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Identification of Affinely Parameterized State-Space
Models with Unknown Inputs

Chengpu Yu, Jie Chen, Shukai Li and Michel Verhaegen

Abstract—The identification of affinely parameterized state-
space system models is quite popular to model practical physical
systems or networked systems, and the traditional identification
methods require the measurements of both the input and output
data. However, in the presence of partial unknown input, the
corresponding system identification problem turns out to be
challenging and sometimes unidentifiable. This paper provides
the identifiability conditions in terms of the structural properties
of the state-space model and presents an identification method
which successively estimates the system states and the affinely
parameterized system matrices. The estimation of the system
matrices boils down to solving a bilinear optimization problem,
which is reformulated as a difference-of-convex (DC) optimization
problem and handled by the sequential convex programming
method. The effectiveness of the proposed identification method is
demonstrated numerically by comparing with the Gauss-Newton
method and the sequential quadratic programming method.

Index Terms—Subspace identification, affinely parameterized
state-space model, unknown system input.

I. INTRODUCTION

Along with the extensive research on complex networked
systems, the identification of affinely parameterized (or struc-
tured) state-space models has attracted interest from the iden-
tification community [1]–[3], which provides a foundation to
the model-based controller design, such as robust H∞ control
[4] and model-based predictive control [5]. For the structured
state-space models that are used for depicting complex physi-
cal systems or networked systems, the non-zero entries always
have physical interpretations [6]–[10]. Relevant examples are
compartmental systems [6], [11], hydraulic systems and power
systems [12]. Due to the importance of structured state-space
models, the corresponding identification problem is investigat-
ed in this paper when there are some unmeasurable inputs. The
unmeasurable inputs can be some undesired excitations acting
on a networked system model [13], such as the attack signal
or the actuator failure [14]. As a result, the identification of
structured system models with unknown inputs is practically
meaningful for modeling complex networked systems in harsh
environment.
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In this paper, the unknown input signal is restricted to be
deterministic and persistently exciting. The system identifica-
tion with deterministic unknown inputs mainly relies on the
basic algebraic calculation, such as greatest common polyno-
mial divisor extraction [7] and the low rank singular value
decomposition [15]. For the deterministic blind identification,
i.e., to identify the system model and system input from only
the output measurements, it is usually impossible without
exploiting the specific structural property of the system model
or the specific pattern of the input signal. In the literature,
there are mainly two approaches to deal with this challenging
identification problem: one is to assume the unknown input
signal to be modelled via a restricted number of known basis
functions [16]–[19], and the other is to assume the system
transfer function (or impulse response) to have single-input
multi-output (SIMO) structures [13], [20], [21]. Note that it
is usually not enough for the blind system identification by
only assuming the transfer function to be linearly represented
in terms of a finite number of known basis functions; as a
compensation, both the transfer function and the unknown
input were assumed to be modelled via a finite number of
known basis functions in [22]–[24].

The blind identification problem has been intensively inves-
tigated by exploiting various specific patterns of the unknown
input signal. For the blind identification of an IIR filter, by
assuming the unknown input signal to be piecewise constant
(or over-sampled) with a fixed period, the corresponding iden-
tification problem can be reformulated as a blind SIMO system
identification problem which can then be addressed by the
structured subspace factorization [16], [17]. More generally, by
assuming that the unknown input lies in a known subspace, the
blind identification of an ARX (autoregressive with external
input) model can be formulated as a low-rank optimization
problem, which was handled by solving the corresponding
nuclear norm optimization problem [18], [23], [25]. The blind
identification of a time-varying state-space model with fully
observed states was investigated in [19]. By assuming that the
unknown input is sparse and the same time-varying dynamic is
excited by different batches of input data, the system matrices
and the unknown input can be estimated even though we do
not know on which states the unknown inputs act [19].

The blind identification of LTI systems without any restric-
tions on the unknown system inputs (other than the persistent
excitation condition) mainly relies on the SIMO framework,
i.e., the same input signal is filtered through different transfer
functions [20]–[22]. By exploiting the correlations among
different output signals, the unknown transfer functions can
be directly identified from the output sequences up to a scalar
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ambiguity (or a matrix ambiguity for the blind MIMO system
identification). From the multi-agent system perspective, the
SIMO system model indicates that multiple agents are excited
by the same input signal, where the multiple agents are totally
decoupled; therefore, the SIMO system model represents only
a special networked system. For the identification of local
modules in a dynamic network identification, the immersion
approach [26], the elimination approach [13], the abstraction
approach [27] and the subspace intersection approach [28]
were developed to eliminate/remove the unmeasurable (or
selected) node signals through representing them in terms of
other measured node signals in the network. Although some
node signal in a network cannot be measured, its information
is (partially) embedded in other measured node signal through
the network representation. Therefore, the identification ap-
proaches in [13], [26], [27] inherently make use of some a
priori knowledge of the unmeasurable node signals to some
extent.

In this paper, the blind identification of LTI structured
systems without any restrictions on the unknown input signal
(other than the persistent excitation condition) is considered.
Different from the SIMO framework [20], [21] which is inher-
ently a networked system consisting of several decoupled LTI
subsystems, the structured state-space model that represents a
more general networked system is investigated. Identifiability
conditions in terms of the system structural properties are
provided, and a subspace-based blind identification method is
presented. In the developed identification method, the system
state sequence is firstly estimated up to a similarity trans-
formation, and the structured system matrices are identified
together with the similarity transformation matrix by solving
a bilinear estimation problem. The above identification idea
is similar to the classic N4SID subspace method [8], [9];
however, the structural constraints of the system matrices as
well as the unknown input signal pose challenges for the
system identification problem. The contributions of this paper
are summarized as follows.

1) The considered structured state-space model in this
paper can be used to represent a networked system that
has a more general topological structure than the SIMO
framework [20], [21], [29]; thus, it has a wider range
of applications. In addition, the identifiability conditions
for the structured state-space models with unknown
inputs are provided.

2) The presented identification method does not need to
know the basis of the unknown input sequence. This
differs from the immersion approach [26], the elimina-
tion approach [13] and the abstraction approach [27]
where the unmeasurable (or selected) node signals can
be (partially) represented in terms of other measured
node signals in the network.

3) Different from the subspace-based gray-box identifica-
tion problem [3], [30], [31], when there exists some
unknown input, the system matrices/Markov parameter-
s/transfer functions cannot be straightforwardly identi-
fied using the classical identification methods. However,
inspired from the N4SID method [32], the identification

problem is dealt with by firstly estimating the system
state in the presence of unknown input, following the
identification of structured system matrices.

4) Many existing blind identification approaches require to
solve a bilinear estimation problem, which are usually
handled by the convex relaxed methods such as nucle-
ar norm optimization [18], [23], [25]. In this paper,
this bilinear estimation problem is reformulated as a
difference-of-convex function which is then solved by
the sequential convex programming technique. The ini-
tial condition is obtained by solving the convex part
of difference-of-convex problem, which turns out to be
a nuclear norm regularized least-squares optimization
problem. This initial parameter estimate can be used
to initialize the gradient methods such as the Gauss-
Newton method.

The rest of this paper is organized as follows. In Section II,
the identification problem for the structured state-space model
with some unknown input is formulated. In Section III, iden-
tifiability conditions for the concerned identification problem
are provided. In Section IV, a subspace identification method
is presented which successively estimates the system state and
the structured system matrices. In Section V, the performance
of the proposed identification method is demonstrated through
numerical simulations, following the conclusions in Section
VI.

II. PROBLEM FORMULATION

In this paper, we consider the identification of a parameter-
ized LTI state-space system model. Let θ ∈ Rl be a parameter
vector. The concerned state-space system model is given as

x(k + 1) = A(θ)x(k) +B(θ)u(k) +Hf(k)

y(k) = C(θ)x(k) + w(k),
(1)

where x(k) ∈ Rn, y(k) ∈ Rp and w(k) ∈ Rp are the system
state, output, and measurement noise, respectively; u(k) ∈
Rm is the measurable input, while f(k) ∈ Rr represents the
unknown input signal. The system matrices A(θ), B(θ) and
C(θ) are assumed to be affine with respect to θ ∈ Rl:

A(θ) = A0 +A1θ1 + · · ·+Alθl,

B(θ) = B0 +B1θ1 + · · ·+Blθl,

C(θ) = C0 + C1θ1 + · · ·+ Clθl,

(2)

where Ai, Bi, Ci for i = 0, 1, · · · , l are known coefficient
matrices and θi for i = 1, 2, · · · , l is the i-th component of
θ. For notational simplicity, A,B,C sometimes are adopted
as the abbreviations of A(θ), B(θ), C(θ) in the context, re-
spectively. The coefficient matrix H ∈ Rn×r is assumed to be
known; otherwise, the matrix H is not identifiable due to the
coupling with the unknown input signal f(k). Also, the matrix
H is assumed to have full column rank; otherwise, the term
Hf(k) can be more parsimoniously parameterized. Since the
parameters {θi}li=1 usually have physical interpretations for a
structured system model, their values are assumed to be non-
zero throughout the paper.

Remark 1. By taking into account the unknown input signal,
the state-space model in (1) can be used to model a wider
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Fig. 1. A local system operating in a large-scale network. f1(k) and f2(k)
are unmeasurable input signals. {ui(k)}5i=1 and {yi(k)}5i=1 are respectively
the measurable input and output signals.

range of practical systems. For instance, it can be used to
model the room temperatures in an air-conditioned building
with the people who walk in/out to be considered as an un-
known signal which may not possess any stochastic properties.
Moreover, it can be exploited to model the local system of a
large-scale network (see Fig. 1), where the local system can be
described as a structured state-space model and the external
unmeasurable interconnection signals can be regarded as the
unknown inputs.

The problem of interest is to estimate the system param-
eter vector θ using the measurable input and output data
{u(k), y(k)} of the system model (1) in the presence of the
unknown input f(k). Different from the recently developed
blind identification methods [18] [19], the proposed method
does not require to know the basis of the unknown input f(k)
and only relies on the deterministic and persistent excitation
conditions. In addition, the considered structured state-space
model is more general than the traditional SIMO framework
[20] [29]. In order to focus on the essence of the system
identification scheme, we assume that the system order is
known, and the following standard assumptions are adopted
throughout the paper.

A1 The system determined by the matrix tuple
(A,B,C, 0) is minimal and stable;

A2 The input signal [uT (k) fT (k)]T is persistently
exciting [8];

A3 The sequence w(k) is a zero-mean white noise with
variance σ2

wI and is uncorrelated with the input
signal u(k).

The main notations used throughout the paper are listed
below. The horizontally concatenated state sequence is defined
as

x(k1 : k2) = [x(k1) x(k1 + 1) · · · x(k2)] .

The row subspace of x(k1 : k2) is denoted as Row[x(k1 : k2)].
Diag(a1, a2, · · · , an) denotes a n × n block diagonal matrix
with a1, a2, · · · , an being its block diagonal entries. Given the
nonnegative integers s and h such that h # s, we define the

output related block Hankel matrix as

Hs,h[y(1 : s+ h− 1)]

=





y(1) y(2) · · · y(h)
y(2) y(3) · · · y(h+ 1)
...

... . .
. ...

y(s) y(s+ 1) · · · y(s+ h− 1)




.

The extended observability matrix and the Markov parameter
related block Toeplitz matrix are respectively defined as

Os(A,C) =





C
CA
...

CAs−1





Ts(A,B,C) =





0

CB
.. .

...
. . . 0

CAs−2B · · · CB




.

III. IDENTIFIABILITY ANALYSIS

In this section, the identifiability analysis for the system in
(1) will be carried out under two different scenarios: (a) the
system state x(k) can be fully observed; (b) the state x(k)
cannot be directly measured. To facilitate the identifiability
analysis in the sequel, the output observation is assumed to
be noise-free, i.e., ŷ(k) = Cx(k), but the measurement noise
will be taken into account in the algorithm development and
the numerical simulations.

A. Identifiability analysis based on full state observation
Suppose that the system state x(k) can be fully observed.

The noise-free state-space model in (1) can be equivalently
written as

x(k + 1) = (A+HQ1)︸ ︷︷ ︸
Â

x(k) + (B +HQ2)︸ ︷︷ ︸
B̂

u(k)

+H [fk −Q1x(k)−Q2u(k)]︸ ︷︷ ︸
f̂(k)

ŷ(k) = Cx(k)

(3)

where Q1 ∈ Rr×n and Q2 ∈ Rr×m represent ambiguity
matrices. Since both the models in (1) and (3) can fit the
measured input and output data, it can be concluded that:
without any prior information about the structural properties,
the system matrices cannot be identified even if the states
can be fully observed. It is interesting to remark that, when
(A,H) is controllable, the eigenvalues of A + HQ1 can be
arbitrarily assigned; therefore, the system poles of (1) cannot
be identified without any structural constraints on the system
matrices. In other words, if the system model is represented
in terms of the transfer function, it is impossible to identify
both the numerator and denominator polynomials.

The following lemma is instrumental to dealing with the
unknown input signal as well as the identifiability problem.
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Lemma 1. Let P⊥
H = I − H(HTH)−1HT . Given the true

values of {x(k), u(k), H} and in the presence of the unknown
signal f(k), the state evolution equation x(k+1) = Ax(k)+
Bu(k) + Hf(k) and the modified state evolution equation
P⊥
Hx(k+1) = P⊥

HAx(k)+P⊥
HBu(k) have the same solution

set {A,B}.

Proof: Denote

Xh = x(1 : h), X̄h = x(2 : h+ 1),

Uh = u(1 : h), Fh = f(1 : h).

The solution {A,B} to the equation x(k + 1) = Ax(k) +
Bu(k) + Hf(k) can be obtained by solving the following
least-squares optimization problem:

min
A,B,Fh

∥∥X̄h −AXh −BUh −HFh

∥∥2 , (4)

where the minimum of the above optimization is zero.
By setting the first-order derivatives of the above objective

function with respect to the variables A,B, Fh to zero, we
have that

(AXh +BUh +HFh)X
T
h − X̄hX

T
h = 0

(AXh +BUh +HFh)U
T
h − X̄hU

T
h = 0

HT (AXh +BUh +HFh)−HT X̄h = 0.

(5)

It can be derived from the last equality that

Fh = (HTH)−1HT (X̄h −AXh −BUh). (6)

Substituting the above equation to the first two equalities in
(5) yields that

P⊥
H(X̄h −AXh −BUh)X

T
h = 0

P⊥
H(X̄h −AXh −BUh)U

T
h = 0,

(7)

which are exactly the first-order optimality conditions to the
following least-squares optimization problem

min
A,B

∥∥P⊥
HX̄h − P⊥

HAXh − P⊥
HBUh

∥∥2 . (8)

In addition, by left-multiplying P⊥
H to both hand sizes of the

first equation in (3), we can see that the above least-squares
problem can reach zero at its minimum. Therefore, the solution
set of (A,B) to the equation x(k + 1) = Ax(k) + Bu(k) +
Hf(k) is the same as that to P⊥

Hx(k + 1) = P⊥
HAx(k) +

P⊥
HBu(k). This completes the proof of the lemma.

Remark 2. To illustrate Lemma 1, we can observe from
equation (3) that the set

{Â, B̂|Â = A+HQ1, B̂ = B+HQ2, Q1 ∈ Rr×n, Q2 ∈ Rr×m}

is a solution set of (A,B) to the equation x(k+1) = Ax(k)+
Bu(k) + Hf(k), as well as a solution set to the equation
P⊥
Hx(k + 1) = P⊥

HAx(k) + P⊥
HBu(k).

Lemma 1 indicates that, when the state sequence can be
fully observed, the unknown input signal f(k) can be removed
by modifying the state evolution equation, which does not
affect the identification of the system matrices or the parameter
vector θ. However, if the estimation of the unknown input f(k)
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Fig. 2. Multi-agent system of Example 1: u(k) and y(k) are respectively the
input and output of agent 1, while f(k) is the unknown input signal added
to agent 2.

is desired, it can be obtained by deconvolution once the system
model has been identified.

As a result of Lemma 1, the identification of the state-space
model in (1) can be reformulated as that in the following
corollary.

Corollary 1. Suppose that the state sequence x(k) can be
fully observed, the identification problem for (1) boils down to
estimating the parameter vector θ from the following modified
state-space model

P⊥
Hx(k + 1) = P⊥

HA(θ)x(k) + P⊥
HB(θ)u(k)

ŷ(k) = C(θ)x(k)
(9)

where ŷ(k) = y(k) − w(k) represents the noise-free system
output.

Example 1. Suppose that the system matrices A(θ), B(θ),
C(θ) and H are parameterized as follows

A(θ) =




θ1 0 θ2
θ2 θ1 0
0 θ2 θ1



 , B(θ) =




θ3
0
0



 , H =




0
1
0





C(θ) =
[
θ4 0 0

]
.

(10)

The corresponding networked system is depicted in Fig. 2,
where the three agents are interconnected. The first agent is
excited by the input signal u(k) and generates the output
signal y(k); however, the second agent in the network is
spoiled by the unmeasurable signal f(k). It is desired to
identify the parameter vector θ using the input and output
measurements of the first agent.

The projection matrix P⊥
H can be calculated, i.e., P⊥

H =
Diag(1, 0, 1). When the state sequence x(k) can be fully
observed, according to the results in Corollary 1, the estimate
of θ is the solution to the following equation group

[
x1(k + 1)
x3(k + 1)

]
=

[
θ1 0 θ2
0 θ2 θ1

]


x1(k)
x2(k)
x3(k)



+

[
θ3
0

]
u(k)

ŷ(k) = θ4x1(k).

It can be observed from this example that the state evolution
equation associated with the second agent is removed due
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to the unknown input signal. However, the whole parameter
vector θ can still be estimated, since the parameters in the
second state-evolution equation have duplicates in other state
evolution equations. This idea is similar to our previous work
on the local identification of networked systems [33]. Suppose
that the coefficient matrix of the unknown input signal is
set to H = [1 1 1]T . By repeating the above process, it
can be verified that the system parameters can be uniquely
determined, indicating that the presented identification is more
general than just removing some node signals.

B. Identifiability analysis based on measured output

In practice, the state sequence of a state-space model cannot
be directly measured, and the state sequence can be (at
most) estimated up to a similarity transformation using the
measured input and output data [9], [32]. In the sequel, the
identifiability conditions of the concerned state-space model
(1) shall be investigated in two steps. Firstly, in presence of
some unknown input, the estimation of the state sequence (up
to a similarity transformation) will be investigated. Secondly,
given the estimated state sequence, the identifiability of the
structured system matrices (or the system parameters) will be
analyzed.

In presence of the unknown input signal, the state estimation
using the classical subspace methods is not straightforward.
Here, inspired from the N4SID and PO-MOESP methods [9],
the state estimation for the concerned model in (1) will be
handled using the subspace intersection approach. The data
equations of (1) using the past and future data are respectively
given as

Ŷp = OXp + TuUp + TfFp

Ŷf = OXf + TuUf + TfFf

(11)

where

Ŷp = Hs+1,h[ŷ(1 : s+ h)], Ŷf = Hs+1,h[ŷ(s+ 1 : 2s+ h)],

Up = Hs,h[u(1 : s+ h− 1)], Uf = Hs,h[u(s+ 1 : 2s+ h− 1)],

Fp = Hs,h[f(1 : s+ h− 1)], Ff = Hs,h[f(s+ 1 : 2s+ h− 1)],

Xp = x(1 : h), Xf = x(s+ 1 : s+ h), O = Os+1(A,C),

Tu = Ts+1(A,B,C), Tf = Ts+1(A,H,C).

Based on the past and future data equations above, the estimate
of the state sequence can be obtained as shown in the following
lemma.

Lemma 2. Suppose that Assumptions A1-A2 hold. Assume that
CH has full column rank and the state-space model described
by the matrix of tuples (A,H,C, 0) is strongly observable
[14], i.e., rank[O Tf ] = n+rank[Tf ]. Then, the row subspace
of the state space sequence can be estimated as

Row[Xf ] = Row
[

Up

Ŷp

]
∩ Row

[
Uf

Ŷf

]
(12)

Proof: In view of the lower-triangular pattern of Tf , under
the assumption that CH has full rank, it is easy to verify that
Tf has full column rank. In addition, by Assumption A1 and
the strong observability condition, it can be established that

the composite matrix [O Tf ] has full column rank. Then, it
can be derived from equation (11) that [14, Theorem 3.1]:

Row
[

Xp

Fp

]
⊆ Row

[
Up

Ŷp

]
(13)

and
Row

[
Xf

Ff

]
⊆ Row

[
Uf

Ŷf

]
. (14)

According to the state evolution equation (1), we can obtain
that

Row [Xf ] ⊆ Row




Xp

Up

Fp



 = Row
[

Up

Ŷp

]
, (15)

where the last equality follows from the equality

Row
[

Up

Ŷp

]
=

[
0 I 0
O 0 Tf

]


Xp

Up

Fp



 (16)

and the full column rank property of the coefficient matrix[
0 I 0
O 0 Tf

]
.

By equations (14) and (15), it can be derived that

Row[Xf ] ⊆ Row
[

Up

Ŷp

]
∩ Row

[
Uf

Ŷf

]

= Row




Xp

Up

Fp



 ∩ Row




Xf

Uf

Ff



 .

(17)

By Assumption A2 and Lemma 10.4 in [9],
it can be established that the augmented matrix
[ XT

p UT
p FT

p UT
f FT

f ]T has full row rank. Therefore,
we can obtain from the equation (17) that

Row[Xf ] = Row




Xp

Up

Fp



 ∩ Row




Xf

Uf

Ff



 .

This completes the proof of the lemma.

For a multi-agent system, the strong observability condition
in the above lemma can be verified via checking the associat-
ed topological characteristics without the rank computations
[34]. After obtaining the state sequence up to a similarity
transformation as shown in Lemma 2, the identifiability of
the structured system matrices (or the system parameters) will
be investigated.

Let x̂(k) be the estimated system state and Q the nonsingu-
lar similarity transformation matrix such that x(k) = Qx̂(k).
Then, the state-space model in (1) can be rewritten as

Qx̂(k + 1) = AQx̂(k) +Bu(k) +Hf(k)

ŷ(k) = CQx̂(k).
(18)

By Assumption A1, i.e., the concerned system model is
minimal, the estimated state sequence should have full row
rank; therefore, the matrix Q should be nonsingular.

Since the matrix Q is unknown, the identifiability problem
for the above state-space model is whether the matrix Q and
the parameter vector θ can be uniquely determined from equa-
tion (18). Following the results in Corollary 1, the estimation
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of the parameter vector θ can be transformed to identify the
following system model

P⊥
HQx̂(k + 1) = P⊥

HA(θ)Qx̂(k) + P⊥
HB(θ)u(k)

ŷ(k) = C(θ)Qx̂(k).
(19)

As a result, the identifiability of the state-space model in (18)
can be determined by checking the uniqueness of the solution
to equation (19).

Similar to the identifiability conditions for standard struc-
tured models [8, Chapter 4.6] [35, Theorem 3.7], the identifi-
ability conditions for the state-space model in (19) are given
in the following lemma.

Lemma 3. Consider the state-space equations (19) with
x̂(k), u(k), ŷ(k) and P⊥

H being available. Let the low-rank
factorization of the projection matrix P⊥

H be given as

P⊥
H = UHV T

H

where UH ∈ Rn×(n−r) and VH ∈ Rn×(n−r) have full column
rank. Under Assumptions A1-A2, the parameter θ in (19) is
identifiable if and only if the following equations

ΠV T
HQ = V T

H

ΠV T
HA(θ∗)Q = V T

HA(θ)

ΠV T
HB(θ∗) = V T

HB(θ)

C(θ∗)Q = C(θ)

(20)

yield that θ = θ∗, Q = I and Π = I .

It is remarked that the ambiguity matrix Π is introduced
in the above identifiability condition due to the fact that the
state-space model in (19) is a descriptor system [36].

Proof: Given u(k), ŷ(k) and x̂(k), we denote by
{Ê, Â, B̂, Ĉ} the solution set to the following equation group

Êx̂(k + 1) = Âx̂(k) + B̂u(k)

ŷ(k) = Ĉx̂(k).
(21)

Define the following row sequences

x̄f = x̂(s+ 2 : s+ h+ 1), xf = x̂(s+ 1 : s+ h),

uf = u(s+ 1 : s+ h), ff = f(s+ 1 : s+ h),

yf = ŷ(s+ 1 : s+ h).

It can be obtained from Lemma 2 that the augmented matrix[
xT
f uT

f fT
f

]T
has full row rank. It is straightforward from

the second equality of (21) that Ĉ = C(θ∗)Q∗, with Q∗ being
the true similarity transformation of the state estimate x̂(k).

In addition, it can be derived from the following equality



x̄f

xf

uf



 =




Q∗,−1AQ∗ Q∗,−1B Q∗,−1H

I 0 0
0 I 0








xf

uf

ff





that the matrix
[
x̄T
f xT

f uT
f

]T is rank deficient by n −
r. By the first equation of (21), the matrix [Ê − Â −
B̂] should lie in the left null subspace of

[
x̄T
f xT

f uT
f

]T

which has dimension n− r. In addition, the first equation of
(19) indicates that, for the true parameter vector θ∗, the matrix
P⊥
H [Q∗ −A(θ∗)Q∗ −B(θ∗)] has rank n − r and forms a

basis for the left null subspace of
[
x̄T
f xT

f uT
f

]T . As a
result, we can obtain that

[
Ê Â B̂

]
= ΞP⊥

H [Q∗ −A(θ∗)Q∗ −B(θ∗)] (22)

where Ξ is an ambiguity matrix satisfying that

rank[ΞP⊥
H ] = rank[P⊥

H ] = n− r.

As a result, the solution set {Ê, Â, B̂, Ĉ} has the form as
follows:

Ê = ΞP⊥
HQ∗

Â = ΞP⊥
HA(θ∗)Q∗

B̂ = ΞP⊥
HB(θ∗)

Ĉ = C(θ∗)Q∗.

(23)

By comparing the coefficient matrices in (19) and (21), the
parameter set {θ, Q} to equation (19) is identifiable if and
only if the following equations

Ê = ΞP⊥
HQ∗ = P⊥

HQ

Â = ΞP⊥
HA(θ∗)Q∗ = P⊥

HA(θ)Q

B̂ = ΞP⊥
HB(θ∗) = P⊥

HB(θ)

Ĉ = C(θ∗)Q∗ = C(θ)Q,

(24)

with variables θ and Q can yield the true parameter vector and
the similarity transformation matrix, i.e.,

θ = θ∗, Q = Q∗.

Using the matrix factorization P⊥
H = UHV T

H and by
regarding Q∗Q−1 as a new variable, the sufficient conditions
in (20) are straightforward.

It is noted that the difference between the identifiability
condition in (20) and that in [35] lies at the projection matrix
P⊥
H as well as the ambiguity matrix Π. For instance, when

there is no unknown input or H = 0, it follows that P⊥
H = I;

then, by some trivial algebraic manipulations, it can be verified
that the equation group in (20) degenerates to the standard
identifiability conditions for structured state-space model [35].

According to the state estimation result in Lemma 2 and the
identifiability result of the state-space model (19) with known
state information in Lemma 3, the identifiability conditions for
the concerned state-space model in (1) are summarized in the
following theorem.

Theorem 1. Suppose that Assumptions A1-A2 hold and the
state-space model described by (A,H,C, 0) is strongly ob-
servable. Let

P⊥
H = UHV T

H

with UH ∈ Rn×(n−r) and VH ∈ Rn×(n−r) being of full
column rank. Then, the parameter vector θ in the state-space
model (1) is identifiable if and only if the following equations

ΠV T
HQ = V T

H

ΠV T
HA(θ∗)Q = V T

HA(θ)

ΠV T
HB(θ∗) = V T

HB(θ)

C(θ∗)Q = C(θ)

(25)
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yield that θ = θ∗, Q = I and Π = I .

The flexibility of the factorization P⊥
H = UHV T

H in the
above theorem enables us to analyze the identifiability problem
in a tractable manner. For example, if the matrix H ∈ R3 has
the form H = [h1 h2 h3]T with nonzero entries, then it is
easy to find a low rank factorization of P⊥

H such that V T
H has

the form
V T
H =

[
h2 −h1 0
0 h3 −h2

]
.

This can facilitate the identifiability analysis for the equations
in (25).

Example 2. The identifiability of the state-space model with
the following structured system matrices is considered:

A(θ) =




θ1 0 θ2
θ2 θ1 0
0 θ2 θ1



 , B(θ) =




1
0
0



 , H =




0
1
0



 ,

C(θ) =

[
θ3 1 0
0 0 θ3

]
.

Due to the physical interpretations of the parameters in a
structured system model, all the components of θ have nonzero
values. Then, it can be verified that the matrix CH has full
column rank and the system described by the matrix tuple
(A,H,C, 0) is generically strong observable [34]; therefore,
the conditions of Theorem 1 are generically satisfied. The
matrix V T

H in Theorem 1 can be written as

V T
H =

[
1 0 0
0 0 1

]
.

Let the ambiguity matrix Q ∈ R3×3 be partitioned as

Q =




Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33



 =




qT
1

qT
2

qT
3





with q1,q2,q3 ∈ R3×1.
The equation group in (25) can be simplified as

[
π11 π12

π21 π22

] [
qT
1

qT
3

]
=

[
1 0 0
0 0 1

]

[
π11 π12

π21 π22

] [
θ∗1 0 θ∗2
0 θ∗2 θ∗1

]


qT
1

qT
2

qT
3



 =

[
θ1 0 θ2
0 θ2 θ1

]

[
π11 π12

π21 π22

] [
1
0

]
=

[
1
0

]

[
θ∗3 1 0
0 0 θ∗3

]


qT
1

qT
2

qT
3



 =

[
θ3 1 0
0 0 θ3

]
.

From the above equation group, it can be derived through
trivial calculations that θ = θ∗, Q = I and Π = I; hence, the
system model is identifiable.

Also, it can be verified by Theorem 1 that, if the matrix
C(θ) is parameterized as

C(θ) =

[
θ3 1 0
0 0 θ4

]
, (26)

then the θ1 and θ3 are identifiable, but the signs of θ2 and θ4
cannot be determined.

IV. SUBSPACE-BASED BLIND IDENTIFICATION METHOD

The previous section analyzes the identifiability of struc-
tured state-space model in the presence of some unknown
input, from which we can obtain an identification procedure
by firstly estimating the state sequence from the measurable
input and output data, following the identification of structured
system matrices. In the sequel, numerical methods for the
system state estimation and system parameter identification
will be presented.

A. Estimation of the system state

According to Lemma 2, under the strong observability
condition, the state sequence can be estimated by the row-
subspace intersection of the past noise-free data and future
noise-free data (12). However, in the presence of measurement
noise, the row subspace of the state sequence cannot be
accurately estimated. Instead, a new computational approach
will be developed which can achieve an unbiased estimate of
the state sequence by compensating the noise influence, and
the associated estimation accuracy will be analyzed.

To deal with the biased subspace estimation caused by the
measurement noise, the variance of the measurement noise
w(k) will be estimated by exploiting the rank deficiency of
the past-data matrix in (16).

Lemma 4. Consider the equation (16). Suppose that Assump-
tions A2-A3 hold and the dimension parameter s satisfies that
s(p− r)− n > 0, namely the matrix [O Tf ] is a tall matrix.
Then, the variance of the measurement noise can be estimated
as

σ2
w = λmin

[
lim
h→∞

1

h
YpY

T
p − YpU

T
p (UpU

T
p )−1UpY

T
p

]
(27)

where λmin(·) represents the least eigenvalue.

Proof: Denote by σ2
w the variance of w(k). By Assump-

tion A3, it can be established that

lim
h→∞

1

h

[
Up

Yp −Wp

] [
Up

Yp −Wp

]T

=

[
Ruu Ryu

Ruy Ryy − σ2
wI

]
≥ 0.

According to equation (16) and the tall matrix [O Tf ], it can
be verified that the above correlation matrix is rank deficient.

By Assumption A2, the matrix Ruu is positive definite, i.e.,
Ruu > 0. Using the Schur Complement theorem, it can be
derived that

rank
[

Ruu Ryu

Ruy Ryy − σ2
wI

]

= rank [Ruu] + rank
[
Ryy − σ2

wI −RyuR
−1
uuRuy

]
.

Due to the positive semi-definiteness and rank deficiency of the
above matrix, it is obvious that the Ryy−σ2

wI−RyuR−1
uuRuy

matrix is positive semi-definite and rank deficient. As a
result, σ2

w is the least eigenvalue of Ryy −RyuR−1
uuRuy . This

completes the proof of the lemma.
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After obtaining the estimated noise variance σ2
w, the sub-

space intersection shall be algebraically computed using the
method provided in Appendix A [37]. The SVD decomposition
of the following correlation matrix compensated by the noise
influence is given as

lim
h→∞

1

h





Up

Yp

Uf

Yf









Up

Yp

Uf

Yf





T

−





0 0 0 0

0 σ2
wI 0

[
0 0

σ2
wI 0

]

0 0 0 0

0

[
0 σ2

wI
0 0

]
0 σ2

wI





=
[
U1 U2

] [ Σ1

Σ2

] [
UT
1

UT
2

]
,

(28)

where Σ1 is a diagonal matrix containing the n largest singular
values. By partitioning the matrix U2 into two sub-matrices of
the same size U2 = [UT

21 UT
22]

T , the state estimate is given as

X̂f = UT
21

[
Up

Yp

]
. (29)

When the data length tends to infinity, the SVD decompo-
sition in (28) is the same as that of





Up

Yp −Wp

Uf

Yf −Wf









Up

Yp −Wp

Uf

Yf −Wf





T

.

Then, the true state estimation (up to a similarity transforma-
tion) can be expressed in terms of noise-free measurements
as

Xf = UT
21

[
Up

Yp −Wp

]
. (30)

As a result, the estimated state sequence in (29) and the true
state sequence in (30) have the following relation:

X̂f = QXf + UT
21

[
0
Wp

]
(31)

where Q is an ambiguity matrix. By Assumption A3, it can
be verified without any difficulty that the state estimation

error UT
21

[
0
Wp

]
is uncorrelated with the state Xf . This is

crucial to the accurate identification of the concerned state-
space model.

B. Identification of the structured system matrices

Given the estimated system state in (29), we define the
following row sequences

x̄h = x̂(s+ 2 : s+ h+ 1), xh = x̂(s+ 1 : s+ h),

uh = u(s+ 1 : s+ h), yh = y(s+ 1 : s+ h),

wh = w(s+ 1 : s+ h).

According to equation (19), the identification problem boils
down to estimating the similarity transformation matrix and
the parameter vector from the following equations

P⊥
HQx̄h = P⊥

HA(θ)Qxh + P⊥
HB(θ)uh + η1

yh = C(θ)Qxh + wh + η2,
(32)

where η1 and η2 are perturbations caused by the state estima-
tion error. Following the analysis in the previous subsection,
as the data length tends to infinity, the induced error terms
η1(k), η2(k) and the measurement noise w(k) are asymptot-
ically uncorrelated with the state and input sequences. As a
result, the following optimization problem is proposed for the
state-space model identification

min
Q,θ

∥∥P⊥
HQx̄h − P⊥

HA(θ)Qxh − P⊥
HB(θ)uh

∥∥2
F

+ ‖yh − C(θ)Qxh‖2F .
(33)

Due to the couplings among unknown variables, the above
optimization problem is bilinear; thus, the traditional gradient-
based optimization methods are sensitive to the initial parame-
ter estimate. In order to handle this problem, the difference-of-
convex programming framework [38] is adopted, which trans-
forms the concerned bilinear estimation problem to a rank-
one constrained optimization problem and then a difference-
of-convex programming problem.

To deal with the parameter couplings among unknown
variables, the following auxiliary parameters are introduced

A = A(θ)Q = A0Q+
l∑

i=1

AiQi

C = C(θ)Q = C0Q+
l∑

i=1

CiQi

(34)

where Qi = Qθi for i = 1, · · · , l. It can be observed that
the equations in (34) are affine with respect to the unknown
(auxiliary) parameters. In addition, the bilinear constraints
Qi = Qθi can be equivalently formulated as a rank-one
constraint

rank
[

1 θ1 · · · θl
vec(Q) vec(Q1) · · · vec(Ql)

]
= 1. (35)

As a result, the optimization problem in (33) can be reformu-
lated as a rank-one constrained optimization problem

min
Qi,A,C,θ,Γ

∥∥∥P⊥
HQx̄h − P⊥

HAxh − P⊥
HB(θ)uh

∥∥∥
2

F
+ ‖yh − Cxh‖2F

s.t. A = A0Q+
l∑

i=1

AiQi

C = C0Q+
l∑

i=1

CiQi

Γ =

[
1 θ1 · · · θl

vec(Q) vec(Q1) · · · vec(Ql)

]

rank[Γ] = 1.
(36)

Due to the rank-one constraint, the above optimization
problem is NP-hard and difficult to handle. Here, the rank-
one constraint is interpreted as that the nuclear norm (sum of
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all the singular values) of the matrix equals the largest singular
value, i.e.,

‖Γ‖∗ − ‖Γ‖2 = 0, (37)

where the nuclear norm ‖ ·‖∗ and the 2-norm ‖ ·‖2 are convex
functions [39]. The above difference-of-convex function is
non-convex; however, it is always non-negative. By treating
the nonnegative difference-of-convex function as a penalty,
we obtain the following difference-of-convex programming
problem

min
Qi,A,C,θ,Γ

∥∥∥P⊥
HQx̄h − P⊥

HAxh − P⊥
HB(θ)uh

∥∥∥
2

F

+ ‖yh − Cxh‖2F + λ (‖Γ‖∗ − ‖Γ‖2)

s.t. A = A0Q+
l∑

i=1

AiQi

C = C0Q+
l∑

i=1

CiQi

Γ =

[
1 θ1 · · · θl

vec(Q) vec(Q1) · · · vec(Ql)

]

(38)

where λ is a penalty parameter. In the absence of the mea-
surement noise or when the equations in (19) hold exactly, the
above optimization problem has the same global minimum as
(36) for any positive value of λ. Furthermore, if the system
model is identifiable, then the true parameters can be obtained
by solving either (36) or (38).

Next, the sequential convex programming framework will
be adopted to solve the difference-of-convex problem in (38).
In each iteration, the concave term in the objective function
is linearized based on the current parameter estimate. Denote
by Γj the estimate at the j-th iteration, and its SVD decom-
position is given as

Γj =
[
U j
1 U j

2

] [ Σj
1

Σj
2

] [
V j,T
1

V j,T
2

]
, (39)

where Σj
1 is a scalar that is the largest singular value of Γj .

Then, the term ‖Γ‖2 can be linearized as

‖Γ‖2 ≈ ‖Γj‖2 + tr
(
U j,T
1 (Γ− Γj)V j

1

)
. (40)

Substituting it into (38) yields the (j + 1)-th optimization
problem

min
Qi,A,C,θ,Γ

∥∥∥P⊥
HQx̄h − P⊥

HAxh − P⊥
HB(θ)uh

∥∥∥
2

F

+ ‖yh − Cxh‖2F + λ
(
‖Γ‖∗ − tr

(
U j,T

1 ΓV j
1

))

s.t. A = A0Q+
l∑

i=1

AiQi

C = C0Q+
l∑

i=1

CiQi

Γ =

[
1 θ1 · · · θl

vec(Q) vec(Q1) · · · vec(Ql)

]
.

(41)

For the above iterative optimization process, it is neces-
sary to choose an initial condition; however, there are rarely
any good initialization methods for the structured state-space
(gray-box) model identification [40]. Here, the initialization

is obtained by solving the convex part of the difference-of-
convex problem (38) by setting U0

1 = 0 and V 0
1 = 0. The

associated convex part is a nuclear norm regularized convex
optimization problem, which can yield a good initial param-
eter estimate such that the difference-of-convex programming
method can yield more accurate parameter estimate than the
nuclear norm method. Also, the initial parameter estimate
obtained by solving the nuclear norm regularized optimization
problem can also be used to initialize the gradient-based
method, for which the performance will be shown in Section
V.

By implementing the above iterative optimization proce-
dure, the objective function decreases as the iterations con-
tinue. Let Θ = {Qi,A, C, θ}. Denote by g(Θ,Γ) the objective
function of (38). Then, it can be verified that

g(Θk+1,Γk+1) ≤ g(Θk+1,Γk) ≤ g(Θk,Γk), (42)

indicating that the presented iterative optimization is a descent
algorithm. By the results of [41, Theorems 1-2], the presented
algorithm can be interpreted as a re-weighted nuclear norm
optimization algorithm, which can be shown that the estimated
parameter sequence converges to a stationary point since
the objective function (36) is coercive and its derivative is
Lipschitz continuous in terms of those unknown variables.

V. NUMERICAL SIMULATION

In this section, the identification of the structured state-
space model in Example 2 will be simulated to validate the
theoretical results.

In order to demonstrate the performance of the proposed
identification method against the noise perturbation, the nor-
malized estimation error (NEE) criterion will be used. Denote
by θ̂j the estimate of θ at the j-th Monte-Carlo trial. The NEE
value at the j-th trial is defined as

NEEj =
‖θ̂j − θ∗‖

‖θ∗‖ , (43)

where θ∗ represents the true system parameter vector.
In the simulation, the parameter vector is set to

θ =
[
0.5 0.3 1

]T
,

and the data length is set to 200. It has been shown in Example
2 that this parameter vector is identifiable. The stopping
criterion of the proposed method, which is defined by the
relative error of the parameter estimation, is set to 10−8. The
penalty coefficient λ in (38) is empirically set to 10−3 and the
maximum number of iterations is set to 100.

For the comparison purpose, the following three method will
be simulated: (i) the nuclear norm method which is to solve
the convex part of (38) is abbreviated as NN method; (ii) the
Gauss-Newton (GN) method which is initialized by solving the
convex part of (38) is abbreviated as NN-GN method; (iii) the
sequential quadratic programming (SQP) method with bound
constraint 0 < θi < 1 is abbreviated as SQP method. In the
simulation, the initial guess for the SQP method is chosen
randomly according to the uniform distribution in the range
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Fig. 3. Scatter plots of the NEEs obtained by the NN method, the NN-GN
method, the SQP method and the proposed method at different SNRs. The
red, black, magenta and blue crosses represent respectively the NEEs of the
NN method, the NN-GN method, the SQP method and the proposed method
at different Monte-Carlo trials. The solid curves denote the mean NEEs at
different SNRs. Note that the NEEs of these four methods are computed at
the same SNRs; however, they are slightly separated to clearly depict their
individual performance.

[0, 1]. The maximum number of iterations for the NN-GN
method and the SQP method is set to 100.

The scatter plots in terms NEEs obtained by the NN method,
the NN-GN method, the SQP method and the proposed method
are shown in Fig. 3, where the number of Monte-Carlo trials is
set to 50. It can be observed that: (i) the proposed identification
method can yield accurate estimation of the system parameters
at large SNRs, indicating that the true system parameters can
be recovered in the absence of measurement noise; (ii) compar-
ing with the NN-GN method, the proposed method performs
better at low SNRs; (iii) the proposed method outperforms
the nuclear norm method, since the nuclear norm method is
inherently a one-step implementation of the proposed method;
(iv) although the SQP method uses the bound information
of the system parameters, it is still sensitive to the initial
parameter estimate. It can be found that the NEE values
obtained by the SQP method at each SNR have two clusters
which correspond to the local minima and the global minima
of the optimization problem in (33).

The numerical simulations are run on a laptop with a
2.9 GHz 651 processor and a 8.0 GB RAM. The average
computational times for the NN method, the NN-GN method,
the SQP method and the proposed method are about 0.4216s,
0.4661s, 0.0950s and 2.172s, respectively.

VI. CONCLUSION

In this paper, the identifiability conditions for structured
state-space models with unknown inputs have been provided,
i.e., by exploiting the structural properties of the state-space
model, the system model can be identified with deterministic
unknown system inputs. This differs from the blind identifi-
cation of SISO models with the input signal having specific
patterns. In addition, a subspace-based identification method
has been presented which firstly estimates the system state up
to a similarity transformation, following the simultaneous esti-
mation of the similarity transformation matrix and the system

parameters through solving a bilinear estimation problem. For
the state estimation, a noise-compensated subspace method has
been provided which can yield an unbiased estimate for the
row subspace of the state sequence. To deal with the bilinear
estimation problem, it is formulated as a difference-of-convex
optimization problem which is handled by the sequential
convex programming method.

The concerned structured state-space models with unknown
input signals can be confronted in many practical scenarios,
such as the networked systems with node failures or adver-
sarial attacks, infrastructure models with external wind/wave
disturbance, Heating Venting and Air Conditioning (HAVC)
systems with unknown occupancy, etc. In addition, after the
identification of the system models, both the internal state
sequence and the unknown input signal can also be recovered
using the available measurements, indicating that the behavior
of an agent operating in a network can be fully detected by the
other agents using their input and output data. As a result, this
work can be potentially implemented in the network security
related research.
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