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Abstract —A quick-scan yield prediction method has been developed to assess rooftop photovoltaic (PV) potential. The method has 8 

three main parts. For each roof, first (i) virtual 3D roof segments were reconstructed using aerial imagery, then, (ii) PV modules were 9 

automatically fitted onto roof segments using a fitting algorithm and finally, (iii) expected annual yield was calculated. For each roof, 10 

the annual yield was calculated by three different quick yield calculation approaches. Two approaches are commercial software 11 

packages of Solar Monkey (SM) and Photovoltaic Geographical Information System (PVGIS) whereas the other one is the simplified 12 

skyline-based approach developed in photovoltaic material and devices (PVMD) group of Delft University of Technology. To validate 13 

the quick-scan method, a set of 145 roofs and 215 roof segments were chosen in urban areas in the Netherlands. For the chosen roofs, 14 

the number of fitted modules and calculated yield were compared with the actual modular layout and the measured yield of existing PV 15 

systems. Results showed a satisfactory agreement between the quick-scan yield prediction and measured annual yield per roof, with 16 

relative standard deviations of 7.2%, 9.1%, and 7.5% respectively for SM, PVGIS, and PVMD approaches. It was concluded that the 17 

obstacle-including approaches (e.g. SM and PVMD) outperformed the approaches which neglect the shading by surrounding obstacles 18 

(e.g. PVGIS). Results also showed that 3D roof segments had added value as input for the quick-scan PV yield prediction methods since 19 

the precision of yield prediction was significantly lower using only 2D land register data of buildings.  20 

Index Terms—automatic PV system design, annual energy yield, module fitting, PV potential, PV systems, quick-scan, rooftop 21 

PV, Urban PV, yield prediction. 22 

1. INTRODUCTION23 

24 

S humankind feels daunted by the challenge to meet their energy demand in a more sustainable and fossil-free 25 

manner, the transition to renewable energy sources such as wind and solar has begun. In 2018, global annual photovoltaic 26 

(PV) installations were surpassed 100 GW, and the total cumulative operational capacity reached over 0.5 TW [1, 2]. Even 27 

though the prices of photovoltaic systems have decreased significantly over the last decades, the adoption of PV is not 28 

increasing rapidly  [3]. The mindset of society must change towards PV and PV revolution [4]. Therefore, a more societal 29 

push is necessary to help the solar PV industry grow. 30 

Such societal push could be supported by automatic PV system design in various ways. First of all, the time required to 31 

design a PV system could be decreased considerably. Ranging from software-aided design to visual in-situ inspection (e.g. 32 

counting the number of roof tiles to have a rough estimation of roof PV potential), the actual design of a rooftop PV system 33 

may take anywhere from 10 minutes to several hours [5][6]. Because of the fierce competition in the domestic PV system 34 

market, only a small percentage of the designs are built. Much time could thus be saved on the side of the PV installation 35 

companies if the system designs on their quotations are generated automatically. An automatic PV system design can also 36 

make the sales process of PV more efficient. It would decrease the effort and time spent by cold-calling potential 37 

customers. The activity of the whole solar energy market could increase as a result of a more efficient sales process since it 38 

would increase productivity. Moreover, an advanced design algorithm could design systems with more accurate energy yields, 39 

better aesthetics or better cost-effectiveness than humans could do manually in the same amount of time. The optimal 40 
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position for modules could be calculated, minimizing the shading throughout the year. Additionally, algorithms could find 41 

alternative module configurations that would fit more modules on the same roof. For example, it could find a balance 42 

between the yield per m2 and total yield by comparing east-west or south-directed setups according to the customer‘s 43 

requirements. From another point of view, by facilitating yield prediction and system design in a quick and user-friendly manner, 44 

consumers would have fewer concerns about the suitability of their rooftop for a PV system.  45 

To fulfill this goal, a so-called quick-scan yield prediction method was developed. The method fully automates  the design 46 

process and yield prediction of rooftop PV systems. It also enables large-scale rooftop PV potential assessments (e.g. a city or 47 

a district) by reducing the runtime as much as possible. This paper aims to introduce the quick-scan method and discuss the 48 

findings regarding the following research questions: (1) how realistic is automatic module fitting on residential rooftops? (2) 49 

how accurate is yield prediction with different quick yield calculation approaches? (3) How fast are different parts of the quick-50 

scan method and how can this be optimized? 51 

Section 2 gives an overview of relevant literature about the estimation of solar potential for rooftops in urban areas and 52 

briefly explains the research outline. In Section 3, the different parts of the quick-scan method are described. Section 4 shows 53 

the results of the module fitting algorithm and yield calculation approaches and discusses the simulation time. Lastly, conclusions 54 

will be drawn in Section 5, and recommendations will be presented for future work. 55 

2. LITERATURE REVIEW AND RESEARCH OUTLINE 56 

The potential of buildings for rooftop PV is usually determined by (i) finding the available roof area for PV modules, (ii)  57 

simulation of plane-of-array (POA) solar irradiance and, (iii) computing the annual AC energy yield of such system.  58 

Land use, building and population densities can be used to calculate the total roof area using average conditions, and the 59 

available roof area for PV can then be found by assuming fixed utilization factors [7]. In 2010, Winginton et al. used the 60 

relation between roof surface area and population to estimate the rooftop PV power generation potential for Southeastern 61 

Ontario, US [11]. Similarly, the solar energy capacity was analyzed for different types of residential rooftops in Andalusia, 62 

Spain [12]. In 2012, Defaix et al. published the building- integrated photovoltaic (BIPV) potential for 27 European member 63 

states, starting from an average floor area per capita to find the available roof surface per country [13]. For the Indian city of 64 

Mumbai, aerial images were used to calculate values of the Building Footprint Area (BFA) ratio and the Photovoltaic- Available 65 

Roof Area (PVA), to estimate the city’s PV potential [14]. An earlier Indian investigation of Delhi’s PV potential was based on 66 

thumb-rules, standard assumptions and experts’ opinion, due to data unavailability [15]. In 2014, Mainzer et al. analyzed the 67 

technical PV potential for each municipality in Germany, estimating the usable area and energy demand per building by 68 

statistical data [16]. In 2015, Byrne et al. calculated the net usable roof area per building type for Seoul (South Korea), 69 

including a parametric study of the module tilt and its effect on the Ground Cover Ratio (GCR) and expected PV potential of 70 

the city [17]. In 2017, Khan et al. carried out a similar study for 13 cities in the Kingdom of Saudi Arabia, and the potential 71 

electricity generation was estimated [18]. 72 

Other methodologies based on  geographic information system (GIS) has increasingly used recently, particularly since GIS has 73 

become a commonly used tool [8]. If available, GIS data of the outer shapes of buildings can be used to estimate the available 74 

roof area. In 2011, the potential electricity production by rooftop PV in Israel was assessed, by using GIS data of outer 75 

building shapes and making assumptions about utilization factors [19]. Martı́n-Chivelet proposed an analytical expression for 76 

GCR and a step-by-step methodology for the assessment of PV potential [9]. In 2015, Freitas et al. provided a review of solar 77 

potential calculation methods for urban areas and concluded that methods should compromise between accuracy and computation 78 

time [10]. 79 

If also 3D information and/or height data is available, such as LiDAR measurements, the pitch angle, and azimuth of 80 
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roof segments can be used to determine the POA irradiance. In 2012, Brito et al. used LiDAR data to assess the 81 

photovoltaic potential in a Lisbon suburb [20]. It was concluded that for PV penetration below  10%  of the total roof area, 82 

the PV potential can be well estimated by neglecting shade and considering the optimal inclination and orientation for PV, 83 

whereas, for high penetration, the potential can be estimated by considering a horizontal surface within the building footprint 84 

area. In 2011, Bergamasco et al. assessed the PV potential for rooftop-integrated PV systems using MATLAB, first by a study 85 

in the Piedmont Region [21]. Later, the MATLAB algorithm was enhanced with shadow and in-roof obstacle detection and 86 

applied to the city of Turin, processing over 60,000 buildings [22]. In 2013, Kodysh et al. combined LiDAR data and a GIS 87 

approach to estimate irradiance on different roof surfaces for Knox County, Tennessee, USA [23]. The output of the study was 88 

however solar irradiance per roof surface area since the available area for PV and electricity output were out of the scope 89 

of the research. In 2014, the rooftop PV potential of Taiwan was assessed, using GIS data for the available roof area and 90 

taking into account shading caused by other buildings [24]. There are  some  examples in  which  3D city  models  are used 91 

to calculate the total roof area and expected electricity generation, such as the work of Rodriguez et al. for Ludwig- burg, 92 

Germany [25]. However, 3D city models are expensive to create or acquire, and currently unavailable for most regions in the 93 

world. Moreover, shading calculations with 3D models and ray-casting are computationally demanding and, therefore, restrict 94 

the scale for which the PV potential can be determined. 95 

Some of the studies described above calculate the discrete amount of PV modules to be placed on the available roof area by 96 

GCR factors, however, none of them computed the actual modular layout that would fit on each roof segment. The only 97 

exception to that is a research carried out by Mainzer et al. in 2017 in which geographical building data and aerial images in 98 

combination with image recognition techniques were utilized to virtually place modules on roofs [26]. Their module fitting 99 

algorithm incrementally iterates over the usable area and fits as many PV modules as possible within each roof segment. 100 

However, it neglects a distance to be taken from the roof edge and module alignment with the edges for flat roofs. 101 

For simulation of POA irradiance and computing the annual AC energy yield, various levels of detail could be applied in 102 

yield calculation models. For example, skyline profile (the outline of land and buildings around a PV system defined against the 103 

sky) affects the amount of solar irradiance that reaches a PV module [27]. Although shading reduces the PV module 104 

performance [28], in yield prediction approaches, the skyline profile is usually not determined for each roof, neglecting the 105 

shading caused by it. More advanced yield calculation models including non-linear effects of temperature, module 106 

technology, and inverter utilization significantly increase the runtime and fairly improves the accuracy [26]. However, when 107 

dealing with a big batch of roofs, both accuracy (closeness of a dataset, in this case the modelled PV yields, to the perfect 108 

prediction line on which the modeled and measured kWh/kWp values are the same) and precision (closeness of a dataset, in this 109 

case the modelled PV yield, to their own average kWh/kWp line) are important.  110 

Real-life situations can lead to systematic and random errors in PV modeling. Systematic errors shift away the modeled data 111 

points from the perfect prediction (reference) while random errors cause the modeled data points to be scattered. Systematic and 112 

random errors respectively relate to accuracy and precision. For large scale studies or initial investigation (quick-scan) of a batch of 113 

rooftops, precision is as important as the accuracy. The reason is, obtaining precision is way faster than accuracy and needs less 114 

inputs and/or detailed modeling and, when a precise batch of output data for PV potential of rooftops is found, then all  the results 115 

can be shifted (tuned) by a simple (and fast) correction factor to have both precise and accurate batch of output data. Therefore, the 116 

aim of this research is to develop a method that can quickly scan the PV potential of many roofs with high precision and, then, 117 

further modify it by a correction factor to have also an accurate result dataset. It is worth noting that applying one correction factor 118 

to all the yield predictions will improve several individual PV systems yield prediction while it might worsen the yield prediction 119 

of a few. However, the overall prediction for all the PV system will improve. 120 

The method developed in this research uses 3D roof segment data, generated from aerial images and GIS data, to assess the 121 
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discrete number of PV modules to be fitted on each roof. The module fitting is tested by selecting buildings that already have 122 

PV systems on their roofs and comparing results to the number of modules that were actually placed. Also, LiDAR height data 123 

is used to account for the effects of shading by surrounding obstacles. The precision of three different yield calculation 124 

approaches is obtained using AC yield measurements of real PV systems. The developed method tries to keep the calculation 125 

time as low as possible, in order to make the algorithm usable for rooftop PV on a regional or national scale. 126 

 127 
Fig. 1: The general structure of the quick-scan method. Flowchart of roof segmentation using aerial imagery feeds the quick-scan method. 128 

Weather, GIS, and LiDAR data were also used as inputs to the quick-scan method. 129 

3. METHODS 130 

In figure 1, general structure of the quick-scan algorithm is shown. To initialize, a set of roofs divided into 3D roof segments 131 

is fed into the algorithm. For each segment, the segment orientation is calculated, making use of two independent methods. 132 

Then module fitting is carried out, to find the maximum amount of modules that can be placed on them. For the solution 133 

accommodating most modules, yield calculation is carried out per roof segment. Finally, the output of the quick-scan algorithm 134 

will be the number of fitted modules, their expected annual AC yield in kWh and the specific annual yield kWh/kWp, each 135 

aggregated per roof or physical address. Prior to PV system installation, the widely used merit by the industry and research 136 

communities is either kWh or kWh/kWp, which give indications on how much the PV system will yield. However, after 137 

installation, to monitor the difference between the expected and the real PV yields, the merit performance ratio (PR) is used. 138 

Since the target of this research was yield assessment of the roofs, kWh and kWh/kWp were used as merits. 139 

3.1. Roof segments extraction 140 

In order to develop a quick-scan that works for any address, it is necessary to have information about the roofs: roof area (for 141 

PV module fitting), its slop and orientation (for yield prediction). One way is to use land register data of the buildings contours 142 

which is accessible in several countries. However, most roofs do not consist of one flat plane and have obstacles which are not 143 

detectable in buildings contours. In this research, roofs are divided into segments with different slope and orientation using 144 

stereo aerial images. The algorithm is shown in the lower part of figure 1. A roof is selected by using the building contours from 145 

land register data for the target building. A disparity map is made by matching the roof pixels of a pair of aerial images taken 146 

from a different angle (stereo-matching in GIS [29][30]). A 3D point cloud is then obtained by comparing many points on a 147 

roof, as shown by a disparity map in figure 2. 148 

Since different segments have different orientations and pitch angles, their colors are slightly different in an aerial image. In 149 

order to split the roof into different segments, a first segmentation is carried out on the basis of color. This color filtering 150 
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creates a large number of small segments, as visible in the left part of figure 3.  After this,  the height data is used to unify 151 

segments with similar orientations, pitch angles and heights. These orientations and pitch angles are found by calculating the 152 

normal vectors of the planes that form the segments. The remaining segments form a 3D representation of the roof segments 153 

and potential obstacle segments like chimneys or roof windows. This process is shown in figure 3 and described in further 154 

detail in [30]. 155 

Small roof segments and segments that are on the shadow side of an aerial image are more difficult to detect. This is 156 

caused by a lack of height data points for small segments, and little contrast to find a stereo-pair of pixels in the shade. Also, 157 

the difference in color at the borders of segments is harder to detect for shaded roof segments [31]. 158 

To make the segments cover a larger part of areas within building contours and to straighten the edges of roof segments, 159 

three additional steps were applied automatically to the roof segments: 160 

1) For neighboring roof segments which intersect in 3D, such as for hipped roofs and gable roofs, the line of 161 

intersection between the planes was determined. The roof segments are filled from both sides up to this line. 162 

For neighboring roof segments that do not intersect, but have a height difference, a line of intersection is drawn in the 163 

middle when looking at them in the z-direction. The roof segments are filled from both sides up to this line. 164 

2) For the parts of roof segments that stretch to the edges of the building contour, the segment will be filled up to the edge of this 165 

land register shape. 166 

In figure 4, a group of roof segments is shown. As it can be seen in figure 4, after applying the three aforementioned steps the 167 

edges of roof shapes are much straighter.   168 

 169 

Fig. 2: Images (a) and (b) represent a same roof from two slightly different angles. The two stereo aerial images are used to obtain a 3D 170 

point cloud for a roof, shown in a disparity map on figure (c), obtained from [30]. Black dots shows the parts of the roof where could not be 171 

fully re-constructed by the roof segment algorithm. Since the difference in angle between the two images is known, the displacement of a point 172 

between the two images is solely dependent on the height [30]. 173 

 174 
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Fig. 3: Image (a) shows several small segments that are constructed based on their color in the aerial image. In image (b), to form the neat 175 

roof segments, adjacent small segments were unified based on their orientation, pitch angle, and height. In image (c), the roof segments 176 

are shown in 3D projected above the building contour, obtained from [30]. 177 

The orientation of a roof segment was determined by taking the horizontal projection of the normal vector to the segment 178 

plane. However, this orientation determination approach might cause an error for flat roofs. Therefore, an alternative approach 179 

for orientation determination was developed. 180 

 181 

Fig. 4: Aerial image and roof segments, created before (left) and after (right) three straightening steps were applied. The small 182 

mismatch between the edges of the roofs and the segments is caused by the fact that the aerial image was not taken at exactly 90◦. 183 

Since the segmentation of the roofs is dependent on the building contours, the contrast and the colors in the aerial image, sometimes 184 

segments contain flaws: (1) shaded roof segments are rarely detected. This is often a problem for low flat roofs next to taller houses. (2) 185 

sometimes existing roof segments are not detected because they were outside of the land register perimeter. This could be because of a 186 

recent house renovation or outdated land register data. Garden sheds, garages and building extensions can be overseen for this argument. 187 

(3) sometimes obstacles are detected or left out of the roof segments by the stereo-matching, either excluding from all segments or 188 

forming separate roof segments. 189 

 190 

Throughout this research, roof segments with a slope of less than 10 degrees were categorized as flat, and segments with a 191 

higher slope were considered pitched. This boundary was chosen based on architecture and building construction industry [32], 192 

as no scientific studies were found to set this variable differently according to PV standards. 193 

The length of each line segment was determined for the x and y coordinates, and then the longest side of the polygon within 194 

the roof segment, the longest polygon side, was chosen. For the longest polygon side, the orientation can be determined by the 195 

following equation: 196 

1 2 1

2 1

tan 180 ,ls

x x
A

y y

−  −
= + 

− 
           (1) 197 

where Als stands for the azimuth of the longest side, xi and yi refer to the x and y coordinates the points on the roof 198 

segment. 180◦ is added to make the angle positive, defined clockwise starting from the North direction. 199 

The modules alignment with the roof segment orientation is preferred since it usually fits the largest number of modules and 200 

often regarded to be more aesthetic. Figure 5 shows an example in which 33% more modules can be fitted for an aligned 201 

setup, whereas the output per module would only drop 0.5% due to the less favorable orientation (20 degrees off south, the tilt 202 
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was 13°). 203 

Having the azimuth of one edge and knowing that most roof segments have rectangular shapes or perpendicular angles, one 204 

can obtain the azimuth of the other three edges for flat roofs: 205 

3

1

.90 ,
i

i lsB A i
=

= +            (2) 206 

360

360 360 ,

i i i

i i i

A B B

A B B

 = 


= − 
           (3) 207 

where i= 1,2 and 3, so Ai are the three orthogonal components to Als, which are always between 0◦ and 360◦, ensured by the 208 

constraints in equation 3. From here, the direction closest to the South (180◦) will be chosen as the module orientation for all 209 

flat roof segments. 210 

3.2. Maximum module fitting technique 211 

A fitting algorithm was developed and implemented to place the maximum number of PV modules on top of a roof. The 212 

following input settings were chosen: 213 

• Module dimensions of 165×99 cm2 and the rated power of 300 Wp were chosen. The thickness of the modules is not of 214 

interest to the quick-scan.  215 

• For flat roof segments, all modules were expected to be installed in a landscape manner  with a fixed and tilt and row space 216 

(most dominant layout on flat roof).  217 

• For pitched roof segments, the module is placed directly onto the segment. There is no row distance between modules. The 218 

module layout can be either in portrait or landscape, and both options are investigated to find the maximum module configuration. 219 

Thus, for all pitched roof segments, the fitting algorithm is carried out twice (one for portrait one for landscape).  220 

Description of maximum module fitting technique is as follows. After defining the input settings, first, a rectangular module grid 221 

is created according to the settings specified for flat and pitched roofs. Then, the module grid, in this case with zero row 222 

distance, is shifted in the x and y directions. The step size was set to 10 cm in both directions, as recommended in [34]. 223 

Further, for every new position of the grid, the number of modules within the roof shape minus a set distance from the edge 224 

is counted. Finally, the position in which most modules are fitted gives the maximum module fitting solution. For a simple 225 

case of P V  modules with zero tilt, a visual impression is given in figure 6. Details of several approaches for module fitting 226 

on roofs were discussed in [34]. 227 

By automatically defining obstacles as gaps in a roof segment, they can be avoided for module placement. The algorithm 228 

always checks if modules are intersecting obstacle segments. Roof segment are not always aligned with the x and y axes of the 229 

module grid. Therefore, a roof segment is automatically rotated around its center to match to the desired azimuth of the 230 

modules. Then the module grid is created. After this step, the roof shape and module grid are rotated back and the grid is 231 

translated in steps parallel and perpendicular to the module azimuth. For flat roofs with tilted modules, the row distance is 232 

inserted in the grid between the rows of modules. Figure 7 visualizes an example for the module fitting algorithm compared 233 

with manually fitted modules showing the possibility for different results caused by shape flaws in roof segments or in-roof 234 

obstacles. 235 

 236 
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 237 
Fig. 5: Aligned with roof (left) vs due south module layouts for flat roof (right), adapted from [33]. It is worth noting that, from energy yield 238 

point of view, alignment of the PV modules with the roof edges is influential only for the case of the flat roofs because pitched roofs already have 239 

a fixed azimuth and tilt which PV module should comply with (mainly because of wind force and safety reasons). In general, the lower the tilt of 240 

the PV modules on a flat roof, the less influence of azimuth deviation from the true South. Besides energy yield, factors such as accessibility, 241 

cost, and aesthetics also play a role on the decision of PV modules azimuth on a flat roof.   242 

 243 

 244 

 245 

 246 

 247 
Fig. 6: A module grid (rectangular shape) is superimposed over a roof (polygonal shape) and moves around in the x and y directions, while 248 

counting the modules that fit within the roof edge minus a buffer distance without intersecting with obstacles, obtained from [34]. The 249 

figure is a screen shot of one moment of running the maximum module fitting technique. 250 
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 251 

Fig. 7: Aerial images with manually placed PV modules (bottom) and corresponding visual schematics (top) of fitted modules by the 252 

algorithm, showing that module setup can yield different results due to (1) shape flaws in roof segments, and/or (2) in-roof obstacles, 253 

and/or (3) different size and orientation of the modules, and/or (4) difference in edge-distance considerations.  254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 
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(a) 

 

(b) 

  

(c) 

Fig. 8 (a): Schematic view of row distance between modules, (b): Counts of row spaces for installed PV systems on flat roofs which shows 263 

that the dominant row spacing in the database of Solar Monkey in the Netherlands is 70 ±5 cm, and (C): Counts of PV systems with similar tilts 264 

shows that three dominant tilt angles 10±0.5°, 13±0.5° and 15±0.5°. We chose 13 degrees as an average. It is worth noting that in an elegant 265 

PV system design, the row distance should be set based on the desired shade-free window, ground coverage ratio requirement, and the shadow 266 

length equation. In reality, however, installers use quick fixed row distance values for the Netherlands mainly driven by the two facts: (1) the 267 

tilt should be kept low because of high wind force in the Netherlands, and (2) shadow has less effect because of high share of the diffuse 268 

component in the sunlight in the Netherlands. 269 

3.3. Yield calculation approaches 270 

The quick-scan was designed in a modular way, so different energy yield calculation approaches can be applied and their 271 

results can be tested independently. Three yield prediction methods were investigated in this research: the first method used in 272 

this study was developed by Photovoltaic Geographical Information System (PVGIS), the second method is based on the current 273 

approach of Solar Monkey (SM), and the third method is developed by the Photovoltaic Materials and Devices (PVMD) group of 274 

Delft University of Technology [27]. 275 

In the PVGIS yield calculation method, the skyline profile is not taken into account. In PVGIS website, only the module 276 

orientation and tilt are affecting the performance. The other methods do use the skyline profile. SM approach calculates a skyline 277 

profile (or obstacle view) for every PV module that is placed on a roof. For the quick-scan, this obstacle view is only calculated 278 

for one point at the center of each roof segment. The height of this point is chosen as the highest of two height data sources. One 279 

source is the digital elevation map at the building location obtained by LiDAR, and the other source is the collection of z-280 

coordinates of the roof segments found by stereo-matching. By taking the highest of both sources, situations are avoided where 281 

the central point is located slightly below the actual roof surface, resulting in extremely high obstacle losses. The PVMD yield 282 

prediction method is implemented according to how it was explained in [27]. PVMD approach uses two coefficients: Sky View 283 

Factor (SVF) and Sun Coverage Factor (SCF), respectively to indicate how much of the hemisphere is freely visible and the ratio 284 
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of hours that the sun is blocked with respect to the total amount of sun hours. For every climate, having the SVF and SCF, the 285 

yearly energy yield can be estimated using five fixed coefficients. The coefficients depend on the azimuth and the tilt angle of the 286 

PV module. In this research, these five coefficients were calculated for every 10◦ azimuth and tilt angle (and linearly interpolated 287 

for the degrees in between). 288 

4. RESULTS 289 

To test of the proposed method, a dataset of several buildings located in the region of Eindhoven, the Netherlands, was chosen. 290 

The chosen buildings have monitored PV systems on their roof. The roof segments are extracted as polygons, containing 3D 291 

coordinates of the edges for each roof segment. Each roof is marked with a unique building identification (id), linked to the land 292 

register data for each building in the Netherlands. Additionally, each identified roof segment is given a unique number. 293 

Besides the coordinates and id’s, the segment slope (pitch angle) and azimuth (orientation in a horizontal plane) are given. 294 

The numbers of investigated roof segments for each part of the quick-scan method are shown in Table I. For the roof segments 295 

extraction, roofs were selected randomly whether they had PV module on top or not. For maximum module fitting technique, only 296 

roofs that had PV systems on top were manually selected. For annual yield prediction, only roofs with PV system that had reliable 297 

measured energy yield were manually chosen. 298 

To check the performance of the quick-scan algorithm, the results of module fitting were compared to the actual amount of 299 

modules placed on a set of roofs with existing PV systems. Then, the results of yield calculation were compared to the 300 

measured energy yield of the PV systems in their first operational year. 301 

 302 

TABLE I: Numbers of studied roof segments for each part of the quick-scan method.  303 

Parts of the method  No. of roof segments 

Roof segments extraction 520 

Maximum module fitting technique 215 

Yield calculation approaches 156 

4.1. Input data 304 

Extraction of 3D roof segments can be done by either LiDAR data or aerial imagery. LiDAR datasets are relatively expensive 305 

to gather compared to aerial imagery [35], usually less frequently updated, and not as widely available as stereo imagery. For the 306 

Netherlands, a countrywide LiDAR dataset, actual hoogtebestand Nederland (AHN), with the ground resolution of 50 cm exists 307 

and has been updated almost every seven years [36]. As an alternative to LiDAR data, a countrywide aerial stereo imagery 308 

(Stereo10) is available at a ground resolution of 10 cm for the Netherlands. Imagery is retrieved every year; mostly during winter 309 

and early spring, when the weather condition is good. The aerial imagery of geographical area considered in this paper is 310 

captured by an ultracam xp camera. Imagery was gathered from an altitude of 1600 m, taking into account variations in roll, 311 

pitch, and yaw of the camera, which is mounted to the airplane. Since aerial imagery has a resolution of 10 cm, the point-cloud 312 

retrieved from image matching has a density of 100 points/m2. This is denser than the 6-10 points/m2 of the AHN (LiDAR data). 313 

Therefore, in this research aerial imagery was used for roof extraction while LiDAR data was used for reconstruction of the 314 

horizon around the roofs. Besides, for the target geographical area, the data from network of weather stations in the Netherlands, 315 

known as Koninklijk Nederlands Meteorologisch Instituut (KNMI), was used as input for PV yield calculations [37]. Depending 316 

on the KNMI station, the availability of ambient parameters and their resolution might be different. In this research weather data 317 

with the resolution of one hour was used. 318 

 319 
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4.2. Roof segments 320 

On average, it takes one- fourth of a second (0.257 seconds) to reconstruct the roof segments of a residential building. 321 

Within the studied set of roofs, 93% of the roof segments larger than 1 m2 were detected. 322 

The approach described for finding the segment orientation was tested for a set of 520 roof segments, using the orientation 323 

given in the data set as a reference. For pitched roofs, with a roof pitch higher than 10◦, the deviations between the two 324 

sources of segment orientation are generally small. The absolute error was found to be within 6.3◦ for 95% of the pitched 325 

segments. All 28 pitched segments with an error higher than 5◦ were inspected manually to find the true orientation of the roof 326 

segment. Only for pitched segments with deviation values above 16◦ the method was found to be inaccurate. For these cases, in 327 

7 out of 10 segments the algorithm found a wrong edge (as the closest one to the South). This was caused by segmentation 328 

errors or non-rectangular roof segment shapes.  329 

4.3. Module fitting 330 

First, in module fitting technique, the tilt and row distance should be set (see figure 8(a)). A tilt of 13◦ was chosen for modules 331 

because this is a common setting for mounting PV modules in the Netherlands as low module tilt reduces ballast requirements 332 

and increases the roof area utilization (see figure 8(b)). A distance of 70 cm was maintained as the horizontal distance between 333 

the projected end of a tilted module and the front side of a consecutive row (see figure 8(c)).  334 

A visual inspection was carried out for 215 roof segments (total 145 roofs) by comparing recent aerial images with the roof 335 

segments. The segments on which PV modules placed were added to a list of manually selected roof segments. In this way, the 336 

module fitting algorithm and yield estimation approaches were tested more precisely. The following three roof groups were 337 

detected:  338 

• (group 1) 104 segments were fully used for PV installations. The maximum number of modules was placed on these segments.  339 

• (group 2) For 66 roof segments, almost two-thirds of the surface were used. The most common reason was that obstacles within 340 

the segment were not detected in aerial imagery. Sometimes, the building owner had no desire to use the full potential of the 341 

roof, or choose for a rectangular (aesthetic) module layout instead of fitting the maximum amount of modules. 342 

• (group 3) For 45 roof segments, almost one-thirds of the surface were used. The most common reason was that the building 343 

owner had no desire to use his entire roof for PV. However, in twenty cases very large obstacles or a multitude of them were not 344 

detected. 345 

Visual inspections showed that assessing the performance of the module fitting technique can be affected by individual choices 346 

of house owners. To compensate for this effect, for the second and third roof segment groups, the number of fitted modules by 347 

the algorithm was manually multiplied by 2/3 and 1/3, respectively (as manual module placement ratios). Although it was 348 

possible to divide the roofs into more than three groups (to have more accurate compensation for roof owners’ choices), the three 349 

groups gave satisfactory results while saving the time.  350 

The results of module fitting technique, shown in figures 9 and 10, reveals that the module fitting algorithm generally fits 351 

fewer modules on roofs than the real number of installed PV modules. The module placement was underestimated by 17.5% on 352 

average, with a relative standard deviation (RSD) of 46.3%. There could be multiple reasons for this under-estimation: 353 

• Shape flaws in the roof segments mainly caused by over-segmentation (the  algorithm  mistakenly  identifies  more  roof 354 

segments within a roof than what it is in reality) is the first reason. Additionally, parts of roof segments in the shade were not 355 

occasionally detected by the stereo-matching, decreasing the available area for modules to be placed. 356 

• The categories of module placement ratios were set manually by looking at low-resolution images, which might have caused 357 

mistakes.  358 
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• The algorithm settings for module layouts could be different from reality. Smaller PV modules, lower module tilt on flat roofs 359 

and, therefore, smaller row distances might have been chosen by the installers. These options were not investigated in further 360 

detail. 361 

An average module fitting time of 1.01 seconds per roof segment was found, with a standard deviation (SD) of 1.08s. Since 362 

the time per roof is strongly dependent on the segments within a roof, the module fitting time per roof was not analyzed further. 363 

The large standard deviation in module fitting time per segment comes from the wide variety in segment area within the data 364 

set, and the difference in module fitting time between flat and pitched segments (for pitched roof segments, the fitting 365 

algorithm is carried out twice, refer to Section 3.3). The module fitting speed was 30.4 (SD=18.2) m2s−1. The module fitting 366 

speed for pitched roofs without internal obstacle segments was 20.1 (SD=5.0) m2s−1, whereas the module fitting speed for 367 

flat roofs was 56.9 (SD=12.0) m2s−1. For flat and pitched roofs , the module fitting time per segment are shown in figure 11. 368 

 369 

4.4. Yield calculation 370 

After having the roofs automatically filled with PV modules, the specific annual yield is calculated for each roof segment 371 

and compared with measured data of installed PV systems. As discussed in Section 2, only the precision of three yield 372 

calculation approaches is evaluated. This was decided since with a large batch of roofs, the average offset in accuracy in yield 373 

estimation can quickly be corrected by a multiplication factor, as long as desirable precision is achieved. In this research, after 374 

running the quick-scan (panel fitting plus yield calculation) for all roof segments and obtaining the result dataset, the precision of 375 

the dataset is calculated. Then, the whole dataset is shifted by a single multiplication factor (1.0412) to be as close as possible to 376 

perfect prediction (high accuracy). Although the modelling accuracy for a few PV systems might drop, the multiplication factor 377 

improves the overall accuracy of the modelling. The results of quick-scan method for each yield prediction approach are shown 378 

in Table II. Figure 12 shows the results for the SM yield calculation approach in a scatter plot with an RSD value of 7.2%. 379 

TABLE II: Final results of the quick-scan per yield prediction approach, all roofs with pitched segments with orientation errors above 16° 380 

were filtered out (resulting 132 roofs and 156 roof segments). 381 
 382 

 383 
Yield prediction approach  SM PVMD PVGIS 

Relative Standard Deviation 7.2% 7.5% 9.1% 

 384 

It can be concluded that the SM method is marginally more precise than the PVMD method. The PVGIS method performs 385 

significantly worse, which can be explained by the fact it does not take into account the skyline profile. 386 

The calculation times of the yield prediction were found to be 6.93s (SD=0.56s), 6.50s (SD=0.44s) and 1.31s 387 

(SD=0.21s)  per roof segment for the SM, PVMD and PVGIS approaches, respectively. Since a real roof in the Netherlands 388 

has an average of about 4 roof segments, the calculation times per roof required for SM, PVMD, and PVGIS would be in the 389 

order of 28, 26 and 6 seconds, respectively. Since the calculation time per roof is very dependent on the number of roof 390 

segments taken into account, the calculation speed could be greatly increased by filtering out low-potential roof segment 391 

beforehand. A low-potential segment would not fit a significant amount of modules (e.g. less than 3) or is pitched towards the 392 

North and, therefore, generates less than 650 kWh/kWp per year. By choosing a minimum segment area of 8 m2, and only 393 

using pitched segments with an azimuth orientation between 75 and 285 degrees (South=180°), the calculation time per roof 394 

could be halved without compromising the precision of the results. Further research can be done on the optimal boundaries 395 

for such preliminary filtering. 396 

For all yield prediction approaches, it was observed that the RSD increased for roofs with higher levels of shading, which is 397 

caused by the fact that only one point per roof segment (middle point) was considered for obstacle detection. Additionally, shaded 398 
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segments have fewer data points that can be matched based on color recognition, such that the inaccuracy in segment 399 

orientation and pitch angle becomes larger. It was found that the three yield prediction approaches perform very similarly for 400 

roofs with an SCF below 0.25,  however  for roofs with a higher SCF the SM and PVMD approaches greatly outperform 401 

PVGIS because of neglecting the obstacle view by PVGIS. 402 

For the SM yield prediction approach, the yield prediction accuracy and precision were analyzed for different sizes of roof 403 

segment. In this effort, the complication occurred that the performance could only be validated on roof level, while the yield 404 

prediction was carried out per roof segment. To overcome this, an average segment area was defined for each roof within the 405 

manual selection on which modules were placed. The average segment area per roof was a weighted average of the segment 406 

areas, by the amount of fitted modules, to reflect their contribution to the performance of the whole roof. For the full set of 407 

manually selected roof segments, the average roof segment area was 36.5 m2. The roof segments were categorized (based on 408 

size) into three groups of less than 25 m2 (small), between 25m2 (medium) and 70m2, and more than 70 m2 (large). Figure 13 409 

shows the results for three categories of roofs, containing small segments, medium-sized segments, and large segments. The 410 

groups represent 35, 80 and 30 roofs, respectively. The results are described below: 411 

• A high RSD is obtained for small roof segment group. The reason could be explained by the over-segmentation  of several  roof 412 

segments in the stereo-matching process. An over-segmentation of a suitable roof can lead to a smaller amount of modules fitted 413 

on it and, therefore, bias the yield prediction importance of a less suitable roof segment. Additionally, smaller segments contain 414 

fewer pixels in the point cloud and ,therefore, given values for roof pitch angle and orientation are less accurate. 415 

• Medium-sized roof segments resulted in the highest accuracy prediction and the highest percentage of performance over-416 

prediction. This over-prediction could be caused by unidentified obstacles within the roof segments, but also by the customer 417 

choosing not to use the best-performing segment, but place modules on a slightly lower-performance one. 418 

• The most different result is found for the large roof segments. Their performance is generally under-predicted, while the RSD is 419 

highest with 11.7%. There could be multiple reasons for this. It might be that using one obstacle view is too inaccurate for large 420 

roof segments. A large roof segment could be divided in highly shaded parts and parts that are virtually free of any shade, so one 421 

reference point in the center might not be enough for obstacle view. Apart from that, large roof segments are seldom filled with 422 

modules. More often, it was encountered that they were only used partially. In this case, the installer would select the less 423 

shaded parts for installing PV modules. These decisions could make it difficult to test the improvement of performance 424 

prediction  per  roof.  It  would  require  selection  of  the part of a roof segment where PV was installed, either by manual 425 

inspection of aerial images or by pattern recognition of the PV modules through machine learning. 426 

Here, two techniques are proposed to deal with large roof segments more accurately: 427 

1) When the roof is large and more than a specific amount of modules is fitted, the PV array could be divided into multiple 428 

smaller parts. A boundary could be set at, for instance 10 modules or about 3 kWp, since this can be considered as the 429 

boundary for small residential systems. For each part of the module grid, a central point could be defined and thus the yield 430 

prediction could be done more accurately. An advantage of this techniques would be that the actual positions of modules 431 

are taken into account (not the middle of the roof segment). A disadvantage is that still a new method needs to be developed to 432 

erase modules from the system design. 433 

2) Another method could be to divide large roof segments in smaller segments. For example a roof size of 33.4 m2 could be 434 

chosen, since this was found as the average surface area of a roof which fits 10 modules. In this way, sub-segments with 435 

low performance could be discarded, and selection on high performance segments would then be possible. Parts of the roof 436 

could be considered independently. A big disadvantage of this techniques is that the sum of smaller segments cannot fit the 437 

same amount of modules as the full larger segment. 438 
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 467 

4.5. 2D Land register data vs. 3D roof segments 468 

To show the added value of yield  prediction  with  3D roof segments over using land register data only, a similar test of 469 

yield prediction was carried out using only the latter. For yield prediction with only building contours, all roofs were 470 

expected to be one-segment and flat. With this assumption, the same module settings were used as for the flat roof segments. 471 

In figure 14 the performance prediction can be seen, using the PVGIS yield calculation method neglecting the skyline 472 

profile. The quick-scan predicts an almost constant performance, since all roofs are supposedly flat, all modules have the 473 

same tilt, and no obstacles are taken into account. The lowest value found is 1030 kWh/kWp and the highest is 1114 474 

kWh/kWp. The only deviations in performance are caused by the slight difference in module orientation due to alignment with 475 

the roof edges and the difference in landscape horizon height as given by PVGIS. In figure 15 the same performance prediction 476 

   
Fig. 9: Scatter plot for panel fitting on 145 roofs. 

Only 13.1% of the roofs are fitted with more than 

double the real number of installed modules.   

  Fig. 10: Histogram for panel fitting on 145 roofs 

showing that for 70.3% of the roofs the amount of 

fitted  modules was too low.    

Fig. 11: Panel fitting time per segment type 

and area. 

 

   
Fig. 12: Quick-scan performance prediction using SM approach for 145 

roofs. 
Fig. 13: Mean over-prediction and relative standard deviation of roof yield 

by SM approach as a function of average segment area per roof, weighted 

by the amount of panels fitted on it. 

 
                                                    

  
 

Fig. 14: Performance prediction using only land 

register data and no obstacle view. 

Fig. 15: Performance prediction using land register 

data and the obstacle view for the most central point 

on the roof. 

Fig. 16: Performance distribution for 236 PV 

systems installed in the Netherlands and being 

monitored. 
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is carried out with the SM yield calculation method. The predicted performance shows a wide spread of results. With 20.37% 477 

relative standard deviation this form of performance estimation is not useful. Therefore, taking the obstacle view from one central 478 

point on a roof with multiple segments is not a reliable method for determining the losses due to shading. 479 

5. DISCUSSION AND CONCLUSION 480 

5.1. Discussion and future work 481 

Visual comparisons reveals that still there is a room for improvement for 3D roof segment reconstruction.  For example, the 482 

uncertainty in the given pitch angle is unknown, and it is unclear how often over-segmentation or under-segmentation of roof 483 

segments takes place. Another common issue was that parts with obstacles within large roof segments were not defined as gap 484 

in those segments.  485 

For large roof segments, multiple obstacle views can be considered. Advanced geometrical methods can also be used to 486 

calculate the parallax for nearby and far obstacles. Parallax refers to the geometrical translation of shading objects over the 487 

horizon for different points on the roof. Thereby multiple obstacle views can be created from skyline profile retrieved for the 488 

center of the roof (this would be easier if the horizontal distance from obstacles to the roof is known). 489 

The maximum module fitting algorithm could be further validated by manually choosing the same module fitting settings 490 

(layout, distance, and tilt) as used in the installed PV system. It could be investigated if the quick-scan is more accurate for 491 

flat or pitched roofs of the same size. This question remained out of the scope of the current research. It is however expected that 492 

the quick-scan would be less accurate for flat roof segments, since a larger variability was observed in the settings for 493 

module layouts (e.g. tilt angles of 0◦ to 20◦ and, therefore, very different row distances). Moreover, the boundary between flat 494 

and pitched roofs could be tuned further by inspecting many more PV systems on the roofs with the pitch angle of 5◦ to 15◦. 495 

The quick-scan calculation speed can be increased in various ways. The two most time- demanding steps of the calculation are 496 

the module fitting technique and creating the skyline profile from the surrounding height data. To make the module fitting 497 

technique faster, an analytical approach could be implemented for rectangular roofs, as mentioned in [34]. Fine-tuning the step 498 

size for shifting the module grid can also be investigated. Loading of height data and  the calculation  of  obstacle views can 499 

be made faster through recommendations highlighted in [38]. Additionally, the current quick-scan code was written in a way to 500 

have many optional settings. Choosing one preferred yield prediction method or a fixed set of module settings will increase 501 

the speed, thus many if statements can be avoided. Moreover, making the coding more efficient, avoiding for-loops and a 502 

multitude of Python packages, and converting data back and forth will boost the calculation speed. Lastly, the Random Access 503 

Memory (RAM) usage can be decreased by pre-allocating arrays [39]. 504 

Roofs could also be categorized by their PV potential. Figure 16 shows the measured annual performance distribution for 236 505 

PV systems. To quickly determine the  suitability  of the roofs for PV, the systems could be divided based on their 506 

performance. For example, five categories could be created with equal amounts of systems by soring the PV systems 507 

performances. This will result in four boundaries at 839.1, 911.7, 961.5 and 1012.9 kWh/kWp, respectively. Additional lower 508 

boundary can be set under which a roof is classified unsuitable. This method  is easy  to implement,  however, in reality  the PV 509 

potential is not the only variable influencing the decision of the roof owner. This method can be extended by applying a 510 

minimum amount of fitted modules to the results found by the quick-scan. If only one or two modules were fitted, it might still 511 

not be feasible to install them, since installation costs will be relatively high. 512 

Besides kWh/kWp as the only metric for roof suitability for PV, a system design can be rated based-on performance, 513 

installation, and aesthetic aspects (as decision-making process factors). A grading system was proposed based on a fast elitist 514 

non-dominated sorting genetic algorithm for multi-objective optimization, first published by [40]. This algorithm could  be  515 

implemented  to  categorize the PV systems that were designed on roofs by the quick-scan algorithm. 516 
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5.2. Conclusion 517 

This research aimed to develop a method that can quickly scan the PV potential of many roofs with a high precision in a short 518 

amount of time. The paper introduced the approaches used for each stage of the quick-scan method (3D roof segment 519 

reconstruction, automatic module fitting, and yield calculation). The method was tested using a dataset of rooftop PV systems 520 

located in the Netherlands. 521 

A simple and fast approach to determine the roof segment orientation was developed, based on the longest side of the 522 

roof segment polygon. For the set of 520 roof segments, the absolute error was found to be within 6.3◦ for 95% of the pitched 523 

segments. Most of the deviation were caused by the non-rectangular roof segments. 524 

For a studied set of 145 roofs and 215  roof  segments, module placement was underestimated by 17.5% on average. 525 

Multiple reasons were identified for fewer modules being fitted than actually installed: (1) over or under-segmentation, (2) 526 

different module layout, size, and spacing from roof edges, (3) different module tilt and spacing on flat roofs, and (4) modules of 527 

one PV system spread over multiple building roofs. In  terms  of  RSD,  the  obstacle-including  approaches  (SM and PVMD)  528 

outperformed  the  PVGIS  yield  calculation.  It is concluded that using only one obstacle view might cause inaccuracy  for  large  529 

roof  segments,  especially  if  the  least shaded part of a large roof is used, this can lead to under-prediction of the PV system 530 

performance by the quick-scan method. 531 

To demonstrate the added benefit of 3D roof segment data over 2D land register data, the module fitting and yield prediction 532 

were also carried out. The performance predictions using the SM yield prediction method were widely spread with an RSD of 533 

20.4%, while those using the PVGIS method were  relatively constant at 1070 kWh/kWp per year. The added value of 3D roof 534 

segments was thus shown. 535 

For the quick-scan method, the required calculation times per roof for SM, PVMD, and PVGIS were around 28, 26 and 6 536 

seconds, respectively. 537 
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