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We consider two particles performing continuous-time nearest neighbor
random walk on Z and interacting with each other when they are at neighbor-
ing positions. The interaction is either repulsive (partial exclusion process) or
attractive (inclusion process). We provide an exact formula for the Laplace–
Fourier transform of the transition probabilities of the two-particle dynam-
ics. From this we derive a general scaling limit result, which shows that the
possible scaling limits are coalescing Brownian motions, reflected Brownian
motions and sticky Brownian motions.

In particle systems with duality, the solution of the dynamics of two dual
particles provides relevant information. We apply the exact formula to the the
symmetric inclusion process, that is self-dual, in the condensation regime. We
thus obtain two results. First, by computing the time-dependent covariance of
the particle occupation number at two lattice sites we characterise the time-
dependent coarsening in infinite volume when the process is started from a
homogeneous product measure. Second, we identify the limiting variance of
the density field in the diffusive scaling limit, relating it to the local time of
sticky Brownian motion.

1. Introduction. In interacting particle systems, duality is a powerful tool which enables
to study time-dependent correlation functions of order n with the help of n dual particles.
Examples include the exclusion processes [12, 27] and the inclusion processes [14], related
diffusion processes such as the Brownian Energy process [13], and stochastic energy ex-
change processes, such as Kipnis–Marchioro–Presutti model [25].

For systems defined on the infinite lattice Z
d , these dual particles typically spread out and

behave on large scale as independent Brownian motions. This fact is usually enough to prove
the hydrodynamic limit in the sense of propagation of local equilibrium [12]: under a diffu-
sive scaling limit the macroscopic density profile evolves according to the heat equation. To
study the fluctuations of the density field one needs to understand two dual particles. Like-
wise, solving the dynamics of a finite number n of dual particles one gets control on the nth
moment of the density field. While the dynamics of one dual particle is usually easy to deal
with (being typically a continuous-time random walk), the dynamics of n dual particles is
usually a hard problem (due to the interaction of the dual walkers) that can be solved only in
special systems, that is, stochastic integrable systems [7, 8, 28, 32–34]. In such systems the
equations for the time-dependent correlation functions essentially decouple and the transition
probability of a finite number of dual particles can be solved using methods related to quan-
tum integrability, for example, Bethe ansatz,Yang Baxter equation, and factorized S-matrix.
For instance, by studying the two-particle problem for the asymmetric simple exclusion pro-
cess, it was proved in [31] that the probability distribution of the particle density of only two
particles spreads in time diffusively, but with a diffusion coefficient that is notably different
from the noninteracting case.
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In this paper we prove that in dimension d = 1 and for nearest neighbor jumps with trans-
lation invariant rates, a generic system of two (dual) particles turns out to be exactly solvable,
that is, one can obtain a closed-form formula for the Laplace–Fourier transform of the tran-
sition probabilities in the coordinates of the center of mass and the distance between the
particles. The derivation of this formula, and its applications through duality, is the main
message of this paper.

The exact formula for the two-particle process will be stated in Theorem 2.5. This is proved
for the case where particles have symmetric interactions but can be easily extended to the
asymmetric case provided that the asymmetry is “naive”, meaning that it is obtained from the
symmetric system by multiplying the rates of jumps to the right by a parameter p and the
rates of jumps to the left by a parameter q , with p �= q .

From Theorem 2.5 we obtain a general scaling limit result (Theorem 2.8), which shows
that the possible scaling limits of two interacting random walkers are coalescing Brownian
motions (“absorbed regime”), reflecting Brownian motions (“reflected regime”) and sticky
Brownian motions [22, 26] (attracting each other via their local intersection time) which
interpolate between the absorbed and reflected regime, and where the particles spend some
positive proportion of time at the same place.

Next, we consider applications of Theorem 2.5 to systems with duality. We focus, in par-
ticular, on the inclusion process [14]. Due to the attractive interaction between particles this
model has a condensation regime [5, 18]. As a consequence of Theorem 2.8, the scaling limit
of the two-particle dynamics yields sticky Brownian motions. Furthermore, by using duality,
we study the scaling behavior of the variance and covariance of the number of particles in the
condensation regime (Theorem 2.13). This provides better understanding of the coarsening
process (building up of large piles of particles) when starting from a homogeneous initial
product measure in infinite volume. Last, we study in Theorem 2.15 the time-dependent vari-
ance of the density fluctuation field of the inclusion process in the condensation regime.

Condensation phenomena in particle systems have been studied extensively; see for ex-
ample, [20] for one of the first papers on the subject. For inclusion process, condensation in
the stationary distribution was studied in [18], and dynamics of condensates in finite volume
have been studied in [5, 19].

To our knowledge our paper provides the first result on coarsening in infinite volume, start-
ing from a translation invariant initial distribution. We believe that the scaling behavior of the
fluctuation field and its relation with sticky Brownian motion has some degree of universality,
in this setting of coarsening from a translation invariant initial measure. More precisely, we
believe that as long as “inclusion-like” interaction is responsible for the condensation, the
scaling limit will be related to sticky Brownian motion. For other processes where conden-
sation phenomena occur and long-time results for the dynamics of condensates have been
obtained (in finite volume) [2–4, 15] other scaling limits might appear.

2. Model definitions and results.

2.1. The setting. We start by defining a system of particles moving on Z and interacting
when they are nearest neighbor with jump rates that are bilinear functions of the occupation
numbers of departing and arrival sites. The system is modeled by a continuos-time Markov
chain and thus is defined by assigning the process generator.

DEFINITION 2.1 (Generator). Let {η(t) : t ≥ 0} be a particle system on the integer lattice,
where ηx(t) ∈ S ⊆ N denotes the number of particles at site x ∈ Z at time t . The particles
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evolve according to the formal generator:

(1)

[
L f

]
(η) = α

2

∑
x∈Z

{
ηx(1 + θηx+1)

[
f

(
ηx,x+1) − f (η)

]
+ ηx+1(1 + θηx)

[
f

(
ηx+1,x) − f (η)

]}
,

for some θ ≥ −1, α ≥ 0.

In the above, ηx,y is the configuration that is obtained from η ∈ SZ by removing a particle
at site x and adding it at site y, that is,

ηx,y
z =

⎧⎪⎪⎨⎪⎪⎩
ηx − 1 if z = x,

ηy + 1 if z = y,

ηz otherwise.

Here α > 0 is the total rate for a single particle to jump if both left and right neighboring
sites are empty, and θ is a parameter tuning the strength of the interaction between the two
particles. Depending on the sign of θ the interaction has a repulsive or attractive nature.
For θ < 0 it corresponds to the (generalized) exclusion process. In this case the number of
particles at site i, has a maximum, that is, S is a finite set (as in the partial exclusion processes
[28]). For θ > 0 it corresponds to the inclusion process [14] and for θ = 0 to independent
random walkers. In these cases any natural number is allowed and then S =N.

2.2. Duality. Despite their deeply different natures (they are also defined in different
state spaces) these processes share a self-duality property that make them amenable of a
detailed investigation. Our final goal is the study of the two points correlation functions of
the occupation numbers. This will be achieved by means of a self duality relation linking the
two-points correlation functions with the two-particles dynamics.

DEFINITION 2.2 (Self-duality). Let {η(t) : t ≥ 0} be a process of type introduced in
Definition 2.1. We say that the process is self-dual with self-duality function D : SZ × SZ →
R if for all t ≥ 0 and for all η, ξ ∈ SZ we have the self-duality relation

(2) Eη

[
D

(
ξ, η(t)

)] = Eξ

[
D

(
ξ(t), η

)]
,

where {ξ(t) : t ≥ 0} is an independent copy of the process with generator (1). In the above
Eη on the l.h.s. denotes expectation in the original process initialized from the configuration
η and Eξ on the r.h.s. denotes expectation in the copy process initialized from the configura-
tion ξ . We shall call D a factorized self-duality function when

(3) D(ξ,η) = ∏
x∈Z

d(ξx, ηx).

The function d(·, ·) is then called the single-site self-duality function.

2.2.1. The symmetric inclusion process. The symmetric inclusion process with parame-
ter k > 0, denoted SIP(k), is the process with generator [14]

(4) LSIP(k)f (η) = ∑
x∈Z

(
ηx(k + ηx+1)∇x,x+1 + ηx+1(k + ηx)∇x+1,x

)
f (η),

where ∇x,�f (η) = f (ηx,�) − f (η). This amounts to choose the parameters in (1) as follows

(5) θ = 1

k
and α = 2

θ
= 2k.
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Conversely, the process with generator (1) corresponds to a time rescaling of the SIP process,
that is,

(6) ηref(t) = ηSIP( 1
θ
)

(
θα

2
t

)
.

The SIP(k) is self dual with single-site self-duality function:

(7) dSIP(k)(m,n) = n!�(k)

(n − m)!�(k + m)
1{m≤n}.

This self-duality property with self-duality function (7) continues to hold when θ = 1
k

for all
other values of α > 0.

2.2.2. The symmetric partial exclusion process. We recall the definition of the symmet-
ric partial exclusion process with parameter j ∈ N, SEP(j) [30]. Notice that j , that is the
maximum number of particles allowed for each site, has to be a natural number. For j = 1
the process is the standard symmetric exclusion process. The generator is

(8) LSEP(j)f (η) = ∑
x∈Z

(
ηx(j − ηx+1)∇x,x+1 + ηx+1(j − ηx)∇x+1,x

)
f (η),

that is, comparing with the process (1) we have

(9) θ = −1

j
, α = −2

θ
= 2j.

The symmetric partial exclusion process SEP(j) is self-dual with single-site self-duality
function:

(10) dSEP(j)(m,n) =
(n
m

)(j
m

)1{m≤n}.

As before, this self-duality property with self-duality function (10) continues to hold when
θ = −1/j for all other values of α > 0.

2.2.3. Independent symmetric random walk. The last example is provided by a system
of independent random walkers (IRW). In this case the generator is

(11) LIRWf (η) = ∑
x∈Z

(ηx∇x,x+1 + ηx+1∇x+1,x)f (η),

which implies, comparing with the process (1), that

(12) α = 2, θ = 0.

In this process we have self-duality with single-site self-duality function:

(13) dIRW(m,n) = n!
(n − m)!1{m≤n}.

As before, this self-duality property with self-duality function (13) continues to hold when
θ = 0 for all other values of α > 0.
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2.3. Distance and center of mass coordinates. Thanks to duality, it is possible to write
the time-dependent correlation functions of degree two in terms of the two-particles transition
probabilities. For this reason, the main goal in the first part of this paper is to achieve a full
control of the dynamics of the two-particle process. To this aim it will be convenient to move
to new coordinates. Consider the process {η(t) : t ≥ 0} with generator (1) initialized with
two particles and denote by (x1(t), x2(t)) the particle positions at time t , with an arbitrary
labeling of the particles, but fixed once for all. Define the distance and sum coordinates by

(14)
w(t) := ∣∣x2(t) − x1(t)

∣∣,
u(t) := x1(t) + x2(t).

By definition, the distance and sum coordinates are not depending on the chosen labeling of
particles. As a consequence of the fact that the size of the particle jumps is one, both the
difference and the sum coordinates change by one unit at every particle jump. Therefore they
both perform continuous-time simple random walks. A straightforward computation starting
from (1) shows that the distance process {w(t) : t ≥ 0}, that is valued in N ∪ {0}, evolves
according to the generator

(15)
[
L (dist)f

]
(w) =

⎧⎪⎪⎨⎪⎪⎩
2α

(
f (w + 1) − f (w)

)
if w = 0,

α
(
f (w + 1) − f (w)

) + α(θ + 1)
(
f (w − 1) − f (w)

)
if w = 1,

α
(
f (w + 1) − 2f (w) + f (w − 1)

)
if w ≥ 2.

We thus see that the distance between the particles evolves in an autonomous way as a
symmetric random walk on the integers, reflected at 0 and with a defect in 1.

As for the sum coordinate {u(t) : t ≥ 0}, this is a process that is valued in Z. The sum
and difference jump at the same random times and, at such jump times, the sum process
independently moves to right or left with probability 1/2. This implies that, if we call N(t) the
number of jumps made by the difference process {w(s), s ≥ 0} up to time t , the distribution
of u(t) is that of a discrete-time symmetric random walk on Z after N(t) steps.

The possibility to decouple the distance process from the sum coordinate is the key ingre-
dient that we will use to find the exact solution of the two-particle dynamics. Such solution
will be expressed by considering the Fourier–Laplace transform of the transition probability:

(16) Pt

(
(u,w),

(
u′,w′)) = P

(
u(t) = u′,w(t) = w′|u(0) = u,w(0) = w

)
,

where P denotes the law of the two-particle process. As it can be seen from the generator
(15) and the considerations above, these transition probabilities are translation invariant only
in the sum coordinate, that is, Pt((u,w), (u′,w′)) = Pt((0,w), (u′ − u,w′)), and therefore it
is natural that we take Fourier transform w.r.t. the sum coordinate. Furthermore it will also
be convenient to take Laplace transform w.r.t. time.

DEFINITION 2.3 (Fourier–Laplace transform of the transition probability). Let the pa-
rameter α in (1) be equal to 1 and let Pt((u,w), (u′,w′)) be the transition probability in (16).
We define the Laplace transform of the transition probability

(17) G (θ)((u,w),
(
u′,w′);λ) :=

∫ ∞
0

e−λtPt

(
(u,w),

(
u′,w′))dt, λ > 0

and its Fourier transform

(18) G(θ)(w,w′, κ, λ
) := ∑

v∈Z
e−iκvG (θ)((0,w),

(
v,w′);λ)

, κ ∈R.
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REMARK 2.4 (Changing α). Notice that the parameter α > 0 in (1) appears as a multi-
plicative factor in the generator, therefore for a generic value of this parameter we have the
scaling property

(19) G (θ,α)((u,w),
(
u′,w′);λ) = 1

α
G (θ)

(
(u,w),

(
u′,w′); λ

α

)
,

where we made the α-dependence explicit. The G (θ) in (17) coincides with G (θ,1) and for a
generic value of α we can use (19).

2.4. Main results. We state now our main results. Without loss of generality, as it was
done in Definition 2.3, we will always choose in the following α = 1. The case of general α

just corresponds to a rescaling of time, that is, t ′ = αt (cf. Remark 2.4).

2.4.1. Exact solution of the two-particle dynamics. We start by providing the formula for
the Fourier–Laplace transform of the transition probability of the distance and sum coordi-
nates.

THEOREM 2.5 (Fourier–Laplace transform for the distance and sum coordinates). The
Fourier–Laplace transform in Definition 2.3 is given by

(20) G(θ)(w,w′, κ, λ
) = f

(θ)
λ,κ (w,w′)

Z (0)
λ,κ

{
ζ

|w′−w|−1
λ,κ + ζw′+w−1

λ,κ

(
2
Z (0)

λ,κ

Z (θ)
λ,κ

− 1
)}

,

with

(21) f
(θ)
λ,κ

(
w,w′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θν−1

κ ζλ,κ + 1

2
if w = 0,w′ = 0m,

θ + 1

2
if w ≥ 1,w′ = 0m,

1 if w ≥ 1,w′ ≥ 1,

and

(22) Z (θ)
λ,κ = νκ

(
ζ−2
λ,κ − 1

) + 2θ(xλ,κ − νκ),

where

(23) ζλ,κ := ζ(xλ,κ) = xλ,κ −
√

x2
λ,κ − 1, xλ,κ := 1

νκ

(
1 + λ

2

)
,

where νκ = cos(κ), θ ≥ −1 and λ > 0.

REMARK 2.6 (Meaning of νk and ζ(x)). One recognizes that νκ is the Fourier transform
of the increments of the discrete time symmetric random walk on Z. Furthermore, as it will
be clear from the proof of Theorem 2.5, the function ζ(x) appearing in (23) is related to the
probability generating function of S0, the first hitting time of the origin 0 of the discrete time
symmetric random walk. More precisely

(24) ζ(x) = E1
(
x−S0

)
, x ≥ 1.

In order to give more intuition for the formula in Theorem 2.5, we transform to leftmost
and rightmost position coordinates. In these coordinates the comparison between the inter-
acting (θ �= 0) and noninteracting (θ = 0) case becomes more transparent. Let (x(t), y(t)) be
the coordinates defined by

(25) x(t) := min
{
x1(t), x2(t)

}
, y(t) := max

{
x1(t), x2(t)

}
,
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where (x1(t), x2(t)) denote the particle positions. We define the Laplace transform

(26) �(θ)((x, y),
(
x′, y′);λ) :=

∫ ∞
0

πt

(
(x, y),

(
x′, y′))e−λt dt, λ > 0,

where πt denotes the transition probability of the process {(x(t), y(t)) : t ≥ 0} started from
(x, y) ∈ Z×Z.

COROLLARY 2.7 (Positions of leftmost and rightmost particle). For x �= y, the Laplace
transform in (26) is given by

(27)

�(θ)((x, y),
(
x′, y′);λ)

=
{
A

(θ)
+

(
x′ − x, y′ − y,λ

) + A
(θ)
−

(
y′ − x, x′ − y,λ

)
if y′ > x′,

A
(θ)
0

(
x′ − x, x′ − y,λ

)
if y′ = x′,

where

(28) A
(θ)
±,0(x, y, λ) := 1

8π2

∫ π

−π

∫ π

−π

�
(θ)
±,0(

κ1+κ2
2 , λ)ei(κ1x+κ2y)

1 + λ
2 − cos(κ2+κ1

2 ) cos(κ2−κ1
2 )

dκ1 dκ2

and, for θ ≥ −1, λ > 0,

(29) �
(θ)
+ (κ, λ) := 1, �

(θ)
− (κ, λ) := 2

Z (0)
λ,κ

Z (θ)
λ,κ

− 1, �
(θ)
0 (κ, λ) := (θ + 1)

Z (0)
λ,κ

Z (θ)
λ,κ

.

From the above formula we immediately see that the Fourier transform of A
(θ)
±,0(x, y, λ) is

given by

(30) Â
(θ)
±,0(κ1, κ2, λ) = �

(θ)
±,0(

κ1+κ2
2 , λ)

2 + λ − (cosκ1 + cosκ2)
.

Notice that for θ = 0 we have �
(0)
±,0(κ, λ) = 1, and thus we recover the Fourier–Laplace trans-

form of the transition probability of two independent random walkers.

2.4.2. Scaling limits. Our second main result is related to the characterization of the
scaling limit of the two-particle process. We thus consider a diffusive scaling of space and
time. With α = 1 (cf. the beginning of Section 2.4), this leaves only θ > 0 as a free parameter.
Given a scaling parameter ε > 0, we define

(31) Uε(t) := εu(ε−2t)√
2

, Wε(t) := εw(ε−2t)√
2

.

We consider initial values depending on ε, that is, uε = u(0) and wε = w(0), and assume that
the following limits exist:

(32) U := lim
ε→0

εuε√
2

, W := lim
ε→0

εwε√
2

,

with U ∈ R and W ∈ R+. Similarly we suppose θ to be a function of ε, and thus write θε and
we distinguish three different regimes as ε → 0:

(a) Reflected Regime: limε→0 εθε = 0.
(b) Sticky Regime: θε > 0 and εθε = O(1). In this regime we define

(33) γ := lim
ε→0

εθε√
2

∈ (0,∞).
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(c) Absorbed Regime: θε > 0 and limε→0 εθε = +∞.

Notice that, as θ ∈ [−1,+∞), for negative θ (exclusion-type dynamics) only the scaling
limit (a) is allowed. We have the following result.

THEOREM 2.8 (Scaling limits). Let {B(t) : t ≥ 0} and {B̃(t) : t ≥ 0} be two independent
Brownian motions starting, respectively, at W ≥ 0 and at the origin 0. Let s(t) be defined in
terms of its inverse:

(34) s(t) := inf
{
r > 0 : r < sinv(t)

}
where sinv(t) := t + γL(t)

and L(t) is the local time at the origin of B(t), so that {BS(t) = |B(s(t))| : t ≥ 0} is the
one-sided sticky Brownian motion started at W , with stickiness at the origin of parameter
γ ∈ [0,∞]. Let {BR(t) : t ≥ 0} denote the Brownian motion reflected at the origin started at
W ≥ 0 and let {BA(t) : t ≥ 0} denote the Brownian motion absorbed at the origin started at
W ≥ 0. Then the following holds true:

(35) lim
ε→0

((
Uε(t) − U

)
,Wε(t)

) = (
U(t),W(t)

)
,

where {(U(t),W(t)) : t ≥ 0} is defined by (U(0),W(0)) = (0,W) and

(36)
(
U(t),W(t)

) =

⎧⎪⎪⎨⎪⎪⎩
(
B̃(t),BR(t)

)
in the Reflected Regime,(

B̃
(
2t − s(t)

)
,BS(t)

)
in the Sticky Regime,(

B̃(2t − t ∧ τW ),BA(t)
)

in the Absorbed Regime,

where the convergence in (35) is in the sense of finite-dimensional distributions and τW in the
third line of (36) is the absorption time of {BA(t) : t ≥ 0}.

Thus the scaling limit of the two particle process turns out to be two Brownian motions
with “sticky interaction”, that can be thought of as an interpolation between two coalescing
Brownian motions and two reflecting Brownian motions. More precisely, the distance be-
tween the particles converges to a sticky Brownian motion, which in turn has two limiting
cases, namely the absorbed and reflected Brownian motion. On the other hand, the sum of
the particle positions becomes a process which is subjected to the sticky Brownian motion
driving the difference and is “moving at faster rate” when the particles are together, that is,
it is a time-changed Brownian motion of which the clock runs faster with an acceleration
determined by the local intersection time.

REMARK 2.9 (The symmetric inclusion process in the condensation regime). For the
symmetric inclusion process SIP(k) we say that we are in the condensation regime when
the parameter k tends to zero sufficiently fast, that is, when the spreading of the particles is
much slower than the attractive interaction due to the inclusion jumps [5, 18]. After a suitable
rescaling two SIP(k) particles will then behave as independent Brownian motions which
spend “excessive” local time together. The sticky regime with stickiness parameter γ ∈ (0,∞)

corresponds to the choice k = ε

γ
√

2
, and acceleration of time by a factor ε−3 γ√

2
. That is,

this corresponds to the condensation regime k → 0, where time is diffusively rescaled, and
speeded up with an extra ε−1 in order to compensate for the vanishing diffusion rate.

REMARK 2.10 (Exclusion particles scale to reflected Brownian motions). For the ex-
clusion process SEP(j) it is not possible to consider the sticky or the absorbed regime, be-
cause θ < 0. For this reason we only scale time diffusively with a factor 2jε−2 and take
θ = −1/j fixed. This then corresponds to considering the reflected regime in (35) where
(Uε(t) − U,Wε(t)) converge to (B̃(t), |B(t)|) where B̃(t) is a standard Brownian motion
and B(t) is an independent Brownian motion started at W .
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Next we show that the expected local time of the difference process {Wε(t), t ≥ 0} con-
verges to the expected local time of the limiting sticky Brownian motion (in the sense of
convergence of the Laplace transform). Notice that this does not follow from weak conver-
gence of the previous Theorem 2.8, but has to be viewed rather as a result in the spirit of a
local limit theorem.

PROPOSITION 2.11 (Local time in 0). For θ ≥ −1, λ > 0, we have

(37)
∫ ∞

0
e−λt

Pw

(
w(t) = 0

)
dt = ζw

λ

1 + θζ
1w=0
λ

ζ−1
λ + (θλ − 1)ζλ

with

(38) ζλ := ζλ,0 := 1 + λ

2
−

√
λ + λ2

4
.

As a consequence, in the sticky regime we have

(39) lim
ε→0

∫ ∞
0

e−λt
Pwε

(
Wε(t) = 0

)
dt = γ√

2λ + γ λ
e−√

2λW

with W as in (32), γ as in (33).

REMARK 2.12. Notice that the r.h.s. of (39) is exactly the Laplace transform of the
probability PW(BS(t) = 0) of the sticky Brownian motion started at W ≥ 0 to be at the
origin at time t ; see Lemma 4.5.

2.4.3. Coarsening in the condensation regime of the inclusion process. We now present
some results for the symmetric inclusion process SIP(k), which is a self-dual process. Let the
time-dependent covariances of the particle numbers at sites x ∈ Z and y ∈ Z at time t ≥ 0 be
defined as

(40) �(θ)(t, x, y;ν) =
∫

Eη

[(
ηx(t) − ρx(t)

)(
ηy(t) − ρy(t)

)]
dν(η),

where ν denotes the initial measure (i.e., the initial distribution of the particle numbers) and

(41) ρx(t) =
∫

Eη

[
ηx(t)

]
dν(η).

The following theorem gives an explicit result for the variance and the covariance of the time-
dependent particle numbers in the sticky regime of the symmetric inclusion process when
starting from a homogeneous product measure in infinite volume. In particular, we see how
the variance diverges when the inclusion parameter k = 1/θ goes to zero, which corresponds
to the condensation limit with piling up of particles.

THEOREM 2.13 (Scaling of variance and covariances in the sticky regime of the inclusion
process). Let {η(t) : t ≥ 0} be the process with generator (1) with α = 1 and θ > 0 (i.e., the
time rescaled inclusion process; see (6)). Suppose we are in the sticky regime, that is,

(42) γ := lim
ε→0

εθε√
2

∈ (0,∞).

Let λ,a > 0, then, for any initial homogeneous product measure ν, we have
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(a) Scaling of covariances. For x, y ∈ εZ, x �= y, for ε small enough we have

(43)

∫ ∞
0

e−λt�(θε)
(
ε−at, xε−1, yε−1;ν)

dt

= −ρ2(
1 + o(1)

) ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
a
2 −1

√
2γ λ

e−√
λ|x−y|ε a

2 −1
if a ∈ (1,2),

γ e−√
λ|x−y|

√
2λ + γ λ

if a = 2,

γ√
2λ

ε
a
2 −1 if a > 2.

(b) Scaling of variance. For x ∈ εZ, for ε small enough we have

(44)

∫ ∞
0

e−λt�(θε)
(
ε−at, xε−1, xε−1;ν)

dt

= ρ2(
1 + o(1)

) ·

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2

λ
√

λ
ε− a

2 if a ∈ (1,2),

2
√

2γ

2λ + γ λ
√

2λ
ε−1 if a = 2,

√
2γ

λ
ε−1 if a > 2.

REMARK 2.14 (Coarseing). We see that the r.h.s. of (43) has three different regimes
which can intuitively be understood as follows.

(1) Subcritical time scale. In the first regime, corresponding to “short times” we see that
the covariance goes to zero as ε → 0, which is a consequence of the initial product mea-
sure structure. At the same time we see a scaling corresponding to the Laplace transform
of expected local intersection time of coalescing Brownian motions (cf. limit of γ → ∞ of
(39)). This corresponds to the dynamics of large piles (at typical distance ε−1) which merge
as coalescing Brownian motions, because on the time scale under consideration there is no
possibility to detach.

(2) Critical time scale. In the second regime corresponding to “intermediate times” we see
a scaling corresponding to the Laplace transform of expected local intersection time of sticky
Brownian motions. This identifies the correct scale at which the “piles” have a nontrivial
dynamic, that is, can interact, merge and detach. This is also the correct time scale for the
density fluctuation field (cf. Theorem 2.15).

(3) Supercritical time scale. In the last regime, the covariance is o(1) as ε → 0, which
corresponds to the stationary regime, in which again a product measure is appearing. The
1/

√
λ scaling corresponds in time variable to 1/

√
t , which corresponds to the probability

density of two independent Brownian motions, initially at ε−1x, ε−1y to meet after a time
ε−at , indeed:

exp{− (x−y)2ε−2

2tε−a }√
2πtε−a

≈ εa/2
√

2πt
.

This corresponds to the fact that on that longer time scale, the stickyness of the piles disap-
pears and they move as independent particles, unless they are together.

We finally remark that the variance in (44) always diverges in the limit ε → 0. This cor-
responds to the fact that the stationary product measure has a variance of order ε−1 when
ε → 0. This diverging variance is built up in the course of time: it first grows between times
ε−1 and times ε−2 as the square root of the time and then it reaches saturation at times ε−2.
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2.4.4. Variance of the density field in the condensation regime of the inclusion process.
Having identified the relevant scaling of the variance and covariance of the time-dependent
particle number, we apply this to compute the limiting variance of the rescaled density fluc-
tuation field, which shows a nontrivial limiting dependence structure in space and time. We
consider the density fluctuation field out of equilibrium, that is, we start the process from an
homogeneous invariant product measure ν which is not the stationary distribution and has
expected particle number

∫
ηx dν = ρ for all x ∈ Z. More precisely, we study the behav-

ior of the random time-dependent distribution defined in the space of Schwartz functions:
S (R) = {ϕ ∈ C∞(R) : supx∈R |xαDβϕ(x)| < ∞,∀α,β ∈ N}, via

(45) Xε(�,η, t) = ε
∑
x∈Z

�(εx)
(
ηx

(
ε−2t

) − ρ
)
,

where η in the l.h.s. of (45) refers to the intitial configuration η(0) which is distributed ac-
cording to ν. Notice that we multiply by ε in (45) as opposed to the more common

√
ε which

typically appears in fluctuation fields of particle systems (in dimension one) with a conserved
quantity and which then usually converges to an infinite dimensional Ornstein–Uhlenbeck
process; see, for example, [24], Chapter 11. Here, on the contrary, we are in the condensa-
tion regime, and therefore the variance of the particle occupation numbers is of order ε−1

by Theorem 2.13, which explains why we have to multiply with an additional factor
√

ε in
comparison with the standard setting.

THEOREM 2.15 (Variance of the density fluctuation field). Let {η(t) : t ≥ 0} be the pro-
cess with generator (1) with α = 1 and θ > 0 (i.e., the time rescaled inclusion process; see
(6)). Assume we are in the sticky regime, that is,

(46) γ := lim
ε→0

εθε√
2

∈ (0,∞).

Let ν be an initial homogeneous product measure then, for all λ > 0,

(47)

lim
ε→0

∫ ∞
0

e−λt
Eν

[(
Xε(�,η, t)

)2]
dt

= γρ2
√

2λ + γ λ

{
2√
λ

∫
�(x)2 dx −

∫
�(x)�(y)e−√

λ|x−y| dx dy

}
.

Notice that the right hand-side quantity is positive since, from Cauchy–Schwarz inequality
and Young’s convolution inequality, for Cλ(x) := e−√

λ|x|,

(48) 〈�,� ∗ Cλ〉 ≤ ‖�‖2 · ‖� ∗ Cλ‖2 ≤ ‖�‖2
2 · ‖Cλ‖1 = 2√

λ
· ‖�‖2

2.

The limiting variance of the density fluctuation field consists of two terms which both contain
the stickyness parameter γ . The combination of both terms describe how from the initial ho-
mogeneous measure ν one enters the condensation regime. Comparing to the standard case
of for example, independent random walkers, we have to replace γρ2 by ρ in the numerator
and replace γ by zero in the denominator. Then we exactly recover the variance of the non-
stationary density fluctuation field of a system of independent walkers starting from ν. So
we see that the stickyness introduces a different time dependence of the variance visible in
the extra λ-dependent terms in the denominators of the r.h.s. of (47). In particular, in the first
term on the r.h.s. of (47) we recognize the Laplace transform of the expected local time of
sticky Brownian motion.
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2.5. Extension to the asymmetric case. The main point for the proof of Theorem 2.5 is
the possibility to isolate the dynamics of the distance processand the fact that the sum process
depends on the distance process only through the common jump clock and not on the one-step
transition probabilities. It is a natural question to understand whether this property is peculiar
of the process defined in (1) or it can be extended by taking more general hopping rates.
What happens for instance in the case of asymmetric interaction? To answer to this question
we define, in this section, a Markov process {η(t) : t ≥ 0} modeling the interaction of two
particles moving on the integer lattice. Then, if ηx(t) ∈ S ⊆ N is the number of particles at
site x ∈ Z, at time t we have that ηx(t) ∈ S = {0,1,2} and

∑
x∈Z ηx(t) = 2. Suppose that the

particles evolve according to the generator:

(49)
[L f ](η) = ∑

x∈Z

{
c+(ηx, ηx+1)

[
f

(
ηx,x+1) − f (η)

]
+ c−(ηx+1, ηx)

[
f

(
ηx+1,x) − f (η)

]}
,

for some function c±(·, ·) ≥ 0. Passing now to the position coordinates, we denote by
{(u(t),w(t)), t ≥ 0} the distance-sum process corresponding to (49). Sum and distance jump
at the same times and we call N(t) the number of jumps made up to time t . We require
now that, conditionally on the realizations of {N(t), t ≥}, the sum process is a discrete-time
Markov process independent from the distance process. It is possible to see that, imposing
such conditions on the sum/difference process is equivalent to requiring the following condi-
tion on the jump rates c±:

CONDITION 2.16 (Rates of two-particle process). For the rates in (1) we assume that:
for integers couples (n,m) such that n + m ≤ 2, they satisfy

c+(2,0) + c−(2,0) = 2
(
c+(1,0) + c−(1,0)

)
,(50)

c+(1,0)

c−(1,0)
= c+(1,1)

c−(1,1)
= c+(2,0)

c−(2,0)
.(51)

Condition 2.16 identifies the only possible choice for the rates in (49) given by

(52) c+(n,m) = p
α

2
n(1 + θm), c−(n,m) = q

α

2
n(1 + θm)

for some p,q ∈ [0,1], p + q = 1, α ≥ 0, θ ≥ −1. This corresponds to an asymmetric version
of the process (1). We use the expression naive asymmetry to indicate this kind of asymmetric
interaction, that is obtained from the symmetric one by simply multiplying the rates of the
left/right jumps by two different constants.

Theorem 2.5 can be easily extended to the system with generator (49) with asymmetric
rates given by (52). In this case the theorem holds true with the analytic expression (20)–(23)
being still valid modulo the redefinition of νκ in the following way:

(53) νκ := cos(κ) − i(p − q) sin(κ).

One could then repeat the analysis of the scaling limits of the two-particle process. In
the weak-asymmetry limit one then expects sticky Brownian motions with drift as limiting
processes. The possibility to apply the exact formula to asymmetric systems with duality is
instead unclear, since in the presence of naive asymmetry (52) self-duality is lost. One may
hope to derive a more general formula for the two particle dynamics that would apply to
systems with asymmetry and self-duality such as ASEP(q, j) [9], ASIP(q, k) [10], ABEP(k)

[10] processes.
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2.6. Discussion. In this section, we discuss relations to the literature, possible extensions
and open problems.

Other applications of Theorem 2.5. The formula for the Laplace–Fourier transform of the
transition probability of distance and sum coordinates can be applied to obtain the second
order Boltzmann–Gibbs principle [16], which is a crucial ingredient in the proof of Kardar–
Parisi–Zhang behavior for the weakly asymmetric inclusion process (see the forthcoming
work [11]).

Dependence structure and type of convergence. The difference and sum processes have
a dependence structure similar to their scaling limits in Theorem 2.8. Namely, one process
is autonomous, the other is depending on the first via a local time. In the scaling limit one
further introduces an additional time-change that however does not change such dependence
structure. The scaling limit result in Theorem 2.8 is proved in the sense of finite-dimensional
distributions. One could get a stronger type of convergence by directly studying the scal-
ing limits of the generators of the distance and sum process. This however poses additional
difficulties and is not pursued here.

Scaling limits to sticky Brownian motions. We observed in Remark 2.10 that exclusion
particles always scale to reflected Brownian motions. In [29] Rácz and Shkolnikov obtain
multidimensional sticky Brownian motions as limits of exclusion processes. However this
result is proved for a modified exclusion process, in which particles slow down their velocities
whenever two or more particles occupy adjacent sites. Under diffusive scaling of space and
time this slowing down results into a stickiness and the process converge to sticky Brownian
motion in the wedge [29]. See also [1] and [21] for other results of convergence to sticky
Brownian motion.

Other models. In this paper we have focused on self-duality of particle systems. However,
the same strategy would apply to interacting diffusions that are dual to particle systems. For
instance, there are processes such as the Brownian momentum process [14], the Brownian
energy process [13] and the asymmetric Brownian energy process [10], which are dual to the
symmetric inclusion process SIP(k). As a consequence all the results derived in this paper for
the symmetric inclusion process can also be directly translated into results for these processes.

Fluctuation field in the condensation regime. As far as we know, our result is the first com-
putation dealing with the fluctuation field of the symmetric inclusion process in the conden-
sation regime. We conjecture the expression we have found for the variance of the fluctuation
field in Theorem 2.15 to have some degree of universality within the realm of systems ex-
hibiting condensation effects. Namely, we believe that the scaling behaviour of the density
field in the condensation regime, and in particular the appearance of sticky Brownian mo-
tion, is generic for systems with condensation and goes beyond systems with self-duality, for
example, including zero range processes with condensation.

2.7. Organization of the paper. The rest of this paper is organized as follows. Section 3
contains the proof of Theorem 2.5 on the Laplace–Fourier transform of the transition proba-
bility of the distance and sum coordinates. In Section 4 we prove Theorem 2.8 on the scaling
limits of the two particle process. In Section 5 we prove applications for particle systems with
self-duality. We first prove the scaling behavior of the variance and covariances of the parti-
cle occupation number for the inclusion process in the condensation regime (Theorem 2.13).
Then we prove the scaling behavior for the variance of the density field in the same regime
(Theorem 2.15).

3. Two-particle dynamics: Proof of Theorem 2.5.

3.1. Outline of the proof. The strategy to solve the two particle dynamics has two steps:
first we analyze the autonomous distance process, for which the main challenge is to treat
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the spatial inhomogeneity caused by the defect in 1; second we study the sum process by
conditioning to the distance.

Since u(t) and w(t) jump at the same times, we can define the process {N(t), t ≥ 0}
that gives the number of jumps of (u(t),w(t)) up to time t ≥ 0. Notice that for any t ≥ 0,
u(t) + w(t) ∈ w + 2Z. In the following proposition we obtain a formula for Gκ(w,w′, λ) in
terms of the jump times N(t) exploiting the fact that, conditioned to the path {w(s), s ∈ [0, t]}
the process u(t) performs a standard discrete-time symmetric random walk, for which we
know the characteristic function at any time.

PROPOSITION 3.1. For λ > 0 we have

(54) Gκ

(
w,w′, λ

) =
∫ ∞

0
gκ

(
w,w′, t

)
e−λt dt,

with

(55) gκ

(
w,w′, t

) := Ew

[
1w(t)=w′νN(t)

κ

]
, νκ := cos(κ).

PROOF. We start from

Gκ

(
w,w′, λ

) = ∑
u′∈Z

e−iκu′
G

(
(0,w); (

u′,w′);λ)
=

∫ ∞
0

e−λt

( ∑
u′∈Z

Pt

(
(0,w); (

u′,w′))e−iκu′
)

dt,

where the exchange of summation and integral follow from the dominated convergence the-
orem. Then we need to prove that

(56)
∑
u′∈Z

Pt

(
(0,w); (

u′,w′))e−iκu′ = gκ

(
w,w′, t

)
,

with gκ(w,w′, t) as in (55). We denote by Eu,w the expectation w.r. to the law of the joint
process {(u(t),w(t)), t ≥ 0} initialized at time 0 with (u,w) ∈ R × R

+. Let (Ft )t≥0 be the
natural filtration of the distance process: Ft := σ(w(s),0 ≤ s ≤ t), then, for κ ∈ R we have∑

u′∈Z
Pt

(
(0,w); (

u′,w′))e−iκu′

= ∑
u′∈Z

Ew

[
E0,w[1u(t)=u′,w(t)=w′ |Ft ]e−iκu′]

= Ew

[
1w(t)=w′ · ∑

u′∈Z
E0,w[1u(t)=u′ |Ft ] · e−iκu′

]
,

(57)

where the exchange of summations is possible due to dominated convergence theorem. Let
us denote by p(n)(u,u′) the n-steps transition probability function of the symmetric discrete-
time random walk. Then it follows∑

u∈Z
p(1)(0, u)e−iκu = eiκ + e−iκ

2
= cos(κ) = νκ,

and

(58)
∑
u∈Z

p(n)(0, u)e−iκu = νn
κ .
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From the discussion in Section 2.3, the conditioned process {u(t)|{w(s), s ∈ [0, t]}} is equiv-
alent to {u(t)|N(t)} that reduces to a symmetric discrete-time random walk on Z. Thus∑

u′∈Z
E0,w[1u(t)=u′ |Ft ] · e−iκu′ = ∑

u′∈Z
e−iκu′

p(N(t))(0, u′) = νN(t)
κ .

Then (56) follows from (57). �

In the following we obtain a convolution equation for gκ(w,w′, t) by conditioning on the
first hitting time of the defective site 1. We distinguish several cases, depending on whether
w and w′ are equal to 0, 1 or larger than 1. When the process is at the right of 1 it can be
treated as a standard random walk. This produces a system of linear equations for Gκ(·, ·, λ)

that can easily be solved.

3.2. Case w′ = 0.

(1) Case w ≥ 2. Denote by T1 the first hitting time of 1 and by fT1,w its probability density
when the walk starts from w. For w ≥ 2, N(t) behaves as a Poisson process with rate 2 up to
time T1, then

(59) Ew

[
νN(T1)
κ |T1

] = e2(νκ−1)T1 .

Hence, denoting by FT1 the pre-T1 sigma-algebra of the process w(t),

gκ(w,0, t) = Ew

[
1w(t)=0 · νN(t)

κ

]
= Ew

[
Ew

[
1w(t)=0ν

N(t)
κ |FT1

]]
= Ew

[
νN(T1)
κ Ew

[
1w(t)=0ν

N(t)−N(T1)
κ |FT1

]]
= Ew

[
νN(T1)
κ E1

[
1w(t−T1)=0ν

N(t−T1)
κ

]]
= Ew

[
Ew

[
νN(T1)
κ gκ(1,0, t − T1)|T1

]]
= Ew

[
gκ(1,0, t − T1)Ew

[
νN(T1)
κ |T1

]]
=

∫ t

0
gκ(1,0, t − s)fT1,w(s)Ew

[
νN(s)
κ |T1 = s

]
ds.

As a consequence

(60) gκ(w,0, t) = [
(h0 · fT1,w) ∗ gκ(1,0, ·)](t), h0(t) = Ew

[
νN(t)
κ |T1 = t

]
.

From the convolution equation (60) it follows that

(61) Gκ(w,0, λ) = �w(λ) · Gκ(1,0, λ) for any w ≥ 2,

where

�w(λ) :=
∫ ∞

0
Ew

[
νN(t)
κ |T1 = t

]
fT1,w(t)e−λt dt

= EIRW(2)
w

[
e−λT1νN(T1)

κ

](62)

with EIRW(2)
w denoting the expectation with respect to the probability law of a symmetric

random walk in Z with hopping rate 2, starting at time 0 from w ≥ 2.
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(2) Case w = 1. Let T ex
i be the first exit time from i. Then T ex

1 ∼ Exp(θ + 2), hence

gκ(1,0, t) = E1
[
E1

[
1w(t)=0 · νN(t)

κ |FT ex
1

]]
= νκE1

[
gκ

(
w

(
T ex

1
)
,0, t − T ex

1
)]

= νκ

∫ t

0

{
θ + 1

θ + 2
gκ(0,0, t − s) + 1

θ + 2
gκ(2,0, t − s)

}
(θ + 2)e−(1+γ )s ds,

where the fourth identity follows from the fact that at time T ex
1 the process jumps to 2 with

probability 1
θ+1 and to 0 with probability θ+1

θ+2 . Thus

gκ(1,0, t) = (θ + 1)νκ

[
h1 ∗ gκ(0,0, ·)](t) + νκ

[
h1 ∗ gκ(2,0, ·)](t) with h1(t) := e−(θ+2)t ,

and we find

(63) Gκ(1,0, λ) = νκ

θ + 2 + λ

[
(θ + 1)Gκ(0,0, λ) + Gκ(2,0, λ)

]
.

(3) Case w = 0. Now we have T ex
0 ∼ Exp(2), then

gκ(0,0, t) = E0
[
E0

[
1w(t)=0 · νN(t)

κ |FT ex
0

]]
= E0

[
1T ex

0 >tP0
[
w(t) = 0|FT ex

0

]] + νκE0
[
1T ex

0 ≤tE1
[
1w(t−T ex

0 )=0 · νN(t−T ex
0 )

κ

]]
= P0

(
T ex

0 > t
) + 2νκ

∫ t

0
e−2sgκ(1,0, t − s) ds,

which gives

(64) gκ(0,0, t) = h2(t) + 2νκ

[
h2 ∗ gκ(1,0, ·)](t) with h2(t) = e−2t .

Thus

(65) Gκ(0,0, λ) = 1

2 + λ

(
1 + 2νκGκ(1,0, λ)

)
.

Summarizing, using (61), (63) and (65), we get

Gκ(0,0, λ) = 2 + θ + λ − νκ�2(λ)

νκZλ,κ

,

Gκ(1,0, λ) = θ + 1

Zλ,κ

,(66)

Gκ(w,0, λ) = θ + 1

Zλ,κ

�w(λ) for w ≥ 2

with

(67) Zλ,κ = 1

νκ

{
(2 + λ)

(
2 + θ + λ − νκ�2(λ)

) − 2(θ + 1)ν2
κ

}
and �w(λ) as in (62).

3.3. Case w′ = 1.

(1) Case w ≥ 2. Denote by T1 the first hitting time of 1 and, as before, let fT1,w be its
probability density when the walk is starting from w. Then

gκ(w,1, t) = Ew

[
Ew

[
1w(t)=1ν

N(t)
κ |FT1

]]
=

∫ t

0
gκ(1,1, t − s)fT1,w(s)Ew

[
νN(s)
κ |T1 = s

]
ds,
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so that

(68) gκ(w,1, t) = [
(h0 · fT1,w) ∗ gκ(1,1, ·)](t).

It follows that

(69) Gκ(w,1, λ) = �w(λ) · Gκ(1,1, λ) for any w ≥ 2.

(2) Case w = 1. We have

gκ(1,1, t) = P1
(
T ex

1 > t
) +E1

[
1T ex

1 ≤t ·E1
[
1w(t)=0 · νN(t)

κ |FT ex
1

]]
= e−(2+θ)t + νκE1

[
1T ex

1 ≤t · gκ

(
w

(
T ex

1
)
,0, t − T ex

1
)]

= e−(2+θ)t + νκ

∫ t

0

{
(θ + 1)gκ(0,0, t − s) + gκ(2,0, t − s)

}
e−(2+θ)s ds.

Then

(70) gκ(1,1, t) = h1(t) + νκ

[
h1 ∗ (

(θ + 1)gκ(0,1, ·) + gκ(2,1, ·))](t),
hence

(71) Gκ(1,1, λ) = 1

2 + θ + λ

[
1 + (θ + 1)νκGκ(0,1, λ) + νκGκ(2,1, λ)

]
.

(3) Case w = 0. Now we have T ex
0 ∼ Exp(2). We write

gκ(0,1, t) = νκE0
[
E1

[
1w(t−T ex

0 )=1 · νN(t−T ex
0 )

κ

]]
= 2νκ

∫ t

0
e−2sgκ(1,1, t − s) ds,

which implies

(72) gκ(0,1, t) = 2νκ

[
h2 ∗ gκ(1,1, ·)](t).

Then

(73) Gκ(0,1, λ) = 2νκ

2 + λ
Gκ(1,1, λ).

Thus, using (69), (71) and (73) we get

Gκ(0,1, λ) = 2

Zλ,κ

,

Gκ(1,1, λ) = 2 + λ

νκZλ,κ

,(74)

Gκ(w,1, λ) = 2 + λ

νκZλ,κ

�w(λ) for w ≥ 2.

3.4. Case w′ ≥ 2.

(1) Case w ≥ 2. Denoting by T1 the first hitting time of 1, we have

gκ

(
w,w′, t

) = Ew

[
1T1>t1w(t)=w′ · νN(t)

κ

] +Ew

[
1T1≤t1w(t)=w′ · νN(t)

κ

]
= EIRW(2)

w

[
1T1>t1w(t)=w′ · νN(t)

κ

]
+

∫ t

0
gκ

(
1,w′, t − s

)
fT1,w(s)Ew

[
νN(s)
κ |T1 = s

]
ds,
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which is equivalent to

(75) gκ

(
w,w′, t

) = EIRW(2)
w

[
1T1>t1w(t)=w′ · νN(t)

κ

] + [
(h0 · fT1,w) ∗ gκ

(
1,w′, ·)](t),

where EIRW(2)
w is the expectation w.r. to the probability law of a symmetric random walk in

Z with hopping rate 2, starting at time 0 from w ≥ 2. From the convolution equation (75) it
follows that

(76) Gκ

(
w,w′, λ

) = �w,w′(λ) + �w(λ) · Gκ

(
1,w′, λ

)
for any w ≥ 2,

where

(77) �w,w′(λ) :=
∫ ∞

0
EIRW(2)

w

[
1T1>t1w(t)=w′ · νN(t)

κ

]
e−λt dt.

(2) Case w = 1. We have

gκ

(
1,w′, t

) = νκE1
[
gκ

(
w

(
T ex

1
)
,w′, t − T ex

1
)]

= νκ

∫ t

0

{
(θ + 1)gκ

(
0,w′, t − s

) + gκ

(
2,w′, t − s

)}
e−(θ+2)s ds,

that is,

(78) gκ

(
1,w′, t

) = (θ + 1)νκ

[
h1 ∗ gκ

(
0,w′, ·)](t) + νκ

[
h1 ∗ gκ

(
2,w′, ·)](t).

Then

(79) Gκ

(
1,w′, λ

) = 1

2 + θ + λ

[
(θ + 1)νκGκ

(
0,w′, λ

) + νκGκ

(
2,w′, λ

)]
.

(3) Case w = 0. Now we have T ex
0 ∼ Exp(2) then

gκ

(
0,w′, t

) = νκE0
[
E1

[
1w(t−T ex

0 )=w′ · νN(t−T ex
0 )

κ

]]
= 2νκ

∫ t

0
e−2sgκ

(
1,w′, t − s

)
ds,

namely

(80) gκ

(
0,w′, t

) = 2νκ

[
h2 ∗ gκ

(
1,w′, ·)](t).

Then

(81) Gκ

(
0,w′, λ

) = 2νκ

2 + λ
Gκ

(
1,w′, λ

)
.

Thus, using (76), (79) and (81) we get

Gκ

(
0,w′, λ

) = 2νκ

Zλ,κ

�2,w′(λ),

Gκ

(
1,w′, λ

) = 2 + λ

Zλ,κ

�2,w′(λ),(82)

Gκ

(
w,w′, λ

) = �w,w′(λ) + 2 + λ

Zλ,κ

�2,w′(λ)�w(λ) for w ≥ 2,

for w′ ≥ 2.
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3.5. Computation of �w(λ) and �w,w′(λ). For x ∈ C we define

(83) ζ(x) := x −
√

x2 − 1.

Notice that ζ(x) ∈ R
+ for any |x| ≥ 1 and ζ(x) ≤ 1 for any x ∈ R∩ [1,+∞).

LEMMA 3.2. For w ≥ 2 we have

(84) �w(λ) = ζw−1
λ,κ with ζλ,κ := ζ(xλ,κ), xλ,κ := 1

νκ

(
1 + λ

2

)
.

PROOF. Let EIRW(2)
w be the expectation with respect to a symmetric random walk on Z

with hopping rate 2, and let S� be the first hitting time of � ∈ Z of the embedded discrete time
random walk and denote by {Xi}i∈N a sequence of independent exponential random variables
of parameter 2. Then

�w(λ) = EIRW(2)
w

[
e−λT1νN(T1)

κ

] = Ew

[
Ew

[
e−λT1νS1

κ |S1
]]

=
∞∑

n=1

νn
κ Pw(S1 = n)Ew

[
e−λT1 |S1 = n

]

=
∞∑

n=1

νn
κ Pw(S1 = n)Ew

[
e−λ(X1+···+Xn)]

=
∞∑

n=1

νn
κ Pw(S1 = n)

(
2

2 + λ

)n

= Ew

[(
2νκ

2 + λ

)S1
]

=
(
ζ

(
2 + λ

2νκ

))w−1
.

(85)

From translation-invariance we have that, for any fixed z ∈ (−1,1),

(86) Ew

[
zS1

] = E0
[
zSw−1

] = (
E0

[
zS1

])w−1 =
(

1 − √
1 − z2

z

)w−1
,

where the last two identities follow from Theorem (5) in Section 5.3 of [17]. Then, from (85)
and (86) we deduce that

(87) �w(λ) =
(
ζ

(
2 + λ

2νκ

))w−1

with ζ(x) as in (83). �

LEMMA 3.3. For w,w′ ≥ 2 we have

(88) �w,w′(λ) = ζ
|w′−w|
λ,κ − ζw′+w−2

λ,κ

νκ(ζ−1
λ,κ − ζλ,κ)

with ζλ,κ as in (84).

PROOF. By definition

�w,w′(λ) :=
∫ ∞

0
EIRW(2)

w

[
1T1>t1w(t)=w′ · νN(t)

κ

]
e−λt dt,(89)

EIRW(2)
w

[
1T1>t1w(t)=w′ · νN(t)

κ

] =
∞∑

n=0

νn
κ pw

(
S1 > n,wn = w′)P (

N(t) = n
)
,(90)
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where now pw is the probability law of the embedded symmetric random walk on Z starting
from w ≥ 2, and S1 is the related first hitting time of 1. Moreover N(t) is the Poisson process
of parameter 2. From the reflection principle for the symmetric random walk we have that

pw

(
S1 ≤ n,wn = w′) = p0

(
S1−w ≤ n,wn = w′ − w

)
= p0

(
wn = 2 − (

w + w′)) = p0
(
wn = (

w + w′) − 2
)
,

(91)

where, for b ≥ 0,

(92) p0(wn = b) = 1

2n

(
n

(n + b)/2

)
if n ≥ b and n + b is even

and it is 0 otherwise. Then

EIRW(2)
w

[
1T1>t1w(t)=w′ · νN(t)

κ

]
= e−2t

∞∑
n=0

(2νκ t)n

n!
{
p0

(
wn = w′ − w

) − p0
(
wn = w′ + w − 2

)}
hence, from (92) it follows

�w,w′(λ) =
∞∑

n=0

(2νκ)n

n!
{
p0

(
wn = w′ − w

) − p0
(
wn = w′ + w − 2

)}
·
∫ ∞

0
tne−(2+λ)t dt

=
∞∑

n=0

(2νκ)n

(2 + λ)n+1

{
p0

(
wn = w′ − w

) − p0
(
wn = w′ + w − 2

)}
= 1

2 + λ

{
f

(
w′ − w

) − f
(
w′ + w − 2

)}
(93)

with, for b ∈ Z,

f (b) :=
∞∑

n=0

(
2νκ

2 + λ

)n

p0(wn = b) = 2 + λ√
(2 + λ)2 − 4ν2

κ

(
ζ

(
2 + λ

2νκ

))|b|

and ζ(x) as in (83). �

3.6. Conclusion of the proof of Theorem 2.5. From (66), (74) and (82) it follows that

Gκ(0,0, λ) = θν−1
κ + ζ−1

λ,κ

Zλ,κ

,

Gκ(w,0, λ) = θ + 1

Zλ,κ

ζw−1
λ,κ for w ≥ 1,

Gκ

(
0,w′, λ

) = 2

Zλ,κ

ζw′−1
λ,κ for w′ ≥ 1,

Gκ

(
w,w′, λ

) = ζ
|w′−w|
λ,κ − ζw′+w−2

λ,κ

νκ(ζ−1
λ,κ − ζλ,κ)

+ 2xλ,κ

Zλ,κ

ζw′+w−2
λ,κ for w,w′ ≥ 1

(94)

with

(95) ζλ,κ := ζ(xλ,κ) = xλ,κ −
√

x2
λ,κ − 1, xλ,κ := 1

νκ

(
1 + λ

2

)
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and

Zλ,κ = 1

νκ

{
(2 + λ)

(
2 + θ + λ − νκ�2(λ)

) − 2(θ + 1)ν2
κ

}
= (

νκ

(
ζ−2
λ,κ − 1

) + 2θ(xλ,κ − νκ)
)

= Z (0)
λ,κ + 2θ(xλ,κ − νκ), Z (0)

λ,κ := νκ

(
ζ−2
λ,κ − 1

)
.

(96)

Notice that, for w,w′ ≥ 1

Gκ

(
w,w′, λ

) = 1

Z (0)
λ,κ

{
ζ

|w′−w|−1
λ,κ + ζw′+w−1

λ,κ ·
(

2
Z (0)

λ,κ

Zλ,κ

− 1
)}

thus

Gκ(0,0, λ) = θν−1
κ + ζ−1

λ,κ

Zλ,κ

,

Gκ(w,0, λ) = θ + 1

Zλ,κ

ζw−1
λ,κ for w ≥ 1,

Gκ

(
w,w′, λ

) = 1

Z (0)
λ,κ

{
ζ

|w′−w|−1
λ,κ + ζw′+w−1

λ,κ ·
(

2
Z (0)

λ,κ

Zλ,κ

− 1
)}

for w ≥ 0,w′ ≥ 1.

This finishes the proof of the Theorem 2.5.

3.7. Proof of Corollary 2.7. Notice that by the definition of the coordinates of the left-
most and rightmost particle one has w = y − x and u = x + y so that, as a consequence of
(17) one obtains

(97) �(θ)((x, y),
(
x′, y′);λ) = G (θ)((x + y, y − x),

(
x′ + y′, y′ − x′);λ)

.

To obtain an explicit expression we use translation invariance

(98) G
(
(u,w); (

u′,w′);λ) = G
(
(0,w); (

u′ − u,w′);λ)
and we rewrite G (θ) as follows

(99) G (θ)((u,w); (
u′,w′);λ) = 1

2π

∫ π

−π
G(θ)

κ

(
w,w′, λ

)
eiκ(u′−u) dκ,

where on the right hand side we can insert the expression for G
(θ)
κ that appears in Theo-

rem 2.5. In doing so it is also useful to write an integral representation for the terms ζ
|w′−w|
λ,κ

and ζw′+w
λ,κ in Theorem 2.5. This can be obtained by noticing that for any ζ with |ζ | < 1 one

has

(100)
∞∑

x=0

ζ x cos (mx) = 1 − ζ cos(m)

1 + ζ 2 − 2ζ cos(m)

so that

(101)
∑
x∈Z

ζ |x|e−imx = 1 − ζ 2

1 + ζ 2 − 2ζ cos(m)
.

Thus we have

(102) ζ |x| = 1

2π

∫ π

−π
eimx ζ−1 − ζ

ζ−1 + ζ − 2 cos(m)
dm.
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We are indeed allowed to use this expression since |ζλ,κ | ≤ 1, as it can immediately be seen
from (23) observing that xλ,κ ≥ 1 for all α,λ > 0. All in all, combining equation (99), Theo-
rem 2.5 and equation (102), one arrives to

G (θ)((u,w); (
u′,w′);λ)

= 1

8π2

∫ π

−π

∫ π

−π

f
(θ)
λ,κ (w,w′)eiκ(u′−u)

(1 + λ
2 ) − νκ cos(m)

·
(
eim(w′−w) + eim(w′+w) ·

(
2
Z (0)

λ,κ

Z (θ)
λ,κ

− 1
))

dmdκ.

(103)

This expression can now be used in equation (97). Defining

(104) κ1 = κ − m, κ2 = κ + m,

and considering the case x �= y one obtains (27).

4. Scaling limits: Proof of Theorem 2.8. This section is organised as follows: we first
prove several results on the limiting process for the properly rescaled joint process of distance
and sum coordinates, and then we use these computations to show that the candidate scaling
limit is the “correct scaling limit”.

Specifically, in the preliminary Section 4.1 we compute the Fourier–Laplace transform of
the probability density of the standard sticky Brownian motion. In Section 4.2 we obtain the
Fourier-Laplace transform of the transition density of the candidate scaling limit, that is, a
system of two Brownian motions with a sticky interaction defined via their local intersection
time. Further, in Section 4.3 we show that the Fourier–Laplace transform for a generic value
of the stickiness parameter can be written as a convex combination of the Fourier-Laplace
transforms of two limiting cases, that is, absorbing and reflecting. With these results in our
hand, we then continue by proving in Section 4.4 convergence of the appropriately rescaled
discrete two-particle process to the system of sticky Brownian motions (Theorem 2.8). The
convergence in distribution is inferred from the convergence of the Fourier–Laplace trans-
forms. Finally Section 4.5 contains the proof of Corollary 2.11, that deals with the conver-
gence of the expected local time.

4.1. Standard Brownian motion sticky at the origin. We start with a preliminary compu-
tation that involves just a single sticky Brownian motion (which is indeed the scaling limit of
the distance process). We recall the definition of the sticky Brownian motion; see [23, 26] for
more background on such process. For all t ≥ 0, let L(t) be the local time at the origin of a
standard Brownian motion B(t) and let γ > 0. Set

(105) sinv(t) = t + γL(t).

The (one-sided) standard sticky Brownian motion BS(t) on R+ with sticky boundary at the
origin and stickiness parameter γ > 0 is defined as the time changed standard reflected Brow-
nian motion, that is,

(106) BS(t) = ∣∣B(
s(t)

)∣∣.
Using the expression for the joint density of (|B(t)|,L(t)) (formula (3.14) in [26])

(107) P0
(∣∣B(r)

∣∣ ∈ dx,L(r) ∈ dy
) = 2

x + y√
2πr3

e− (x+y)2

2r dx dy, x, y ≥ 0,
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one can compute the Fourier–Laplace transform of BS(t) that is defined as

(108) ψS
0 (m,λ, γ ) :=

∫ ∞
0

E0
[
e−imBS(t)]e−λt dt, λ > 0,

where the subscript 0 denotes the initial position of BS(t).

LEMMA 4.1 (Fourier–Laplace transform of standard sticky Brownian motion). We have

(109) ψS
0 (m,λ, γ ) =

√
2√

λ + γ√
2
λ

∫ ∞
0

e−√
2λx−imx dx +

γ√
2√

λ + γ√
2
λ
, λ > 0.

PROOF. We rewrite (108) using (106) and then apply the change of variable s(t) = r to
obtain

ψS
0 (m,λ, γ ) − 1

λ
= E0

[∫ ∞
0

(
e−imBS(t) − 1

)
e−λt dt

]
= E0

[∫ ∞
0

(
e−im|B(r)| − 1

)
e−λ(r+γL(r))(dr + γ dL(r)

)]
.

(110)

The local time L(t) only grows when B(t) is at the origin implying that the term into the
round bracket is zero in the integral with respect to dL(r). As a consequence we have

(111) ψS
0 (m,λ, γ ) − 1

λ
= E0

[∫ ∞
0

(
e−im|B(r)| − 1

)
e−λ(r+γL(r)) dr

]
.

Then (109) follows by using the expression (107) and the formula for the Laplace transform

(112)
∫ ∞

0
e−λr a√

2πr3
e−a2/2r dr = e−√

2λa, a > 0. �

4.2. The joint sticky process. Let B̃(t) and B(t) be two independent Brownian motions
starting, respectively, from 0 and from z ≥ 0. Let s(t) be defined via (105), with L(t) being
now the local time of B(t). We compute in this section the Fourier–Laplace transform of the
candidate scaling limit, that is, the joint process (B̃(2t − s(t)), |B(s(t))|), that is defined as

(113) �S
z (κ,m,λ, γ ) :=

∫ ∞
0

E0,z

[
e−iκB̃(2t−s(t))−im|B(s(t))|]e−λt dt, λ > 0,

where the expectation E0,z denotes expectation w.r.t. both the B̃(t) Brownian motion that
starts from 0 and the B(t) process that starts from z ≥ 0.

We start with the following Lemma that extends (107) to a positive initial condition.

LEMMA 4.2 (Joint density of reflected Brownian motion and local time). For all z > 0
we have

Pz

(∣∣B(t)
∣∣ ∈ dx,L(t) ∈ dy

) = 1√
2πt

· (
e− (z−x)2

2t − e− (z+x))2
2t

)
δ0(dy) dx

+
(

2
∫ t

0

x + y√
2π(t − s)3

e
− (x+y)2

2(t−s) · z√
2πs3

e− z2
2s ds

)
dx dy.

(114)

PROOF. Let νz(·) be the probability density function of τz, the first hitting time of 0 for
a Brownian motion starting from z > 0, that is,

(115) νz(s) = z√
2πs3

e− z2
2s .
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By conditioning to the time t being smaller or larger than τz we have

Pz

(∣∣B(t)
∣∣ ∈ dx,L(t) ∈ dy

) = Pz

(∣∣B(t)
∣∣ ∈ dx,min

s≤t
B(s) > 0

)
· δ0(dy)

+
∫ t

0
P0

(∣∣B(t − s)
∣∣ ∈ dx,L(t − s) ∈ dy

)
νz(s) ds.

(116)

The reflection principle for Brownian motion gives

Pz

(∣∣B(t)
∣∣ ∈ dx,min

s≤t
B(s) > 0

)
= 1√

2πt
· (

e− (z−x)2
2t − e− (z+x)2

2t
)
dx,

whereas the use of (107) and (115) yields∫ t

0
P0

(∣∣B(t − s)
∣∣ ∈ dx,L(t − s) ∈ dy

)
νz(s) ds

=
(

2
∫ t

0

x + y√
2π(t − s)3

e
− (x+y)2

2(t−s) · z√
2πs3

e− z2
2s ds

)
dx dy.

(117)

This concludes the proof. �

Armed with the previous Lemma we can compute the Fourier–Laplace transform defined
in (113).

LEMMA 4.3 (Fourier–Laplace transform of the joint sticky process). For all z ≥ 0, λ > 0,
we have

�S
z (κ,m,λ, γ )

= γ e−
√

κ2+2λz

γ (κ2 + λ) + √
κ2 + 2λ

+ 1√
κ2 + 2λ

·
{√

κ2 + 2λ − γ (κ2 + λ)√
κ2 + 2λ + γ (κ2 + λ)

∫ ∞
0

e−imx−
√

κ2+2λ|z+x| dx +
∫ ∞

0
e−imx−

√
κ2+2λ|z−x| dx

}
.

PROOF. We follow a strategy similar to the one in the proof of Lemma 4.1. It is conve-
nient to write

�S
z (κ,m,λ, γ ) − fz(κ, λ) =

∫ ∞
0

E0,z

[
e−iκB̃(2t−s(t))(e−imB(s(t)) − 1

)]
e−λt dt,

where

fz(κ, λ) =
∫ ∞

0
E0,z

[
e−iκB̃(2t−s(t))]e−λt dt,

and E0,z denotes expectation with respect to the B̃(t) process started at 0 and the B(t) process
started at z. We apply the change of variable s(t) = r to obtain

�S
z (κ,m,λ, γ ) − fz(κ, λ)

= E0,z

[∫ ∞
0

e−iκB̃(r+2γL(r))(e−im|B(r)| − 1
)
e−λ(r+γL(r))(dr + γ dL(r)

)]
= E0,z

[∫ ∞
0

e−iκB̃(r+2γL(r))(e−im|B(r)| − 1
)
e−λ(r+γL(r)) dr

]
,

(118)
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where the last equality uses again that the local time L(t) only grows when B(t) is at the ori-
gin. Using then the independence of B̃(t) and B(t), and the expression for the characteristic
function of the standard Brownian motion, we arrive to

�S
z (κ,m,λ, γ ) = Ez

[∫ ∞
0

e− κ2
2 (r+2γL(r))e−im|B(r)|e−λ(r+γL(r)) dr

]
+ fz(κ, λ) −Ez

[∫ ∞
0

e− κ2
2 (r+2γL(r))e−λ(r+γL(r)) dr

]
.

(119)

We now evaluate separately the two terms on the r.h.s. For the first term, thanks to the formula
(114), we may write

Ez

[∫ ∞
0

e− κ2
2 (r+2γL(r))e−im|B(r)|e−λ(r+γL(r)) dr

]
=

∫ ∞
0

e−imx

[∫ ∞
0

e−( κ2
2 +λ)r 1√

2πr

(
e− (z−x)2

2r − e− (z+x)2
2r

)
dr

]
dx(120)

+
∫ ∞

0
e−imx

∫ ∞
0

e−(κ2+λ)γy

(121)

·
[∫ ∞

0
e−( κ2

2 +λ)r

(∫ r

0

z(x + y)e
− (x+y)2

2(r−s)
− z2

2s

π
√[s(r − s)]3

ds

)
dr

]
dy dx.

In (120) we may use the formula for the Laplace transform

(122)
∫ ∞

0
e−λr 1√

2πr
e−a2/2r = e−a

√
2λ

√
2λ

,

and in (121) we may employ the Laplace transform (112) and the convolution rule. All in all,
we find

Ez

[∫ ∞
0

e− κ2
2 (r+2γL(r))e−im|B(r)|e−λ(r+γL(r)) dr

]
= 1√

κ2 + 2λ

∫ ∞
0

e−imx(
e−|z−x|

√
κ2+2λ − e−|z+x|

√
κ2+2λ)

dx

+ 2

γ (κ2 + λ) + √
κ2 + 2λ

∫ ∞
0

e−imxe−
√

κ2+2λ(x+z) dx.

(123)

For the second term on the r.h.s. of (119) we observe that

fz(κ, λ) = E0,z

[∫ ∞
0

e−iκB̃(2t−s(t))e−λt dt

]
= Ez

[∫ ∞
0

e− κ2
2 (r+2γL(r))e−λ(r+γL(r)) d

(
r + γL(r)

)]
.

As a consequence we find

fz(κ, λ) −Ez

[∫ ∞
0

e− κ2
2 (r+2γL(r))−λ(r+γL(r)) dr

]
= γEz

[∫ ∞
0

e− κ2
2 (r+2γL(r))−λ(r+γL(r)) dL(r)

]
.
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This last integral can be evaluated integrating by parts, yielding

γEz

[∫ ∞
0

e−( κ2
2 +λ)re−γ (κ2+λ)L(r) dL(r)

]
= − 1

κ2 + λ
Ez

[∫ ∞
0

e−( κ2
2 +λ)rd

(
e−γ (κ2+λ)L(r))]

= 1

κ2 + λ

{
Ez

[∫ ∞
0

d
(
e−( κ2

2 +λ)r)e−γ (κ2+λ)L(r)

]
+Ez

[
e−γ (κ2+λ)L(0)]}

= 1

κ2 + λ

{
−

(
κ2

2
+ λ

)
Ez

[∫ ∞
0

e−( κ2
2 +λ)re−γ (κ2+λ)L(r) dr

]
+ 1

}

= −
κ2

2 + λ

κ2 + λ
Ez

[∫ ∞
0

e−( κ2
2 +λ)re−γ (κ2+λ)L(r) dr

]
+ 1

κ2 + λ
.

Furthermore, by using formula (114), we have

Ez

[∫ ∞
0

e−( κ2
2 +λ)re−γ (κ2+λ)L(r) dr

]
=

∫ ∞
0

∫ ∞
0

1√
2πr

e−( κ2
2 +λ)r · (

e− (z−x)2
2r − e− (z+x)2

2r
)
dr dx

+
∫ ∞

0

∫ ∞
0

e−γ (κ2+λ)y

[∫ ∞
0

e−( κ2
2 +λ)r

(∫ r

0

z(x + y)e
− (x+y)2

2(r−s)
− z2

2s

π
√[s(r − s)]3

ds

)
dr

]
dx dy

= 1√
κ2 + 2λ

{∫ ∞
0

(
e−|z−x|

√
κ2+2λ − e−|z+x|

√
κ2+2λ)

dx + 2e−
√

κ2+2λz

γ (κ2 + λ) + √
κ2 + 2λ

}
,

where in the last equality we used again the Laplace transforms (112) and (122). Summariz-
ing, for the second term on the r.h.s. of (119) we have

fz(κ, λ) −Ez

[∫ ∞
0

e− κ2
2 (r+2γL(r))e−λ(r+γL(r)) dr

]

= −1

2

√
κ2 + 2λ

κ2 + λ

∫ ∞
0

(
e−|z−x|

√
κ2+2λ − e−|z+x|

√
κ2+2λ)

dx

−
√

κ2 + 2λ

κ2 + λ

e−
√

κ2+2λ(z−1)

γ (κ2 + λ) + √
κ2 + 2λ

+ 1

κ2 + λ
.

(124)

Hence, substituting (123) and (124) into (119), the statement of the Lemma follows after
elementary simplifications. �

4.3. Limiting cases. In this section we show that the joint sticky process interpolates
between two limiting cases.

4.3.1. Reflection: γ = 0. Let B(t) be a Brownian motion starting from 0 and BR(t) be a
Brownian motion on R

+ reflected at 0 and starting from z ≥ 0. Suppose they are independent
and denote by �R

z the Fourier–Laplace transform of the characteristic function of the joint
process, that is,

(125) �R
z (κ,m,λ) :=

∫ ∞
0

E0,z

[
e−iκB̃(t)−imBR(t)]e−λt dt, λ > 0.
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Then we have

(126) �R
z (κ,m,λ) = 1√

2λ + κ2

∫ ∞
0

e−imx(
e−

√
2λ+κ2|x+z| + e−

√
2λ+κ2|x−z|)dx.

Indeed, from the knowledge of the transition probability of the joint process and dominated
convergence theorem, we get∫ ∞

0
E0,z

[
e−i(κB̃(t)+mBR(t))]e−λt dt = 1

2π

∫ ∞
0

e−imx
∫ ∞
−∞

eim̄(x+z) + eim̄(x−z)

λ + κ2

2 + m̄2

2

dm̄dx.

This yields (126) using the Fourier transform

(127)
∫ ∞
−∞

eika

k2 + b2 dk = π

b
e−b|a|.

4.3.2. Absorption: γ → ∞. Let B̃(t) be a standard Brownian motion and let BA(t) be
an independent Brownian motion on R

+ absorbed in 0 and starting from z > 0. Define τz as
the absorption time, that is, τz = inf{t ≥ 0 : BA(t) = 0}.

The process
√

2 · B̃(2t − t ∧ τz) describes the evolution of the centre of mass of two
coalescing Brownian motions started at two positions such that initially the sum is zero.
Indeed, given the coalescing time τz (i.e. the hitting time of level zero for the distance of
the two coalescing Brownian motions when the distance is initially z > 0), the center of
mass of the two coalescing Brownian motion evolves as the sum of two independent standard
Brownians until the coalescing time and, after coalescence, it evolves as a Brownian started
at the position where coalescence occurred with double speed. Define

(128) �A
z (κ,m,λ) =

∫ ∞
0

E0,z

[
e−iκB̃(2t−t∧τz)−imBA(t)]e−λt dt, λ > 0,

then we have

(129)

�A
z (κ,m,λ) = 1√

2λ + κ2

∫ ∞
0

e−imx′(
e−

√
2λ+κ2|x−z| − e−

√
2λ+κ2|x+z|)dx

+ e−z
√

2λ+κ2

λ + κ2 .

To show this one starts from

�A
z (κ,m,λ) =

∫ ∞
0

E0,z

[
e−iκB̃(t)−imBA(t)1t<τz

]
e−λt dt

+
∫ ∞

0
E0

[
e−iκB̃(2t−τz)1t≥τz

]
e−λt dt.

(130)

The first term in the r.h.s. of (130) is given by

1

2π

∫ ∞
0

e−imx
∫ ∞
−∞

eim̄(x−z) − eim̄(x+z)

λ + κ2

2 + m̄2

2

dm̄dx

=
∫ ∞

0
e−imx 1√

2λ + κ2

(
e−

√
2λ+κ2|x−z| − e−

√
2λ+κ2|x+z|)dx.

For the second term in the r.h.s of (130), let νz(·) be the probability density of τz (cf. (115)).
Then, using the fact that

(131)
∫ ∞

0
e−λtνz(t) dt = e−z

√
2λ,



EXACT FORMULAS FOR TWO INTERACTING PARTICLES 1961

we obtain that the second term in the r.h.s of (130) is equal to

(132)
∫ ∞

0
dt e−λt

∫ t

0
dsνz(s)

∫ ∞
−∞

dy′e−iκy′
∫ ∞
−∞

dy
e− y2

2s√
2πs

e
−(y′−y)2

4(t−s)√
4π(t − s)

= e−z
√

2λ+κ2

λ + κ2 .

This is obtained by first doing the integrals in y and y′ as Fourier transforms of suitable
Brownian kernels and then by applying integration by parts to the dt integral followed by the
use of formula (131).

4.3.3. Summary. Notice that we can rewrite the function �S
z as an interpolation between

�R
z and �A

z as follows

(133) �S
z (κ,m,λ, γ ) = c(γ )(κ, λ)�R

z (κ,m,λ) + (
1 − c(γ )(κ, λ)

)
�A

z (κ,m,λ)

with

(134) c(γ )(κ, λ) =
√

κ2 + 2λ√
κ2 + 2λ + γ (κ2 + λ)

.

Notice also that

(135) �S
z (κ,m,λ,0) = �R

z (κ,m,λ) and lim
γ→+∞�S

z (κ,m,λ, γ ) = �A
z (κ,m,λ)

since c(0)(κ, λ) = 1 and limγ→∞ c(γ )(κ, λ) = 0.

4.4. Scaling limit.

PROPOSITION 4.4 (Convergence of Fourier–Laplace transform). For all κ,m ∈ R, λ > 0
we have

(136)

lim
ε→0

∫ ∞
0

Eu,w

[
e−i(κ(Uε(t)−U)+mWε(t))

]
e−λt dt

=

⎧⎪⎪⎨⎪⎪⎩
�R

W(κ,m,λ) in the reflected regime,

�S
W(κ,m,λ, γ ) in the sticky regime,

�A
W(κ,m,λ) in the absorbed regime.

PROOF. Using (99) and (103) we can rewrite the Fourier–Laplace transform of Theo-
rem 2.5 in integral form:

G(θ)
κ

(
w,w′, λ

) = 1

2π

∫ π

−π

f θ
λ,κ(w,w′)

2 + λ − 2νκ cos(m̄)

(
eim̄(w′−w) + eim̄(w′+w)

(
2
Z (0)

λ,κ

Z (θ)
λ,κ

− 1
))

dm̄.

Furthermore, by taking the Fourier transform with respect to the w variable, one finds∫ ∞
0

Eu,w

[
e−iκ(u(t)−u)−imw(t)]e−λt dt

= ∑
w′≥0

e−imw′
G(θ)

κ

(
w,w′, λ

)

= 1

2π

∫ π

−π

∑
w′≥0 f

(θ)
λ,κ (w,w′)ei(m̄−m)w′

2 + λ − 2νκ cos(m̄)

(
e−im̄w + eim̄w

(
2
Z (0)

λ,κ

Z (θ)
λ,κ

− 1
))

dm̄.

(137)
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Hence, for the full Fourier-Laplace transform of the scaled process, one has∫ ∞
0

Eu,w

[
e
−i

√
2(κ(Uε(t)− εu√

2
)+mWε(t))]

e−λt dt

= ε2

2π

∫ π/ε

−π/ε

ε
∑

w′≥0 f
(θ)

ε2λ,εκ
(w,w′)eiε(m̄−m)w′

2 + ε2λ − 2νεκ cos(εm̄)

·
(
e−iwεm̄ + eiwεm̄

(
2
Z (0)

ε2λ,εκ

Z (θ)

ε2λ,εκ

− 1
))

dm̄.

(138)

The explicit form of f θ
λ,κ(w,w′) in (21) gives

ε
∑
w′≥0

f
(θ)

ε2λ,εκ

(
w,w′)eiε(m̄−m)w′

= ε
∑
w′≥0

eiε(m̄−m)w′ + ε
θ

2

(
1 + (

ν−1
εκ ζε2λ,εκ − 1

)
1w=0

) − ε

2
.

(139)

Since ν−1
εκ ζε2λ,εκ = 1 + o(ε), recalling the definition of the parameter γ in (33), one has

(140) lim
ε→0

ε
∑
w′≥0

f
(θ)

ε2λ,εκ

(
w,w′)eiε(m̄−m)w′ =

∫ ∞
0

ei(m̄−m)x′
dx′ + γ√

2
.

Similarly one finds

(141) lim
ε→0

Z (0)

ε2λ,εκ

Z (θ)

ε2λ,εκ

=
√

κ2 + λ√
κ2 + λ + γ

√
2(κ2 + λ

2 )
.

Hence, taking the limit ε → 0 in (138) and using (140) and (141) one has

lim
ε→0

∫ ∞
0

Eu,w

[
e
−i

√
2(κ(Uε(t)− εu√

2
)+mWε(t))]

e−λt dt

= 1

2π

∫ ∞
−∞

∫ ∞
0 ei(m̄−m)x′

dx′ + γ√
2

λ + κ2 + m̄2

·
(
e−iWm̄ + eiWm̄

(√
κ2 + λ − γ

√
2(κ2 + λ

2 )√
κ2 + λ + γ

√
2(κ2 + λ

2 )

))
dm̄.

(142)

The previous expression can be further simplified using the Fourier transform (127). In the
end one arrives to:

lim
ε→0

∫ ∞
0

Eu,w

[
e−i

√
2(κ(Uε(t)−U)+mWε(t))

]
e−λt dt

= c(γ )(
√

2κ,λ)ψR
W(

√
2κ,

√
2m,λ) + (

1 − c(γ )(
√

2κ,λ)
)
�A

W(
√

2κ,
√

2m,λ)

(143)

from which (136) follows. �

PROOF OF THEOREM 2.8. First note that Proposition 4.4 shows the convergence of
the Fourier–Laplace transform of the transition probabilities. So it is only left to prove
that we can get rid of the Laplace transform and have convergence in the time parame-
ter, instead of the Laplace parameter. This is possible because convergence of resolvents
implies convergence of semigroups. More precisely, denote by Tε(t) the semigroup of the



EXACT FORMULAS FOR TWO INTERACTING PARTICLES 1963

process (Uε(t) − U,Wε(t)), and let T (t) be the semigroup of the claimed limiting process
(U(t),W(t)), and Aε , A the corresponding generators. By (136), we conclude that for com-
pactly supported smooth functions f :R2 →R, the resolvents converge, that is, for all λ > 0

lim
ε→0

(λ − Aε)
−1f = (λ − A)−1f.

Therefore, as compactly supported smooth functions form a core for all Aε as well as for A by
[6], Theorem 2.2, we conclude also convergence of the semigroups, that is, for all compactly
supported continuous functions we have

lim
ε→0

Tε(t)f = T (t)f,

which in turn implies the convergence of the processes in the sense of finite dimensional
distributions. �

4.5. Local time at 0.

LEMMA 4.5 (Laplace transform of probability to be at zero of sticky Brownian motion).
Let z ≥ 0 and let Pz(B

S(t) = 0) be the probability for a sticky Brownian motion started at z

to be at 0 at time t . We have

(144)
∫ ∞

0
e−λt

Pz

(
BS(t) = 0

)
dt = γ√

2λ + γ λ
e−√

2λz, λ > 0.

PROOF. The l.h.s. of (144) can be rewritten as

lim
M→∞

1

2M

∫ M

−M

∫ ∞
0

e−λt
Ez

[
e−im|B(s(t))|]dt dm

= lim
M→∞

1

2M

∫ M

−M
�S

z (0,m,λ, γ ) dm.

(145)

Thus, using formula (133), we have that∫ ∞
0

e−λt
Pz

(
BS(t) = 0

)
dt = c(γ )(0, λ) lim

M→∞
1

2M

∫ M

−M
�R

z (0,m,λ)dm

+ (
1 − c(γ )(0, λ)

)
lim

M→∞
1

2M

∫ M

−M
�A

z (0,m,λ)dm.

It is easy to see that

(146) lim
M→∞

1

2M

∫ M

−M
�R

z (0,m,λ)dm = 0,

and

(147)
(
1 − c(γ )(0, λ)

)
lim

M→∞
1

2M

∫ M

−M
�A

z (0,m,λ)dm = γ√
2λ + γ λ

e−√
2λz. �

PROOF OF PROPOSITION 2.11. The first statement (equations (37) and (38)) follows
from the fact that

(148)
∫ ∞

0
e−λt

Pw

(
w(t) = 0

)
dt = G

(θ)
0 (w,0, λ)
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and the r.h.s. can be explicitly written thanks to Theorem 2.5. Furthermore, the diffusive
scaling gives ∫ ∞

0
e−λt

Pw

(
Wε(t) = 0

)
dt

= ε2G(θ)(w,0,0, λε2)
= ε2ζw

λε2

1 + √
2γ ε−1ζ

1w=0
λε2

ζ−1
λε2 + (

√
2γ λε − 1)ζλε2

hence ∫ ∞
0

e−λt
Pwε

(
Wε(t) = 0

)
dt

= (
1 + o(1)

) · {1 + √
2γ ε−1(1 − 1w=0ε

√
λ)}

1 + ε
√

λ + (
√

2γ λε − 1)(1 − ε
√

λ)
ε2(1 − ε

√
λ)

√
2Wε−1

= (
1 + o(1)

) · {ε + √
2γ (1 − 1w=0ε

√
λ)}

2
√

λ + γ λ
√

2 − εγ λ
√

2λ
(1 − ε

√
λ)

√
2Wε−1

from which formula (39) follows. �

5. Applications through duality.

5.1. Time dependent covariances. In this section we look at the (time dependent) co-
variance of ηx(t) and ηy(t) for the process with generator (1) when initially started from a
product measure. We recall from Section 2.2 that the process (1) encompasses the general-
ized symmetric exclusion process (SEP(j)), the symmetric inclusion process (SIP(k)) and the
independent random walk process (IRW). We will denote by ν the initial product measure
and by

(149) ρ(x) :=
∫

ηx dν and χ(x) :=
∫

ηx(ηx − 1) dν.

We further denote

(150) ρt (x) =
∫

Eη

(
ηx(t)

)
dν.

We will denote by Xt , Yt , respectively X̃t , Ỹt the positions of two dual particles, respectively
two independent particles, and by Ex,y , the corresponding expectations when particles start
from x, y. The following proposition describes time-dependent covariances of particle num-
bers at time t > 0 when starting from an arbitrary initial distribution ν, in terms of two dual
particles.

PROPOSITION 5.1 (Time dependent covariances throught duality). Let {η(t) : t ≥ 0} be
a self-dual process with generator (1) and α = 1. Then the covariance function defined in
(40) is given by

�(θ)(t, x, y;ν) = (1 + θδx,y)

{
Ex,y

[
ρ(Xt)ρ(Yt ) − ρ(X̃t )ρ(Ỹt )

]
+Ex,y

[
1Xt=Yt

(
1

1 + θ
χ(Xt) − ρ(Xt)

2
)]}

+ δx,y

(
θρt (x)2 + ρt (x)

)
for θ > −1

(151)
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and

(152) �(−1)(t, x, y;ν) =
{
Ex,y

[
ρ(Xt)ρ(Yt ) − ρ(X̃t )ρ(Ỹt )

]
for x �= y,

ρt (x)
(
1 − ρt (x)

)
for x = y,

where

(153) θ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 IRW,

+1

k
SIP(k),

−1

j
SEP(j).

PROOF. To prove the theorem we use duality relations. From Section 2.2, duality func-
tions for one and two particles dual configurations are given by:

D(δx, η) = c1ηx,(154)

D(δx + δy, η) =
{
c2

1ηxηy for x �= y,

c2ηx(ηx − 1) for x = y, θ �= −1
(155)

with

(156) c1 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 IRW,
1

k
SIP(k),

1

j
SEP(j),

c2 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 IRW,
1

k(k + 1)
SIP(k),

1

j (j − 1)
SEP(j), j �= 1.

Notice that the case θ = −1 corresponds to the case of SEP(1) for which each site can host at
most one particle. For this case it doesn’t make sense to consider the dual configuration 2δx ,
whereas

(157) D(δx, η) = ηx, D(δx + δy, η) = ηxηy.

Case θ > −1. We have θ > −1, θ + 1 = c2
1/c2. Then we have

(158) ρ(x) = 1

c1

∫
D(δx, η) dν and χ(x) = 1

c2

∫
D(2δx, η) dν.

We denote by pt(x, y) the transition probability for one dual particle to go from x to y in
time t . Moreover we denote by pt(x, y;u, v) the transition probability for two dual particles
to go from x, y to u, v in time t . We consider two cases: the first being x �= y. Using self-
duality, we write, for each initial configuration η,

Eη

[
ηx(t)ηy(t)

] − ρt (x)Eη

[
ηy(t)

] − ρt(y)Eη

[
ηx(t)

] + ρt (x)ρt (y)

= 1

c2
1

Eη

[
D

(
δx + δy, η(t)

)] − ρt (x)
1

c1
Eη

[
D

(
δy, η(t)

)]
− ρt (y)

1

c1
Eη

[
D

(
δx, η(t)

)] + ρt(x)ρt (y)

= ∑
u�=v

pt (x, y;u, v)ηuηv + c2

c2
1

∑
u

pt (x, y;u,u)ηu(ηu − 1)

− ρt (x)
∑
v

pt (y, v)ηv − ρt(y)
∑
u

pt (x, u)ηu + ρt(x)ρt (y).

(159)
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We now integrate the η-variable over ν and obtain

�(θ)(t, x, y;ν)

= ∑
u,v

pt (x, y;u, v)ρ(u)ρ(v) + ∑
u

pt (x, y;u,u)

(
1

1 + θ
χ(u) − ρ(u)2

)
− ρt (x)ρt (y) − ρt (y)ρt (x) + ρt(x)ρt (y)

= ∑
u,v

[
pt(x, y;u, v) − pt(x,u)pt (y, v)

]
ρ(u)ρ(v)

+ ∑
u

pt (x, y;u,u)

(
1

1 + θ
χ(u) − ρ(u)2

)
.

(160)

Now we turn to the second case x = y. For θ �= −1 we have

Eη

[
η2

x(t)
] = 1

c2
Eη

[
D

(
2δx, η(t)

)] + 1

c1
Eη

[
D

(
δx, η(t)

)]
= 1

c2
E2δx

[
D(δx(t) + δy(t), η)

] + 1

c1
Eδx

[
D(δx(t), η)

]
= 1

c2

(
c2

1

∑
u�=v

pt (x, x;u, v)ηuηv + c2
∑
u

pt (x, x;u,u)ηu(ηu − 1)

)

+ ∑
u

pt (x, u)ηu.

Then ∫
Eη

[
η2

x(t)
]
dν

= (1 + θ)
∑
u�=v

pt (x, x;u, v)ρ(u)ρ(v) + ∑
u

pt (x, x;u,u)χ(u) + ∑
u

pt (x, u)ρ(u).
(161)

This leads to

�(θ)(t, x, x;ν) = (1 + θ)
∑
u,v

[
pt(x, x;u, v) − pt(x,u)pt(x, v)

]
ρ(u)ρ(v)

+ ∑
u

pt (x, x;u,u)
(
χ(u) − (1 + θ)ρ(u)2)

+ θρt (x)2 + ρt (x).

(162)

Case θ = −1. We have

Eη

[
ηx(t)ηy(t)

] − ρt (x)Eη

[
ηy(t)

] − ρt(y)Eη

[
ηx(t)

] + ρt (x)ρt (y)

= Eη

[
D

(
δx + δy, η(t)

)] − ρt (x)Eη

[
D

(
δy, η(t)

)]
− ρt (y)Eη

[
D

(
δx, η(t)

)] + ρt (x)ρt (y)

= ∑
u,v

pt (x, y;u, v)ηuηv − ρt (x)
∑
v

pt (y, v)ηv

− ρt (y)
∑
u

pt (x, u)ηu + ρt (x)ρt (y),

(163)
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hence

�(θ)(t, x, y;ν) = ∑
u,v

pt (x, y;u, v)ρ(u)ρ(v) − ρt (x)ρt (y)

= ∑
u,v

[
pt(x, y;u, v) − pt(x,u)pt (y, v)

]
ρ(u)ρ(v).

Moreover Eη[η2
x(t)] = Eη[ηx(t)], hence

(164) �(θ)(t, x, x;ν) = ρx(t)
(
1 − ρx(t)

)
.

This completes the proof of the proposition. �

When the initial measure ν is assumed to be a homogeneous product measure then the
expression of the time dependent covariances via dual particles further simplifies. This is the
content of the next proposition.

PROPOSITION 5.2 (Case of homogeneous ν). Suppose that ν is a homogeneous product
measure then, for self-dual processes with generator (1) and α = 1 we have∫ ∞

0
e−λt�(θ)(t, x, y;ν) dt

= (1 + θδx,y)

(
χ

θ + 1
− ρ2

)
(1 + θζ

1x=y

λ )ζ

√
2|x−y|

λ

ζ−1
λ + (θλ − 1)ζλ

+ δx,y

λ

(
θρ2

ν + ρν

)
with ζλ as in (38), λ > 0.

PROOF. We see from (151) that if ν is an homogeneous product measure then ρ(Xt) = ρ.
As a consequence we have

(165) �(θ)(t, x, y;ν) = (1 + θδx,y)

(
χ

(1 + θ)
− ρ2

)
Px,y(Xt = Yt ) + δx,y

(
θρ2 + ρ

)
.

Taking the Laplace transform and using (37) the result follows. �

REMARK 5.3. Notice that if ν is an homogeneous product measure that satisfies the
condition

(166)
∫

η0(η0 − 1) dν = (1 + θ)ρ2

then �(θ)(t, x, y;ν) is not depending on t , and more precisely,

�(θ)(t, x, y;ν) = 0 for x �= y and �(θ)(t, x, x;ν) = χ + ρ − ρ2.

This corresponds to the case where ν is a stationary product measure for which the covariance
is constantly zero and the variance is equal at all times to the initial value, that is indeed given
by

Varν(η0) =
∫

η2
0 dν − ρ2 = χ + ρ − ρ2.
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5.2. Scaling of variance and covariances in the sticky regime.

PROOF OF THEOREM 2.13. Let x, y ∈ Z, then, from Proposition 5.2 we have∫ ∞
0

e−λt�(θε)
(
ε−at, x, y;ν)

dt

= εa
∫ ∞

0
e−λεas�(θε)(s, x, y;ν) ds

= εa(
1 + √

2γ ε−1δx,y

)( χ√
2γ ε−1 + 1

− ρ2
)

(1 + √
2γ ε−1ζ

1x=y

εaλ )ζ

√
2|x−y|

εaλ

ζ−1
εaλ + (

√
2γ εa−1λ − 1)ζεaλ

+ δx,y

λ

(
ε−1

√
2γρ2 + ρ

)
.

Now we use the fact that ζδ = (1 − √
δ)(1 + o(1)) for small δ and we obtain that, for x �= y,

(167)
∫ ∞

0
e−λt�(θε)

(
ε−at, x, y;ν)

dt = −ρ2
√

2γ
(1 − √

εaλ)
√

2|x−y|

2
√

λε−( a
2 −1) + √

2γ λ
· (

1 + o(1)
)

as ε → 0. This produces the result for the covariance. For x ∈ Z, we get∫ ∞
0

e−λt�(θε)
(
ε−at, x, x, ν

)
dt

=
{(

χ − (
1 + √

2γ ε−1)
ρ2)(ε + √

2γ (1 − √
εaλ))

2
√

λε−( a
2 −1) + √

2γ λ
+ 1

λ

(√
2γ ε−1ρ2 + ρ

)}
· (

1 + o(1)
)

(168)

as ε → 0, from which the statement for the variance follows. �

5.3. Variance of the density fluctuation field.

PROOF OF THEOREM 2.15. From the definitions of the variance of the density fluctua-
tion field (Eq. (45)) and of the time dependent covariances of the occupation numbers (Eq.
(40)), we have

(169) Eν

[(
Xε(�,η, t)

)2] = ε2
∑

x,y∈Z
�(εx)�(εy)�(θε)

(
ε−2t, x, y;ν)

.

Using (167) and (168) for the time-dependent covariances we get∫ ∞
0

e−λt
Eν

[(
Xε(�,η, t)

)2]
dt

= ε2
∑
x �=y

�(εx)�(εy)

∫ ∞
0

e−λt�(θε)
(
ε−2t, x, y;ν)

dt

+ ε2
∑
x

�(εx)2
∫ ∞

0
e−λt�(θε)

(
ε−2t, x, x;ν)

dt

= −ε2
∑
x �=y

�(εx)�(εy)
γρ2e−√

λε|x−y|
√

2λ + γ λ

(
1 + o(1)

)

+ ε
∑
x

�(εx)2 2
√

2γρ2

2λ + γ λ
√

2λ

(
1 + o(1)

)
from which the result follows. �
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