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Abstract
Phase-Contrast Magnetic Resonance Imaging (PC-MRI) surpasses all other imaging methods in quality and completeness for
measuring time-varying volumetric blood flows and has shown potential to improve both diagnosis and risk assessment of car-
diovascular diseases. However, like any measurement of physical phenomena, the data are prone to noise, artefacts and has a
limited resolution. Therefore, PC-MRI data itself do not fulfil physics fluid laws making it difficult to distinguish important flow
features. For data analysis, physically plausible and high-resolution data are required. Computational fluid dynamics provides
high-resolution physically plausible flows. However, the flow is inherently coupled to the underlying anatomy and boundary
conditions, which are difficult or sometimes even impossible to adequately model with current techniques. We present a novel
methodology using data assimilation techniques for PC-MRI noise and artefact removal, generating physically plausible flow
close to the measured data. It also allows us to increase the spatial and temporal resolution. To avoid sensitivity to the anatom-
ical model, we consider and update the full 3D velocity field. We demonstrate our approach using phantom data with various
amounts of induced noise and show that we can improve the data while preserving important flow features, without the need of
a highly detailed model of the anatomy.

Keywords: Flow Visualization, Visualization, Medical Imaging, Visualization, Natural Phenomena, Modelling

ACMCCS: • Computing methodologies→Data assimilation; Physical simulation; •Applied computing→ Imaging; Life and
medical sciences

1. Introduction

Cardiovascular diseases (CVDs) are globally themain cause of mor-
tality and morbidity [MBG*15]. Blood flow plays a decisive role
in their occurrence and progression [HBB*10, MFK*12]. There-
fore, acquiring knowledge of the blood flow is of key importance.
Although various techniques exist to measure the blood flow of a
patient, phase-contrast enhanced magnetic-resonance imaging (PC-
MRI) provides the most detailed and complete information. PC-
MRI enables measuring time-resolved volumetric vector fields that
represent the blood flow in three dimensions over time [MFK*12].
This flow imaging information is complex, and often visually anal-
ysed using flow visualization techniques such as integral lines. The

most important aspect of PC-MRI data is that it is patient specific,
that is, the measured flow describes the actual flow in the patient.
However, the presence of noise and artefacts due to limitations of the
scanning technique [MFK*12] make the data not physically plau-
sible, and, therefore, the direct visualization of the PC-MRI data
generates visualizations that are often inaccurate and difficult to
analye. For instance, partial volume effects can occur due to the
limitations of the measuring resolution, which are especially no-
ticeable near the vessel wall. For many blood-flow analyses and vi-
sualizations, the flow is assumed to be divergence-free [LKTW12,
OUT*15] and this feature is relevant for the diagnosis. The
assumption is that the only sources and sinks of flow should be at
the beginning and end of the vessel. Another physical property is

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

496

https://orcid.org/0000-0003-1532-9362
https://orcid.org/0000-0001-9821-0767
https://orcid.org/0000-0003-3209-0349
https://orcid.org/0000-0001-8755-0192
https://orcid.org/0000-0002-5477-973X
https://orcid.org/0000-0003-4153-065X
https://orcid.org/0000-0002-1034-737X
http://creativecommons.org/licenses/by/4.0/


N.H.L.C. de Hoon et al. / Data Assimilation for full 4D PC-MRI measurements 497

Figure 1: Inconsistencies in the vector-field data can have a big
impact on flow visualization. Respectively, from top to bottom, (a)
shows the original data, in image (b) the vector field has a bias
in one direction causing the flow to leave the domain. Images (c)
and (d) suffer from a single source of divergence, more precisely (c)
depicts a sink and (d) a source. Note that the number of parallel
integration lines decreases in all three scenarios compared to the
baseline as shown by image (a).

that no flow should leave the blood vessel, that is, the vessel does
not leak. Both divergence and flow that leaves the segmentation
can occur when using PC-MRI and have an impact on flow visu-
alizations, for example, using integration-based flow visualization.
Figure 1 illustrates these effects on the visualization of these mea-
surement artefacts. Here streamlines are shown for the same infor-
mation with a specific artefact, that is, flow leaving the segmenta-
tion and divergence in the form of a sink and source. Each of these
artefacts change the flow visualization substantially, and as such,
the flow could be interpreted incorrectly. Moreover, for quantita-
tive analysis, these artefacts must be taken into account with care.
For example, for quantitative particle tracing, where particles are
emitted and counted to determine, for example, the percentage of
blood volume that is ejected by the heart in one heart cycle and,
thus, leaves the heart adequately. In this case, if particles are leav-
ing the domain or get stuck in a sink, such percentages will be neg-
atively affected and therefore less reliable. Furthermore, the spatial
and temporal resolutions that can be achieved with PC-MRI are lim-
ited [MFK*12], which has a clear impact on the analyses and visu-
alization, when determining, for example, the positions of vortex
cores.

Computational Fluid Dynamics (CFD), on the other hand, can be
used to obtain high-resolution, physically correct flow data. How-
ever, most of these simulation models make assumptions and re-
quire a precise modelling of the anatomy [MNvTK*15]. In some
cases, it can be very challenging, or even impossible to model
the actual anatomy of the patient with current techniques, for ex-
ample, when certain details are small in comparison to the imag-
ing resolution, which is the case, for instance, for the heart valves
[TBE*16].

Data assimilation can be used to estimate, interpolate or extrap-
olate the true flow velocity field from the PC-MRI data. Data as-
similation combines theory – in this case a physics-based model
– with real-world measurements. Data assimilation is a common
approach in many fields, such as geoscience, where it is used,
for instance, in numerical weather prediction [DUS*11, LBC*15,

PBC*16]. Goals for data assimilation include determining good
initial conditions for the model, interpolation of sparse observa-
tion data and an improved estimation of the true state of the sys-
tem. The concept of data assimilation was also previously applied
to PC-MRI data. However, these methods are focusing on the im-
provement of in–out flow boundary conditions of the simulation
models. The results remain highly dependent on the model of the
anatomy, such as the vessel wall segmentation. Furthermore, flow
patterns that are introduced due to anatomical features missing in
the segmentation cannot always be reconstructed by these meth-
ods. This limits its applicability, despite producing physically plau-
sible flow. Furthermore, these methods also suffer from high com-
putational costs that are usually connected to using finite element
models.

In this paper, we present a data-assimilation methodology that
uses the full 3D PC-MRI flow data. It updates the full 3D PC-MRI
flow data to be physically plausible, with limited sensitivity to the
accuracy of the given anatomical model and boundary conditions.
We aim at obtaining flow data that fulfils the following goals:

• Patient-specific: as close as possible to the original measured data
when the measured data are reliable.

• Physically-plausible: divergence-free and no flow leaking
through the vessel walls.

• High-resolution: enough data points to convey useful analysis.

To this end, we define an optimization process that minimizes
the difference between the measured data and a model based on the
physical flow properties. A quasi-Newton method [Noc80, LN89]
is used to find the velocity field produced by the model that best
corresponds with the measured data. To obtain the gradients nec-
essary for the quasi-Newton method, we apply automatic differ-
entiation [Hog14] on the model code. Furthermore, the proposed
methodology can also be used to increase the resolution, both spa-
tially and temporally, in accordance with the Navier–Stokes equa-
tions and the measured data.

Our solution also allows including the concept of uncertainty.
That is, local areas with reliable measurements have more influence
on the resulting flow field, while the flow model has more influence
in the areas where the measurements are less reliable.

In this paper, we firstly discuss related research that was con-
ducted. Subsequently, we describe the type of data that were used in
this paper. In the following sections, we present our methodology,
and finally we evaluate and show several examples as results. We
conclude the paper and provide potential future work.

2. Related work

Our method is related to different research fields that we will dis-
cuss in this section. Inspired by optimal control methods, we will
use similar techniques to steer the flow towards the measurement.
Furthermore, our goal is in some aspects similar to PC-MRI denois-
ing and data assimilation techniques in general.
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2.1. Simulation control

In computer graphics, simulated fluid control is an active research
field. The main objective is to provide artists with tools and meth-
ods to control the fluid simulation to achieve a desired anima-
tion of the fluid. For instance, by allowing the artist to use refer-
ence images of the flow density [GITH14], control forces [HK04,
PM17], control particles [TKPR06] or, more recently, data-driven
techniques [CT17]. For animation, the appearance of the fluid is
most important to the artist, that is, the fluid surface in the case of
liquids and densities in the case of smoke. Therefore, these control
methods try to control the fluid surface or density. The method by
McNamara et al. [MTPS04] uses iterative minimization to match
a given target density or surface. A variational approach was intro-
duced by Nielsen et al. [NC10], in which the simulation follows the
low frequency information present in the target flow. In our work,
we use a similar approach, such that the resulting flow best matches
the PC-MRI measured velocity field. However, as we do not focus
on the visual representation of the flow directly, but rather on the un-
derlying velocity field to produce more reliable visualizations, the
existing methods cannot readily be applied to our scenario.

A PC-MRI data coupling approach was presented by De Hoon
et al. [HJEV16]. The method tries to match a target velocity field �um
by correcting a simulated field �us using the difference �ud between
the target and simulated velocity field. This difference velocity field
is then simulated and added as a correction to compute the final
velocity field �unew = �us + sim(�ud ). The term �unew is computed for all
phases, and it is used to temporally interpolate the data by simulating
forward and backward between successive phases. The intermediate
fields are obtained by weighted summation of the two simulations.
However, the produced velocity field could still substantially deviate
from the target field because the simulation step is not guaranteed
to be close to �um.

2.2. PC-MRI denoising

Multiple approaches exist to denoise PC-MRI data [SNGP93,
Buo94, FA03, LKTW12, BGWK13, BLV*15, OUT*15,
KBvP*16, SKP18]. Some methods include the finite difference
method [SNGP93], which projects the data onto a divergence-free
vector field. Another method uses RBF [BGWK13] to minimize
the divergence approaching the measured data using a set of
convolution and divergence-free radial basis functions. Similarly,
Ong et al. [OUT*15] proposed the use of divergence-free wavelets
(DFW). A comparison by Sereno et al. [SKP18], however, found
that some divergence remained present in the data for the methods
above. They reduce its divergence, but might deviate from the
measured data more than necessary, even if some methods actively
try to minimize the difference between the outcome and the noisy
input data, for example, Bostan et al. [BLV*15]. These techniques,
on the contrary, mainly focus on making the data divergence
free, and often do not consider the dependency on the modelled
anatomy, are not compliant with Navier–Stokes equations nor allow
for interpolation. Furthermore, some of these methods rely on the
Helmholtz–Hodge decomposition to make the data divergence
free. This decomposition assumes that the input vector field is
sufficiently smooth [BNPB13], which is not the case for most
measured data.

2.3. Data assimilation

We want to use a physics-based model and measured data to ob-
tain physically plausible patient-specific data. One relatively com-
mon approach is to use simulation models guided by PC-MRI data,
that is, the boundary conditions are derived frommeasured PC-MRI
data [LEVDGS19]. The amount of research using data assimilation
is limited. Most techniques that exist in the medical domain (i.e.
PC-MRI and ultrasound) use data assimilation to match simulation
data with measured data. Many of these approaches focus on finding
the optimal boundary conditions to match a target velocity field, for
example, a measured velocity field [DPV12, FNE*18, IAWW18,
GCM*18]. They often consider the whole measurement to find the
2D in/out-flow conditions that best match the measured data. A dis-
advantage of this approach is that it is strongly dependent on the
accuracy of the modelled anatomy. That is, updating the 2D in/out-
flow conditions cannot generate flow patterns if the anatomical seg-
mentation does not have the full details. The approaches by Rispoli
et al. [RNNC15] and Fathi et al. [FBB*18], on the other hand, use
regularization to compute a least squares solution to match model
and measured data based on the actual full 3D flow in the patient.
However, they do not consider the local quality of the measured
data nor temporal interpolation. Moreover, the goal is to achieve
improvement of the model rather than improving the measured data
itself. Furthermore, as the optimization is initialized with a veloc-
ity that is zero it is more likely that the optimization gets stuck in a
local minimum.

Our data assimilation method combines a model with observa-
tions of a real world system in order to obtain a better estimate of
the system. Our method is based on the commonly used data as-
similation 3DVAR method. This method minimizes the weighted
squared difference between the observation and model. To the best
of our knowledge, we are the first to also consider local quality of
the PC-MRI data to steer the local importance of the measurement
versus the model in the data assimilation process.

3. Data

In this section, we introduce the type of data sets used in this pa-
per and the voxel-wise uncertainty measurement that will be used
by our data assimilation method. Although 4D PC-MRI is not yet
applied in a clinical setting, research indicates that it provides in-
teresting insights in the blood flow [HH08, KYM*93, MDM*05,
HH08, MFK*12, BDC14, VFdH*18]. Typically patient data have
a spatial and temporal resolution in the order of 1.0–3.0 mm and
20–50 ms, respectively. Especially the temporal resolution is coarse
as healthy blood flow can reach speeds of 200 cm/s. Higher resolu-
tions can be acquired at the cost of higher noise levels or by longer
(impractical) scanning time [MFK*12].

Figure 2 shows a data set of the aorta of a healthy volunteer at
the peak systole phase – the moment when the speed is highest
in the aorta; the PC-MRI volumes were cropped to match the re-
gion of interest. The figure shows one of the three velocity com-
ponents, the magnitude signal and the Signal-to-Noise Ratio (SNR)
of the data. More details on the acquisition of PC-MRI data can
be found, for example, in the work by Markl et al. [MFK*12] and
Gasteiger [Gas14].
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Figure 2: Respectively, one of the three velocity components (in-
ferior to superior) (a), the magnitude (b) and the corresponding
signal to noise ratio (c), computed using the method by Friman
et al. [FHH*10, FHH*11]. All at peak systole of a healthy volun-
teer.

Figure 3: An overview of the voxels that were marked as invalid
during pre-processing.

For the data sets we consider segmentations that are generated
based on the temporal maximum intensity projection (tMIP) of the
data. The tMIP represents the maximum velocity magnitude a voxel
takes through all phases. The segmentation is then generated using
marching cubes and smoothed/corrected using Blender. This seg-
mentation does not require additional imaging of the patient, how-
ever, it is a coarse approximation. As our method does not rely on
the accuracy of the mesh, such an approximation suffices, in con-
trast to CFD models which require a more accurate mesh to provide
results similar to the measured flow.

Due to noise and artefacts present in measured data, every voxel
in the data set can have a different reliability ε. For an estimate
of the voxel-wise SNR, and thus reliability, caused by PC-MRI
measurement noise, we employ the method presented by Friman

et al. [FHH*10, FHH*11]. This provides us with an initial value for
ε at each voxel. We then pre-process the data using the method pro-
posed by Yang et al. [YBK*96] to remove severe artefacts. More
specifically, we mark all voxels as invalid if any vector component
deviates more than 25% from the weighted average of its surround-
ing voxels. By using a deviation of 25%, the number of voxels that
are marked invalid is small for our data sets, as indicated by Fig-
ure 3, if any voxels were marked as invalid at all. The resulting gaps
are then filled with the average of the surrounding valid voxels, and
the reliability ε of the corrected voxels is set to zero. Indicating that
these voxel are not trustworthy. Furthermore, we also mark all vox-
els that are likely to be affected by partial volume effects with reli-
ability zero. We update the SNR based on the distance to the seg-
mentation boundaries. For example, we set the certainty to zero for
all voxels that are crossed by the segmentation. This leads to a mea-
surement reliability ε per voxel, where the value of ε is larger when
the voxel is more trustworthy. Note that voxels with a zero relia-
bility are only updated by the model considering the surrounding
data, meaning that the measured data stored in such a voxel have no
impact on the optimization process, yet the resulting value is based
on the surrounding, more reliable voxels. Therefore, the overall in-
fluence of these voxels on the resulting flow is negligible when the
amount of voxels with zero reliability is low.

4. Data assimilation for PC-MRI data

In this section, we present our minimization framework. To model
the behaviour of fluid the Navier–Stokes equations for incompress-
ible fluids should be solved as these describe the physical behaviour
of a fluid:

∂�u

∂t
= −�u · ∇�u− 1

ρ
∇p

∇ · �u = 0. (1)

These equations consist in an advection term, a pressure term and
a divergence condition. The divergence condition, ∇ · �u = 0, is re-
quired to ensure the fluid is incompressible, meaning that no diver-
gence is present in the fluid. Where the advection term, −�u · ∇�u,
describes how the velocity is transport by the velocity field itself
through time. The pressure term, 1

ρ
∇p, describes the amount of

force applied by the fluid onto itself, hence, differences in pres-
sure cause the fluid to flow. As the advection term considers the
transport of fluid over time, this term is initially omitted. Note that
for denoising PC-MRI data the advection term is commonly om-
mited [SNGP93, BGWK13, OUT*15, SKP18]. Moreover, in this
work we assume blood to be inviscid, that is, we do not con-
sider fluid viscosity. Blood is a non-Newtonian fluid in general,
however, often it is assumed to be inviscid in high-velocity blood
flow simulations. In special situations, for example, when the flow
stops, the non-Newtonian properties should be considered. In our
work, we focus on the inviscid models which is a common as-
sumption regarding blood simulation [SKP18] and simplifies the
assimilation of the model with measured data. Moreover, for tem-
poral interpolation our method requires simulating fluid with a neg-
ative timestep and only inviscid flow is shown to be time-reversible
[DOW08].

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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The basis of our method is a function P(�v) : S ⊂ R
3 → R

3, with
S a subset in R

3, which maps a velocity field �v to another velocity
field �y. For denoising, P can be a divergence-free filter performing a
pressure projection, which solves the pressure and divergence terms
of Equation (1).

To make a given velocity field divergence-free (i.e. ∇ · �u = 0),
we use Chorin’s projection method. This method is based on the
Helmholtz–Hodge decomposition, which states that a smooth ve-
locity field can be decomposed into a curl-free component and a
divergence-free vector component. Given a velocity field, �u, for ex-
ample, the measured data PC-MRI vector field, Chorin’s projection
method computes the curl-free component of the velocity field and
subtracts it from the original velocity field to yield the divergence-
free field. That is, first we compute the scalar pressure field p by
solving the following Poisson equation

∇2p = ρ

�t
∇ · �u, (2)

where ρ is the fluid density and �t the time step. As the fluid must
remain incompressible and thus have no divergence, a correction of
1
ρ
∇p is applied to enforce the incompressibility. In our implementa-

tion, we solve this Poisson equation using the pre-conditioned con-
jugate gradient algorithmwith an incomplete Cholesky factorization
as pre-conditioner. Once the pressure is known, the new velocity
field �un is computed using

�un = �u− �t

ρ
∇p. (3)

Note that if the given velocity field is non-smooth, the pressure solve
may fail to correct for its non-zero divergence, hence, a sufficiently
smooth input velocity field is necessary.

To handle irregular solid–fluid boundaries, for example, segmen-
tations that do not align with the underlying grid, we use the vari-
ational solid boundaries approach by Batty et al. [BBB07]. Here,
the segmentation is represented as the zero level of a signed-distance
field, that is, for every voxel the smallest (signed) distance to the
segmentation is stored. The gradient of such a field represents the
direction to the nearest segmentation location. The flow between
fluid cells is determined by a normalized weight, which is com-
puted based on the level set and the portion of the cell face between
the cells that lays within the segmentation. The pressure solve uses
these weights to constrain the flow to stay within the segmentation.
This means that the velocity component in the direction of the ves-
sel wall is zero (i.e. Neumann-type boundary condition). Therefore,
by construction, this condition ensures no flow will cross the vessel
walls.

4.1. Minimization

Using the pressure solve function P described previously, we can
find physically plausible velocity fields. However, these fields are
not necessarily as close as possible to the measured data. Therefore,
our goal is to find a suitable input for the function P such that the
field produced byP is as close as possible to themeasured field �m. To
achieve this, we use a least-square optimization with constraints. To

Figure 4: A schematic overview of our framework for a given func-
tion cost function f .

ensure similarity to the measurements, we use the following squared
least error functional,

argmin
�u

(
α · ε · ∥∥P(�u)− �m

∥∥2), (4)

where �u is the field that we solve for, α ≥ 0 is a constant weight and
ε provides the local reliability for every voxel as described in Sec-
tion 3. We are actually interested in P(�u), as discussed above. Note
that this cost function corresponds to the 3DVAR cost function with
a perfect model assumption. Furthermore, it is similar to the cost
function used by Bostan et al. [BLV*15] without their regulariza-
tion. A schematic overview of the minimization process is shown in
Figure 4.

The function P could be replaced by the full Navier–Stokes equa-
tions that include the temporal evolution of the velocity field. How-
ever, as the temporal resolution of the PC-MRI data is low, we
omit the temporal element of the velocity evolution that is part
of the Navier–Stokes equations. Moreover, in our preliminary ex-
periments using a function that included the temporal component
and a steady flow assumption, similar to the approach by Rispoli
et al. [RNNC15], led to results that deviated more from the mea-
sured data.

To constrain the minimization, we rewrite Equation (4) as a con-
trol problem, comparable to McNamara et al. [MTPS04]. That is,
we substitute �u by �m+ �c, so that the goal is to find the control vector
field �c that corrects the measured field �m, it is as small as possible,
and yields P(�m+ �c) that is close to �m. The correspondingminimiza-
tion is then

argmin
�c

⎛
⎝ α · ε · ∥∥P(�m+ �c)− �m

∥∥2+
γ · ε · ∥∥�c∥∥2

⎞
⎠, (5)

where the second term, weighted by γ ≥ 0, is a Tikhonov-style reg-
ularization term that penalizes too much control, so that changes to
the measured data are kept to a minimum. Currently, our approach
does not specifically avoid potential local minima. However, as the
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minimization is initialized close to themeasured data, when themin-
imization finds a local minimum the result should be relatively close
to the measured, target, data.

Applying Helmholtz–Hodge decomposition assumes that the in-
put vector field is sufficiently smooth [BNPB13], which may not
necessarily be true for the measured data, due to the presence of
artefacts and noise. Therefore, it is possible that not all divergence
can be removed by the pressure solve. Furthermore, the minimiza-
tion and the pressure solve P have conflicting goals: the minimiza-
tion tries to keep the solution close to the measured data, while the
pressure solve deems it physically plausible. In order to decrease the
cost function, the minimization can produce non-smooth fields for
which the pressure solve cannot correctly compute a smooth pres-
sure field. To address this issue, we include an additional term that
punishes the minimizer for producing fields that the pressure solve
cannot project. More specifically, this term penalizes the minimizer
when it produces fields with a high divergence. Therefore, this term
is given by the squared divergence, that is,

argmin
�c

(
β
(∇ · P(�m+ �c)

)2)
, (6)

where β ≥ 0 is a constant weight. Here also the divergence compu-
tation is weighted using the variational solid boundaries approach
by Batty et al. [BBB07] to ensure the flow does not leave the seg-
mentation.

Our final cost functional f is a combination of Equations (5)
and (6), so that the optimization problem becomes

argmin
�c

f (�c) = argmin
�c

⎛
⎜⎝

α · ε · ∥∥P(�m+ �c)− �m
∥∥2+

β
(∇ · P(�m+ �c)

)2+
γ · ε · ∥∥�c∥∥2

⎞
⎟⎠, (7)

where α, β and γ are user-set parameters, and ε is defined by the
data and depends on the measurement field �m.

The cost function is non-linear, therefore, we use a quasi-Newton
type minimization. More specifically, we use the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [Noc80,
LN89]. L-BFGS iteratively finds a minimizer by evaluating the cost
function and its derivative. That is, the control vector field �c pro-
vided by the minimizer is used to compute the cost functional and
its gradient. The minimizer then uses this information to improve
the control vector field �c, so that P(�m+ �c) becomes the current ap-
proximation of the optimal physically plausible field that matches
the measured field �m as closely as possible. We set the algorithm to
iterate until either the gradient value drops below a threshold, or the
value of the cost functional did not decrease sufficiently in the last
few iterations. The computation of the derivative of the cost func-
tion is done using automatic differentiation via the adjoint code of
the implementation. Details on automatic differentiation and on how
to convert code into its corresponding adjoint code can be found
in the additional material and in the work by Giering and Kamin-
ski [GK98] and Hogan [Hog14]. Note that it is possible to imple-
ment the adjoint code of an algorithm by hand [MTPS04]. However,
this leads to two dependent codes that have to be maintained in par-
allel. To remove this dependency, we use the Adept [Hog14] library
for C++ to compute the derivatives of our pressure and advection

solvers. A schematic overview of the minimization process is shown
in Figure 4.

4.2. Spatial interpolation

To increase spatial resolution, we can use the system to interpo-
late physically plausible values between the known values. That is,
when upsampling, we consider the information between the mea-
sured voxels to be missing data. Therefore, we double the spatial
resolution and linearly interpolate between the known voxels to get
a new measured field �m. As the interpolated voxels are most likely
incorrect, we set their reliability ε to zero. That is, no matter what
value they have, the minimizer will only take them into account
for the divergence term given in Equation (6). Also the pressure
solve does take them into account and will change them to make the
field divergence-free. As the minimizer will try to reduce the error
with respect to the measurements, the resulting field will be as close
as possible to the measured data. Both the minimizer and pressure
solve will change the interpolated voxels to best fit the measured
data and have a physically plausible result.

4.3. Temporal interpolation

In order to perform temporal interpolation, we need a cost function
that considers the temporal aspect of the data. Therefore, we need a
model that describes how the flow evolves over time.

4.3.1. Simulation model

In order to simulate the behaviour of fluid over time, the Navier–
Stokes equations as given by Equation (1) should be solved. There-
fore, as we already have the pressure solve, we only require an ad-
vection scheme. That is, we need a model for velocity transport by
the velocity field through time, that is, prescribe how the velocity
field moves through time. Note that, in this work we assume blood
to be inviscid. That is, we do not consider viscosity. This simpli-
fies the model and is a common assumption regarding blood sim-
ulation [SKP18]. Moreover, our method requires simulating fluid
with a negative timestep and only inviscid flow is shown to be time-
reversible [DOW08].

To this end we use the semi-Lagrangian advection method intro-
duced by Stam [Sta99]. The velocity field �u is updated for every grid
position by tracing backwards the path of a virtual particle. That is
for a grid position p and time step �t the new velocity is given by
�unew(p) = �u(q), where q is the backtracked position of the virtual
particle, that is, the location where the particle was at time t − �t;
hence q = p− �t �u(q). To avoid flow leaving the segmentation, we
again constrain the flow on the boundaries by removing all vector
components in the normal direction to the segmentation, that is, we
use a Neumann-type boundary condition.

This method is stable, and furthermore, due to the iterative na-
ture of the minimization, the simulation will not suffer much from
numerical dissipation, as it will be limited to a single time step.
Of course, more accurate hybrid schemes such as the fluid im-
plicit particle method (FLIP) [BBB07] perform in general better
than this simple scheme. However, a non-trivial conversion between
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Table 1: The mean and standard deviation of the absolute differences in
magnitudes and angles given by |base case− result|.

Magnitude difference Angle difference

Mean Std dev Mean Std dev

Base case 1.66 4.77 14.58 20.12
SNR 10 2.43 2.68 14.77 21.63
SNR 4 2.43 3.03 17.66 22.19
Spatial interpolation 1.37 3.21 14.13 19.27
Temporal interpolation 1.64 1.89 11.61 19.44

particles and grid is needed for the derivative calculation. This
makes FLIP not a suitable method and would also make it more
computationally intensive.

4.3.2. Minimization

In order to have a physically plausible temporal interpolation, we
search for a physically plausible field �y at time t + 1

2�t, which is in
between twomeasured velocity fields �mt and �mt+�t at time step t and
t + �t, respectively. Note that this requires simulation backwards
in time, that is, we simulate from �y at time t + 1

2�t to �mt at time
t. As we have an inviscid fluid, the negation of the velocity field is
equivalent to using a negative time step [DOW08].

Given a simulation function S(�vt ,�t ) which evolves �v as in Sub-
section 4.3.1 over a time step �t, pressure solve function P(�vt ) and
input velocity field �vt at simulation time t, we can setup the follow-
ing cost functional

f (�c) =

⎛
⎜⎜⎜⎜⎜⎜⎝

α · ε1 · ∥∥S(P(�mi + �c),− 1
2�t )− �mt

∥∥2+
α · ε2 · ∥∥S(P(�mi + �c),+ 1

2�t )− �mt+�t

∥∥2+
β
(∇ · P(�mi + �c)

)2+
γ · εi ·

∥∥�c∥∥2,

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8)

where �mi = (�mt + �mt+�t )/2 is the linearly interpolated field of the
two measurements and ε1, ε2 are the per-voxel reliability for the two
measurements and ε is the interpolated reliability per voxel, that
is, εi = (ε1 + ε2)/2. This is used as the initial guess for which we
want to determine the control field �c. Furthermore, we use α as the
user-given weight to both measurements, as the temporal distance
between the two measurements is equal. After the minimization of
f (�c), the resulting physically plausible field is given by P(�mi + �c).
Note that his formulation is similar to Equation (7), albeit the first
least-squared error term is replaced by two least-squared terms, after
simulations with the nearest measurements, �mt and �mt+�t . As both
measurements are not necessarily noise free, they can be denoised
beforehand using the method described in Section 4.1.

5. Results and evaluation

In this section, we present results to illustrate our method and evalu-
ate it based on our goals, that is, the resulting data should be patient-
specific, physically plausible and high resolution. To this end, we

Figure 5: Streamlines of the measured flow before our method was
applied. All visualization parameters (number of lines, seeding posi-
tion and cutting plane) are equal to those in Figure 6. Note the pres-
ence of a vortex in the top-right corner and the helical flow present
in the top-left corner and from the centre towards the top-right cor-
ner.

Figure 6: Streamlines of the measured flow after our method was
applied. All visualization parameters (number of lines, seeding po-
sition, cutting plane and camera parameters) are equal to those
in Figure 5. Note that the flow features are preserved while more
streamlines are visible due to the lack of divergence and flow not
leaving the segmentation.

will evaluate the sensitivity of our method to the most relevant pa-
rameters as well as its robustness to noise. After this, we evalu-
ate the quality of the spatial and temporal interpolation when using
our method. Finally, we demonstrate our method on in vivo mea-
sured data. The requirement of yielding physically plausible fields
is mainly intrinsically satisfied by our method as the physical prop-
erties of the flow are part of the model. However, we also evalu-
ate several aspects like to which extent the field is divergence free.
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Figure 7: A visual comparison of our method when used for denoising and interpolation. The velocity magnitude of a fixed slice through the
volume is shown. For all streamline images, the same seeding positions and same number of streamlines are used. The input data are shown
on the left, while the result of our method is shown on the right. The reference for the streamline images is shown by Figure 6. Note that,
despite the different input scenarios, the images on the right are comparable. Moreover, the flow features as visualized by the streamlines in
the reference image are also present after our approach was applied.

We will also compare our approach to other state of the art meth-
ods. For the visualization of the flow, we use streamlines, which
are commonly used for PC-MRI flow data [KYM*93, MDM*05,
HH08, MFK*12]. The flow is unsteady, so the data consist of mul-
tiple time steps, and as such, pathlines would be suitable. However,
the time step between the phases is relatively large in relation to the
flow speed, and therefore, often short streamlines are used. Stream-
lines also illustrate the changes made to the flow field for a single
phase, allowing us to compare individual phases. In all our experi-
ments, the conjugate gradient method used by the pressure projec-
tion step converged in less than 20 iterations with an error tolerance
of 1× 104.

5.1. Evaluation data

There is no trivial ground-truth for blood-flow data. Ideally, one
would use a ground truth for validation, for example, an analytical
solution. However, while some analytical solutions to the Navier–
Stokes equations exist for specific flows, they do not exist for non-
trivial flows that possess the characteristics of blood flow [THZ98].
As a result, high-quality experimental data are often used for the
validation of both simulations and new measurement techniques.
One way to obtain such experimental data is by the use of a phys-
ical phantom. For the evaluation of our method, we use 4D PC-
MRI measured data of a glass phantom that was created based on a
3D scan of an intracranial aneurysm in a patient. A pulsatile (time-
varying) flow was generated based on the velocity profile measured
in the internal carotid artery of the patient. More details regard-
ing the acquisition of this type of data can be found in the work
by van Ooij et al. [vOGP*12]. One of the advantages of phan-
tom data over patient data is that the flow can be measured at
a higher resolution and with a higher SNR, as the imaging time
can be increased. Therefore, phantom data have a relatively low
amount of measurement noise. Furthermore, using a glass model
the vessel wall is well defined and hence less (motion) artefacts
can be expected. The measured phantom data have a resolution of
80× 47× 51 with a voxel size of 0.2 × 0.33 × 0.2 mm. Flow was
colour-encoded with flow speeds between 0 and 60 cm/s. The mea-
sured data are shown in Figure 5 without any processing which
is common current practice. Figure 6 shows the results after ap-
plying our method. For all visual comparisons exactly the same
visualization parameters are used. The streamlines use the same

seeding positions, and the same slice of the velocity magnitude is
shown.

To illustrate the results and preservation of features with real data
sets, several results with 4D PC-MRI data sets, as described in sec-
tion 3, will be shown.

5.2. Parameter sensitivity

Ourmethod relies on three weighting terms, α, β and γ , the ratio be-
tween these weights rather than the absolute value determines their
importance for the cost function, and thus, influences the outcome.
The sensitivity of our method to different ratios of the weights is
shown in Figure 7. The circles represent the sampled positions of
the parameter space in barycentric coordinates. Every sample rep-
resents a ratio, and the total sum of the parameters is 1, that is,
α + β + γ = 1. This means that in every corner of these equilat-
eral triangles one of the parameters has value 1 and the others are
0. We evaluated how close the result is to the measured input by
comparing the average of all velocity vectors, that is, the average
difference in velocity magnitude and the average difference in an-
gle. Furthermore, the average of the absolute divergence that is still
present in the data is shown to evaluate the physical-plausibility. As
the results vary a lot, the highest and lowest values were clamped.
From the evaluation it follows, as expected, that the terms α and γ

ensure the result is close to the measured data. Naturally, the term
β leads to a more divergence-free field. If the term β = 0, the re-
maining divergence is relatively high, but the result is closer to the
measured data. Based on this sensitivity analyses, throughout the
paper, we use the following values for the weighting ratio of the
terms: α = 0.4, β = 0.4 and γ = 0.2. These values are close to the
optimal shown in the figure. Although they are not the exact optimal
values, this ratio seems to achieve a good trade-off between close-
ness to the measured data and remaining divergence. However, this
setting is not critical as the influence of the parameters seems to be
rather stable in our empirical analysis. Moreover, the optimal ratio
deviates slightly for every measurement, and hence, would have to
be determined per measurement.

Figure 5 shows the results of visualizing the measured data ob-
tained from the scanner without any processing. Figure 6 shows
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Figure 8: The sensitivity of our method for different ratios of the three parameters α, β and γ . The two left-most triangles show how well the
velocity vectors match the measured input. The third right-most triangle shows the remaining divergence. Colours represent the average value
for the tested configuration. Note that darker colours mean the method performs better. The lowest and highest values have been clamped to
show a better representation and the relative differences.

the results after applying our method using the settings mentioned
above. We can observe that, after our method was applied, the
streamlines do not merge due to divergence and more streamlines
can be traced for a longer amount of time without leaving the seg-
mentation. The same features are visible in both figures, although
they are much clearer after applying our method. Note that stream-
lines were seeded with same settings for both figures.

5.3. Denoising

The evaluation of the denoising capabilities of our method con-
sists of two parts. We show the robustness of our method to

various amounts of noise and by a comparison with previous
methods.

5.3.1. Robustness

Given the lack of ground truth for PC-MRI, the denoised data,
shown in Figure 6, will be used as a reference for our next eval-
uation step. To test the robustness of our method to various levels
of noise, we need to control the amount of noise present in the data.
Note that we do not use the original measured data as shown in Fig-
ure 5, because there is noise present in the data that would make it
very difficult to determine the robustness of the method. For this, we
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Figure 9: Based on the lambda2 criterion, vortex cores can be found. Using volume rendering, the vortex cores are shown for the original
measured data (red), the data after our approach were applied (blue) and the union of the two volumes (green). The most right two images
show the corresponding streamlines seeded from the vortex cores of the measured data and the data after our approach, respectively.

add various amounts of noise to the reference data, that is, the de-
noised data. In this way, we can compare the result of our approach
with the expected reference data. This allows a direct comparison
of the results and helps us determine how much and where the flow
field is modified.

To mimic various SNR, we add Gaussian noise using the follow-
ing function

�u = �u+ G

(
0,

1

SNR
· ∥∥�u∥∥

)
, (9)

where G(μ, σ ) draws a sample from the Gaussian distribution with
mean μ and standard deviation σ , which approximates the noise
present PC-MRI measured data [GP95]. This is done separately for
every velocity component based on the signal strength ‖�u‖weighted
by the desired SNR. Therefore, the average velocity information
per voxel will be 1

SNR × 100% added noise. Note that, the lower
the SNR, the more noise we add. Results are given for SNRs of
10 and 4, which correspond to 10% and 25% of the data being
noise. Table 1 contains the comparison in velocity magnitude and
angles in comparison with the ground truth. For a visual compari-
son, see Figure 8. For an SNR of 4, the result starts to deviate no-
ticeably, the streamlines have a slightly different trajectory. How-
ever, the method still provides a result that is close to the reference
flow. Besides a qualitative visualization of the flow using stream-
lines, derived flow features can be computed. One such feature is
the lambda2 criterion that is commonly used to locate and visual-
ize vortex cores and was computed for both the measured data as
well as the data after our method was applied. As shown by Fig-
ure 9, the resulting vortex cores present after our method was ap-
plied match the measured data closely, indicating that features are
preserved.

5.3.2. Comparison with previous work

We compare with previous methods for PC-MRI data denoising by
computing the remaining divergence and difference with the mea-
sured data as shown in Figure 10. In the figure, the same slice is
shown for multiple approaches to illustrate the remaining diver-
gence and the difference between the velocity vector angles and
magnitudes with the measured data. All methods are close to the
measured data, except one, however, the amount of divergence that

remains present is minimal using our method. Ideally, the differ-
ences with the measured data should be small and the amount of
divergence that is present in the data should be zero. As the mea-
sured data are not divergence-free, a compromise is needed, for ex-
ample, to have a smaller amount of divergence, the difference with
the measured data must be increased. However, for voxels where
the data are less reliable, more changes can be expected. The re-
liability of the used data is shown in Figure 11. To this end we
compare our method with existing denoising methods that have as
goal to remove the divergence, namely DFW (with and without cy-
cling spinning) [OUT*15], finite difference method [SNGP93] and
RBF [BGWK13]. Furthermore, we compare the result with the ap-
proach by de Hoon et al. [HJEV16]. To evaluate the result, the re-
maining divergence and difference with the input measurement data
is plotted. The difference is not weighted with the reliability for a
direct comparison. The difference with the input data is assessed
by the absolute difference in velocity magnitude and angle between
the velocity vectors. This comparison is shown in Figure 10, and
more slices (which give comparable results) can be visualized using
the interactive Matlab plots in the additional materials. Besides the
method by de Hoon et al., which suffers from damping, all methods
have small differences in velocity magnitude and angle. However,
none of the methods we compare with is able to remove all diver-
gence which corresponds with the findings of Sereno et al. [SKP18].
Note that most divergence is present where the reliability is rela-
tively low, that is, near the vessel wall. Additionally, as the exist-
ing denoising approaches did not remove much of the divergence,
we apply two possible approaches, that is, a denoising method D
that focuses on the reduction of noise in the data, and our pressure
solver P, which targets the reduction of divergence. This should cir-
cumvent the bias of the approaches towards a specific aspect of the
measured flow. For this we chose to use DFW with spin, which,
of the tested denoising approaches, yields results that are the clos-
ets to the measured data. The result is shown in Figure 10, under
the label P(D). Note that the result is comparable to applying ei-
ther of the approaches individually. The amount of divergence that
remains present in the data is lowest for our method, suggesting that
our method is able to remove more divergence while keeping the re-
sults close to the input measurements. Further note that when β = 0
for our method, that is, the divergence term is neglected, the result
is closer to the measured data as is to be expected, however, more
divergence remains present.
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Figure 10: A visual comparison of our method with previous methods; the measured data that are used as input are highlighted by the green
border. The same slice is shown in all images. The top row shows the velocity magnitude of the resulting field, while the second and third row
show the difference with the measured input data. The bottom row shows the divergence that is present in the resulting velocity field. Note
that all methods, except for de Hoon et al., are close to the measured data, as shown by the difference between the velocity vector angles and
magnitudes. The divergence that remains present in the data is minimal using our method. Note that the method by de Hoon et al. is shown
separately to allow for a more direct visual comparison of the remaining methods.

Figure 11: The same slice as in Figure 10 through the aneurysm
shows the reliability per voxel of the measured data. Note that the
reliability is lowest near the vessel wall.

5.4. Interpolation

A common approach to test any interpolation method is to remove
parts of the data and see how well the interpolation can reconstruct
the removed information. To evaluate the spatial interpolation ca-
pability of our method, all voxels for which one of its coordinates is

even are removed from the data. Therefore, the downsampled data is
1/8 of the original size, as shown by the penultimate row of Figure 8.

We apply our spatial interpolation scheme from Section 4.2 on
this lower resolution data and compare the result with the input data
in Table 1. Visually, the resulting flow field deviates slightly from
the reference mainly due the loss of small-scale details, as can be
seen in Figure 8.

For the evaluation of the temporal interpolation described in Sec-
tion 4.3 the same concept is applied. Therefore, one of the measured
phases is removed, and the duration of the phases is doubled. The
final row in Figure 8 shows the input field, which is linearly inter-
polated in between two consecutive phases. Linear interpolation is
often used for the visualization of PC-MRI data, however, it does
not guarantee a field that is physically plausible. Visually, the result
of our method matches the reference flow data well and better than
linear interpolation. This is supported by the small differences in ve-
locity magnitude and angle differences, as given in Table 1. This is
also shown by Figure 12 that gives a direct comparison with linear
interpolation, the reference measured data and our method. More-
over, we compare our method and linear interpolation with a single
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Figure 12: Comparison of temporal interpolation based on two
pressure solved velocity fields (left and right) using linear interpola-
tion (top), the expected pressure solved measured field (centre) and
our approach (bottom).

time step of the Navier–Stokes simulation without minimization.
That is, we evaluate our approach to determine whether it fulfils the
Navier–Stokes equation by comparing our result with the right-hand
side of Equation (1). The right-hand side of Equation (1) provides us
with an updated velocity field after a single time step of the Navier–
Stokes simulation. The changes in the velocity field after this time
step provides us with the left-hand side of Equation (1), that is, the
temporal derivative ∂�u

∂t . Note that this temporal derivative can also
be calculated from any two consecutive velocity fields by taking the
difference between the two velocity fields: ∂�x

∂t = �xt+1 − �xt . Hence,
we can compare the temporal derivative of different approaches to
the solution provided by the Navier–Stokes simulation and compute
the error: error = ∂�u

∂t − ∂�x
∂t . Figure 13 shows themagnitude of this er-

ror for both linear interpolation and for our approach. It shows that
our approach has only a small error. Note that, linear interpolation
and higher order interpolation methods do not reproduce the influ-
ence of advection that is present in flow data, which could explain
the large error.

5.5. Vorticity near the aortic valve

Next, we illustrate the advantage of our method for not requiring an
accurate model of the anatomy, which, in some cases, can be very
difficult or impossible to model, for example, the anatomy near the
heart valves. However, this underlying anatomy can have a big im-
pact on the resulting flow. In the aorta valve, three sinuses exist that
correspond to the three cusps of the aortic valve. These sinuses are
known to be important for an efficient blood flow. The vortices that
form in these sinuses help to close the valve leaflets [BB68, BDC14,
VFdH*18] and prevent regurgitation of the blood. This interaction
between flow and anatomy is difficult to model [MNvTK*15] due to

Figure 13: The error in comparison to a single time step of the
Navier–Stokes simulation and linear interpolation (left) and our ap-
proach (right). Our approach has a small error. Linear interpola-
tion on the other hand has a large error in the range of the velocity
magnitude of the underlying velocity field.

the small scale and lack of a possibility to measure this phenomena
in vivo [TBE*16].

The vortices, however, can be measured using PC-MRI, as can
be seen in Figure 14. This data have a resolution of 127 × 127 × 23
with a voxel size of 2.5× 2.5× 2.5 mm. As our method targets the
whole velocity field, and not just in/out-flow conditions, it can cor-
rect the (measured) flow in the sinuses without removing the impor-
tant vortices present in the PC-MRI data. Even without a model of
the aortic valve and its leaflets, our method maintains the vortices.
Figure 14 shows the result of applying our denoising and spatial in-
terpolation on the flow near the aortic valve. Vortices that help clos-
ing the valve leaflets are maintained. Flow in the normal direction of
the segmentation is present in the original measurement as indicated
by the blue circle. The flow in the normal direction of the segmen-
tation is corrected after the application of our method keeping the
features of the flow clearly.

5.6. Circle of Willis

The circle of Willis is a relatively small circular vessel structure
that supplies blood to the brain and the surrounding structures. The
arteries of the circle of Willis have diameters smaller than 1 cm. Al-
though the flow is measured using PC-MRI [vOZV*13], the SNR
is negatively affected, as a very fine spatial resolution is needed, as
a result analysis of this data is difficult. The data used in this ex-
periment have a resolution of 383 × 383 × 39, with a voxel size of
0.47 × 0.47× 0.5 mm. Figure 15 shows the measured flow in a sec-
tion of the circle of Willis. The data are denoised using our method,
as can be seen in Figure 16. For instance, there is flow perpendicular
to the main flow direction near a vortex, which is highly unlikely.
Our method does correct for this, but more importantly, it preserves
the subtle flow features, such as vortices that are present in the data.

6. Performance

In this section we present an indication of the computational and
memory costs of our approach. The experiments were performed
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Figure 14: Flow in the aorta root showing the vorticity in the sinuses. These vortices that help closing the valve leaflets are maintained. On
the left, measured flow in the aorta: vortices can be seen in the aorta root. Short streamlines seeded from a spherical seeding region are used
for both flow visualizations.

Figure 15: Streamline visualization of the measured flow in a sec-
tion of the circle of Willis. Note the unlikely flow perpendicular to
the main flow direction and the nearby vortex indicated by the green
and blue arrows, respectively. The arteries shown are the basilar
artery (BA), posterior cerebral artery (PCA), posterior communi-
cating artery (PCom), internal carotid artery (ICA), middle cere-
bral artery (MCA) and anterior cerebral artery (ACA).

on a Desktop computer with an Intel i7-3820 CPU and 32GB of
memory. For most of the evaluations using the phantom data and
the upsampled aorta root flow, our method needed between 200 and
300 iterations to converge and takes around 5-10 min. At most 8GB
of memory was used. Temporal interpolation required much more
memory (around 20GB) as two simulations are performed every it-
eration and takes around half an hour to converge. The circle of
Willis data requiredmore iterations to converge (around 600), which

Figure 16: Streamline visualization of the corrected flow in a sec-
tion of the circle of Willis. Our method corrected the perpendicular
flow, as shown by the green arrow, while the nearby vortex is main-
tained (blue arrow).

in the worst case took 45 min to converge. Note that these data have
a relatively high resolution and low SNR.

All evaluations could be executed in parallel on multiple ma-
chines or a computer cluster. This would have reduced the time
further. Furthermore, parallelization of the code might be possible,
but further complicates the computation of the gradient of the cost
functionals. It is difficult to compare the performance to other meth-
ods but concerning the denoising approaches we compared with our
method requires more time and resources. Concerning data assimi-
lation methods, the times reported are usually much higher than we
found using our method.
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7. Conclusion and Future work

4D PC-MRI provides measurements of time-varying volumetric
blood flows. Despite providing the most complete data amongst all
imaging methods, it is still prone to artefacts, noise and has limited
spatial and temporal resolutions. Hence, the derived flow does not
follow the fluid physics laws.

In this work, we presented a novel data-assimilation approach for
PC-MRI that combines a physics-based model and measured PC-
MRI data to obtain physically plausible, patient-specific data. Dif-
ferent from other data assimilation methods, our methodology fo-
cuses on improving the measured data to become physically plau-
sible while minimizing the difference to the original measurements
by applying automatic differentiation. Using three parameters the
user can tune minimization to balance both physically plausibility
and deviation from the given measured data. We also aim at a lim-
ited sensitivity with respect to the accuracy of the given anatomi-
cal model.

We have shown, using phantom data, that the resulting method is
capable of denoising PC-MRI measurements and yields physically
plausible data, with minimal deviation from to the measured flow
field. Furthermore, we have shown that our method enables physics-
based interpolation in both the spatial and temporal domains pre-
serving the existing features. In addition to using phantom data, we
have shown, as a proof of concept, that our method preserves impor-
tant features in PC-MRI flow data. However, more extensive valida-
tion and comparison will be needed for the adaptation of the method
to specific applications. Such validation is tedious and requires ef-
fort beyond the scope of the paper.

Currently, our implementation did not focus on performance, es-
pecially the memory usage could be improved, for example, by ex-
cluding empty voxels from the minimization or an optimized imple-
mentation of the gradient computation.

Furthermore, our approach does not specifically avoid potential
local minima. However, as the minimization is initialized close to
the measured data, a local minimum would be relatively close to
the measured, target, data. To avoid local minima, other optimiza-
tion methods could be tested, such as simulated annealing, introduc-
ing randomness in the initialization of the minimization process and
therefore using multiple starting points for the minimization. In this
case, finding the optimal solution would be more likely. However,
preliminary experiments seem to yield velocity fields that are close
to the current solution, moreover, the computation time naturally
increases. Nevertheless, it would be insightful to further investigate
local-minima avoidance.

Another improvement would be the support of soft boundaries,
that is, allowing some flow to exist outside the segmentation. In
this way, we can reduce the sensitivity of our method to the given
anatomy even more. This could potentially be achieved by penal-
izing flows outside the segmentation. Another option would be to
use control forces, for instance, using the geometric potential field
from Hong et al. [HK04]. Furthermore, improving the model would
most likely improve the accuracy of the presented method further by
considering the hemorheology, that is, the properties of blood, more
accurately. For example, by considering the non-Newtonian viscos-
ity and deformability of blood cells.

In the future, our approach shows potential to be used to re-
construct compressed PC-MRI data or enhance measured data. For
the measured data, the spatial and temporal resolutions determine
the SNR. It would be interesting to determine scanning parameters
for which we can achieve the highest noiseless data after applying
our spatial and temporal denoising. The evaluation of such meth-
ods is especially challenging given the lack of ground truth in this
domain.

To the extent of our knowledge, we presented the first data
assimilation method for PC-MRI that updates the full measured
data, and enables denoising while supporting spatial and temporal
interpolation.
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