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Calibrating the Bacterial Growth
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Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands

The molecule guanosine tetraphophosphate (ppGpp) is most commonly considered
an alarmone produced during acute stress. However, ppGpp is also present at low
concentrations during steady-state growth. Whether ppGpp controls the same cellular
targets at both low and high concentrations remains an open question and is vital
for understanding growth rate regulation. It is widely assumed that basal ppGpp
concentrations vary inversely with growth rate, and that the main function of basal
ppGpp is to regulate transcription of ribosomal RNA in response to environmental
conditions. Unfortunately, studies to confirm this relationship and to define regulatory
targets of basal ppGpp are limited by difficulties in quantifying basal ppGpp. In this
Perspective we compare reported concentrations of basal ppGpp in E. coli and quantify
ppGpp within several strains using a recently developed analytical method. We find that
although the inverse correlation between ppGpp and growth rate is robust across strains
and analytical methods, absolute ppGpp concentrations do not absolutely determine
RNA synthesis rates. In addition, we investigated the consequences of two separate
RNA polymerase mutations that each individually reduce (but do not abolish) sensitivity
to ppGpp and find that the relationship between ppGpp, growth rate, and RNA content
of single-site mutants remains unaffected. Both literature and our new data suggest that
environmental conditions may be communicated to RNA polymerase via an additional
regulator. We conclude that basal ppGpp is one of potentially several agents controlling
ribosome abundance and DNA replication initiation, but that evidence for additional roles
in controlling macromolecular synthesis requires further study.
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INTRODUCTION

How might a bacteria cell measure its own growth rate?
In the model bacterium Escherichia coli, the small molecule
guanosine tetraphosphate (ppGpp) is closely tied to growth rate
control. However, due to the circumstances of its discovery,
ppGpp is more familiar as a stress or starvation signal. ppGpp
and guanosine pentaphosphate (pppGpp), collectively called
(p)ppGpp, were first identified in E. coli as compounds produced
in strains that inhibit stable RNA synthesis upon amino acid
starvation, a phenomenon known as the stringent response
(Cashel and Gallant, 1969). The source of (p)ppGpp during
the stringent response is the enzyme RelA, which synthesizes
(p)ppGpp in response to uncharged (non-aminoacyl) tRNA
binding the acceptor site of an actively translating ribosome
(Haseltine and Block, 1973). The high concentrations of
(p)ppGpp observed during acute starvation (600–1000 pmol
OD−1 for ppGpp) (Harshman and Yamazaki, 1971; Lazzarini
et al., 1971) drive profound responses via both transcriptional
and post-translational mechanisms (Traxler et al., 2008; Kanjee
et al., 2012). The overall result of the stringent response is
strong inhibition of all macromolecule synthesis (rRNA, DNA,
proteins, phospholipids, and peptidoglycan), leading to growth
arrest. (p)ppGpp is hydrolyzed by the essential enzyme SpoT.
SpoT also carries an active (p)ppGpp synthase domain, although
the specific biochemical trigger of (p)ppGpp synthesis by SpoT
has not yet been identified. As a recent study suggests that
ppGpp is more potent than pppGpp in mediating growth rate
control in E. coli (Mechold et al., 2013) we focus exclusively
upon ppGpp.

Comparatively less well-understood are the functions of “basal
ppGpp”: the ppGpp concentrations observed during steady-
state growth in E. coli in the absence of stress (between
10 and 90 pmol OD−1). When growth rate is varied by
nutritional quality, basal ppGpp correlates inversely with growth
rate. Basal ppGpp is essential in minimal media as it is
required to activate transcription of amino acid pathways
(Traxler et al., 2011). Just as ppGpp strongly inhibits stable
RNA synthesis at high concentrations, basal ppGpp mildly
inhibits transcriptional initiation from ribosomal RNA (rRNA)
promoters, thus at least partly determining ribosome abundance
during steady-state growth (Ryals et al., 1982). The inverse
relationship between ppGpp and growth rate is thought to
reflect the rheostat-like function of ppGpp as a regulator of
ribosomal biosynthesis in response to nutrient availability. If
ppGpp is artificially deviated from natural basal concentrations,
growth is slowed, suggesting that ppGpp finds a growth-
optimum level and adjusts rRNA expression accordingly (Zhu
and Dai, 2019). The rate of DNA replication initiation also
adjusts to small increases in basal ppGpp (Schreiber et al.,
1995), and a strain entirely lacking ppGpp [relA− spoT−,
or (p)ppGpp0] does not vary DNA replication initiation in
response to growth rate, suggesting that ppGpp participates
in regulating the DNA-biomass ratio (Fernández-Coll et al.,
2020). As ribosome abundance is one of the factors determining
the global protein synthesis rate, ppGpp may act as a growth
rate-reporting signal that smoothly adjusts the steady-state rate

of overall biomass synthesis (Hui et al., 2015). ppGpp should
be thus considered a growth rate speedometer as well as
a stress signal.

The observation that high ppGpp concentrations inhibit
biomass synthesis suggests that basal ppGpp concentrations
might also directly regulate all biomass synthesis pathways
during steady-state growth, in addition to regulating stable
RNA synthesis. This hypothetical layer of regulation would
complement control of rRNA transcription, which determines
the maximum rate of steady-state protein synthesis. For example,
studies suggest that basal ppGpp might also regulate the
instantaneous rate of protein synthesis by limiting purine
synthesis (PurF, Wang et al., 2018) or translation cofactor
activities (e.g., IF2, Dai et al., 2016) or the fraction of active
ribosomes (Zhang et al., 2018). Basal ppGpp might also regulate
cell envelope biosynthesis (Noga et al., 2020), as high ppGpp
inhibits phospholipid synthesis, and inhibition of phospholipid
synthesis arrests peptidoglycan synthesis (Ishiguro et al., 1980;
Heath et al., 1994). In this extreme “orchestra conductor”
model, ppGpp would not only regulate ribosome abundance,
but would also tightly synchronize the synthesis rates of each
macromolecule. This model expands the role of ppGpp beyond
its better-established role, which is to inhibit general biomass
synthesis at starvation-induced concentrations (>600 pmol
OD−1) like an emergency brake.

Defining the targets of basal ppGpp and identifying how
basal ppGpp is maintained are two goals essential to understand
how E. coli controls growth. To further encourage the recent
revival of interest in the mechanisms of steady-state growth
regulation and homeostasis (Scott et al., 2010, 2014; Dai et al.,
2016), we contribute this Perspective on basal ppGpp in E. coli
to evaluate the widely assumed notion that ppGpp is always
inversely proportional to growth rate.

QUANTIFYING BASAL ppGpp IS
DIFFICULT BUT ESSENTIAL

Actual ppGpp measurements are essential for determining which
cellular processes are watching the growth rate speedometer. The
rarity of basal ppGpp measurements is understandable as basal
ppGpp is difficult to accurately quantify. The main challenges
in measuring basal ppGpp in vivo are (1) its low abundance;
(2) its chemical instability; (3) the presence of environmentally
sensitive enzymes that rapidly hydrolyze and synthesize ppGpp.
This means the analytical method must both chemically stabilize
ppGpp and immediately denature all enzymes that synthesize or
hydrolyze ppGpp. Moreover, in order to study ppGpp dynamics
relevant to the rapid ppGpp response (<5 s), the method must
enable fast sampling.

Despite these difficulties, several (p)ppGpp measurement
methods have been developed, including thin layer
chromatography (TLC) (Bochners and Ames, 1982; Sarubbi
et al., 1988; Fernández-Coll and Cashel, 2018), high performance
liquid chromatography (HPLC) (Ryals et al., 1982; Buckstein
et al., 2008; Bokinsky et al., 2013; Varik et al., 2017; Jin
et al., 2018) and liquid chromatography mass spectrometry
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(LC-MS) (Ihara et al., 2015; Patacq et al., 2018). The advantages
and disadvantages of each method have summarized in
Supplementary Table 1. Whichever method is used, rapid
quenching of metabolism during sampling (i.e., no centrifuging
of live cells) is required.

ppGpp IS A RELIABLE GROWTH RATE
SPEEDOMETER: MOST BASAL ppGpp
MEASUREMENTS INDICATE THAT THE
INVERSE CORRELATION BETWEEN
ppGpp AND GROWTH RATE TRENDS IS
ROBUST

A survey of reported basal ppGpp concentrations combined with
our own measurements (Figure 1) indicates that despite apparent
variability in absolute concentrations, the inverse correlation with
growth rate is robust. We do not include pppGpp measurements,
which are less-often reported. All data can be found in the
Supplementary Material.

ppGpp Is an Accurate Growth Rate
Speedometer in Wild-Type E. coli When
Growth Rate Is Varied by Nutrient Source
Previously Reported Measurements
Measurements in laboratory-adapted E. coli show an inverse
correlation between growth rate and basal ppGpp (15–90 pmol
OD−1) (Figure 1A). Early studies connected basal ppGpp,
growth rate, and stable RNA abundance (Lazzarini et al., 1971;
Sokawa et al., 1975; Ryals et al., 1982). Khan and Yamazaki
(1974) measured basal ppGpp in an E. coli patient isolate and
found several conditions in which ppGpp concentrations do not
align smoothly with the expected trend (Figure 1A). However,
RNA/DNA ratios in the outlier cultures followed the expected
trend with growth rate (Khan and Yamazaki, 1974).

Reported ppGpp concentrations may differ perhaps due to
differences in strains, turbidimeter calibration, or sampling
method (Baracchini et al., 1988; Buckstein et al., 2008).
Interestingly, even biological replicates show substantial
variability (Ryals et al., 1982). Using an assay that exhibited less
than 10% variation between individual measurements, Murray
and Bremer (1996) report that ppGpp concentrations show 20%
variations between biological replicates.

New Measurements (This Study)
We measured basal ppGpp concentrations in three E. coli K-12
strains using LC-MS (Figure 1A). Concentrations in MG1655
have been reported in Buckstein et al. (2008) for only three
conditions (Figure 1A). NCM3722 is becoming increasingly
popular as it lacks several genetic defects of MG1655 (Soupene
et al., 2003; Brown and Jun, 2015). CF7968 (MG1655 rph+ but
not isogenic with the MG1655 reported here) has been used to
demonstrate correlation between the RNA/protein ratio and the
growth rate (Potrykus et al., 2011). All three strains exhibit the
expected inverse correlation between ppGpp and growth rate.
We observed 20% variation in technical replicates from a single

culture and 23% average variation between biological replicates,
similar to previous reports (Murray and Bremer, 1996).

RelA Is Not Required to Establish the
Correlation Between Basal ppGpp and
Growth Rate
At least three studies have compared basal ppGpp concentrations
of isogenic relA+ and relA− strains (Lazzarini et al., 1971; Sokawa
et al., 1975; Ryals et al., 1982). Each study observed no significant
difference in ppGpp concentrations and growth rates in relA+
and relA−, indicating that SpoT alone is able to establish an
inverse correlation between ppGpp and growth rate (Figure 1A).

What Metabolic Process Sets Basal ppGpp
Concentrations?
The observation that SpoT is able to maintain the ppGpp-growth
rate correlation on its own does not necessarily indicate that RelA
activity plays no role in maintaining basal ppGpp. As deacylated
tRNA stimulates RelA activity (Haseltine and Block, 1973),
one might presume that deacyl-tRNA abundance also correlates
inversely with growth rate. However, the aminoacylated fraction
of at least six tRNA species remains constant across growth rates.
As total tRNA increases in parallel with rRNA, the absolute
concentration of deacylated tRNA should also increase with
growth rate (Dai et al., 2016). There are 43 different tRNA
species in E. coli, and currently it is not known whether the
acylation of each individual tRNA species varies. However, we
surmise that RelA may contribute to basal ppGpp as relA−
mutants exhibit different ribosome pausing behavior than wild-
type (Li et al., 2018).

Identifying how SpoT maintains basal ppGpp is essential
to understand the metabolic cues that lead to the inverse
ppGpp-growth rate correlation. As hydrolysis and synthesis
activities of a SpoT homolog are mutually exclusive (Hogg
et al., 2004), basal ppGpp is likely set by a balance between the
fraction of SpoT proteins engaged in either ppGpp synthesis
or ppGpp hydrolysis. Environmental triggers that bias SpoT
toward ppGpp synthesis were explored by Murray and Bremer
(1996), and included carbon starvation, azide exposure, and
simultaneous removal of all 20 amino acids. Although potential
regulators have been identified [acyl carrier protein (Battesti and
Bouveret, 2006), anti-sigma factor Rsd (Lee et al., 2018) and the
small protein YtfK (Germain et al., 2019)], it is unclear how
these regulate SpoT.

TRICKING THE GROWTH RATE
SPEEDOMETER: ARTIFICIAL
VARIATIONS OF ppGpp WITHIN FIXED
NUTRITIONAL CONDITIONS

Mutation and overexpression of the relA and spoT genes
enable different ppGpp concentrations in identical nutritional
conditions. This also leads to an inverse relationship between
ppGpp and growth rate.
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FIGURE 1 | Compilation of measurements of basal ppGpp vs. growth rate. (A) Basal ppGpp concentrations measured in E. coli strains that generally follow an
inverse correlation with growth rate. Both literature data and data obtained for this study are shown (Supplementary Section 3). For data from this study, three
technical replicates per biological replicate are shown. For data taken from the literature, the number of biological replicates varies and can be found in
Supplementary Material. (B) Trends obtained by several E. coli strains bearing various mutations in ppGpp synthase/hydrolase enzyme SpoT grown in glucose
minimal medium. Each point represents values obtained from one strain. This is compared to compiled data from A. The genotype of each strain used can be found
in Supplementary Material. (C) Basal ppGpp measured during overexpression of RelA in E. coli JM109 (in glucose amino acids without Gln, Glu) and in E. coli
NCM3722 in LB and glucose minimal medium. (D,E) Ribonucleotide concentrations in E. coli strains defective in pyrimidine synthesis. (D) ppGpp concentrations as
a function of growth rate, overlaid with the compiled ppGpp vs. growth rate data of (A), and (E) intracellular ATP, GTP, UTP, and CTP concentrations. References to
data sets are provided in the Supplementary Material. For (A–D), the Pearson correlation coefficient r and significance figure P (from a two-tailed significance test)
is shown.

Frontiers in Microbiology | www.frontiersin.org 4 September 2020 | Volume 11 | Article 574872

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-574872 September 15, 2020 Time: 22:7 # 5

Imholz et al. Evaluation of ppGpp-Growth Rate

Point Mutations in RelA and SpoT
Change Basal ppGpp by Rebalancing
Rates of ppGpp Synthesis and Hydrolysis
Non-disabling mutations in spoT and relA perturb the balance
between ppGpp synthesis and hydrolysis, resulting in varied basal
ppGpp levels while retaining viability (Sarubbi et al., 1988). Two
sets of mutations in different E. coli strains (Supplementary
Material) exhibited inverse relationships between ppGpp and
growth rate that appear to be steeper than the majority of
basal level trends observed in various media (Figure 1B).
However, as the ppGpp-growth rate relationship was not
determined in the parental strains from which these mutants
were obtained, direct comparisons with wild-type behaviors
are not possible. rRNA decreases as basal ppGpp increases
in spoT mutant strains as expected (Sarubbi et al., 1988;
Hernandez and Bremer, 1990).

Ectopic Overexpression of RelA
Generates a Steep ppGpp-Growth Rate
Trendline
Overexpressing the catalytic domain of RelA (referred to as RelA′
or RelA∗) artificially elevates ppGpp, inhibits rRNA synthesis and
decreases growth rate. Data from ppGpp titrations using RelA′
are compared in Figure 1C. Schreiber et al. (1991) titrated ppGpp
concentrations using RelA′ and obtained a ppGpp-growth rate
trend that appears steeper than curves obtained for other strains.
Two groups recently observed that RelA′ overexpression leads
to higher basal ppGpp than expected for a given growth rate.
RelA′ overexpression in E. coli NCM3722 in both LB medium
and glucose minimal medium yields a ppGpp-growth rate curve
steeper than the curve obtained in nutrient-limited NCM3722
(confirmed using a Chi-squared test, P < 10−6) (Zhu et al.,
2019; Noga et al., 2020). However, the RNA/protein ratio vs.
growth rate trends measured in ppGpp- and carbon-limited
cultures closely overlap. This suggests that in the absence of
stress, growth rate and RNA synthesis control can be decoupled
from absolute ppGpp concentrations while still obeying an
inverse relationship.

BREAKING THE GROWTH RATE
SPEEDOMETER: WHEN ppGpp IS NOT
INVERSELY CORRELATED WITH
GROWTH RATE

Nucleotide Starvation Causes a Positive
Correlation Between Growth Rate and
ppGpp
The most dramatic departure from the canonical ppGpp-growth
rate trend has been accomplished by disrupting nucleotide
metabolism. When the growth rates of nucleotide auxotrophs are
titrated by adding limiting nucleotides or nucleotide precursors,
ppGpp increases in parallel with growth rate. Poulsen and
Jensen (1987) first observed this phenomenon in E. coli mutants
unable to synthesize specific nucleotides [carAB- guaB(ts)].

When growth rate was titrated with pyrimidine and purine
sources, the authors inverted the correlation between ppGpp
and growth rate (Figure 1D). Vogel et al. (1991) also found
that ppGpp concentrations increased from 15 to 44 pmol OD−1

in parallel with growth rate and total RNA in a pyrimidine
auxotroph (Figure 1D).

Why does ppGpp correlate positively with growth rate when
growth is limited by pyrimidine (uracil) supply? First, uracil
limitation does not activate ppGpp synthesis in wild-type strains
(Cashel and Gallant, 1969), indicating that RelA and SpoT do not
detect all forms of starvation. Second, these auxotrophs exhibit
low concentrations of UTP and CTP (Figure 1E) suggesting that
ribosome abundance – and thus translation rate – is controlled by
substrate concentrations in these mutants (NTP) rather than by
inhibitor concentrations (ppGpp). As NTP limitation is relieved,
other metabolites likely become limiting for growth, triggering
ppGpp synthesis.

Growth Rate and RNA Content Do Not
Strictly Follow ppGpp Concentrations
During Out-of-Steady-State Growth
Transitions
Steady-state correlations such as the correlation between
ppGpp and growth rate imply but do not establish regulatory
connections. Hypotheses inspired by correlations must
be tested by environmental perturbations. Baracchini and
Bremer (1988) monitored growth and rRNA synthesis while
adjusting basal ppGpp by adding pseudomonic acid to E. coli
glucose cultures. Pseudomonic acid causes accumulation of
uncharged tRNA and increases ppGpp. High concentrations
of pseudomonic acid abruptly increased ppGpp and rapidly
arrested growth, consistent with the stringent response. Low
concentrations of pseudomonic acid also triggered ppGpp
synthesis (up to 60–100 pmol OD−1) and an immediate
but smaller decrease in rRNA synthesis. However, the
instantaneous growth rate (monitored by optical density)
was not perturbed in the short term by small increases in
ppGpp concentrations.

These out-of-steady-state experiments reveal several
important limitations of basal ppGpp regulation. First, the
correlation between basal ppGpp and growth rate is broken
when growth is out of steady state: were the relationship between
growth rate and ppGpp to be as strict during growth transitions
as during steady-state growth, a tripling in basal ppGpp would
cause an immediate corresponding reduction in growth. Second,
unlike the rapid protein synthesis inhibition caused by high
ppGpp concentrations (Svitil et al., 1993), small increases of
ppGpp (<100 pmol OD−1) do not seem to immediately inhibit
biomass synthesis (with the exception of stable RNA). This
undermines any notion that basal ppGpp directly regulates the
instantaneous translation rate. Finally, two additional studies
demonstrate that ppGpp and the rate of stable RNA synthesis can
be transiently decoupled during nutritional upshifts, suggesting
that additional signals may regulate rRNA synthesis (Friesen
et al., 1975; Hansen et al., 1975).
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MEASUREMENTS OF BASAL ppGpp
REVEAL THAT DISRUPTION OF ppGpp
BINDING SITES ON RNA POLYMERASE
DOES NOT ABOLISH CORRELATION
BETWEEN BASAL ppGpp, RNA, AND
GROWTH RATE

To determine whether RNA polymerase (RNAP) retains
regulation by basal ppGpp if its two ppGpp binding sites are
disrupted, we measured basal ppGpp levels, growth rates and
cellular RNA in E. coli strains expressing RNAP mutants (Ross
et al., 2013, 2016). Although we did not test a strain bearing
both mutations together, we reasoned that mutations in either
individual binding site might nevertheless strongly affect RNA
synthesis control by basal ppGpp and weaken the relationship
between RNA and growth rate, as observed in a ppGpp0

strain by Potrykus et al. (2011).
We transferred mutations that disrupt ppGpp binding site

1 [rpoZ(wt) rpoC R362A R417A K615A; Ross et al., 2013] or

that disrupt ppGpp binding site 2 (rpoC N680A K681A; Ross
et al., 2016) from MG1655 to NCM3722. We confirmed that the
stringent response does not arrest RNA synthesis in our mutant
strains as strongly as in wild-type (Supplementary Figure 1),
qualitatively consistent with results previously observed (Ross
et al., 2016). We sampled cultures that had been grown directly
from fresh colonies (i.e., without dilution from overnight
cultures) to reduce the outgrowth of cells bearing additional
RNAP mutations (Murphy and Cashel, 2003).

ppGpp concentrations remain inversely correlated with
growth rate in both mutants. However, both mutants grow more
slowly and have correspondingly higher ppGpp concentrations
in most growth media than wild-type NCM3722 (Figures 2A–
C). Furthermore, the RNA content of both mutants correlates
positively with growth rate, as it does for the wild-type strain
(Figure 2D), with exception of the lower RNA concentration
for the rpoC2- mutant in LB medium. At first glance, this
is consistent with the notion that the RNAP mutants are
less sensitive to ppGpp, as apparent from the slopes of
cellular RNA content vs. ppGpp (Figure 2E). A chi-squared

FIGURE 2 | RNA polymerase mutants without ppGpp binding site 1 or 2 still exhibit the typical ppGpp and RNA vs. growth rate trends. (A) Basal ppGpp in
NCM3722 rpoZ(WT) rpoC1- and in (B) NCM3722 rpoC2- (showing technical replicates, 3 per culture). (C) Averaged data of A and B overlapped with average
NCM3722 wild type data from Figure 1A. (D–F) The total RNA concentration of NCM3722 wild type and rpoC mutants in various growth media. Error bars
represent standard deviations. (D) Total RNA concentration plotted as a function of growth rate. (E) Data of D plotted as a function of ppGpp concentrations with a
linear fit. The average or each condition is shown. See Supplementary Section 3 for materials and methods. (F) Data of D plotted to compare RNA content
between strains grown in identical media. Bars represent the average of three technical replicates of one culture, with exception of rpoC2- in glycerol (2 cultures, 6
replicates) and succinate (3 cultures, 9 replicates). *P < 0.05 for a two-tailed student’s t-test. For (A,B,D,E), the Pearson correlation coefficient r and significance
figure P (from a two-tailed significance test) is shown.
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goodness-of-fit test verified that the mutants do not fit the
wild-type pattern (P < 10−6). In other words, higher ppGpp
concentrations may be required to inhibit RNA synthesis in
these strains. While it might be expected that the cultures
expressing ppGpp-insensitive RNAP thus contain a higher
RNA abundance than wild-type, we found that for every
medium aside from MOPS/acetate, both mutant strains exhibit
equivalent or even less RNA per OD unit than does the wild-
type (Figure 2F). This is inconsistent with the abolition of
growth rate control of RNA content observed in ppGpp0 strains
(Potrykus et al., 2011).

While our results indicate that neither ppGpp binding site
on RNAP is individually sufficient to mediate ppGpp control
over RNA content, we cannot exclude the possibility that
the simultaneous removal of both ppGpp binding sites is
required to fully eliminate the ppGpp-RNA content relationship.
Other factors may also be implicated in RNA synthesis
control in the NCM3722 strain. For instance, TraR, a
transcription factor encoded on the F plasmid carried by
NCM3722 is known to mimic the action of DksA and ppGpp
(Gopalkrishnan et al., 2017).

CONCLUSION

We find that the inverse correlation between ppGpp and growth
rate during steady-state growth is quite robust, even against
removal of the ppGpp synthesis enzyme RelA. Deviations from
the trend (e.g., RelA′ overexpression, pyrimidine starvation,
and growth transitions) deserve fuller exploration as they
likely hint at poorly understood facets of ppGpp biology.
Disrupting either individual ppGpp binding site of RNAP did
not eliminate the correlation between growth rate, RNA content,
and basal ppGpp concentrations. Despite compelling evidence
for basal ppGpp control of rRNA synthesis, incorporating ppGpp
into quantitative models of cell behavior requires a better
understanding of both transcriptional and post-translational
targets. In order to advance this goal, we suggest several questions
for the field:

1. What targets are responsive to basal ppGpp concentrations?
As basal ppGpp varies with growth rate in parallel with
all biosynthetic fluxes during balanced growth, it is
tempting to overextend models of ppGpp control. Targets
thought to be regulated during the stringent response
may prove insensitive to basal ppGpp. Experiments that
monitor ppGpp during growth transitions already suggest
that small changes in basal ppGpp do not immediately
affect instantaneous protein synthesis or total biomass
production. Studies of basal ppGpp concentrations
during growth transitions are essential for distinguishing
what is influenced by ppGpp. We suggest experiments
that monitor protein synthesis during small controlled
variations in basal ppGpp (±50 pmol OD−1).

2. What establishes basal ppGpp concentrations? It is
unknown which metabolic cues drive RelA and SpoT to
generate basal ppGpp.

3. What regulates stable RNA synthesis during steady-state
growth, aside from basal ppGpp? Our observation that RNA
polymerase mutants lacking either one of the two ppGpp
binding sites still exhibit an inverse relationship between
RNA content and ppGpp concentrations implies that other
factors also regulate RNA content, as has been suggested
(Fernández-Coll and Cashel, 2018). However, experiments
in a strain simultaneously bearing both RNAP mutations
will be necessary to confirm this.

4. Does basal ppGpp vary inversely with growth rate when
growth rate is varied by other nutrients than carbon source?
Measuring basal ppGpp vs. growth rate in conditions that
have not yet been tested (e.g., nitrogen source) would also
determine whether basal ppGpp is an accurate growth
rate speedometer.

5. Do all species with RSH proteins also maintain basal
concentrations of ppGpp (or pppGpp) during steady-state
growth? As RSH proteins are widely distributed (Atkinson
et al., 2011), basal ppGpp may be a defining feature of
bacterial growth.

We further recommend the use of common reference strains
(preferably E. coli NCM3722) and defined media to enable
comparisons between labs.
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