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INTRODUCTION 

This summary introduces an algorithm for completing 
sensitivity analysis that respects linear constraints placed on 
the associated model’s input parameters. With constraints 
present, the degrees of freedom of input parameters are 
reduced, and any changes, e.g., parameter perturbations, 
must respect these constraints. This summary motivates the 
need for this algorithm, overviews the theoretical results, 
and offers representative numerical experiments. 

The original work focuses on the sensitivity of core-
wide keff [1]. In this summary, a virtual bare fast reactor 
whose core has three different fuel materials (U235, U238, 
Pu239) is employed to demonstrate the performance of the 
proposed algorithm. The nominal three-group constants of 
fast reactors are used in the criticality analysis [2]. The 
objective is to calculate the sensitivity of k∞ with respect to 
the volumetric ratio of fissile materials (U235, U238, Pu239) in 
a multi-group format. The constraint of this analysis is that 
the sum of the volumetric composition ratio of the fissile 
materials is equal to unity.  

MOTIVATION 

Sensitivity analysis is widely used in many engineering 
applications such as model optimization, uncertainty 
quantification, and inference, as it allows analysts to 
quantify and prioritize the impact of various model 
parameters on model responses of interest [3]. Focusing 
here on the parameter perturbations aspect of any sensitivity 
analysis, including both forward and adjoint methods, one 
typically needs to perturb the parameters to quantify their 
individual impact on the responses of interest. This follows 
for both adjoint and forward methods. In a forward 
approach, the model parameters are perturbed and the model 
is re-executed and the variations in the responses of interest 
from their reference values are recorded, and later used to 
approximate the response derivatives with respect to the 
model parameters. In the adjoint approach, the adjoint 
model is first constructed, representing the mathematical 
dual of the forward model equations. The adjoint model is 
solved for a state variable, called the adjoint solution, as 
opposed to the forward solution. Both the adjoint and 
forward solutions are combined together via inner product 
operation to estimate the derivatives of select model 
response with respect to its model parameters. In this inner 
product formulation, one has to change one parameter at a 
time to estimate the derivative of the response with respect 

to the given parameter. Thus, essentially a forward-based 
approach is employed to calculate the derivatives, but 
applied on the inner product formulation rather than the 
original model. The cost of re-executing the inner product 
formulation is far less expensive than re-execution of the 
original model, which renders the adjoint-based methods 
superior to forward-based methods for the evaluation of 
first-order derivatives when the number of model 
parameters is very high. Thus, when constraints are 
enforced on the model parameter, both the forward and 
adjoint methods must be able to handle these constraints 
when perturbing the respective model parameters.  

In no constraints exist, several methods are available 
for introducing the perturbations, such as one-at-a-time 
techniques often used in local sensitivity analysis, and 
simultaneous perturbation of all parameters using random 
sampling techniques as typically done in global sensitivity 
analysis [3]. These perturbation procedures can be 
implemented in a straightforward manner when the 
parameters are independent of each other. However, when 
constraints are present -- as dictated by the physics or 
engineering considerations -- the perturbations must satisfy 
these constraints. Because the number of constraints is 
typically much smaller in dimensionality than the number of 
parameters, they can be satisfied in an infinite number of 
ways, which could lead to non-uniqueness in the responses 
of interest [4-5], and ultimately to ambiguities in the 
downstream analyses relying on the results of this 
sensitivity analysis. Thus, there is a need for an algorithm 
that can introduce parameter perturbations for sensitivity 
analysis in a manner that satisfies the constraints and ensure 
uniqueness of the variations in the responses of interest. 
This is true whether one is employing forward or adjoint 
sensitivity analysis.  

Some of the constraints that are relevant to reactor 
physics problems include quantities that must sum to a fixed 
value, e.g., isotopic percent concentrations and volume 
fractions in a given mixture, group-wise delayed neutron 
fractions, group-wise prompt neutron fractions, etc. For 
illustration, this summary analyzes a virtual bare reactor to 
estimate the sensitivity of k∞ with respect to the fissile 
material volume fractions, which must sum to 1.0. The 
reference group-wise values are calculated using lattice 
physics, and the goal is to estimate the impact of their 
variations on k∞. 
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DESCRIPTION OF PROPOSED ALGORITHM 

Although the proposed algorithm has general 
applicability to both local and global sensitivity analysis 
techniques, we focus in this summary on local sensitivity 
methods only. For local methods, the sensitivity information 
is encoded in the form of a sensitivity vector, sometimes 
referred to as a sensitivity profile, which is equivalent to the 
calculus definition of a gradient, i.e., the direction of 
maximum ascent for the response of interest in the 
parameter space n . If no constraints exist, the parameter 
perturbations can be rendered using n degrees of freedom, 
corresponding to the total number of parameters. When 
constraints exist however, the available number of degrees 
of freedom is reduced. This can be illustrated as follows for 
the case of linear constraints, which may be described by a 
set of linear equations: 

.x b=A  (1) 
where n m×∈A   is a rectangular wide matrix, such that m 
represents the number of constraints which is less than n. 
For a given model parameter perturbations x∆  that satisfies 
the constraints, one has: 

( ) 0x x b x+ ∆ = → ∆ =A A (2) 

This means that the perturbation x∆  must lie in the null 
space of the matrix A. If the m constraints are independent, 
i.e., not redundant which is expected to be the case, the null
space of A will have a dimension of n-m. This implies that
the perturbations x∆  can only vary along an n-m subspace.
Effectively, this means that the sensitivity analysis can only
assess the impact of n-m degrees of freedom on the response
of interest. This further implies that the gradient should not
have any components that are orthogonal to the null space,
otherwise the constraints will be violated.

The proposed algorithm takes advantage of this 
observation and recasts the model input parameter 
perturbations in terms of these degrees of freedom via linear 
transformation. After completing the sensitivity analysis 
using standard perturbation techniques where the parameters 
are assumed independent, but now automatically 
constrained to the null space of A, the calculated 
sensitivities can be transformed back into the original 
parameters.  

To implement this algorithm, one only needs to develop 
a way to generate perturbations in the null space. This can 
be achieved by first estimating the orthogonal complement 
of the null space, that is the row space of A. The algorithm 
then reduces to a simple projection exercise, where the 
component along the row space of A is removed from any 
proposed parameter perturbations. This procedure can be 
repeated n-m times to generate a basis for the null space, 
which can be used as a basis for perturbing the parameters 
for the sake of sensitivity analysis. 

The details of the proposed algorithm may be 
summarized as follow: 

1. Define the linear constraints as matrix A, then calculate
AQ , such that T

A AA Q R= , where AQ  has m columns
spanning the row space of A.

2. Create an orthogonal projector P, such that
T

A AP I - Q Q= .
3. Generate a random matrix ( )n n m× −∈X  , and project the

random matrix onto the active subspace by PX .
4. Perform QR decomposition such that: QR = PX .
5. Let 1 2[ ... ]n mq q q −=Q . Each column refers to one 

of the n-m effective degrees of freedom that are to be 
explored by the SA. 

6. Find the acceptable step size 
iq∆ , which guarantees the 

linearity at the given local point.  
7. Calculate the directional derivative along iq  with step 

size 
iq∆ . 

8. Calculate the constrained gradient, T
cg dk ×= Q . 

NUMERICAL EXPERIMENT 

The focus of the numerical experiment is performing 
sensitivity analysis for the multiplication factor, k∞, of a 
virtual fast reactor model. The model reactor is a bare 
reactor, whose fuel consists of three fissile materials (U235, 
U238, Pu239). Its volumetric ratio sums up to unity. The three-
group neutron balance equation without leakage and 
external sources is given by: 

1 11 11 21 31 1 1 1 2 1 3

2 212 2 22 32 2 1 2 2 2 3

13 23 3 33 3 1 3 2 3 33 3

1t f f f

t f f f

t f f f

k

φ φχν χν χν
φ φχ ν χ ν χ ν

χ ν χ ν χ νφ φ∞

 Σ −Σ −Σ −Σ Σ Σ Σ    
     −Σ Σ −Σ −Σ = Σ Σ Σ     
     −Σ −Σ Σ −Σ Σ Σ Σ      

Ignoring upscattering, 21 31 32, ,Σ Σ Σ  and thermal neutron 
spectrum, 3χ , the eigenvalue, k∞, is calculated by finding 
the value which makes the determinant of the homogeneous 
equation zero.  

1 12 2 1 3 23 2 3 1 2 3 13 1 3

1 2 3

( )( ) ( )R f f R R f f R

R R R

k
χ χ ν ν χ ν ν

∞

Σ + Σ Σ Σ + Σ Σ + Σ Σ Σ + Σ Σ
=

Σ Σ Σ
where, ( 1, 2,3)Ri ti ii iΣ = Σ −Σ =  is a removal cross-section. 

The three-group constants are obtained by averaging 
techniques based on multigroup calculations [2]. The 
volumetric composition of the core is 30% fuel, 50% 
coolant (Na), and 20% structural material (Fe). These 
fractions of the fissile materials are given by a vector: 

49 25 28[ ]TVF VF VF VF= , where 49, 25, 28 are 
corresponding fissile materials Pu239, U235, and U238 
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respectively. The constraint is: 1, ( 49,25,28)i
i

VF i= =∑ , or 

in matrix format: 
[1 1 1] 1.0VF =  

The model employed in this analysis use the following 
values for the volumetric fractions of the fuel isotopes: 

 [ ]0.50 0.30 0.20VF =  

The optimum step size must be determined, because too 
small of a step size may cause numerical errors and too big 
may not capture local variations. This can be obtained by 
analyzing variations in a step size:  

( ) ( )i

i

f x q f xk
q

ε
ε

∞ + −∂
=

∂

Fig. 1. Derivative plot with different ε  values 
Fig.1 shows a representative result for this analysis for 

the 1q direction. The result indicates that 8 410 10ε− −< <  is 
an acceptable size for a sensitivity analysis using absolute 
perturbations. In the same way, relative perturbations 
indicate that 10 610 10ε− −< <  is an acceptable step size. For 
the sake of brevity, this analysis focuses on absolute 
perturbations only.  

The degree of freedom in this analysis is 2, since the 
whole space has three dimensions and one constraint is 
present. The proposed algorithm is demonstrated by the 
following steps. 

The normalized constraint is given by (after normalization 
to have unit norm): 

[0.5774 0.5774 0.5774] || || 1.0A A= → =Q Q

To respect the constraint, a random sample, X  must be 
projected onto the null space of the constraint. The 
projection matrix is given by: 

0.6667 0.3333 0.3333
( ) 0.3333 0.6667 0.3333

0.3333 0.3333 0.6667

T
A A

− − 
 = − = − − 
 − − 

P I Q Q

The random sample and the projected sample are given by: 

1.7293 1.0671
0.0671 0.9584
0.9238 1.5342

 
 = − 
 − 

X

1.4384 0.5195
0.2238 1.5061
1.2147 0.9866

 
 = − − 
 − 

PX

A QR decomposition yields two orthogonal directions 
which are orthogonal to the constraint: 

0.7587 0.3017
0.1180 0.8079
0.6407 0.5062

− 
 = − 
  

Q  

The resulting derivatives of k∞ along each of the two 
directions are given by: 

[ ]0.5046 0.1538k
q
∂

= −
∂

RESULTS 

A representative result for the three-group fast reactor 
model using absolute perturbations is given by: 

[0.4292 0.1838 0.2454]cg = − −  
As explained earlier, the goal is to create perturbations 

that ensure uniqueness of the response variations. Hence, to 
verify the implementation, the algorithm is repeated several 
times with different randomly generated parameter 
perturbations, as contained in the matrix X. The calculated 
gradient for a representative set of random perturbations are 
given here: 

1 [0.4292 0.1838 0.2454]cg = − −  

2 [0.4292 0.1838 0.2454]cg = − −  

3 [0.4292 0.1838 0.2454]cg = − −  

4 [0.4292 0.1838 0.2454]cg = − −  

By definition, the gradient is expected to coincide with 
the direction that results in the maximum change. For the 
next test, many random candidate perturbations are created 
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and forced to satisfy the constraints. The angle between the 
perturbations and the gradient is calculated.  

Fig. 2 shows the change in k∞ against the angle between 
the perturbations and the gradient. The orange line presents 
a cosine function as a reference. As expected, the direction 
of the gradient makes the maximum change in the response 
of interest. The larger angle between the perturbations and 
the gradient causes the smaller change in k∞.  

Fig. 2. k∞ variations along randomized parameter 
directions vs. angle between calculated gradient and the 

randomized parameter directions 

CONCLUSION 

This summary introduced an algorithm, which allows 
one to generate constrained perturbations based on linear 
constraints. The main idea behind this algorithm is to retain 
only components that satisfy the constraints. Using this 
algorithm one can ensure that all parameter perturbations 
are consistent with the existing constraints. Results show 
that the proposed algorithm generates unique estimate of the 
gradient, employed in local sensitivity analysis, and the 
gradient is shown to satisfy the commonly known property 
of being the direction of maximum change. Future work will 
focus on illustrating the performance of this algorithm to 
global sensitivity analysis, and also for downstream 
analyses relying on the results of sensitivity analysis, e.g., 
uncertainty quantification and inference.  
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