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DC distribution systems are a promising alternative to existing AC distribution systems. They connect
customers to local energy sources without conversion, thus reducing power losses. However, the unique
features of DC impose strict requirements for system operation compared to AC. Within the context of a
liberalized energy market, this article demonstrates three promising market designsdan outcome of a
comprehensive engineering design frameworkdthat meet those DC requirements. They are an integrated
market design, which incorporates all system costs into energy prices; a market design that passes
wholesale energy prices directly to prosumers; and a locational energy market design that relieves
congestion with nodal prices. An optimization model estimates the three market designs’ performance
by simulating a realistic DC distribution system, featuring a high share of electric vehicles. Results
indicate that the integrated market design is optimal in theory but computationally infeasible in practice.
The wholesale energy price design aiming at constraint-free energy trading requires substantial in-
vestments in flexibility. The locational energy market design yields nearly optimal operation in urban
networks and is considered the best feasible market design for DC distribution systems.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Converting power distribution networks to direct current (DC)
can increase network capacity and reduce energy losses [1], thus
providing a promising alternative to alternating current (AC) sys-
tems [2]. Both photovoltaic (PV) generation and much contempo-
rary power consumption are DC in nature. Hence, connecting them
via DC distribution systems (DCDSs) is more efficient than via AC
[3]. The increase in network capacity by switching to DC is an
additional benefit in an environment where transport electrifica-
tion and PV generation lead to significant increases in power flows.

In DCDSs, network issues due to rapid electrification (notably
electric vehicles, EVs) and PV installation have a different impact
than in AC networks [4]. For example, DC substations use con-
verters that typically have little tolerance to instant overloads,
whereas AC substations based on transformers may tolerate an
licy and Management, Delft
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overload up to an hour. The conventional strategy of network
reinforcement is costly and slow and still may not satisfy the
increasing peak load. If enough network capacity is available over
time, shifting flexible loads is a more efficient solution [5]. To
stimulate prosumer participation, price-based coordination stra-
tegies have been proposed within the context of electricity markets
[6], where energy prices reflect the system’s technical character-
istics. However, popular intervention strategies in AC net-
worksdincluding those based on dynamic network capacity or
reactive power controldcannot comply with DC characteristics and
are therefore not applicable to a DCDS. Because DCDSs typically
have lower system inertia, stricter power limits and a stronger
power-voltage coupling effect [7].

The literature provides three categories of network capacity
allocation strategies for distribution systems (all focused on AC).
The first category is monetary incentives [8]: prices that reflect
temporal [9] and locational [10] resource scarcity. The second
category is direct load control [11], where a central dispatcher
directly controls prosumers’ power devices according to an optimal
schedule. It includes controlled demand response, renewable
curtailment and redispatch [12]. The third category is based on
available transfer capability [13], in which the estimated available
cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Acronyms

AC alternating current
DC direct current
DCDS direct current distribution system
DSO distribution system operator
EULV European low voltage distribution test feeder
EV electric vehicle
Flex (local) flexibility option
IM integrated market
LEM locational energy market
LMO local market operator
PV photovoltaic
SOC state of charge
WEP wholesale energy price
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network capacity between price zones is allocated through explicit
auctions. However, the capacity of a distribution network is hard to
evaluate due to a low level of aggregation and a high degree of
uncertainty. This article focuses on monetary incentives, because
they comply with electricity market regulations [14,15] and can
incentivize prosumers to boost system efficiency. We thus inves-
tigate how local market design should be adjusted tomeet a DCDS’s
technical requirements, thereby improving the market efficiency.

Researchers have proposedmarket-based coordination schemes
for distribution networks as summarized in [16,17], but most of
them are designed to meet today’s regulations for AC networks and
may not be directly implemented in DC. Ref. [12] proposes an
optional local flexibility market for prosumers with an aggregator
playing a key role. Ref. [18] presents five coordination schemes
between transmission and distribution system operators, but no
one allows prosumers to access the market without an aggregator.
These aggregator-based coordination schemes may not be able to
manage DC congestion precisely at a 1-min resolution. Moreover,
they do not incentivize efficient allocation of network capacity (as
is the case with the current regulation). By contrast, Refs. [19,20]
discuss network-constrained local energy trading, whereas [19]
adopts price-based control for EV charging, and [20] discusses the
bidding strategies for the aggregator of prosumers. Unfortunately,
prosumers cannot trade energy directly in both cases, but we argue
that direct prosumer participation (without aggregators) can create
better incentives and higher market efficiency. Hence, we explore
market designs tailored to DC, including those beyond current
market regulations.

A few authors have studied economic DCDS operation, such as
the optimal operation of AC/DC microgrids under uncertain market
prices and renewable generation [21,22]. Mohsenian-Rad et al. [23]
presented a decentralized control framework where price in-
centives encourage prosumers to offer ancillary services. Asad et al.
[24] proposed a fair nodal price covering the real costs of energy
prosumption. However, neither pricing scheme resolves DCDS
congestion. Karambelkar et al. [25] proposed an exact optimal po-
wer flow formulation, where locational marginal prices mitigate
voltage deviation and line congestion. Such a pricing scheme can
hardly be implemented because solving such a problem is
computationally challenging. Thus, we are eager for a promising
DCDS market design that meets the requirements of economic ef-
ficiency, system reliability and computational feasibility.

Our previous work identified three technically feasible DCDS
market designs using a comprehensive engineering design frame-
work: stating goals, listing options, performance tests, evaluation,
and improvement [26]. The three designs are an integrated market
2

(IM) design that incorporates all system costs in energy prices; a
market design that passes wholesale energy price (WEP) directly to
prosumers while counting on distribution system operators (DSOs)
to resolve network issues; and a locational energy market (LEM)
design that relieves congestion with nodal prices while letting the
DSO regulate voltage. The IM optimizes DCDS operation with pro-
sumer preferences, but the computational complexity and privacy
concerns hinder its implementation. The WEP passes wholesale
prices on to prosumers then requires a DSO to relieve congestion.
The LEM based on linear power flow is computationally feasible but
introduces a small dispatching error. These market designs are
categorized as price-based control, local flexibility market and local
energy market, respectively [16]. This article evaluates them
quantitatively.

We expose each market design’s potential by stress-testing its
performance with large numbers of EVs. We adopt an optimization
model to quantitatively evaluate the design goals of economic ef-
ficiency, system reliability and computational feasibility. In this
model, prosumers operate their devices under local energy prices
without knowing their effect on the market. We assume that pro-
sumers fully share their preferences and run devices for their
benefit; clearly, poor performance in this model means evenworse
in reality. We stress-test our market designs with a significant share
of PV generation, to which we add a futuristic volume of EVs. EV
charging flexibility can be a major advantage to economic DCDS
operation. However, it also leads to grid overloads under wrong
incentives, thereby creating peak loads orders higher than today.

This article contributes to the literature with the first quantita-
tive assessment of market designs tailored to a DCDS. Following a
comprehensive design framework, we analyze the performance of
three market designs in Ref. [26] quantitatively using an optimi-
zation model. Realistic simulations suggest that converter conges-
tion is the primary concern of the DCDS operation, especially in the
presence of volatile energy prosumption and large numbers of EVs.
By contrast, constraints regarding nodal voltage and cable capacity
are not a limiting factor in an urban DCDS and can presumably be
removed from its market design. Our studies on DCDS markets also
shed light on new market designs for low-voltage AC distribution
systems, where increasing numbers of prosumer devices are
interfaced with converters.

2. Three potential DCDS market designs

In exploring the design space for DCDS electricity markets, our
previous article [26] identified the threemarket designs mentioned
in Section 1. This section briefly summarizes these market designs,
as seen in Table 1. First, all the designs have a complete market
architecture: all tradeable commodities, including network capac-
ity and voltage regulation services, are rewarded. Second, all have a
complete linkage to wholesale electricity markets. Third, they all
apply uniform pricing, namely no distinction between energy sell
and buy prices. We changed the name of the locational flexibility
market design to wholesale energy price (WEP) design since the
latter better describes its key feature.

2.1. Integrated market (IM) design

The IM design based on direct control rewards power generation
but also the provision of network capacity and voltage regulation
services, all in a single integrated commodity. Assuming complete
information, this market performs security-constrained economic
dispatch with a non-linear power flow model, which accurately
measures voltage drops and losses. An independent local market
operator (LMO) collects information from the DSO and the pro-
sumers, who submit complex bids including energy needs,



Table 1
Comparison of three DCDS market designs, adapted from Ref. [26].

design IM WEP LEM

linkage all sub-markets voltageenetwork energyenetwork
commodity integrated product energy and locational Flex locational energy
flexibility paid implicitly paid explicitly paid implicitly
advantages theoretically optimal; no need for Flex battery no institutional changes; easy to implement fast market clearing; close to optimal in urban grids
challenges computational complexity congestion and voltage regulation no incentive for voltage regulation; up to 5% less accurate
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constraints, preferences and costs. Then the LMO allocates energy
and other resources to maximize the economic welfare of local
prosumers. With sufficient flexibility, the IM design yields an
optimal system operation in theory, unlike the next two designs.
Prosumers are remunerated for their marginal contribution to the
total economic welfare. This remuneration creates a time-
dependent locational energy price, which also covers the conges-
tion and voltage regulation payments. In practice, the IM design
will face computational challenges because of the complex market
clearing algorithms.

2.2. Wholesale energy price (WEP) design

The second design allows prosumers to trade energy directly at
wholesale prices but counts on the DSO to regulate network
operation. The DSO can introduce a local flexibility market to pur-
chase flexibility form prosumers. Previous studies typically define
flexibility payments based on a prosumer’s actual energy delivery,
thereby creating a distorted incentive of pay-for-not-doing. By
contrast, this design defines Flex, an option to adjust a flexible
prosumer’s power devices, as an explicit, standard commodity that
a prosumer sells to the DSO.

In daily operation, prosumers schedule power devices them-
selves based on wholesale prices, whereas the DSO estimates the
DCDS’s load factor based on historical data and forecasts. Then the
DSO announces the Flex demand and invites prosumers to submit
Flex offers. Finally, the DSO takes the lowest-price Flex offers and
dispatches them in real-time for network regulation. If all pro-
sumers participate in this Flex market, we will reach the same level
of economic efficiency as in the IM design. Because a DSO would
look for the same least-cost solution considering the grid con-
straints. The only difference is that a DSO would pay EV owners to
relieve the congestion they themselves created. As a result, EV
charging costs would be lower than in the IM design, but they
would be borne by the DSO and would presumably be transferred
back to prosumers as socialized system costs.

The WEP design explicitly treats system services as commod-
ities, thereby creating new business models for energy storage and
demand response. The proposed Flex market acknowledges the
local value of Flex [27] and attracts Flex investments where
network congestion and voltage deviations occur. However, a Flex
market is not likely to yield an optimal system operation because it
provides perverse incentives to flexible loads: it rewards some
schedules that worsen congestion. Meanwhile, its product pricing
and standardization are challenging, because flexible devices
typically have different operational costs and constraints.

2.3. Locational energy market (LEM) design

In the third design, an LMO allocates energy optimally within
network capacity limits under the nodal pricing principle. The LEM
design adopts a linear power flow model in energy trading,
which explicitly links the energy and network capacity markets.
LEM is cleared to minimize generation costs and the transactions
are settled at locational energy prices. Apart from energy trading,
3

the DSO provides voltage regulation services using flexible devices
such as batteries. The LEM design is in line with the current busi-
ness model for DSOs, who provide system services and passes the
costs along to customers. This design is less optimal than the IM,
but it is computationally less challenging and can ensure system
reliability with less prosumer information.

3. Optimization model

This section estimates the theoretical potential of each DCDS
market design with an optimization model, where we assume
complete information availability. We do not include a WEP model
but use historical price series instead. Our focus is to develop and
test local energy market designs that can resolve DC network is-
sues. As EV charging only represents a fraction of wholesale energy
demand today, we assume that local market clearing with EVs does
not affect the wholesale energy price (WEP). This is a limitation of
our work: future work should investigate the interaction between
the wholesale and local energy markets.

We study an urban residential DCDS with sufficient capacity to
meet the household load today, but is challenged by a high share of
EVs and PV panels in future. This scenario is suitable because
flexible loads such as EV charging might 1) create an order of
magnitude higher load than today and 2) cause severe network
problems. Market designs for DCDSs should be fit for such a sce-
nario. Our model assumes that both household consumption and
PV generation are inflexible and may not be curtailed, and that EVs
are the only flexible prosumers. The simulation starts at noon and
lasts 24 hours to cover the time horizon of overnight EV charging. It
adopts a 1-min resolution to highlight the consequences of even
brief congestion of the DC substation converter. Unlike AC trans-
formers, DC converters typically cannot sustain brief overloads and
require more precise system operation.

Below we show how to model the three market designs as an
optimization problem.

3.1. Integrated market (IM) model

The IM market design has, by definition, only one market which
rewards the provision of energy, network capacity and voltage
regulation services. Voltage and network constraints are integrated
into the optimization problem and are therefore considered
simultaneously with energy dispatch. The allocation mechanism is
a one-step deterministic optimization problem and is settled at a 1-
min resolution with DC smart meters. This model serves as a
reference for the WEP and LEM models that follow in the subse-
quent subsections.

3.1.1. Objective and decision variables
This model minimizes local prosumers’ energy net import costs.

min
pw
t ;p

e
t

C¼
X
t2T

lwt p
w
t Dt (1)

The decision variable is the EV charging power pet , whereas the
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power imported from the wholesale market pwt is a dependent
variable. The objective function (1) is subject to the constraints
regarding the network (2)e(10) and EVs (11)e(16). If Flex batteries
are presentdalthough unnecessary for the IM designdthe function
is further subject to the Flex battery constraints (18)e(22). Table A1
presents the list of indices, variables and parameters used in the
optimization model.
3.1.2. Network constraints
Substation converter power limit

�pw � pwt � pw ct (2)

where pw is the available substation converter capacity.
Nodal power injection

pn¼1
t ¼ pwt ct (3)

pnt ¼
X

g2G n

pgt þ
X
l2L n

plt þ
X
e2E n

pet þ
X

f2F n

pft ct;cns1 (4)

where G n;L n;E n;F n are the sets of generators, loads, EVs and
Flex batteries at node n. This equation indicates that a node’s net
generation equals the sum of the power flowing out of this node.

Nodal power expression (non-linear)

pnt ¼ int v
n
t ct;cn (5)

Nodal voltage limit

vn¼1
t ¼ vref ct (6)

0< v � vnt � v ct;cns1 (7)

Nodal current balance

int ¼
X

mjðn;mÞ2A

f ðn;mÞ
t �

X
mjðm;nÞ2A

f ðm;nÞ
t ct;cn (8)

Line current flow

uðm;nÞf ðm;nÞ
t ¼ �

vmt � vnt
�

ct;cðm;nÞ2A (9)

Line current limit

�f a � f at � f a ct;ca (10)

3.1.3. EV charging constraints
EV charging power

pet ¼ 0 ct2
�
0; tea

�
∨
�
ted; T

�
;ce (11)

pe � pet � 0 ct2
�
tea; t

e
d

�
;ce (12)

EV State-of-Charge (SOC) update

�
retþ1 � ret

�
ce ¼ �hepetDt ctsT ;ce (13)

EV SOC limit

0 � ret � 1 ct;ce (14)
4

retea ¼ rea ce (15)

reted � red ce (16)

3.2. Wholesale energy price (WEP) design model

Prosumers directly face WEPs in this market design. EVs, the
only flexible prosumers in this model, are charged to minimize
energy purchase costs. If the market clearing results violate a
DCDS’s technical constraints, namely equations (2), (7) and (10), the
DSO resolves such problems outside the energy market with Flex
batteries. Since the WEP design requires such batteries, it yields
higher capital costs than the IM. With this model, we attempt to
indicate the order of magnitude of the cost increase.

3.2.1. Objective and decision variables
The objective function is shown in (17). The first term describes

the total energy net import costs (considering energy losses),
whereas the second term represents the Flex battery depreciation
costs. Hence, the optimization model may dispatch batteries for
system service provision but also for energy arbitragedwhen en-
ergy price differences can cover battery depreciation costs.

min
pw
t ;p

f
t

C¼
X
t2T

lwt p
w
t Dt þ

X
t2T

X
f2F

lf pf ;dist Dt (17)

The decision variable is the Flex battery power pft , whereas the
power imported from the wholesale market pwt is a dependent
variable. The constraints are from the network (2)e(10), EVs
(11)e(16) and Flex batteries (18)e(22).

3.2.2. Flex battery constraints
Flex batteries are unnecessary in the IM and LEM design but are

crucial to the WEP design.
Flex battery charging power

pf � pft � pf ct;cf (18)

pft ¼ hfþpfþt � hf�pf�t ct;cf (19)

Flex battery SOC update

�
rftþ1 � rft

�
cf ¼ �pftDt ctsT ;cf (20)

Flex battery SOC limit

0 � rft � 1 ct;cf (21)

rft¼1 ¼ rft¼T ¼ rfi cf (22)

3.3. Locational energy market (LEM) model

Compared to the IM model, the LEM model leaves out voltage
drops and energy losses, namely constraints (5)e(7). Instead, the
DSO uses Flex batteries to meet constraint (7) in real time. Conse-
quently, The LEM typically results in a power dispatching error up
to 5% in our simulation, so we also introduce such an amount of
reserve margin when allocating the network capacity.

The objective function of the LEM is the same as the IM, namely
equation (1). The optimization problem is subject to EV constraints
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(11)e(16) and the following network constraints. Compared to the
IM, constraints (2)e(4) remain the same, but constraints (5)e(10)
for non-linear power flow modeling are removed. Constraints (8)
and (10), expressed in current in the IM, are replaced by (23) and
(24), expressed in power in the LEM model.

Nodal power balance

pnt ¼
X

mjðn;mÞ2A

pðn;mÞ
t �

X
mjðm;nÞ2A

pðm;nÞ
t ct;cn (23)

Line power limit

�pa � pat � pa ct;ca (24)

3.4. Implementation and verification

The optimization model is formulated mathematically using
Pyomo [28]. The IM and WEP models present a non-linear pro-
gramming problem solved by IPOPT. By contrast, the LEM model
presents a linear programming problem solved by Gurobi. We
check whether a market design leads to a technically feasible DCDS
operation by simulating its cable power flow and nodal voltage
deviation. We adopt PyPSA [29], a power system simulation tool,
for this purpose: the EV dispatch plans as our model output are
passed to PyPSA as inputs.

4. Experiment design

Having developed the mathematical model, we use it in a
simulation experiment. The purpose of the simulation is to stress-
test three market designs with a large share of EVs that cause DC
substation overloads. We combine a well-described IEEE reference
network with three typical scenarios describing household con-
sumption, PV generation and EV availability. Contrary to the 15-min
resolution used in AC markets, we adopt a 1-min resolution to
evaluate the impact of instant congestion on a DC network. Each
design is assessed in terms of economic efficiency, reliability and
computational complexity.

4.1. IEEE-EULV distribution test feeder

The simulated DCDS is based on the IEEE European Low Voltage
Distribution Test Feeder (EULV) [30]. In our case, the low-voltage AC
network is replaced by a unipolar 350 V DC system. The old AC
transformer is replaced by a DC substation converter with a rated
Fig. 1. Simplified 41-node IEEE-EULV feeder, adapted from Ref. [30].

5

capacity of 100 kW, whereas the AC cables are used for DC distri-
bution with only a few adaptions. We assume the DC substation to
be lossless because the efficiency of DC converters is up to 99%. The
cable rating is set according to Table A2. We simplified the feeder to
a 41-node one (Fig. 1) while preserving its basic topology.

4.2. Prosumers

Wemodel inflexible household consumption and PV generation
with time-series power profiles, with a resolution of 1 min. The
IEEE-EULV feeder [30] provides 55 household load profiles with a 1-
min resolution for 24 hours, which constitute the DCDS’s inflexible
baseload up to 54.5 kW. The PV systems can generate up to 100 kW
peak power, allowing the DCDS to be energy self-sufficient on an
average summer day. The generation profiles of 32 PV panels, also
in a 1-min resolution, are based on the measurements from the UK
[31]. Independent of PV ownership, 25 households own EVs. We
assume that all EVs have a battery capacity of 24 kWh and should
be fully charged overnight; their energy needs are based on the
driving patterns from [32,33]. The maximum EV charging power is
7 kW, and we consider EV charging efficiency to be 95% in a
DCDSdhigher than with AC thanks to the removal of AC-DC
conversion. The EV charging flexibility, represented by the mini-
mal energy need, charging period and charging location (as shown
in Table A3), is the primary flexibility source of the studied DCDS.
Both PV panels and EVs are located randomly.

Flex batteries are necessary in some market designs for system
service provision. TheWEP design explicitly requires Flex batteries,
because EV charging is self-scheduled and is unavailable for
network intervention. For the LEM design, Flex batteries are only
needed in the case of large voltage deviations. By contrast, the IM
design does not strictly need such batteries, because all EVs provide
flexibility that the DSO can use to meet a DCDS’s technical con-
straints. We place seven identical Li-Ion batteries, each with a
maximum power of 20 kW and 15-min full load time, at the two
longest branches of the IEEE-EULV feeder. Their charging and dis-
charging energy efficiency are set to 95%. These batteries’ final SOC
is set the same as its initial value, namely 50% in our case.

4.3. Scenarios

We aim to create realistic power profiles of a DCDS with houses,
PVs, EVs, and Flex batteries. Hence, we propose three typical but
challenging scenarios to describe the local PV generation and the
WEPs (affected by offshore wind generation). The DC characteris-
tics [26] requires that DCDS markets should be cleared more
frequently than AC energy markets (typically with a 15-min reso-
lution). Due to the paucity of per-minute, high-resolution load data,
we can only perform a 24-hour optimization of hardware and
operational costs at that resolution.

1 S1: Sunny-Windy: A windy summer day when local PV panels
and offshore wind farms generate much power, resulting in
negative WEPs at noon.

2 S2: Sunny: A calm summer day when local PV panels generate
much power. The excess generation creates reverse power flow
and voltage swells. The WEP curve is flat except in the evening.

3 S3: Windy: A windy winter day with low PV generation and low
WEPs at dawn. EV demand for cheap wholesale energy will
cause substation congestion and voltage sags.

Fig. 2 illustrates the input data. The inflexible load is the same in
the three scenarios. In scenario S3, PV generation is especially low
and so is theWEP due tomuch offshorewind generation. TheWEPs
are taken from the European power exchange EPEX-SPOT [34].



Fig. 2. Simulation scenarios: local PV generation, household consumption and WEP. (a) S1: Sunny-Windy (upper). (b) S2: Sunny (middle). (c) S3: Windy (lower).
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4.4. Performance criteria

Table 2 lists the market design goals [35,36] and our perfor-
mance indicators. We do not focus on long-term cost minimization
except for cases that require additional investments in batteries.

5. Simulation results

This section compares the performance of the three market
designs in the three scenarios. We evaluate to what degree each
market design helps lower the overall system costs within the
boundary of a DCDS.

The simulation results, summarized in Table 3, indicate that 1)
all three market designs can guarantee reliable DCDS operation; 2)
the choice of market design has little impact on total operational
costs; and 3) this choice largely affects long-term costs due to
battery investments. The IM design is theoretically optimal but
computationally challenging. The WEP design requires substantial
flexibility investments and is therefore disqualified. By contrast, the
LEM with linear power flow modeling is promising, because it
balances economic efficiency and computational feasibility.
6

5.1. Economic efficiency

5.1.1. Total operational costs
The total operational costs include energy net import costs and

Li-Ion battery depreciation costs (estimated for 0.05 V/kWh). The
WEP is the only design that needs Flex batteries: in Scenario 3,
battery depreciation adds an extra V1.12 to the total operational
costs, making the WEP the most expensive design. Below we
elaborate on the energy net import costs. Typically, energy import
costs are marginally higher with the WEP design than with the IM
and LEM design, as shown in Table 3. This is perhaps counter-
intuitive, as in the WEP design, individual EVs minimize their
wholesale energy costs. However, this leads to an expected over-
load of the converter. The DSO remediates this situation by dis-
charging Flex batteries during peak hours and charging them at
valley hours. Consequently, the actual wholesale energy import is
not as well optimized as in the other designs, as seen in Fig. 3(c). An
exception is theWEP design in Scenario 1, inwhich the daily energy
net import cost (V6.59) is lower than the others (V8.03 andV8.04).



Table 3
Performance of three market designs in three scenarios, verified by PyPSA.

scenario S1: Sunny-Windy S2: Sunny S3: Windy

design IM WEP LEM IM WEP LEM IM WEP LEM

total operational costs (V) 8.03 7.46 8.04 0.03 0.27 0.06 1.79 2.95 1.80
… due to energy import (V) 8.03 6.59 8.04 0.03 0.05 0.06 1.79 1.83 1.80
… due to battery depreciation (V) 0.00 0.88 0.00 0.00 0.22 0.00 0.00 1.12 0.00
min. battery investmenta (kV) 0.00 25.66 0.00 0.00 19.44 0.00 0.00 68.76 0.00
max. substation loading (%) 72.92 73.16 74.67 79.55 100.00 98.35 100.00 100.00 98.50
max. cable loading (%) 70.50 97.88 95.70 75.76 97.14 96.05 97.85 97.79 96.46
max. voltage deviation (%) 3.08 4.12 3.48 3.19 4.31 4.44 4.96 5.04 4.84
solver time (sec) 933 2530 0.94 173 459 1.08 1660 2010 1.06

a Li-Ion battery investment & maintenance costs based on a net present value of 824 V/kW (with 0.25 h full load time) [37].

Table 2
Selected criteria for local electricity market design, adapted from Ref. [26].

category goal criterion

economic efficiency efficient prosumption total operational costs
long-term cost efficiency min. battery investment

system reliability sufficient network capacity max. substation & cable loading
voltage safety max. voltage deviation

implementability computational feasibility solver time
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5.1.2. Minimal battery investment
The IM and LEM designs do not require Flex batteries in our

scenarios, but theWEP design has a high demand for Flex batteries,
because it triggers simultaneous EV charging during low-price
hours. Such a need for Flex batteries can be avoided with a mar-
ket design that gives locational incentives. As depicted in Fig. 4(b),
the usage of the seven identical batteries depends on their location,
thus avoiding cable congestion and energy losses. In our simula-
tions, the most congestion happens on the cable between N7 and
N8, whereas voltage deviations mostly occur at the furthest nodes.
Hence, the DSO would potentially pay more to the batteries at such
critical locations.
5.2. System reliability

5.2.1. Substation & cable loading
As indicated in Table 3, all the market designs can efficiently

manage DC substation congestion. The IM design coordinates EV
charging best because it has complete information and can fully
exploit network capacity. Cables next to the converter and the
branching points are sometimes heavily loaded but never over-
loaded. The WEP design triggers simultaneous EV charging during
the lowest-price hours, creating severe congestion at the DC sub-
station that must be resolved by Flex batteries. We verified the
feasibility of the LEM design with PyPSA. As introduced earlier, the
LEM typically introduces a power dispatching error up to 5%, but
this did not affect the system operation because we reserved a 5%
margin for the network capacity.
5.2.2. Voltage deviation
Voltage deviation is not a limiting factor in our simulation. The

IEEE-EULV feeder represents a small, densely-loaded urban resi-
dential network, in which voltage deviation plays a smaller role
than network congestion. The IM and WEP designs yield lower
voltage deviations and energy losses than the LEM design. Even for
the LEM design, the largest observed voltage deviation of 5.04% is
well within the safety range of 10%. However, Flex batteries may be
needed in rural areas where voltage deviation is high.
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5.3. Computational feasibility

The LEM is solved in around 1 s, much shorter than the IM and
WEP designs (173e2532 s), because it formulates a linear problem
that can be solved quickly. With some input data, the non-linear
solver IPOPT even cannot converge to a local optimum. The
computational complexity will become a challenge for the IM
design, as it should be cleared at a high frequency. The same is true
for the WEP design, but a DSO could settle for a less optimal sol-
utiondof course, at a higher cost to prosumers.
6. Discussion

6.1. IM design

The IM design is only optimal under the unrealistic assumption
of complete prosumer information. It uses system flexibility and
network capacity most efficiently and therefore eliminates the
need for Flex investments. Its non-linear power flow modeling can
reduce energy losses by integrating more local generation, as
indicated in Fig. 3(b). Although the WEP is the lowest between
05:00e06:00, the IM still charges EVs with PV power during
08:00e09:30, thereby importing 12% less energy than in the LEM
design. Since the reduced energy losses offset the slight increase in
energy import costs, the IM design always has a narrow win with
respect to total operational costs.

In practice, however, the IM design faces privacy concerns,
computational challenges and complexity in market rules. First, the
IM design is highly dependent on the availability and credibility of
prosumer preferences. Prosumers may be unwilling to share pri-
vate data with the LMO. Moreover, theymight be unable to forecast
or schedule their energy prosumption precisely with the presence
of uncertainty. Second, the IM design with non-linear modeling
requires a slower, non-linear solver. In our simulation, its solving
time is 2e3 orders higher than the linear LEM design, and it cannot
guarantee an optimal solution in all cases. Third, in practice, an LMO
should coordinate not only EVs but also heat pumps, storage sys-
tems and other flexible devices. Each of these has unique and
complex constraints, which further limits the IM design’s scalabil-
ity. Such a centralized market may be suitable for DC microgrids



Fig. 3. Market design comparison: power imported from the wholesale energy market via the DC substation, verified by PyPSA. (a) S1 Sunny-Windy: power consumption always
stays within the substation capacity (upper). (b) S2 Sunny: EV charging is high when WEP is low (03:00-04:00, 05:00-06:00) (middle). (c) S3 Windy: EV charging is high when WEP
is low (06:00-08:00). In each scenario, the imported power of the three market designs are similar except the hours with low WEPs (lower).
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with the required communication infrastructure in place, but not
for general DCDS applications.
6.2. WEP design

The WEP design creates new business models for flexible
technologies by paying them explicitly for system service. The DSO
directly purchases such flexibility for congestion management and
voltage control, thus providing incentives for Flex investments at
critical locations.

Nevertheless, this concept of prosumers trade energy and the DSO
solves the rest is an expensive solution. First, the WEP design gives
prosumers a wrong incentive in the short term. Directly passing
WEPs to prosumers invites all EVs to charge simultaneously when
the WEP is low. Such uncoordinated charging has created a peak
load of 175 kW in total, much more than a 100 kW DC substation
can supply. This load is even higher than the one under flat tariff
charging, in which EV charging is distributed over time. Second, to
8

serve the above peak load, the DSO must contract prosumer bat-
teries worth V68760, and it has to pay prosumers extra for Flex
activation. This causes the WEP market design and other flexibility
market designsdwhich directly pass WEP to prosumersdto be
economically inefficient. These costs, later passed on
to prosumers as a system cost, can be simply avoided by a better
market design. At best, the WEP design is suitable for the transition
phase from a mostly inflexible to slightly flexible DCDS, but there is
a risk of institutional lock-in.

The other concerns are market liquidity and competitiveness
that come with limited market players. With IM and LEM, all 112
prosumers participate in locational energy trading. However, if the
number of Flex providers is minimal, as in our WEP simulation,
these providers may exercise market power, thus reducing the
overall market efficiency. To make this design work, the DSO must
contract with most of the flexible prosumers in the DCDS.

Flex-based market designs also face challenges of product
pricing and standardization. Flexible devices have different



Fig. 4. S3-Windy, WEP design: a visualization of prosumer power distribution, cable loading and nodal voltage at 06:01 (þ1). (a) EV charging load (left). (b) Flex battery power
output (middle). (c) Cable power flow and nodal voltage (right).
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operational costs and constraints in terms of power, energy and
temporal flexibility. Only by standardizing these Flex contracts can
we guarantee the liquidity of a neighborhood-level DCDS market.
6.3. LEM design

As a solution to IM’s computational challenges, the LEM uses a
linearized networkmodel to optimize local prosumptionwithin the
network capacity constraints. LEM is fast and reliable because a
linear solver can find a globally optimal solution quickly. Its power
flow model is up to 5% less accurate than in the IM design, so the
LMO should apply a reserve margin of 5% on the converter capacity
to avoid overloading. However, the resulting loss of economic ef-
ficiency is negligibledup to V0.03 per day.

Explicit voltage regulation is not necessary for urban grids with
short distribution cables. As shown in our EULV case, the maximal
voltage deviation was only 4.84%. However, since the LEM does not
consider nodal voltage, they may exceed the norms. In such cases,
the DSO can invest in small Flex batteries for voltage regulation.

The LEM design still requires much prosumer information as in
the IM design and faces the same implementation challenges. In
practice, it will be substantially less accurate. However, the ad-
vantages of high economic efficiency and computational feasibility
still make LEM stand out as the most attractive market design.
7. Conclusion

This article presents the first quantitative assessment of market
designs tailored to DC distribution systems (DCDSs), taken from a
previous study of its design options [26]. The integrated market (IM)
design incorporates all system costs into energy prices. The
wholesale energy price (WEP) design passes wholesale prices
directly to local prosumers while counting on the distribution
system operator to resolve congestion. The locational energy market
(LEM) design relieves congestion with nodal prices, whereas a
system operator regulates voltage.

We systematically analyzed how DC technical characteristics
may influence local energy market design: volatile energy pro-
sumption challenges the DC substation converter. We built an
optimization model to evaluate three market designs quantita-
tively, with a 1-min resolution that describes volatile prosumption.
Recognizing that the total demand and demand flexibility may
increase significantly in the future, we included a high share of
electric vehicles to test the robustness of the market designs.
Simulations on a realistic urban DCDS have demonstrated that all
the three market designs can manage network congestion and
voltage deviation, even in extreme situations with a large share of
electric vehicles. Specifically:
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� Network congestion is the main challenge to distribution-level
market design, because flexible prosumption will all be sched-
uled at low-price hours. We developed a LEM design that pre-
serves system reliability, computational feasibility but is also as
efficient as the theoretically optimal IM design.

� Voltage deviation and cable power capacity are not limiting
factors of the DCDS market design, at least in urban distribution
networks. The adoption of bipolar DC grids can further eliminate
these limits. We suggest future DCDSmarket designs to focus on
DC substation congestion management because of its limited
tolerance for overloads.

� Simply passing wholesale prices to local prosumers, like in the
WEP design, may cause severe congestion and require sub-
stantial network or flexibility investments. Local electricity
markets, especially local flexibility markets (under heated dis-
cussion in the literature), should include congestion costs into
energy bills, so that prosumers are not encouraged to aggravate
congestion.

� Our findings from the DCDS market design are also relevant to
markets designed for future AC distribution grids. The latter
typically use converter-based substations and serve converter-
interfaced devices, such as solar panels, electric vehicles and
home batteries. Such AC grids also share DC features such as
strict converter capacity limits.

The following aspects limit our results. First, the use of a
deterministic optimization model assumes complete information.
Uncertainty regarding short-term wholesale energy market prices
and local power prosumption is not included. Second, we did not
include a wholesale energy price model in our local energy market
design, whereas future work should investigate the interaction
between wholesale and local energy markets. Third, we assumed
that prosumers would be willing to share all their data, which may
not be the practice. Fourth, flexibility was represented in the
simulation by a set of identical electric vehicles. However, other
flexible devices, such as batteries and heat pumps, will play an
important role in practice. Finally, our data is limited to a 24-hour
cycle of household consumers, limiting the simulation’s represen-
tativeness. Our stress-test analysis demonstrats that the DCDS
market designs perform well under extreme conditions.

Future studies should evaluate the LEM design in more realistic
situations, in which the market operator is uncertain about future
electricity demand, local generation [38] and WEPs. Prosumers are
not always willing to share private data such as preferences, but
DCDS networks are sensitive to even brief overloads. Conse-
quently, uncertainties may arise regarding network congestion
and future power prices. Agent-based simulations [39,40] are
suitable to study realistic settings, where we include the



Table A3
EV charging profile, based on Verzijlbergh (2013) [33].

name arrival departure distance (km) arrival SOC location

EV1 13:12 10:11 3.1 97.4% N9
EV2 18:34 09:26 35.2 70.7% N18
EV3 15:21 09:31 14.5 87.9% N41
EV4 14:26 08:41 7.8 93.5% N5
EV5 18:54 11:21 16.8 86.0% N33
EV6 15:27 09:13 10.9 90.9% N29
EV7 16:05 09:16 24.8 79.3% N27
EV8 15:02 10:27 5.7 95.3% N8
EV9 18:33 09:06 50.8 57.7% N38
EV10 18:58 11:07 21.7 81.9% N20
EV11 19:11 11:31 28.2 76.5% N34
EV12 19:25 09:26 109.2 9.0% N35
EV13 18:26 13:21 11.8 90.2% N21
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previously mentioned uncertainties, prosumers’ privacy concerns
and their bidding strategies. Furthermore, the market designs
should also be tested in more realistic power networks with
diverse flexible devices, under the influence of aggregators and
taxes. Third, these market designs will need to meet a more
comprehensive set of criteria, including incentive compatibility,
risk-hedging and prosumer involvement.
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Table A1
Indices, variables and parameters of the optimization model.

name description

T (subscript) dispatch interval in set T ¼ f1;…;Tg
L (superscript) inelastic load in set L ¼ f1;…;Lg
G (superscript) PV array in set G ¼ f1;…;Gg
E (superscript) EV in set E ¼ f1;…;Eg
F (superscript) Flex batteries in set F ¼ f1;…;Fg
N (superscript) power node of the DCDS in set N ¼ f1;…;Ng
A (superscript) sparse index set for lines in set A ¼ f1;…;Ag3 N � N
W (superscript) real-time wholesale energy market
Dt length of each dispatch interval
pet power output of EV e charging at time t, pet2½pe ;0�
pft power output of Flex f at time t (positive for discharge), pft2 ½ � pf ;pf �
pfþt power discharged from Flex f at time t (considering losses), pfþt 2 ½0;pf �
pf�t power charged to Flex f at time t (considering losses), pf�t 2½0;pf �
pwt power imported from the wholesale market at time t, pwt 2½ � pw;pw�
pnt net power injection (generation) at node n at time t
int net current injection (generation) at node n at time t
ret state of charge (SOC) of EV e at time t, ret2½0;1�
rft

SOC of Flex battery f at time t, rft2½0;1�
vnt voltage at node n at time t, vnt 2½v; v�
f at current flow of line a2A at time t, f at 2½ � f a; f a�
pat reference power flow of line a2A at time t, pat2½ � pa;pa�
ua line resistance of line a2A

hfþ energy efficiency of Flex f discharging

hf� energy efficiency of Flex f charging

he energy efficiency of EV e charging
ce energy capacity of EV e

cf energy capacity of Flex f

rea initial SOC of EV e upon arrival
red target SOC of EV e upon departure
tea time of arrival of EV e
ted time of departure of EV e, 1 � tea < ted � T

rfi
initial SOC of Flex f

lwt real-time wholesale energy price at time t

lf depreciation cost of Flex battery s per amount of discharged energy

plt power consumption (negative generation) of inelastic load l at time t

pgt power production of inflexible PV generator g at time t

Table A2
Cable ratings, based on IEEE EULV feeder [30].

line resistance (U/km) power (kW)

4c_.06 0.469 55
4c_.1 0.274 75
4c_.35 0.089 105
4c_70 0.446 105

Note: IEEE-EULV feeder did not provide cable ratings and previous publications have
no consensus about the power rating of cables. We chose the above ratings for our
simulations while acknowledging that the choice may affect the judgement of line
congestion.

EV14 18:45 09:16 58.8 51.0% N31
EV15 17:17 09:07 31.0 74.2% N17
EV16 19:22 15:04 3.2 97.3% N7
EV17 18:25 09:13 40.1 66.6% N19
EV18 18:59 09:11 77.0 35.8% N2
EV19 18:46 10:11 45.2 62.3% N13
EV20 19:22 09:04 65.9 45.1% N10
EV21 17:58 07:38 4.3 96.4% N36
EV22 22:17 08:38 4.5 96.3% N16
EV23 16:01 09:08 19.5 83.8% N24
EV24 19:24 09:09 91.8 23.5% N39
EV25 19:48 15:09 7.9 93.4% N35

Note: An EV’s SOC upon arrival is estimated by the driven distance and an average
power consumption of 0.2 kWh/km. The 24 kWh EV batteries are fully charged upon
departure.
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