicken 
genome. CNEs and exons count per 100 kb windows are 
shown with the Pearson correlation coefficient r and 
corresponding p-value in the top left corner. 

5.3.2. CNEs	populate	regions	not	occupied	by	genes	

We further investigated the genomic location of CNEs as this might provide important clues to their 
functional role. We found that the distribution of CNEs in windows of 100 kb is significantly 
negatively correlated (r = -0.20; p-value: <2.2x10-16) with the distribution of exons (Figure 1). 
We subsequently analyzed chicken polymorphism data to address the mutational or evolutionary 
forces shaping CNEs, following previous studies in humans [35] and Drosophila [9], [36]. We used 
polymorphism densities to investigate whether these forces could still be acting on the chicken 
genome or they could have acted in other species and may no longer be relevant for chicken. SNP 
density, which reflects events within the chicken lineage, was calculated in the genomes of 169 
chickens from different traditional breeds of divergent demographic and selection history. 
Specifically, we compared the SNP density found in CNEs with that in non-protein-coding elements 
that were identified not to be conserved (non-CNEs; i.e. not conserved intronic, lncRNA and 
intergenic regions), following [9], [35], [36]. Overall, we found that CNEs are less enriched in SNPs 
(SNP density = 0.0092) than non-CNEs (SNP density = 0.02). 

5.3.3. CNEs	are	selectively	constrained	in	chicken	

To test whether low local mutation rates in CNEs or purifying selection is responsible for the 
observed low SNP density, we looked at the derived allele frequency (DAF) distribution in CNEs and 
non-CNEs. This is because mutation rate differences are not expected to affect the allele frequency 
spectra. On the contrary, selective constraint is responsible for the shift in allele frequency 
distribution of constrained alleles towards lower values. Allele frequencies for derived (new) alleles 
were compiled using the sequence of the inferred ancestor between chicken and turkey. The 
ancestral allele was determined for a total of ~9 million SNPs that passed several filtering criteria  
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Figure 2: Derived allele frequency (DAF) distribution of 
SNPs in CNEs and non-CNEs. 

 (see Methods). We observed an excess of rare (≤ 10%) derived alleles of SNPs within CNEs in all 
chicken populations (Figure 2). Overall, 57% of SNPs within CNEs had a DAF ≤ 10%, compared to 
only ~48% in non-CNEs (the same pattern was observed for each SNP functional class; see also 
Table 3). Non-CNEs displayed on the contrary a higher proportion of common SNPs (DAF>10%) 
(~52% versus 43% within CNEs) independent of their functional class (Figure 2; Table 3). 
Therefore, the low proportion of derived alleles in CNEs indicates that evolutionary pressure has 
suppressed CNE-derived allele frequencies. 

Table 3: Derived allele frequency distribution for SNPs in CNEs and non-CNEs by SNP 
functional class. 

Genomic 
feature 

DAF Within CNEs Outside CNEs chCADD 
within CNEs 

chCADD 
outside CNEs 

  Number of SNPs 
(%) 

Number of 
SNPs (%) 

Average 
(± sd) 

Average 
(± sd) 

All ≤0.10 137,871 (57%) 482,685 (48.4%) 9.78 (4.18) 3.21 (3.18) 

 >0.10 103,726 (43%) 513,935 (51.5%) 8.81 (4.25) 2.74 (2.83) 

LncRNA ≤0.10 24,364 (57.4%) 26,429 (47.6%) 10.02 (4.00) 3.49 (3.33) 

 >0.10 18,081 (42.5%) 29,014 (52.4%) 9.10 (4.13) 3.03 (2.99) 

Intron ≤0.10 43,790 (56.8%) 159,203 (47.4%) 9.81 (4.46) 3.00 (3.11) 

 >0.10 33,171 (43.2%) 176,650 (52.6%) 8.71 (4.53) 2.46 (2.74) 

Intergenic ≤0.10 69,717 (57%) 297,053 (44.6%) 9.68 (4.05) 3.31 (3.20) 

 >0.10 52,474 (43%) 308,271 (55,4%) 8.78 (4.11) 2.87 (2.86) 
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5.3.4. chCADD	scores	for	the	investigation	of	CNE	and	SNP	evaluation	

To investigate CNEs further, we developed a model that can evaluate individual SNPs or entire 
sequences based on a per-base score, with respect to its putative deleteriousness. This model is 
based on the CADD approach, hence it is labeled ch(icken) CADD. chCADD is a linear logistic model 
that is trained to differentiate between two classes of variants, one being relatively more enriched 
in potentially deleterious variants than the other. To obtain these two classes, one class is 
generated from derived variants, alleles that have accumulated since the last ancestor with turkey 
and became fixed or almost fixed (>90% AF) in our chicken populations. These are depleted in 
deleterious variants and can be assumed to be benign or at least neutral in their nature. The set of 
putative deleterious variants contains simulated de novo variants that are not depleted of 
deleterious variants. The feature weights obtained during training are shown in Supplementary file 
2. Performance on a held out test set to determine an optimal penalization term are shown in 
Figure S5. 

5.3.5. chCADD	scores	potentially	causal	variants	higher		

We evaluated the performance and applicability of chCADD on two different sets of variants before 
we annotated non-coding SNPs. 

First, we assigned a chCADD score to all SNPs found in the genomes of the 169 chickens previously 
used in the SNP density and DAF analysis and compared these to functional predictions as 
annotated by the Ensembl VEP (Figure S6). To this end, we categorized VEP predictions into 14 
categories (Table S1). The purpose of this was to test whether chCADD correctly scores SNPs with 
respect to their potential to cause a deleterious or phenotype-changing effect, as indicated (mostly 
for protein-coding mutations) by the VEP functional predictions. We observed that mutations with a 
relatively large deleterious potential, such as stop-gained mutations and splice-site altering 
mutations, were scored higher than regular missense and synonymous mutations (Figure S6). 
SNPs in potentially regulatory active regions were also evaluated to be potentially more deleterious 
than synonymous SNPs (Figure S6). We performed a similar analysis considering only protein-
coding and regulatory mutations found in the Online Mendelian Inheritance in Animals (OMIA) 
database [37] (Table 4). We annotated only SNPs whose genomic positions were uniquely mapped 
to the chicken GRCg6a reference genome and the reference/alternative allele matched that in the 
genome assembly. Of the 15 annotated SNPs associated with a change of phenotype, 5 were 
reported to cause a deleterious phenotype change in the affected individual, and an average 
chCADD score of 27.1. These 5 variants (3 stop-gained, 2 missense) have a chCADD score above 
20 and are putatively responsible for dwarfism, scaleless, analphalipoproteinaemia, muscular 
dystrophy, and wingless phenotypes (Table 4). All these phenotypes display a strong severity and 
may lead to an early death in uncontrolled environments. 
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Table 4: OMIA chicken SNPs with chCADD annotations, locations are reported for Gal6. 

OMIA 
ID(s) 

Variant 
Phenotype Gene Type of 

Variant Deleterious? g. or m. chCADD 

OMIA 
001622-

9031 

Resistance to 
avian sarcoma 
and leukosis 

viruses,  
subgroup C 

BTN1A1 stop-gain no 28:g.903289G>T 17.83409 

OMIA 
000889-

9031 
Scaleless FGF20 stop-gain yes 4:g.63270401A>T 33.02083 

OMIA 
001534-

9031 

Resistance to 
myxovirus MX1 missense no 1:g.110260061G>A 14.26893 

OMIA 
000915-

9031 

Feather colour, 
silver SLC45A2 missense no Z:g.10336596G>T 21.72641 

OMIA 
000915-

9031 

Feather colour, 
silver SLC45A2 missense no Z:g.10340909T>C 15.69336 

OMIA 
000679-

9031 

Muscular 
dystrophy WWP1 missense yes 2:g.123014353G>A 26.29866 

OMIA 
000303-

9031 

Dwarfism, 
autosomal C1H12ORF23 stop-gain yes 1:g.53638233C>T 35.29646 

OMIA 
001302-

9031 

Resistance to 
avian sarcoma 
and leukosis 

viruses,  
subgroup B 

TNFRSF10B stop-gain no 22:g.1418711C>T 17.63145 

OMIA 
000810-

9031 
Polydactyly LMBR1 regulatory yes 2:g.8553470G>T 17.41378 

OMIA 
000913-

9031 

Silky/Silkie 
feathering PDSS2 regulatory unknown 3:g.67850419C>G 3.8812 

OMIA 
001547-

9031 
Wingless-2 RAF1 stop-gain yes 12:g.5374854G>A 23.44641 

OMIA 
000374-

9031 

Feather colour, 
extended black MC1R missense no 11:g.18840857T>C 18.05882 

OMIA 
000374-

9031 

Feather colour, 
extended black MC1R missense no 11:g.18840919G>A 18.88983 

OMIA 
000374-

9031 

Feather colour, 
buttercup MC1R missense no 11:g.18841289A>C 17.41773 

OMIA 
000374-

9031 

Feather colour, 
extended black MC1R regulatory; 

5 'UTR no 11:g.18840609C>T 6.74322 

5.3.6. chCADD	detects	evolutionary	constraints	within	CNEs	

As we showed, chCADD can score functionally important protein-coding variants. We therefore 
decided to take a step further by annotating SNPs found in CNEs with chCADD to predict their 
deleteriousness and function (Table 3). We assume that highly scored SNPs can help us to identify 
truly functionally active regions among CNEs. We observed that rare non-protein-coding variants 
located within CNEs (DAF ≤ 10%) have an overall higher chCADD score compared to rare variants 
found in non-CNEs (Table 3). This result supports our previous conclusion based on the derived 
allele frequency spectrum that evolutionarily conserved non-protein-coding variants are likely 
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functional. As expected, this trend was most pronounced in lncRNAs, followed by introns and 
intergenic regions. 

We further used the chCADD score to identify specific subregions of potentially higher functional 
importance within each CNE, assuming that the high scoring SNPs would indicate that. We applied 
a change point analysis to search for a center region that has high chCADD scores as opposed to 
the two outer regions (see Methods). We ranked CNEs based on positive chCADD score differences 
between the center region and the outer regions and filtered for significant difference (p-value of ≤ 
0.05, t-test). The top 3 ranked CNEs that overlap with lncRNAs, intronic and intergenic regions, 
respectively, are shown in Figure 3A.1, B.1 and C.1.  

Analogous to this subregion analysis based on chCADD score, we performed a subregion analysis 
based on the 23 sauropsids PhastCons scores. A.2-C.2 show the identified regions for the 
PhastCons score for the same CNEs as Figure 3A.1, 4C.1, respectively. These figures indicate that 
chCADD generates more discriminative subregions than PhastCons. Particularly interesting are the 
chCADD scores for the top intergenic regions (C.1). The chCADD score increased from ~5 to ~15 
at the subregion change point. This is equal to an increase of predicted deleteriousness by one 
magnitude, from the top 33% highest scored sites in the entire genome to the top 3%. 

To further investigate the subregion partitioning of the CNEs, we computed the SNP density in each 
region, for both the chCADD induced regions (Figure 4, blue bars) as well as the 23 sauropsids 
PhastCons induced regions (Figure 4, orange bars). In both bases, the SNP densities of the center 
region are lower than those of the outer regions. Moreover, all CNE subregions display a lower 
density than regions up- and downstream the CNE, supporting the functional importance of the 
CNEs in general. Interestingly, the center regions, as identified by the chCADD score, have in 
general a ~0.07% lower SNP density than the center regions detected using the PhastCons scores. 
Therefore, our findings suggest that chCADD is more effective in pinpointing potentially regions of 
interest. 
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Figure 3: Change point analysis plots of the top 3 CNE regions for each CNE class 
respectively (lncRNA, intronic, intergenic). The CNE regions are sorted based on the 
largest difference between the 2nd section and 1st or 3rd section for each of the three 
CNE classes respectively (lncRNA, intronic, intergenic). The change points were once 
computed based on maximum chADD score per site (A.1,B.1,C.1) and once on 23 
sauropsids PhastCons scores (A.2,B.2,C.2). The dots in each plot display the scores for 
the 5bp up- and downstream regions. The transition from blue to red background 
indicates the identified change points. A.1) lncRNA - maximum chCADD A.2) lncRNA - 
PhastCons scores. B.1) intronic - maximum chCADD. B.2) intronic - PhastCons. C.1) 
intergenic - maximum chCADD. C2) intergenic - PhastCons. 



5.3 - Results  

101 
 

 

Figure 4: SNP densities computed for each section of the three different CNEs 
(lncRNA, Intronic, Intergenic). The orange bars represent the SNP densities for 
that section based on change points derived from 23 sauropsids alignment 
PhastCons scores, the blue bars represent the SNP densities based on change 
points identified via chCADD. 
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Figure 5: Approach used to identify subregions within CNEs via change point analysis. 
The scores used to annotate the CE region are displayed on the y-axis. The position in 
the investigated CE region is shown on the x-axis. In total there are five sections, 5 bp 
up and downstream, 1st, 2nd and 3rd subregions. The transitions from blue to red 
background indicate the position of the two identified change points. The up and 
downstream scores are shown as dots while the scores in the CE region are a continuous 
blue line. 

5.3.7. Conserved	non-protein-coding	subregions	are	detected	on	the	basis	
of	a	limited	number	of	genomic	annotations	

As part of the investigation into subregions we identified two change points, splitting each CE into 
three subregions, starting from 5’ to 3’, 1st-, 2nd- and 3rd subregion (Figure 5). Next we were 
interested how genomic annotations that were used in the creation of chCADD, differ between the 
three subregions. The model coefficients with the largest weights (Table S2) point to the 
importance of the PhastCons conservation scores calculated on the 4 sauropsids alignment. Other 
important model features are secondary structure predictions and combinations with the intronic 
identifier from VEP. Over all CNEs, we compared the chCADD model features, especially the 
conservation scores that are based on different phylogenies, excluding the chicken reference 
sequence in their computation. For all genomic annotations, we computed absolute Cohen’s D 
values (standardized mean difference) [38], [39]. We observed that the conservation scores based 
on the largest 77 vertebrate alignments cannot properly distinguish between the 1st-,2nd- and 3rd 
subregions. Conservation scores based on smaller phylogenies (4 sauropsids and 37 
amniote/mammalia) are more discriminative between these (Table 5; see columns 1st-2nd, 2nd-
3rd). 

Considering the three PhastCons scores, based on differently large phylogenies, the average 
absolute Cohen’s D between the 1st- and 2nd- and the 2nd- to the 3rd- subregions differ less 
between different genomic features (intergenic, lncRNA and introns) than between genomic 
annotations (Table 5; see columns 1st-2nd, 2nd-3rd). The average absolute Cohen’s D between 
the three subregions of a CNE ranges from 0.259 to 0.276. In comparison, the average absolute 
Cohen’s D between the same subregions, taking the three conservation scores individually, range 
from 0.137 to 0.338. The effect sizes between the different multiple sequence alignment PhastCons 
score (i.e. 4 sauropsids, 37 amniote/mammalia, 77 vertebrates) differ by more than 2-fold. 
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Table 5: Differences between genomic annotations utilized for the chCADD model, 
between CNE subregions defined by chCADD located in intronic, lncRNA and intergenic 
regions, measured in absolute Cohen’s D. 

INTRONIC UP-1st 1st-2nd 2nd-3rd 3rd-Down 

4PhastCons 0.594 0.307 0.361 0.609 

37PhastCons 0.446 0.328 0.369 0.448 

77PhastCons 1.25 0.096 0.195 1.32 

4PhyloP 0.43 0.09 0.126 0.428 

37PhyloP 0.351 0.187 0.214 0.35 

77PhyloP 0.776 0.186 0.237 0.778 

GerpS 0.272 0.182 0.196 0.257 

GerpN 0.212 0.112 0.11 0.214 

dnaMGW 0.103 0.009 0.007 0.104 

dnaProT 0.08 0.013 0.012 0.08 

dnaHelT 0.082 0.002 0.002 0.083 

GC 0.121 0.045 0.047 0.12 

CpG 0.034 0.034 0.034 0.034 

OChrom-Peaknb 0.058 0.001 0.091 0.015 

OChrom-logFC 0.062 0.087 0.138 0.017 

OChrom-pval 0.006 0.013 0.070 0.055 

lncRNA UP-1st 1st-2nd 2nd-3rd 3rd-Down 

4PhastCons 0.608 0.289 0.338 0.623 

37PhastCons 0.469 0.31 0.342 0.482 

77PhastCons 1.29 0.086 0.184 1.37 

4PhyloP 0.428 0.083 0.117 0.43 

37PhyloP 0.343 0.161 0.18 0.348 

77PhyloP 0.788 0.17 0.22 0.792 

GerpS 0.267 0.17 0.181 0.259 

GerpN 0.212 0.086 0.098 0.201 

dnaMGW 0.097 0.006 0.008 0.095 

dnaProT 0.096 0.009 0.009 0.093 

dnaHelT 0.089 0.003 0.0 0.086 

GC 0.114 0.037 0.041 0.109 

CpG 0.024 0.033 0.029 0.028 

OChrom-Peaknb 0.059 -0.02 0.064 0.023 

OChrom-logFC 0.102 0.093 0.137 0.055 

OChrom-pval 0.012 0.096 0.103 0.005 

INTERGENIC UP-1st 1st-2nd 2nd-3rd 3rd-Down 

4PhastCons 0.61 0.281 0.341 0.619 

37PhastCons 0.474 0.319 0.359 0.481 

77PhastCons 1.29 0.084 0.179 1.37 

4PhyloP 0.431 0.084 0.119 0.432 
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37PhyloP 0.351 0.162 0.185 0.351 

77PhyloP 0.79 0.167 0.215 0.795 

GerpS 0.29 0.169 0.183 0.274 

GerpN 0.209 0.091 0.088 0.215 

dnaMGW 0.096 0.008 0.008 0.096 

dnaProT 0.097 0.014 0.012 0.096 

dnaHelT 0.086 0.003 0.002 0.084 

GC 0.136 0.062 0.062 0.136 

CpG 0.039 0.037 0.036 0.041 

OChrom-Peaknb 0.017 0.004 0.02 0.005 

OChrom-logFC 0.089 0.005 0.012 0.077 

OChrom-pval 0.00 0.005 0.052 0.023 

5.3.8. Intronic	 CNE,	 differentially	 scored	 between	 the	 1st	 ,	 2nd	 and	 3rd	
subregions	overlap	functionally	important	genes	

Intronic CNEs were associated with genes for which we obtained phenotype annotations of their 
orthologs in human, mouse, and rat. We investigated the top 10 CNEs that are located in introns, 
with the largest p-value differences between the 1st and 3rd to the 2nd section. 6 CNEs were 
associated with homologous genes that have annotated phenotypes in other species. Among the 
phenotypes found for human genes are mental retardation and non-syndromic male infertility. For 
mouse, these included neuronal issues and abnormal shape of heart and limbs (Table S3). The link 
to highly severe phenotypes in other species highlights the potential importance of regulatory 
features for orthologous genes in chicken. 

5.4. Discussion	

5.4.1. The	prediction	of	CNEs	depend	on	the	phylogenetic	scope	

Non-protein-coding elements are typically identified by sequence-level similarity across species, 
which is a generally applicable criterion of conservation and biological function [10]. However, 
when predicting CEs, and subsequently CNEs, the evolutionary distance among species included in 
the alignment (or phylogenetic scope) is an important parameter that can considerably affect the 
prediction and resolution of CEs. If the evolutionary distance among species is too narrow, the 
specificity of constraint is reduced, but if it is too broad, the number of CEs rapidly declines and 
lineage-specific conservation is lost [10], [40]. 

One of the first studies to address the impact of the phylogenetic scope on CEs prediction was that 
of [12]. In their study on the 29 mammalian multiple sequence alignment the authors identified 
3.6 million conserved elements spanning 4.2% of the genome at a resolution of 12 bp [12]. When 
comparing these results to a 5-vertebrate alignment, Lindblad-Toh and colleagues observed that 
only 45% of the 5-taxa CEs were covered by the 29-taxa alignment. This partial overlap indicates 
that most of the CEs derived from the 29-taxa alignment were mammalian-specific [12]. The issue 
resulting from a broad phylogenetic scope on CNEs has also recently been reported by [41], where 
authors identified CNEs between chicken and four mammalian species, including human, mouse, 
dog, and cattle [41]. By applying a minimum length of 100 bp, Babarinde and Saitou (2016) 
identified 21,584 CNEs in chicken, a small number as expected from the divergence time between 
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human and chicken ~310 million years ago [33]. Therefore, CNEs detected among distant species 
are better predictions of ultraconserved CNEs than CNEs between closely related species (i.e. 
human-mouse) [42], as they were already present in the ancient common ancestor of the 
considered species. 

In this study we chose the 23 sauropsids multiple sequence alignment for two reasons. First, the 
phylogenetic distance between crocodilian and bird species (240 million years ago) [43] is large 
enough to detect likely functional CNEs. Second, the alignment is reference free allowing the 
identification of lineage-specific CEs. Reference-free alignments should always be preferred over 
reference-based ones [44]. In fact, genomic regions shared within a certain clade, which would be 
missed in a reference-based alignment (e.g. MULTIZ), can also be detected. As a result, reference 
free alignments better enable the study of genome evolution along all phylogenetic branches 
equally. 

5.4.2. Avian	genomes	have	similar	genomic	characteristics	

According to our study, 8% of the chicken genome is covered by CEs for a total of 1.14 million CEs. 
These results are comparable to those on the collared flycatcher genome (Ficedula albicollis) [8]. 
By means of the same alignment,  [8] identified 1.28 million CEs covering 7% of the flycatcher 
genome. Compared to the flycatcher, the slightly lower number of CEs we report in chicken could 
be explained by its smaller genome size, as small genomes require fewer regulatory sequences 
involved in the organization of chromatin structure  [8]. For instance, the chicken genome is nearly 
4 times smaller (i.e. GRCg6a: 1.13 Gb) than that of human (i.e. GRCh38.p13: 4.53 Gb), but of 
nearly equal size to that of the collared flycatcher (i.e. FicAlb1.5: 1.11 Gb). The similarity in 
genome size between chicken and flycatcher reflects the little cross-species variation characteristic 
of birds [45]. 

The limited number of CEs often identified in birds relative to mammals has repeatedly been linked 
to gene loss [23], [25]. However, the role of gene loss in avian evolution, genome size, and 
prediction of CEs has recently been questioned. According to [26], gene loss was incorrectly 
hypothesized from the absence of genes clustering in GC-rich regions in the earlier chicken genome 
assemblies [26]. In fact, these regions are often difficult to sequence and assemble. This issue is 
particularly prominent in the GC-rich micro-chromosomes, which, as we show, contribute 
disproportionately to the total density of functional sequence (Figure S1). We therefore recommend 
future comparative genomics studies in chicken to make use of the most recent and complete 
genome assembly to avoid any erroneous link of CEs to gene loss in chicken. 

5.4.3. Conserved	 non-protein-coding	 elements	 are	 maintained	 by	
purifying	selection	

A fundamental question in the study of CNEs is the role of purifying selection. Purifying selection 
can be discriminated from a low mutation rate by comparing the derived allele frequency (DAF) 
spectra in constrained regions (i.e. CNEs) with that of neutral regions (i.e. non-CNEs) (9,35). This 
is because new mutations are unlikely to increase in frequency in constrained regions. Although 
CNEs are identified using an interspecific comparative genomic approach, the evolution and 
dynamics of these regions are generally analyzed at an intraspecific scale by looking at 
polymorphism data [9], [46]. In this study, we showed that the evolutionary constraint acting on 
the 23 sauropsids is correlated with constraint within the chicken populations, as assessed from 
chicken polymorphism data. Consistent with studies in humans [12], [35], plants [6], and 
Drosophila [9], [36], the derived allele frequency spectra of our chicken populations is shifted 
towards an excess of rare variants in CNEs. These results indicate that the conservation of CNEs in 
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the chicken genome is mainly driven by selective constraints, and not by local variation in mutation 
rate. The role of purifying selection was also confirmed by the reduced SNP density in CNEs 
compared to non-CNEs and by the reduced SNP density in specific conserved non-protein-coding 
subregions. The concordance in SNP density is a clear indication of reduced levels of population 
diversity and functional roles of CNEs as confirmed by the association of subregions within CNEs to 
highly severe phenotypes in humans, mouse, and rat. However, future population diversity 
comparisons in terms of nucleotide diversity (π) [47] or Watterson's estimator (θw) [48] between 
outbred and inbred populations would further elucidate our understanding of purifying selection in 
CNEs. 

5.4.4. Integrating	comparative	and	functional	genomics	into	a	single	score	

We developed a ch(icken) Combined Annotation-Dependent Depletion (chCADD) approach that 
provides scores for all SNPs throughout the chicken genome. These scores are indicative of 
putative SNP deleteriousness and can be used to prioritize variants. 

The annotation of chCADD relies on the combination of a diverse set of genomic features, including 
evolutionary constraints and functional data [21], [22]. Multiple sequence alignments of distantly 
related species are better suited to differentiate conserved sites that can reliably be used to 
identify functionally important regions. However, these regions are often large enough to question 
the functional role of the entire region. Our findings show that chCADD outperforms any 
conservation-based method alone (e.g. PhastCons) in the identification of functionally important 
subregions within CNEs. Therefore, methods, such as chCADD, are required to fine-tune in one 
step CNEs to identify subregions directly linked to - in some cases deleterious – phenotypes.  

According to the authors of the original human CADD [21], SNPs with a score above 20 (i.e. the 
SNP is among the top 1% highest scored potential SNPs in the genome) could be considered 
deleterious. This means that the higher the score, the higher the chance the variant has a 
functional effect or may even be deleterious. When annotating protein-coding and regulatory 
mutations found in OMIA [37], we observed that SNPs with a chCADD score of 15 can already be 
considered functional. Therefore, our findings indicate that by setting an arbitrary threshold of 20 
may underestimate the fraction of the genome that is actually functional. This is particularly 
pronounced when the variants in question are located outside protein-coding regions. Therefore, 
we recommend future chCADD users to evaluate the variants identified in their populations to see if 
they are particularly highly scored compared to other variants in the same genomic region. 

5.4.5. Future	uses	of	chCADD		

The high scoring of non-protein-coding variants in subregions of CNEs has important implications 
for future functional and genome-wide association studies (GWAS) in chicken. A very large fraction 
of trait- or disease-associated loci identified in GWAS are intronic or intergenic. This is expected 
considering the preponderance of non-protein-coding SNPs on genotyping arrays [5] or along the 
genome. However, because of a lack of understanding of the function of non-protein-coding 
mutations, most of the causal mutations reported in the OMIA database are coding. Moreover, in 
the presence of non-protein-coding mutations, many studies stop at the general locus or - 
understandably - assume that the closest neighbouring gene is affected. However, these 
assumptions on genomic distance are simplistic. Our findings in chicken demonstrate that chCADD 
can accurately pinpoint non-protein and protein-coding variants associated with important 
phenotypes in chicken. Therefore, we expect future genome-wide association studies combined 
with chCADD to identify novel causal mutations or substantially narrow down the list of potential 
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causal variants in large quantitative trait loci (QTLs). We also expect chCADD to accelerate the 
discovery and understanding of the biology and genetic basis of phenotypes. 

5.5. Conclusions	
Deciphering the function of the non-coding portion of a species genome has been a challenging 
task. However, the availability of genomes from a great variety of species, along with the 
development of new computational approaches at the interface of machine learning and 
bioinformatics, has made this task possible in model and non-model organisms. Our findings 
indicate an accurate assessment of selective pressure at individual sites becomes an achievable 
goal. We have also shown that chCADD is a reliable score for the analysis of non-protein-coding 
SNPs, which should be targeted along with protein-coding mutations in future genome-wide 
association studies. We therefore anticipate chCADD to be of great use to the scientific community 
and breeding companies in future functional studies in chicken. 

5.6. Methods	

5.6.1. Chicken	genomic	data	

We used a dataset by Bortoluzzi and colleagues available at the European Nucleotide Archive 
(http://www.ebi.ac.uk/ena/) under accession number PRJEB34245 [49] and PRJEB36674 [18]. The 
169 chicken samples included in the dataset were sequenced at the French Institute of Agricultural 
Research (INRA), France, on an Illumina HiSeq 3000. Reads were processed following standard 
bioinformatics pipelines. Reads were aligned to the chicken GRCg6a reference genome (GenBank 
Accession: GCA_000002315.5) with the Burrows-Wheeler alignment (BWA-mem) algorithm 
v0.7.17 [50]. After removal of duplicate reads with the markdup option in sambamba v0.6.3 [51], 
we performed population-based variant calling in Freebayes [52], retaining only sites with a 
mapping and base quality >20. We reduced the false discovery rate by additional filtering using 
BCFtools v1.4.1 [50]. 

5.6.1.1. Multiple	whole-genome	sequence	alignment	
Conserved elements (CE) were identified using the 23 sauropsids multiple whole-genome sequence 
alignment (MSA) generated using Progressive Cactus 
(https://github.com/glennhickey/progressiveCactus) [53] by [43]. The MSA downloaded in the 
hierarchical alignment format (HAL) was converted into multiple alignment format (MAF) using the 
HAL tools command hal2maf [54] with the following parameters: -refGenome galGal4 (GenBank 
Accession: GCA_000002315.2) to extract alignments referenced to the chicken genome assembly, 
-noAncestors to exclude any ancestral sequence reconstruction, -onlyOrthologs to include only 
sequences orthologous to chicken, and -noDupes to ignore paralogy edges. During reformatting, 
only blocks of sequences where chicken aligned to at least two other species were considered for a 
total chicken genome alignability of 90.88%. Genomic coordinates were converted to the GRCg6a 
genome assembly using the pyliftover library in python v3.6.3. 

5.6.1.2. Prediction	of	evolutionarily	conserved	elements	
Conserved elements were predicted from the whole-genome alignment using PhastCons [55]. We 
chose PhastCons because this approach does not use a fixed-size window approach, but can take 
advantage of the fact that most functional regions involve several consecutive sites [56]. We first 
generated a neutral evolutionary model from the 114,709 four-fold degenerate (4D) sites 
previously extracted from the alignment by [43]. The topology of the phylogeny was also identical 



5.6 - Methods 

108 

to that derived by [43]. PhastCons was run using the set of parameters used by the UCSC genome 
browser to produce the ‘most conserved’ tracks (top 5% of the conserved genome): expected 
length = 45, target coverage = 0.3, and rho = 0.31 [32]. Conserved elements were subsequently 
excluded if falling or overlapping assembly gaps and/or if their size was < 4 bp. 

5.6.1.3. Annotation	of	conserved	elements	by	genomic	feature	
We use the Ensembl (release 95) chicken genome annotation files to extract sequence coordinates 
of CDS, exons, 5’ and 3’ UTRs, pseudogenes, and lncRNAs. Sequence information was extracted 
from 14,828 genes (out of the 15,636 genes found in the Ensembl annotation), as transcripts of 
these genes had a properly annotated start and stop codon. For protein-coding genes with an 
annotated 5’ UTR of at least 15 bp, the promoter was defined as the 2-kb region upstream of the 
transcription start site (TSS) [8]. Sequence coordinates of miRNAs, rRNAs, snoRNAs, snRNAs, 
ncRNAs, tRNAs, and scRNAs were also extracted from the annotation file. For the identification of 
intergenic regions, we considered all annotated protein-coding genes and defined intergenic 
regions as DNA regions located between genes that did not overlap any protein-coding genes in 
either of the DNA strands. The intersection between CEs and the various annotated genomic 
features was found following the approach of [12] of assigning a CE overlapping two or more 
genomic features to a single one in a hierarchical format: CDS, 5’ UTR, 3’ UTR, promoter, RNA 
genes, lncRNA, intronic, and intergenic region. Conserved non-protein-coding elements (CNEs) 
were defined as CEs without any overlap with exon-associated features (CDS, 5’ UTR, 3’ UTR, 
promoter, and RNA genes) and include lncRNAs, introns, and intergenic regions. 

5.6.1.4. Gene	ontology	analysis	
Genes in conserved regions overlapping CDS, 5’ UTR, 3’ UTR, and introns were separately used to 
perform a Gene Ontology analysis in g:Profiler [57] using Gallus gallus as organism. We only 
considered annotated genes that passed Bonferroni correction for multiple testing with a threshold 
< 0.05. 

5.6.2. Genome-wide	 distribution	 and	 density	 of	 conserved	 non-protein-
coding	regions	

CNE density and the density of exon-associated features were calculated in non-overlapping 100 kb 
windows along the genome. Windows that included assembly gaps between scaffolds were 
discarded, resulting in a total of 9,196 windows. Correlation between density of exons and CNEs 
was calculated in R v3.2.0 using the Pearson’s correlation test. 

5.6.3. Annotation	of	variants	by	functional	class	

Polymorphic, bi-allelic SNPs belonging to all functional classes predicted by the Variant Effect 
Predictor (VEP) [58] were considered. However, to improve the reliability of the set of annotated 
variants, we applied additional filtering steps. SNPs were discarded if they overlapped repetitive 
elements or if their call rate was <70%. The rationale for excluding variants found in repetitive 
elements was to reduce erroneous functional prediction as a result of mapping issues, as regions 
enriched for repetitive elements are usually difficult to assemble. Intronic and intergenic SNPs were 
further discarded if they overlapped spliced intronic ESTs [35]. Protein-coding variants were also 
discarded if they were found outside coding sequences, whose genomic coordinates were obtained 
from the Ensembl chicken GTF file (release 95). 
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5.6.4. Ancestral	allele	and	derived	allele	frequency	

The sequence of the inferred ancestor between chicken and turkey (Meleagris gallopavo; 
Turkey_2.01) [59] reconstructed from the Ensembl EPO 4 sauropsids alignment (release 95) was 
used to determine the ancestral and derived state of an allele, along with its derived allele 
frequency. We considered only SNPs for which either the reference or alternative allele matched 
the ancestral allele. Ancestral alleles that did not match either chicken allele were discarded. We 
generated derived allele frequency (DAF) distributions for sets of SNPs based on functional class 
and whether they were within or outside of CNEs. A derived allele frequency cutoff of 10% was 
used to distinguish rare from common SNPs. 

5.6.5. Chicken	Combined	Annotation	Dependent	Depletion	(chCADD)	

The chicken CADD scores are the -10 log relative ranks of all possible alternative alleles of all 
autosomes and Z chromosome of the chicken GRCg6a reference genome, according to the 
following formula:  

9ℎ;<==% = −10log!" >
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@A 

where N represents the number of all possible alternative alleles (3,073,805,640) on the 
investigated chromosomes and n is the rank of the ith SNP. The ranks are based on the model 
posteriors of a ridge penalized logistic regression model trained to classify simulated and derived 
SNPs. 

Chicken derived SNPs were defined as those sites where the chicken reference genome differs from 
the chicken-turkey ancestral genome inferred from the Ensembl EPO 4 sauropsids alignment. Sites 
for which the ancestral allele occurs at a minor allele frequency greater than 5% were excluded. In 
addition, derived SNPs that are observed with frequency above 90% in our population of 169 
individuals were included. In total we identified 17,237,778 SNPs. 

The dataset of simulated variants was simulated based on derived nucleotide substitution rates 
between the inferred ancestor of chicken, turkey, zebra finch (Taeniopygia guttata; taeGut3.2.4) 
[60] and green anole lizard (Anolis carolinensis; AnoCar2.0) [61]. These derived nucleotide 
substitution rates were obtained for windows of 100 kb and used to simulate de novo variants 
which have a larger probability to have a deleterious effect than the set of derived variants. All 
SNPs which have a known ancestral site are retained in the dataset. In total 17,233,727 SNPs were 
simulated in this way. 17,233,722 SNPs of each dataset were joined and randomly assigned to 
train and test sets of sizes 15,667,020 and 1,566,702, respectively. 

The datasets were annotated with various genomic annotations: among others, PhyloP and 
PhastCons (Table S4) conservation scores based on three differently deep phylogenies (i.e. 4 
sauropsids, 37 amniote/mammalia, 77 vertebrate, all excluding the chicken genome), secondary 
DNA structure predictions (Table S4), Ensembl Consequence predictions, amino acid substitution 
scores such as Grantham (Table S4) and amino acid substitution deleterious scores such as SIFT 
(Table S4).  

Annotations for which values were missing were imputed, categorical values were one hot-encoded 
[62]. In the one hot-encoding process, an annotation is a series of binary annotations, each 
indicating the presence of a specific category for a given variant. For scores that are by definition 
not available for certain parts of the genome, such as SIFT which is found only for missense 
mutations, columns indicating their availability were introduced.  
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Combinations of annotations were created of Ensembl Variant Effect Predictor consequences and 
other annotations, such as distance to transcription start site and conservation scores. The total 
number of all features used in training was 874. An extensive list of all annotations, combinations 
of annotations and their learned model weights is shown in Supplementary File 2. Finally, each 
feature column is scaled by its standard deviation. The logistic regression is trained via the Python 
Graphlab module. We selected a penalization term of 1, based on results on the test set (Figure 
S5). 

5.6.6. Investigation	of	likely	causal	SNPs	from	the	OMIA	database	

We downloaded the likely causal variants of phenotype changes from the Online Mendelian 
Inheritance in Animals (OMIA) [37] database (last accessed 25.11.2019). SNPs whose location was 
reported for older genome assemblies such as Galgal4 and Galgal5 were mapped to the chicken 
GRCg6a reference genome via CrossMap [63]. We only consider bi-allelic SNPs whose genomic 
position was successfully mapped to GRCg6a and whose substitution remained the same. In total, 
15 SNPs were left and annotated with chCADD. 

5.6.7. Change	point	analysis	

To identify sub-regions of particular importance within each CE, we annotated all with the 
maximum chCADD score found at each site or the 23-sauropsids PhastCons scores that were used 
to identify conserved elements in the first place. Our basic assumption was that highly important 
subregions within a CE are preceded and succeeded by less important sites which would result in a 
relatively higher score region surrounded by two lower scored regions. Each CE was treated 
similarly to time series data by conducting an offline change point analysis, once based on 
maximum chCADD scores and once based on 23-sauropsids PhastCons scores. To this end, we 
used the Python ruptures module [64] and applied a binary segmentation algorithm with radial 
basis function (RBF). It first identifies a single change point, if one is detected, the the algorithm 
investigates each sub-sequence independently to identify the next change point We were looking 
particularly for 2 change points, which would divide the CE into three subregions, numbered from 1 
to 3, starting at the 5’ end of the sequence. We added 5 bp upstream and downstream of each CE 
to allow that the borders of the 2nd region coincide with the borders of the CE (Figure 5). After 
computing the change points, we conducted t-tests between the scores of the 1st and 2nd, as well 
as 3rd and 2nd subregions, to identify CEs that have a significantly different score in the 2nd 
section than in the other two. We applied a p-value cutoff of 0.05. We sorted CNEs with respect to 
the largest difference between the mean chCADD score of the inner and the two outer subregions 
and selected those with a higher scored 2nd section than either of the other two outer ones. 

5.6.8. SNP	 density	 distribution	 within	 conserved	 non-protein-coding	
regions	

SNP density was calculated as the number of SNPs identified in the 169 chicken individuals divided 
by the number of bases found in the sequence. SNP density was computed for conserved coding 
(CC) and conserved non-protein-coding (CNE) regions, as well as for the subregions identified in 
the change point analysis of CNEs overlapping lncRNAs, introns, and intergenic regions. We 
repeated this analysis once for the change points identified using chCADD scores and once for the 
23-sauropsids PhastCons based change points. 
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5.6.9. Homologous	phenotypes		

We obtained phenotypes from the Ensembl database (release 95) for genes associated with the 
lncRNA and intronic CNEs. Beside chicken, these phenotypes encompass the observed phenotypes 
for orthologous genes associated with disease studies in humans (Homo sapiens) and gene-
knockout studies in mouse (Mus musculus) and rat (Rattus norvegicus). 

5.7. Declarations	

5.7.1. Data	access	

Raw sequences the 169 individuals used in this study are available at the European Nucleotide 
Archive under accession number PRJEB34245 and PRJEB36674. chCADD scores (~GB) can be 
downloaded from the Open Science Framework project page (https://osf.io/8gdk9/). 
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5.8. Appendix	-	Supplementary	data	

5.8.1. Supplementary	figures	

 

Figure S1: Distribution of conserved elements (CEs) along the 
chicken genome. The barplot displays the fraction of the 
genome per chromosome covered by conserved elements. 

 

Figure S2: Frequency size distribution of predicted conserved 
elements. The y-axis shows the frequency, while the x-axis 
the size in base pairs (bp) of the predicted conserved 
elements. 
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Figure S3: Frequency size distribution of predicted conserved elements 
overlapping exonic-associated gene annotations. The exonic-associated 
conserved elements include CDS, 5’UTR, 3’UTR, and promoter regions. 

 

 

Figure S4: Frequency size distribution of predicted conserved elements overlapping non-
protein-coding gene annotations. The non-protein-coding gene annotations include 
introns, lncRNA, and intergenic regions. 
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Figure S5: Model performances measured in Receiver Operator Area under 
the Curve (ROC-AUC) and log-loss for three different ridge penalization 
terms (0.1, 1.0, 10.0). The scale is adjusted to make the differences 
between the models visible. Penalization of 1 was. 

 

 

Figure S6: chCADD score distribution of SNPs per VEP cateogyr. SNPs from the 169 
chickens are categorized based on the VEP categories reported in Table S1 (SG: Stop-
gained; CS: Canonical Splice; NS: Non-Synonymous; SN: Synonymous; SL: STOP-Lost; S: 
Splice Site. 
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5.8.2. Supplementary	tables	

Table S1: VEP consequences summarized in 14 categories. 
If multiple annotations exist for the same variant, the 
consequence is selected according to the displayed 
hierarchy, starting at 1 and ending at 14. 

Hierarchy Abbreviation VEP Consequence  
1 SG Stop Gained 
2 CS Canonical Splice 
3 NS Non-Synonymous 
4 SN Synonymous 
5 SL STOP Lost 
6 S Splice Site 
7 U5 5’-UTR 
8 U3 3’-UTR 
9 IG Intergenic 
10 NC Noncoding-change 
11 I Intronic 
12 UP Upstream 
13 DN Downstream 
14 O Unknown / Other 

 

Table S2: Top 10 Model features with the largest assigned weight and their explanations. 

Label Model weight 
assigned to feature Feature explanation 

GerpS 0.152568 GERP rejected substitution score 

4PhCons_noChick 0.128726 4-sauropsids PhastCons scores (excluding 
chicken) 

I_GerpS 0.109099 GERP rejected substitution score for intronic sites 

I_4PhCons_noChick 0.0899441 4-sauropsids PhastCons scores (excluding 
chicken) for intronic sites 

dnaProT 0.083813 DNA secondary structure prediction for ProT 
77PhCons_noChick 0.0790709 4-amniota PhastCons scores (excluding chicken 

dnaRoll 0.0733429 DNA secondary structure prediction for Roll 

IG_4PhCons_noChick 0.067539 4-sauropsids PhastCons scores (excluding 
chicken) for intergenic sites 

I_dnaProT 0.0671401 DNA secondary structure prediction for ProT for 
intronic sites 

IG_GerpS 0.0635293 GERP rejected substitution score for intergenic 
sites 
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Table S3: Phenotypes of homologous genes of the top 10 intronic CNEs. The top 10 
intronic CNEs were selected based on the largest differences between the 1st and 3rd to 
the 2nd section within a CNE. 

Chr Start - 
End CE 

Ensembl 
ID 

Human phenotype Mouse phenotype Rat 
phenotype 

10 3714893 - 
3714924 

ENSGALG0
000000288
3 

Autosomal Recessive 
Mental Retardation, 
intellectual developmental 
disorder and retinitis 
pigmentosa, Retinitis 
pigmentosa 

abnormal heart left ventricle 
morphology, decreased grip 
strength, decreased large unstained 
cell number, decreased lean body 
mass, increased or absent threshold 
for auditory brainstem response, 
male infertility, preweaning lethality 
incomplete penetrance 

- 

3 21413813 
- 
21413883 

ENSGALG0
000000979
1 

- abnormal endocrine pancreas 
morphology, abnormal eye 
development, abnormal lens 
development, abnormal lens 
morphology, abnormal liver 
development, abnormal lymph organ 
development, absent horizontal cells, 
decreased hepatocyte proliferation, 
decreased lymphatic vessel 
endothelial cell number, edema, 
increased pancreatic acinar cell 
number, lethality throughout fetal 
growth and development complete 
penetrance, no abnormal phenotype 
detected, small liver, small pancreas 

Status 
Epilepticus 

5 46655335 
- 
46655367 

ENSGALG0
000001109
3 

Non-syndromic male 
infertility due to sperm 
motility disorder, 
spermatogenic failure 27 

abnormal cerebellum morphology, 
abnormal head shape, abnormal 
internal nares morphology, abnormal 
respiratory motile cilium 
morphology, abnormal respiratory 
motile cilium physiology, abnormal 
sperm head morphology, arrest of 
spermatogenesis, azoospermia, 
enlarged lateral ventricles, 
hydroencephaly, impaired 
mucociliary clearance, male 
infertility, oligozoospermia, postnatal 
growth retardation, premature 
death, respiratory system 
inflammation, rhinitis, thin cerebral 
cortex 

- 

5 29339796 
- 
29339843 

ENSGALG0
000000958
7 

Hereditary hyperekplexia, 
hyperekplexia 1, 
Molybdenum cofactor 
deficiency 
complementation group C, 
Sulfite oxidase deficiency 
due to molybdenum 
cofactor deficiency type C 

abnormal axon extension, abnormal 
motor neuron morphology, abnormal 
nervous system electrophysiology, 
abnormal neuromuscular synapse 
morphology, abnormal posture, 
abnormal retinal inner plexiform 
layer morphology, abnormal suckling 
behavior, abnormal vocalization, 
apnea, decreased motor neuron 
number, hyperresponsive, increased 
motor neuron number, motor neuron 
degeneration, neonatal lethality 
complete penetrance, no abnormal 
phenotype detected 

inherited 
metabolic 
disorder 

1 66913273 
- 
66913298 

ENSGALG0
000001324
4 

Acromegaloid facial 
appearance syndrome, 
atrial fibrillation familial 
12, brugada syndrome, 
cantu syndrome, cantu 
syndrome hypertrichotic 
osteochondrodysplasia, 
cardiomyopathy dilated 1o, 
familial atrial fibrillation, 
Familial isolated dilated 
cardiomyopathy, 
Hypertrichosis-
acromegaloid facial 
appearance syndrome, 
Hypertrichotic 
osteochondrodysplasia 
Cantu type 

abnormal ST segment, abnormal 
systemic arterial blood pressure, 
abnormal vascular smooth muscle 
physiology, abnormal 
vasoconstriction, artery stenosis, 
hypertension, hypoglycemia, 
improved glucose tolerance, 
increased insulin sensitivity, 
increased muscle cell glucose 
uptake, increased systemic arterial 
diastolic blood pressure, increased 
systemic arterial systolic blood 
pressure, premature death, slow 
postnatal weight gain 

Diabetes 
Mellitus 
Experimental, 
hypertension, 
Parkinsonian 
Disorders, 
Sciatic 
Neuropathy, 
Ventricular 
Fibrillation, 
Ventricular 
Tachycardia 
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18 2616518 - 
2616533 

ENSGALG0
000000137
5 

isolated cytochrome c 
oxidase deficiency, leigh 
syndrome, mitochondrial 
complex iv deficiency 

- - 

3 46314957 
- 
46314976 

ENSGALG0
000001225
6 

- abnormal miniature endplate 
potential, abnormal nervous system 
physiology, abnormal neuromuscular 
synapse morphology, increased 
sensitivity to xenobiotic induced 
morbidity/mortality 

Duchenne 
muscular 
dystrophy, 
Ovarian 
Neoplasms 

1 34590834 
- 
34590912 

ENSGALG0
000000989
5 

Fraser syndrome, Fraser 
syndrome 3 

abnormal blood coagulation, 
abnormal blood vessel morphology, 
abnormal brain morphology, 
abnormal corneal epithelium 
morphology, abnormal corneal 
stroma morphology, abnormal 
cornea thickness, abnormal eye 
development, abnormal eyelid 
morphology, abnormal eye 
morphology, abnormal iris 
morphology, abnormal kidney 
development, abnormal lens 
development, abnormal lens vesicle 
development, abnormal limb 
morphology, abnormal neural tube 
morphology, abnormal retina 
morphology, absent kidney, absent 
limbs, anophthalmia, aphakia, bleb, 
blistering, cataract, clubfoot, corneal 
opacity, decreased body size, 
embryonic lethality during 
organogenesis incomplete 
penetrance, eye hemorrhage, eyelids 
open at birth, hemorrhage, 
interdigital webbing, intracranial 
hemorrhage, kidney cysts, 
microphthalmia, open neural tube, 
perinatal lethality incomplete 
penetrance, polycystic kidney, 
polydactyly, prenatal lethality 
complete penetrance, single kidney, 
small kidney, syndactyly 

- 

2 102926228 
- 
102926256 

ENSGALG0
000001499
8 

- abnormal CNS glial cell morphology, 
abnormal endometrial gland 
morphology, abnormal endometrium 
morphology, absent corpus 
callosum, decreased litter size, 
dilated uterus, endometrium 
hyperplasia, enlarged uterus, 
increased endometrial carcinoma 
incidence, reduced female fertility 

- 

7 26190151 
- 
26190213 

ENSGALG0
000001164
5 

 preweaning lethality incomplete 
penetrance 
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Table S4: List of annotations which form the set of descriptive features for which model 
weights are learned. Missing values are imputed via the specified values. Annotations of 
the type (factor) are OneHotEncoded and combinations between annotations form the 
final feature set. 

Annotation 
label 

Data 
type 

Imputed 
value Annotation description 

Ref factor  Reference allele 
Alt factor  Observed allele 
isTv bool 0.5 Is transversion? 
Consequence factor  VEP Consequence summaries 
GC num 0.4 Percent GC in a window of +/- 75bp 
CpG num 0.02 Percent CpG in a window of +/- 75bp 
motifECount int 0.0 Total number of overlapping motifs 

motifEHIPos bool False Is the position considered highly informative for an 
overlapping motif by VEP 

motifEScoreChng num 0.0 VEP score change for the overlapping motif site 

Domain factor UD Domain annotation inferred from VEP annotation (ncoils, 
tmhmm, sigp, lcompl, ndomain = "other named domain") 

Dst2Splice int 0.0 Distance to splice site in 20bp; positive: exonic, negative: 
intronic 

Dst2SplType factor UD Closest splice site is ACCEPTOR or DONOR 
oAA factor UD Amino acid of observed variant 
nAA factor UD Reference amino acid 
Grantham int 0.0 Grantham score: oAA,nAA 
SIFTcat factor UD SIFT category of change 
SIFTval num 0.0 SIFT score 
cDNApos int 0.0 Base position from transcription start 
relcDNApos num 0.0 Relative position in transcript 
CDSpos int 0.0 Base position from coding start 
relCDSpos num 0.0 Relative position in coding sequence 
protPos int 0.0 Amino acid position from coding start 
relProtPos num 0.0 Relative position in protein codon 
dnaRoll num 0.23 Predicted local DNA structure effect on dnaRoll 
dnaProT num 0.68 Predicted local DNA structure effect on dnaProT 
dnaMGW num 0.03 Predicted local DNA structure effect on dnaMGW 
dnaHelT num -0.12 Predicted local DNA structure effect on dnaHelT 
GerpS num -0.17 Rejected Substitution' score defined by GERP++ 
GerpN num 0.64 Neutral evolution score defined by GERP++ 
GerpRS num 0.0 Gerp element score 
GerpRSpval num 1.0 Gerp element p-Value 
4PhCons_noChick num 0.17 4-taxa-sauropsids PhastCons score (excl. chicken) 
37PhCons_ 
noChick num 0.13 37-taxa-Amniota PhastCons score (excl. chicken) 

77PhCons_ 
noChick num 0.2 77-taxa-Vertebrate PhastCons score (excl. chicken) 

4PhyloP_ noChick num 0.07 4-taxa-sauropsids PhyloP score (excl. chicken) 
37PhyloP_ 
noChick num 0.04 37-taxa-Amniota PhyloP score (excl. chicken) 

77PhyloP_ 
noChick num 0.25 77-taxa-Vertebrate PhyloP score (excl. chicken) 

minDistTSS int 10000000 Distance to closest Transcribed Sequence Start (TSS) 
minDistTSE int 10000000 Distance to closest Transcribed Sequence End (TSE) 
interaction-score num 0 Interaction score from Hi-C interaction maps 
Exp-score int 0 RNA expression scores 
Exp-pval num 1 p-Value of RNA expression scores 
Exp-logFC num 0 Log-Fold change of RNA expression 
OChrom-Peaknb Int 0 Read number for open Chromatin; ATAC-seq  
OChrom-pval num 1 p-Value for open chromatin; ATAC-seq 
OChrom-logFC num 0 Log-Fold change for ATAC-seq 
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Variations in the genome can have a profound effect on the function or expression of genes. Due to 
many levels of interactions that can happen within a biological cell, it is infeasible to manually 
investigate all potentially important genomic regions that result from phenotype screens. Insights 
in the regulatory mechanisms of a cell, however, would greatly increase our understanding of the 
function and effect of genetic variants. This would result in obvious advantages in finding treatment 
of genetic diseases in humans but can also greatly impact animal/plant production and 
biotechnology. In this thesis, I have utilized known functional elements and other genome 
annotations to create models to predict the impact of genetic variants and utilized these models for 
the livestock species pig and chicken. These prediction models help to interpret the large amounts 
of data generated by modern massively parallel sequencing technologies as they steer the focus 
and research efforts to the most promising candidates, which otherwise would be indistinguishable 
from other candidates.  

In animal breeding, quantitative geneticists are mostly interested in variants with predictive power 
for the phenotype of interest, independent of the exact role of the variant, as long as they co-occur 
with an actual functional variant. The consequent handling of the genome as a “black box” 
simplifies the methodology, because each allele is treated equally, but higher gains could be 
achieved in a more targeted approach based on a functional prioritisation of the variants. In the 
following sections, I discuss how our computational models can play a pivotal role in developing 
more targeted approaches for breeding and genome wide investigation of regulatory elements.  

The focus of this discussion is on variant prioritisation tools that could in theory be applied for 
diploid species within the animal kingdom. CADD-like models can be generated for non-diploid / 
non-animal species, but their power have not been assessed in any study so far. 

6.1. CADD-like	 models	 for	 non-human	 species	 can	 contribute	 to	
animal	breeding	

6.1.1. CADD-like	 models	 are	 suitable	 for	 variant	 effect	 prediction	 in	
animal	genomes	

When I tried to create a SNP prioritisation tool that can be used by researchers and breeders for 
genomic selection and the investigation of the genome, I was influenced by the CADD approach. 
This methodology, originally published in 2014 by Martin Kircher et al. [1], can generate a score for 
the putative deleteriousness of any SNP with respect to the reference genome. Deleteriousness is 
inherently linked to functionality and the expression of a phenotype, due to the changing ecological 
niche of a species which results in changing selection criteria over evolutionary time scales. 
Comparable scores for livestock would help in the breeding process and accelerate the elucidation 
of the coding and non-coding genome of livestock species, but these were not available before. 

Before creating similar scores for livestock species I established, as an explorative step, the 
differences between humans and non-human species by creating a CADD-like model for mouse. I 
created several models, with decreasing numbers of genomic annotations, to study how models for 
livestock species, for which only a limited number of genomic annotations are available, may 
perform. CADD in its most recent version (v.1.5) uses 111 annotations for feature generation, 
many of which are not available for non-human species. Moreover, the lack of reasonably sized 
validation data sets and differences in the phylogeny of publicly available whole genome sequence 
alignments may have an effect on the capability of the scores to rank deleterious variations. To 
investigate these potential issues, I decided to conduct a feasibility study in mouse, as this model 
organism has relatively rich genomic annotations and SNP data sets with known functional effects 
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that can be exploited as validation sets. Our results have been presented in Chapter 2. The 
conclusion was that even with smaller genomic annotation resources, reasonable CADD-like models 
can be generated. These results motivated me to develop two CADD-like models for the livestock 
species pig (pCADD) and chicken (chCADD), which have been presented in Chapters 3 and 5. In 
Chapter 4, I have shown the capabilities of the CADD model for pig (pCADD) in identifying several 
novel, non-coding SNPs that would have been particularly difficult to identify without the use of 
pCADD. In the following sections, I will discuss several ways to use pCADD and chCADD scores to 
add value to existing approaches and issues. 

6.1.2. Exploiting	CADD	to	improve	estimated	breeding	values	

Estimated breeding values (EBV) are currently the basis for selection in animal breeding. Popular 
methodologies to calculate these are BLUP (Best linear unbiased predictor) approaches. CADD-like 
scores for livestock, such as chCADD and pCADD, could be directly applied to weight variants in 
BLUP approaches. A prominent BLUP algorithm is GBLUP [2] (Genomic Best linear unbiased 
predictor), which uses marker SNPs to compute a relationship matrix between phenotyped and 
non-phenotyped individuals. Based on these relationships, the individuals without a phenotype are 
assigned a weighted average phenotype score, derived from the phenotyped individuals. 
Commonly, the population allele frequency of the marker SNPs is included in the calculation of the 
relationship matrix to give a particular emphasis on low frequency alleles, with the underlying 
assumption that individuals which share alleles that are not common in the population should be 
more related. GBLUP in its original version [3] does not assume any additional weights, thus 
assumes the contribution of each SNP on a specified trait to be equal: 

B = C − D 

E =
B=B′

2∑I%(1 − I%)
 

where Z is the centered genotype matrix based on M, the n x m incidence matrix, with n genotyped 
individuals and m SNPs (coded as -1, 0 and 1) and P, a matrix of minor allele frequencies 
expressed as differences from 0.5. G is the genomic relationship matrix, with pi the minor allele 
frequency of SNP i. To add a weight, matrix D can be added to the equation as shown. D is a 
diagonal matrix containing the weights for SNP i. In the original GBLUP, the D matrix is an identity 
matrix, assigning each SNP the same weight. There are myriad of weighting strategies. These are 
often based on either predicted SNP effects, which are established by iteratively computing a G 
matrix and performing a whole genome regression to estimate SNP variances (WssGBLUP) [4], or 
by a summary of SNP effects, e.g. SNPs genomically in close proximity are assigned the same 
effect [5], [6]. pCADD or chCADD scores for each SNP can be used as weights in the D matrix. This 
would give an emphasis on variants that might be deleterious which are assumed to be more likely 
to have an impact on the phenotype. 

Such an approach assumes that CADD-like scores are indicative for an effect on the expression of 
the investigated trait. This is not necessarily true, as CADD scores have not been developed with a 
particular trait in mind. CADD evaluates changes that may negatively affect the survival of the 
individual due to its assumptions on the deleteriousness of SNPs. Consequently, high scores (>25) 
are associated with lethal mutations, while scores in the range of ~15-25 may be associated with 
mutations that have a functional effect without being lethal/disease inflicting. Taking this into 
account, the pCADD and chCADD scores need to be adjusted to correlate better with the particular 
trait for which EBVs are calculated. Then the predicted phenotypes could be computed, with the 
assumption that individuals who share larger numbers of highly scored, trait specific alleles, will 
express more similar phenotypes. 
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One way of adjusting CADD-like scores for a particular trait is to exploit information about the LD 
structure of the alleles that are found significant in GWAS. It can be assumed that alleles with a 
high CADD-like score that are in high LD with the leading SNP from GWAS, are likely functional for 
the investigated trait and should result in more accurate EBVs. Another way to use CADD-like 
scores is to incorporate them directly in the GWAS calculations, to assign higher weight to SNPs 
that have a low allele frequency and would otherwise not show up in the analysis due to low 
statistical power. 

6.1.3. CADD-like	models	 can	help	 to	 create	population	 independent	 SNP	
arrays	

SNP arrays provide a relatively cost-efficient way to genotype individuals, but they rely strongly on 
the LD structure of the investigated populations. LD is less prevalent in a population if it is 
genetically highly diverse. Moreover, LD is lost between populations if they are separated over 
longer evolutionary time spans. Thus, creating marker SNP arrays that are applicable for more than 
one target population becomes more difficult when linkage disequilibrium is not well preserved [7], 
[8]. Using causal variants on SNP arrays rather than SNPs expected to be in LD with the causal one 
would make the arrays more versatile and applicable for use on multiple populations as well as 
genetically highly diverse populations. In Chapter 5, I have shown that functionally causal variants 
can be identified with pCADD, which can serve as markers on a chip. CADD-like models can provide 
a similar framework for other species which would lead to more general SNP arrays, saving 
development cost and easing interspecies comparisons. 

6.1.4. Potentially	 functional	 variants	 can	 act	 as	 proxies	 for	 phenotypes	
that	are	difficult	to	assess	

CADD-like scores may also help in defining new proxies for phenotypes that are difficult to 
measure. For example, to determine resistance to bacterial/viral infections in livestock species, 
infection studies need to be conducted in many individuals to estimate the resistance of the 
population in different generations. In addition, the tested individuals need to be separated from 
the herd/stock, monitored, and, subsequently, culled due to the regulations on hygiene and animal 
experiments.  

As an alternative approach, the presence of functional variants with a potential effect on the 
immune system and bacterial/viral resistance could serve as a proxy. Variant scores can be 
summarized to a phenotype score, meaning that individuals only need to be genotyped. Through 
GWAS on the target phenotype, we can retrieve, as described in Chapter 5, variants in high LD 
with the leading SNPs. Subsequently, we can investigate the effect of these SNPs on nearby genes 
and their gene products. After this is established, we can apply a Mendelian randomization 
approach in which we use the selected SNPs as instruments to compute the correlation of the gene 
products with bacterial/viral resistance. This will support the causality of these gene products on 
the phenotype. Moreover, the computed odds-ratio values can also be used as a proxy to infer the 
phenotype.  

By pre-selecting SNPs, we can make assumptions about which genes may be affected by the likely 
causal SNPs and use them as intermediate phenotypes to compute a proxy for difficult to measure 
phenotypes. 
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6.1.5. Identifying	mutations	that	can	be	introduced	via	genome	editing	

Genome editing has potential for the breeding industry as it can greatly increase the speed with 
which genomic variants can be introduced in a population [9]–[11]. However, while high precision 
genomic tools such as CRISPR/Cas9 [12] are available to make targeted edits, it is unclear what 
edits should be made to improve or realize specific traits. SNP prioritisation tools for livestock 
genomes such as pCADD and chCADD can help to identify potential functional candidates to 
introduce in the genome and their effect could be validated within one generation.  

Even though such technology is achievable, applications in livestock breeding are currently neither 
supported by public nor by regulators [13], [14], even for applications that would notably improve 
animal welfare, a generally well supported cause [14], [15]. Currently, this prevents major 
developments and implementations of such breeding strategies [16] as minor bacterial DNA 
contaminations [17], through the molecular tools used, can lead to cancellation of large projects 
and total loss of investment. Until there is a shift in public opinion and regulations, funding for 
research and applications will likely be limited. 

6.2. Usability	 of	 CADD-like	 scores	 for	 the	 evaluation	 of	 SNPs	 and	
regions	

6.2.1. The	 evolutionary	 distance	 of	 the	 selected	 ancestor	 affects	 the	
number	of	derived	variants	

CADD-like scores have the benefit that they can, in theory, be generated for any species for which 
a sufficient number of close relatives are sequenced. Whole genome sequences are used to infer 
the genomes of ancestors of the species of interest at different evolutionary distances. In Chapter 
5, we used the minimum number of sequences in the form of the 4-sauropsids EPO (Enredo, 
Pecan, Ortheus [18], [19] alignment from the Ensembl data base v.95. To generate the models in 
Chapter 2, 3 and 5, we employed the inferred ancestor sequence of the closest ancestor. This is 
not a necessity; even more distant inferred ancestral genome sequences can be used to derive 
variants. However, more distant ancestors will lead to less aligned genome sequence of the species 
of interest. On the other hand, a more distant ancestor sequence increases the number of derived 
alleles per aligned sequence due to larger differences between the sequences. Missing genome 
coverage is in principle not a problem for the generation of CADD-like models, as there is a surplus 
of training data. It could, however, alter the patterns learned during the training procedure when 
the loss of coverage is not uniform (see section 6.2.2 in this Discussion). Note that the learned 
CADD model can make predictions on unseen data, including regions of the genome for which no 
aligned sequences are available. 

6.2.2. The	underlying	phylogeny	can	affect	the	grading	of	deleteriousness	
in	CADD-like	models	

Depending on the depth of the underlying phylogeny, certain regions may be over- or 
underrepresented in the generated training set. An example is the difference in class distribution in 
the human and mouse training sets in Chapter 2 (Supplementary Table 2). Depending on the 
evolutionary distance between the species of interest and the other species considered, the 
distribution of SNPs in differently conserved regions in the training set could change. Genic regions 
may become overrepresented due to their generally higher conservation, leading to a larger 
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fraction of genic SNPs than would be expected based on the relative gene content in the genome of 
the species of interest.  

Models generated from data derived from shallow phylogenies will be more precise in distinguishing 
between variants located in regions under recent selection, as compared to distinguishing between 
variants located in more variable regions. SNPs located in regions that have been under selection 
over longer time periods (thus lie in more conserved regions) would be generally considered 
deleterious, independent of their actual impact on function. On the other hand, if the phylogenies 
are extremely deep and cover large evolutionary distances between the different species, the 
emphasis may lay on the distinction between variants that are already located in very highly 
conserved regions. This would cause a weaker distinction among variants located in more variable 
or novel parts of the genome because they could be considered less impactful despite being 
functional.  

The consequence of this effect is that the efficiency of evaluating variants depends on the 
underlying phylogeny and the evolutionary time frame considered. The evaluation of variants 
located in certain regions may be biased, either by being predicted to be more benign or more 
deleterious than they should be. That being said, this issue is to a certain extent being corrected by 
the computation of the log ranks of the model output rather than utilizing the posterior probability 
of the model directly. 

6.2.3. Deeper	 phylogenies	 may	 lead	 to	 mis-estimation	 of	 substitution	
rates	

For all CADD-like models that we have created, we used the variant simulator from the original 
CADD publication [1]. It uses the alignment of 4 genome sequences and their inferred ancestral 
sequences to derive substitution rates and simulate novel SNPs. The simulator creates a random 
number of novel SNPs by iterating over the genome and randomly deciding, based on the pre-
derived mutation rates, if a certain position will be mutated. When a position is selected for 
mutation, the alternative allele is randomly selected based on the pre-derived substitution rates. 
The mutation and substitution rates are derived under parsimony [20] assumptions which neglect 
time and the possibility of multiple substitutions at the same site. This has several drawbacks, such 
as that ignoring the multiple substitution assumptions can affect phylogeny reconstruction [21], 
[22], resulting in mis-estimated substitution rates [23] important for the simulation of novel SNPs. 
Multiple substitutions can be ignored for shallow phylogenies but will become more severe for 
deeper phylogenies. A fixed threshold on phylogenetic distance to generate an optimal CADD-like 
model for the questions one wants to answer is hard to define and requires further study. 

6.2.4. CADD-like	 scores	 should	 perform	 similar	 across	 different	
populations	of	the	same	species	

Another open question is whether high-scoring variants always have a deleterious or otherwise 
functional effect in any subpopulation of the species of interest, or whether they differ between 
different subpopulations. This latter effect is also known for polygenic risk scores for humans that 
are often less accurate in human populations that are not of European ancestry [24], [25]. For the 
CADD-like models however, we do not expect major differences between subpopulations as these 
models learn patterns of putative deleteriousness from accumulated or presumably missing 
mutations over larger evolutionary time scales. As a result, the model will learn from variants that 
are deleterious throughout the entire species, and not from variants that arise from micro evolution 
within a species. 
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6.2.5. Comparability	 of	 CADD-like	 scores	 across	 different	 parts	 of	 the	
genome	

In Chapter 3 I discussed the variant 3:43952776T>G in Sscrofa11.1. This variant has been shown 
to be lethal recessive [26], but scored relatively low with a pCADD value of 10.14. Hence, in a 
global genome-wide search for deleterious variants it may fall under the radar, because ~7.1*108 
potential SNPs score higher than this lethal recessive allele. Compared to other potential SNPs in 
the same intron however, it is among the top 3, and it is the highest scored SNP for that intron 
occurring in the investigated populations.  

Part of the reason for this behaviour is that CADD-like scores correlate positively with the number 
of genomic annotations available for a variant. Most often when genomic annotations are missing, 
these are missing for non-genic variants, leading to the situation that benign/non-functional 
variants in coding regions can have higher scores than functional or potentially deleterious variants 
in noncoding regions. This stands in conflict with the aim of creating a unified score for the entire 
genome, that can be applied to prioritize variants anywhere. Even between different genes, which 
are responsible for monogenic diseases, scores can vary significantly. This makes the application of 
a fixed threshold to define deleteriousness or functionality of variants difficult without considering 
any additional factors.  

To address this issue, methods such as the mutation significance threshold [27] and Gavin [28] 
have been developed. These calculate variable, gene-specific thresholds based on variant data 
previously not used to create the CADD model. Unfortunately, the use of known functional 
variations as a baseline to evaluate the potential impact of novel mutations is not suitable for 
livestock species, due to a lack of such ground truth data. In addition, the focus on genes destroys 
the purpose of having a model capable of scoring variants in the entire genome.  

Alternatively, a score could be developed that accompanies the CADD-score and is based on the 
number of non-imputed genomic annotations of a particular variant. It could be a sum of the 
feature weights, as they are applied by the model. In this way, missing a genomic annotation, 
coding for a model features with particular high weights, would cause a much larger change of the 
score than the imputation of several, less important genomic annotations. In this way the score 
could indicate how well two variants can be compared with each other. Incorporating the CADD-
score and the score to measure comparability to one, would not be reasonable because then the 
meaning of the resulting score will be difficult to interpret.  

6.3. Future	of	SNP	prioritization	
The field of functional effect prediction of variations in the genomes of human and non-human 
species will further develop, with the human genome as its trailblazer and spurred by the ever-
growing number of data types and data sets. Models specific for one particular category of traits, 
populations or tissues can be created and may lay the foundation for ensemble approaches. The 
demand for scoring other types of variants such as structural variations (SV) is high but may still 
be far in the future due to the large number of different SVs and their various shapes and sizes.  

Eventually, with a deeper understanding of the basic building blocks of gene function and 
regulation, effects of genotype on phenotype may perhaps be directly simulated, which would 
remove the need for independent SNP prioritisation. 
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6.3.1. Growing	 databases	 give	 the	 opportunity	 for	 more	 advanced	
genotype-phenotype	predictions	

From 2009 to 2015, the data storage capacity of the European Bioinformatics Institute (EBI) has 
increased by 1,150%, from 6 to 75 PetaBytes [29]. Besides whole genome DNA sequences for 
more and more species, the diversity of data is increasing as well. This is mirrored in the number 
of distinct and actively maintained molecular biological databases, of which there are 1,637 in 
January 2020 [30]. With the provision of data, it will become easier to develop new tools to 
prioritize variants for other species as well as develop new approaches. Richer data sets of 
functional variants will also help in the validation of these models, which so far has been a major 
obstacle for the development and validation of most models of non-human species. 

Newly generated, massive data sets have already helped to develop a method addressing an issue 
that regular CADD-like models cannot address. Pleiotropic effects of SNPs, as reported in Chapter 
4, are currently not considered in any way by CADD-like models due to their “one score represents 
all” approach. Xiang et al. [31] created so-called Functional-And-Evolutionary Trait Heritability 
(FAETH) scores for variants in the cattle genome. They derived the functional and trait heritability 
of variants for 34 phenotypes. To do so, the authors used functional annotations, GWAS and 
identified LD regions via conservation across several breeds in ~44,000 cattle. In total, they 
provided scores for 17.5 million variants, which is only a fraction of the bovine genome. Their 
general approach can be reproduced for any species and the methodology can be integrated in the 
creation of CADD-like models to emphasize pleiotropic SNPs. 

6.3.2. Shallow	phylogenies	to	create	population	and	tissue	specific	CADD-
like	models	

Biomarkers display different importance and predictability for an associated phenotype, depending 
on the subpopulations [32], [33]. This varying behaviour over subpopulations is not taken into 
account by CADD-like models. Even though, as discussed in section 6.2.4 of the Discussion, scores 
of CADD-like models are independent of individual population structure, it may be interesting for 
breeders to have a breed-specific CADD-like model which could help in identifying functional 
differences between their breeding lines. This could be done by using shallow phylogenies in which 
the ancestor sequences are not inferred between two different species but between two different 
subpopulations of the same species. Differences and similarities between models of the same 
species could help in pinpointing generally applicable biomarkers.  

In theory, the idea of shallow phylogenies could be stretched even further: instead of exploiting the 
differences between subpopulations, it is imaginable to use differences between tissues to generate 
tissue-specific models, by exploiting accumulated somatic mutations and allele frequencies 
established through multiple single cell sequencing [34]. This could help to identify mutations 
detrimental for specific tissues. Results of already existing tissue specific predictors such as 
DeepBind, DeepSea, Basset [35]–[37] could be incorporated with an ensemble [38] algorithm to 
generate scores with a particular emphasis on tissue specificity. 

Even though both applications of shallow phylogenies may be valid, at least the tissue specific 
model might be problematic to construct. In both cases, the evolutionary time scale may be too 
short to properly deplete the reference genome of the subpopulation from deleterious variants to 
display meaningful patterns from which a training algorithm could learn. With careful selection, a 
subpopulation-specific CADD-like model may still be possible; tissue-specific models are likely 
impossible because they rely on a sufficient number of somatic mutations. Considering that the 
average mutation rate per cell division in humans [39] is between 2.4 to 29.6 x 10-7, identifying 
enough somatic mutations will be difficult, even with modern, massively parallel single cell 



6.4 - Final remarks  

129 
 

sequencing approaches that sequence hundreds of thousands of cells simultaneously. In summary, 
it may be useful to incorporate predictions from tissue-specific models to the set of features for a 
CADD-like model but creating tissue-specific CADD-like models is not trivial. 

6.3.3. Tools	for	structural	variation	prioritisation	

Among the prioritisation tools created so far, tools to prioritise structural variations (SVs) are 
underrepresented. Until recently, with the occurrence of long read sequencing technologies, it has 
been difficult to accurately detect SVs and/or their exact locations. To prioritise SVs it is paramount 
to evaluate or predict the effect they have on the phenotype of individuals carrying the mutation. 
There is no doubt that they can influence function [40], [41]. To date, a large number of 
algorithms have been developed that are able to detect various classes of SVs [42] but the impact 
on function and the effect on the phenotype remains difficult to estimate [41], [43], [44] and 
mostly involves association with expression quantitative trait loci (eQTL) or overlap with other 
known functional elements [44], [45]. To the best of my knowledge, there is only one method 
available that quantifies the predicted impact of SVs, SVScore [46]. SVScore utilizes the per-base, 
genome-wide available CADD scores to aggregate them for intervals specifically defined for each 
structural variant, but it does not address gene fusions or novel adjacencies with cis-regulatory 
elements. A similar method could be easily created for the investigation of SVs in non-human 
species, given that a CADD-like score is available.  

SVs do have the inherent difficulty that they can occur in various sizes and classes. Moreover, as 
for SNPs, annotated variants hardly exist for non-human species. ClinGen [47] is a manually 
curated data base with 59,71349 [48] clinically annotated SVs (accessed 04-02-2020) for human. 
Databases such as these form the basis for our understanding of SVs and should be set up for 
animals as well if we want to make progress in this area. 

6.4. Final	remarks	
With this thesis, I have laid the foundation for in-silico DNA sequence variant effect predictions in 
the genomes of livestock species. Utilizing a well-established method for variant prioritisation in 
human genomes, I have shown that for livestock species, similar methods can be created. By 
deploying such models, I believe functional variants will be easier identified and that there is a 
bright future for the field of animal genetics and breeding. 
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gerade, weil wir unterschiedliche Bildungsrichtungen eingeschlagen haben nach unserem Abitur, 
hast du mir auch andere Sichtweisen nahegelegt, jedes Mal, wenn wir uns bei den Eltern gesehen 
haben und wir höchst Politische Themen angesprochen haben. Corinna, Konni, Josephine & 
unbekanntes Geschwisterchen* unabhängig davon welches Thema oder einfach nur mal 
quatschen, bei euch hat man immer ein offenes Ohr oder wenn man mal kurzzeitig beim VR 
Spielen einspringen muss. Ich wollte auch Josi für die vielen herzzerreißenden Videos von einem 
lachenden Baby danken und auch wenn noch nicht vorhanden, für zukünftige Videos dem 
unbekannten Geschwisterchen. Omas Grete & Bärbel und Opa Jochen. Mein Dank gilt auch euch 
für die vielen Kindheitserinnerungen und Erklärungen über die Welt. Wir sind auch nur die Summe 
unserer Erfahrungen und Genetik und ihr hattet zu beidem einen erheblichen Anteil, der dann in 
diesem Manuskript zusammengekommen ist.  

Deutsch aber nichtmehr offiziell Familie, Arthur, Markus und Thomas, als meine ältesten Freunde 
hatten wir über all die Jahre in denen ich schon nichtmehr in Troisdorf/Bonn gewohnt habe immer 
noch Kontakt miteinander und das bedeutet mir doch recht viel da man auch Kontakte außerhalb 
seiner Arbeitsstelle braucht und man im Alter immer weniger Kontakte hat und wenn neue 
hinzukommen, die sehr häufig nur aus der Arbeitswelt und sehr oberflächlich sind. Patrick, als 
mein Bachelor Supervisor und später in England Projektleiter. Jemand der auch prima in die 
Gruppe von anderen Chaoten gepasst hätte, die oben bereits erwähnt wurden. Du hast auch eine 
innige Liebe für die Wissenschaft ohne Eitelkeiten was ich massiv bewundere. Leider sind unsere 
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段风梅，路增祥是我来自另一个家庭的爸爸妈妈。尽管我们物理距离很遥远，你们依旧欢迎我成为家人并支持我

们。为此，我们永远感激不已。 很抱歉，现在您不能与我们在一起，但我们尽快会再次见面。 

大宝宝（路璐），我们在火车上相遇。 我从来没奢想过你会成为我的妻子，也从来没想过我们在一起会笑着么多。 

不久，我们会住在自己的家中。 正如你常说的，我们的未来会越来越好。 无论我们在荷兰，德国，欧洲还是中

国，我们都将为小宝带来更美好的未来。 和你以往的日子很美好，我们未来的日子会更美好的。为此，我会永远感

谢你，当然也感谢你做的饭 :P 
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