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SUMMARY

Incidents in critical infrastructures would have a negative effect on the well-being of
people and the economy of the country. In countries like The Netherlands, the proper
operation of water management infrastructures is essential, as around one third of the
country is below sea level. In addition to dikes and dunes, The Netherlands also relies on
floodgates to protect the land against flooding. These floodgates are primarily operated
via Industrial Control Systems (ICS), which integrate hardware and software with network
connectivity to monitor and steer critical processes like closure/opening of floodgates.

Incidents in water management infrastructures, such as unexpected closure/opening
of floodgates, could be initiated by problems that are not dealt with appropriately. These
problems could be caused by (accidental) technical failures and (intentional) attacks.
A typical example of a problem caused by a technical failure is a water-level sensor
sending incorrect water-level measurements due to a misconfigured water-level sensor.
In contrast, a typical example of a problem caused by an attack is a water-level sensor
sending incorrect water-level measurements due to the manipulation of water-level
measurements sent to the Programmable Logic Controller (PLC) in the communication
channel between the sensor and PLC. A problem that could be caused by both technical
failure and attack in case not addressed appropriately as soon as it occurs, can lead to the
unexpected closure of a floodgate, causing economic damage.

When the operators observe such problems in infrastructures operated by ICS in
practice, they typically assume that the problem is due to a technical failure and initiate
corresponding response strategies. In case the problem is caused by an attack, the
response strategy initiated towards a technical failure might not be effective. For instance,
an effective response strategy for a misconfigured water-level sensor that sends incorrect
water level measurements would be to repair the water-level sensor. However, this would
not be appropriate for a sensor that sends incorrect water level measurements due to
the manipulation of water-level measurements, as it would not block the corresponding
attack vector. Determining whether a problem is caused by attacks or technical failures
is important for choosing the appropriate response strategy. Therefore, this thesis aims
to tackle the problem of distinguishing attacks and technical failures by addressing the
following research question:

• RQ. How to develop decision support to distinguish between intentional attacks
and accidental technical failures for problems in water management infrastruc-
tures operated by Industrial Control Systems (ICS)?

We use the Design Science Research (DSR) method to tackle the above-mentioned
RQ as it is widely used to create artefacts that solve practical problems. The DSR process
consists of four main phases which include: (i) problem identification, (ii) solution design,
(iii) evaluation and (iv) communication. In the problem identification phase, we gather

xi
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constraints and high-level requirements using semi-structured interviews and focus
group sessions with experts in safety and/or security of ICS in the water management
sector in the Netherlands. These constraints and high-level requirements are mainly
for developing a framework which would then be used as a means to develop decision
support for distinguishing attacks and technical failures and their evaluation. This phase
results in a set of high-level requirements and constraints based on the responses from
experts, which are used as an input for the solution design and evaluation phase of the
DSR process. Furthermore, this thesis utilises five different studies to tackle the RQ.
The first four studies correspond to the solution design phase, whereas the final study
corresponds to the evaluation phase of the DSR process.

In this thesis, the first study systematically reviews and identifies integrated safety and
security risk assessment methods in scientific literature, which is a part of the literature
research step in the solution design phase of the DSR process. We identify seven integrated
safety and security risk assessment methods on the basis of the review methodology
employed. Furthermore, the analyses of the identified methods are performed using five
different criteria: (i) citations in scientific literature, (ii) steps involved, (iii) stage(s) of
risk assessment process addressed, (iv) integration methodology and (v) application(s)
and application domain. Sequential and non-sequential are the two classes of integrated
safety and security risk assessment methods based on the steps involved in the identified
methods. Transportation, power and utilities, and chemical domain are the application
domains of the identified methods. There is no specific integrated safety and security risk
assessment methods for domains such as water management. A major limitation of the
identified methods is that they did not have the capability to consider real-time system
information for the analysis.

This study contributes to the scientific community by presenting key characteristics
and limitations of integrated safety and security risk assessment methods, which pave
the way for improvements and advances in such methods. There is a need for integrated
safety and security methods that could consider real-time system information especially
to deal with the problem of distinguishing attacks and technical failures, which is where
this thesis provides a contribution.

One possibility to include real-time information is through Bayesian Networks (BNs).
BNs are part of the family of probabilistic graphical models. BNs are composed of two
different components: qualitative and quantitative as shown in Figure 1. The qualitative
part is a Directed Acyclic Graph (DAG) that includes nodes representing random variables
and directed edges representing cause-effect relationships between these nodes. The
quantitative part is the Conditional Probability Tables (CPTs) corresponding to each node,
representing a priori marginal and conditional probabilities. BNs have the ability to
compute posterior probabilities of target variable(s) as new information (or evidences) for
other variables in the BN are available, which is termed as belief updating or probability
propagation. Specifically, BNs support four different types of reasoning: (i) predictive
reasoning, which is reasoning from cause (Example: pollution) to effects (Example: lung
cancer), (ii) diagnostic reasoning, which is reasoning from effect (Example: dyspnea)
to cause (Example: lung cancer), (iii) intercausal reasoning, which is reasoning about
mutual causes (Example: pollution, smoking) of a common effect (Example: lung cancer)
and (iv) combined reasoning, which is the combination of different types of reasoning.
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BNs possess the potential to tackle the problem of distinguishing attacks and technical
failures considering real-time system information, as they support belief updating based
on the combination of predictive and diagnostic reasoning. This is promising based on
applications of BNs in medical diagnosis and fault diagnosis. Therefore, the second study
is associated with a part of the literature research step in the solution design phase of the
DSR process, which systematically reviews and identifies BN models in cyber security in
scientific literature.

Figure 1: Bayesian Network – Example

We identify 17 BN models in cyber security based on the review methodology em-
ployed. Furthermore, the analysis of the identified BN models is performed using eight
different criteria: (i) citation details, (ii) data sources used to construct Directed Acyclic
Graphs (DAGs) and populate Conditional Probability Tables (CPTs), (iii) the number of
nodes used in the model, (iv) type of threat actor, (v) application and application sector,
(vi) scope of variables, (vii) the approach(es) used to validate models, and (viii) model
purpose and type of purpose. Expert knowledge and empirical data mainly from cyber
security reports such as Verizon data breach investigations report are the data sources
used to construct Directed Acyclic Graphs (DAGs) and populate Conditional Probability
Tables (CPTs) in the identified BN models. In addition, the identified BN models are
mainly used for problems that correspond to Information Technology (IT) environments
rather than ICS environments.

This study contributes to the scientific community mainly by identifying important
usage patterns of BN models in cyber security, which guide new applications. For
instance, expert knowledge is an alternate data source to tackle problems associated with
ICS environments, which is a useful pattern to develop BN models for our application of
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distinguishing attacks and technical failures.

For the problem addressed in this thesis, this study implies that a framework with
appropriate types of variables is essential to construct BN models for our application.
Moreover, this framework should also include methods to effectively elicit knowledge
from experts to construct DAGs and populate CPTs as expert knowledge is an alternate
data source for our application. This is the aim of the third study, which corresponds
to the artefact design step in the solution design phase of the DSR process. The attack-
failure distinguisher framework that we developed is a combination of three different
types of variables adapted from existing BNs: (i) contributory factors, (ii) problem and (iii)
observations (or test results). The contributory factors are factors that could contribute to
the considered problem due to an attack or technical failure, whereas the observations
(or test results) provide real-time system information based on the outcome of tests
conducted as soon as an operator notices the problem. The attack-failure distinguisher
framework would help to construct BN models with appropriate type of variables for
diagnosing attacks and technical failures as shown in Figure 2.

Figure 2: Attack-Failure Distinguisher Framework (Type of Variables): Example

As the BNs themselves are not suitable to effectively elicit knowledge from experts to
construct DAGs of BN models, we rely on fishbone diagrams for this purpose. Fishbone
diagrams help to systematically identify and organise contributory factors (or sub causes)
of a problem related under different categories. The structure of a typical fishbone
diagram is shown in Figure 3. However, the typical fishbone diagrams are not directly
applicable as they do not include observations (or test results). Therefore, we extend
fishbone diagrams to suit our purpose by incorporating observations (or test results) as
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shown in Figure 3. The proposed knowledge elicitation method also includes a mapping
scheme which would help to translate the extended fishbone diagram to corresponding
BN model. We show how the qualitative part of a BN model for our application could be
constructed based on the attack-failure distinguisher framework developed in this study
with an example problem in the water management domain.

Figure 3: Extended Fishbone Diagram: Structure

This study contributes to the scientific community through the development of the
attack-failure distinguisher framework for ICS based on BNs. In particular, it proposes
extended fishbone diagrams as a knowledge elicitation method for developing the quali-
tative part of BN models, which can be used for different problems in different domains.

The fourth study develops a knowledge elicitation method to elicit reliable probabil-
ities from experts to populate CPTs, which provides the input for the quantitative part
of the BN models. In order to elicit reliable probabilities, the method should reduce the
workload of experts in probability elicitation by reducing the number of conditional prob-
abilities to elicit and facilitate the individual probability entry. We analyse well-known
techniques and chose the DeMorgan model to reduce the number of conditional proba-
bilities to elicit, as it helps to deal with opposing influences i.e., contributory factors that
would mainly influence one major cause of the problem (attack) as well as contributory
factors that would mainly influence the other major cause of the problem (technical
failure). The CPT of a child variable can be computed using the DeMorgan model with
only n+1 entries elicited from experts instead of 2(n+1) entries, where n is the number of
parent variables corresponding to the child variable.

In addition, we utilise probability scales with numerical and verbal anchors as shown
in Figure 4 to facilitate the individual probability entry. They are effective and practicable
as they provide numerical anchors for experts who prefer numbers and verbal anchors
for experts who prefer words. Furthermore, there is also a provision to provide precise
probabilities using the probability scale with numerical and verbal anchors as an aid. This
completes the holistic attack-failure distinguisher framework that would help to construct
BN models from expert knowledge for determining the major cause (attack/technical fail-
ure) of problems. We demonstrate how the CPTs of a BN model for our application could
be populated based on the proposed knowledge elicitation method, with an example
problem in the water management domain.
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Figure 4: Probability Scale with Numerical and Verbal Anchors

This study contributes to the scientific community by proposing a knowledge elicita-
tion method, which reduces the workload of experts, to develop the quantitative part of
BN models. This method is a combination of the DeMorgan model and probability scales
with numerical and verbal anchors, which can be used for different problems in different
domains.

The developed attack-failure distinguisher framework needs to be evaluated to de-
termine its suitability or utility in practice. Therefore, we evaluate the developed attack-
failure distinguisher framework in the fifth study, which is associated with the evaluation
phase in the DSR process. Due to the unavailability of real water management infrastruc-
ture for evaluation, we rely on artificial evaluation. However, we involve real-users and
realistic problems to relate the results to real use.

Firstly, we develop a BN model for determining the major cause of the problem
“sensor sends incorrect water level measurements” using the attack-failure distinguisher
framework. Knowledge to construct DAG for the considered problem is gathered from
experts in safety and/or security of ICS via a focus group workshop and questionnaire.
Once the DAG of the BN model is fully constructed, this is validated with experts in safety
and/or security of ICS in the water management sector in the Netherlands through a
focus group workshop. Furthermore, we gather knowledge from experts in safety and/or
security of ICS in the water management sector in the Netherlands to populate CPTs
via a focus group workshop and questionnaire. In particular, we utilise the DeMorgan
model to reduce the number of conditional probabilities to elicit and probability scales
with numerical and verbal anchors to facilitate the individual entry. The CPT size of the
problem in the constructed BN model is 512 (2(8+1)) entries. However, we elicit only nine
entries for the CPT corresponding to the problem from the experts and compute the other
probabilities to completely define the CPT of the problem using the DeMorgan model,
which notably reduces the workload of experts during probability elicitation. In addition,
we used two different illustrative scenarios to demonstrate the suitability or utility of the
constructed BN model. The most likely cause for the considered problem in the first
illustrative scenario is technical failure, whereas the most likely cause for the considered
problem in the second illustrative scenario is attack based on the evidences provided.

This final study provides a full case study of attack-failure distinguisher framework by
developing a BN model for the problem of incorrect sensor measurements in floodgates.
Furthermore, this study motivates the scientific community focussed on cyber security to
investigate other knowledge-based approaches to model cyber security for ICS when there
is an unavailability of empirical data by presenting suitability or utility of the developed
method.
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The results from most of these studies are communicated individually through peer-
reviewed publications and conference/workshop presentations. Furthermore, the results
from these studies as a whole are communicated through this thesis.

We tackled the RQ of this thesis using the DSR method, especially by following four
main phases of the DSR process: (i) problem identification, (ii) solution design, (iii)
evaluation and (iv) communication. This study conducted based on the above-mentioned
process mainly resulted in the following artefacts: (i) a holistic attack-failure distinguisher
framework which also includes methods to effectively elicit knowledge from experts to
construct DAGs and populate CPTs of BN models for our application and (ii) decision
support to distinguish between intentional attacks and accidental technical failures for
a problem in a floodgate operated by ICS. The attack-failure distinguisher framework
is used as a means to develop the above-mentioned decision support as a part of their
evaluation.

This study has the following limitations: (i) historical data on attacks and technical
failures in the water management sector is not available for research, which creates
dependence on experts to construct the BN model, (ii) the limited number of experts on
safety and/or security of ICS in the water management sector in the Netherlands leads to
fewer respondents for the questionnaire to gather knowledge from experts to populate
CPTs and (iii) the naturalistic evaluation of the developed artefact with real users in a real
setting is not possible as the real system is unavailable. Even though further evaluation of
the developed artefact is needed, this thesis shows that distinguishing attacks and failures
in ICS is feasible in principle and can be accomplished based on expert knowledge with a
manageable workload for the experts.

Furthermore, this study has the following societal benefits: (i) this study contributes to
society by motivating the need for methods that integrate safety and security. Specifically,
extended fishbone diagrams facilitate experts from the safety and security community to
work together and tackle the common problem of distinguishing attacks and technical
failures, (ii) this study also contributes to society by developing a method that enables
operators to be more proactive about reactive safety and security, which would also help
to minimise negative consequences in case of an attack or technical failure by taking
informed decisions.

The attack-distinguisher framework determines the major cause (attack/technical
failure) of a problem. What is still needed is a complete root cause analysis framework,
which would determine the attack vector (in case of an attack) or failure mode (in case
of a failure) of a problem to inform appropriate response strategies. Furthermore, the
structure of a decision tree could help to visualise and choose effective response strategies
for each attack vector and failure mode. It would be intriguing to investigate the use
of alternate data sources for our application which might create opportunities to use
data-driven approaches in modelling cyber security for ICS.





1
INTRODUCTION

1.1. MOTIVATION
Critical Infrastructures (CIs) are essential to ensure smooth functioning of contemporary
society. Disasters in such infrastructures would have direct impact on the well-being
of people and a country’s economy. CIs are divided into different sectors in different
countries. However, the sectors usually in such a list typically include banking and finance,
emergency services, energy, environmental protection, food, government services, health,
information and communication technologies (ICT), transportation, and water [1].

The proper functioning of water management infrastructures is vital in countries like
The Netherlands, as about one third of the country lies below sea level [2]. In addition
to dikes and dunes, The Netherlands also relies on floodgates and pumping stations to
protect the land against flooding. The unexpected opening of floodgates could lead to
flooding. On the other hand, the unexpected closure of floodgates could lead to severe
economic damage, for instance, by delaying cargo ships. These problems could be caused
by (accidental) technical failures and (intentional) attacks.

In the Netherlands, researchers showed that the password of the systems that could
help to control pumping stations in Veere was “veere”, which is easy to guess for an
adversary [3]. In case an adversary exploits this vulnerability, they could control the water
pump and cause flooding. On the other hand, there are problems initiated by technical
failures in infrastructures operated by control systems, such as the chemical spill at
Haviland enterprises, which is caused by faulty sensor [4]. Similarly, a misconfigured
water-level sensor could initiate unexpected closure or opening of the floodgate.

There is a need to effectively respond to such problems that could be observed by
operators in infrastructures operated by control systems to recover the system from
adversaries in a timely manner and limit negative consequences. It is important to
determine whether a problem is caused by (accidental) technical failures or (intentional)
attacks for choosing the appropriate response strategy. When the operators notice such
problems in infrastructures operated by control systems in practice, they predetermine
that the problem is due to an (accidental) technical failure and initiate corresponding

1
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response strategies [5]. This is prevalent in practice based on the discussion with experts
in the water management sector. This is because they assume that their infrastructure is
not an attractive target for adversaries [6] and the frequency of successful attacks is low
compared to technical failures in such infrastructures. However, these problems could
also be caused by (intentional) attacks.

In case the problem is caused by an attack, the response strategy initiated towards a
technical failure might not be effective. This is because the effective response to an attack
would be to block the corresponding attack vector used to cause the problem, whereas
an effective response to a technical failure would be to repair or replace the component
that caused the problem. For instance, an effective response strategy for a misconfigured
water-level sensor that initiates unexpected opening of the floodgate would be to repair
the water-level sensor. However, this would not be appropriate for a data manipulation
attack on the water-level sensor that initiates unexpected opening of the floodgate, as it
would not block the corresponding attack vector. The correct diagnosis is important to
choose appropriate response strategies to the observed problem. The major motivation
of this research is to develop an effective method that would help to distinguish between
attacks and technical failures in the water management domain.

Therefore, the major aim of this thesis is to address the following research question to
tackle the practical problem of diagnosing attacks and technical failures:

• RQ. How to develop decision support to distinguish between intentional attacks
and accidental technical failures for problems in water management infrastruc-
tures operated by Industrial Control Systems (ICS)?

The following section provides domain background which is essential for clear under-
standing of the above-mentioned problem. This is followed by a methodological back-
ground which explains the research method which we use to tackle the above-mentioned
problem. Furthermore, the method which we use as a basis to develop decision support
for distinguishing attacks and technical failures is presented.

1.2. DOMAIN BACKGROUND
This section begins by explaining safety and security, followed by the differences and
interdependencies between safety and security. Furthermore, this section explains Indus-
trial Control Systems (ICS), followed by the general architecture and components of the
ICS which we deal within this thesis is described. In addition, the differences between
ICS and Information Technology (IT) systems are listed. Finally, factors that could help in
the diagnosis of attacks and technical failures are highlighted.

1.2.1. SAFETY VS. SECURITY
Safety and security are defined as attributes of dependability [7–9]. Dependability is
defined as the ability of a system to provide required services that can justifiably be trusted
[7–9]. Safety implies dependability with respect to non-occurrence of catastrophic failures,
whereas security implies dependability with respect to non-occurrence of unauthorised
action or information handling [7].

The same word is used for both safety and security in different languages such as
Danish (Sikkerhed) and Spanish (Seguridad) [10, 11]. However, Pietre-Cambacedes et al.
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distinguished safety and security using intentionality [11]. Safety deals with problems
caused by accidental acts, whereas security deals with problems caused by malicious
acts [11]. The blackout in the Canadian province of Ontario and the North-eastern and
Mid-western United States is an example of a problem caused by an accidental act, which
is associated with safety [12]. On the other hand, the cyber-attack on a German steel mill
is an example of a problem caused by a malicious act, which is associated with security
[13].

Furthermore, Pietre-Cambacedes et al. also distinguished safety and security based
on the origin and target of the problem [11]. Problems that originate from the system
and potentially impact the environment are addressed by safety [11]. In the Northeast
blackout, the problem originated from the system via the software bug in the alarm
system and impacted the environment by affecting approximately 55 million people with
power outage [12]. On the other hand, problems that originate from the environment
and potentially impact the system are addressed by security [11]. In the German steel
mill cyber-attack, the problem originated from the environment through phishing and
impacted the system by damaging the blast furnace, which is associated with security
[13]. This distinction may not completely work for security especially for problems that
originate from the system and potentially impact the system, which is the case with
insider attacks. The above-mentioned difference of intentionality in terms of security and
safety is used as a basis in this thesis.

Safety and security are also interdependent, which needs to be considered for ef-
fective risk management. Pietre-Cambacedes et al. identified four different types of
interdependencies between safety and security: (i) conditional dependency, (ii) mutual
reinforcement, (iii) antagonism, and (iv) no interaction [14, 15]. Conditional dependency
refers to safety as a condition to security or vice versa [14]. For instance, the faulty in-
stallation of a burglary alarm could lead to opportunistic malicious acts, which is an
example of a conditional dependency in which safety is a condition for security. Mutual
reinforcement refers to the measures that strengthen both safety and security [14]. For
instance, activity and event logging could strengthen both safety and security via accident
anticipation and attack detection respectively. On the other hand, antagonism refers to
safety measures that weaken security or vice versa [14]. For instance, the entry door of a
prison should be designed to automatically open in case of fire from the safety viewpoint.
However, this could weaken security as it provides an opportunity for the prisoners to
escape. Finally, no interaction refers to the cases in which there is no interaction between
safety and security [14]. For instance, enhancing physical access-control of an organisa-
tion is a security-related measure and there is no interaction between safety and security
in this case.

SAFETY AND SECURITY RISK ASSESSMENT

In both safety and security, risk assessment plays an important role to deal with corre-
sponding risks as it is the basis for choosing appropriate risk treatment measures. Risk
is defined as the potential for harm due to the likelihood of a problem and its adverse
consequences [16]. There are three different phases in a typical risk assessment process
as shown in Figure 1.1 which includes: (i) risk identification, (ii) risk analysis and (iii) risk
evaluation [17]. There are conventional risk assessment methods in safety such as Failure
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Figure 1.1: Phases of Risk Assessment in ISO 31000

Mode and Effects Analysis (FMEA) [18], Fault Tree Analysis (FTA) [19]. On the other hand,
there are conventional risk assessment methods in security such as Attack Trees (ATs)
[20], CORAS [21]. These methods only deal with the last type of interdependency (i.e.,) no
interaction. However, there are recent developments of integrated safety and security risk
assessment methods [22–28] which also deal with other types of interdependencies.

These methods are appropriate for the design phase in the system development
lifecycle, but not for the operational phase. For instance, Sabaliauskaite et al. identified
safety and security risks that could lead to overpressure condition in the vessel using the
Failure-Attack-CounTermeasure (FACT) graph [24]. Furthermore, they also identified
appropriate safety and security risk treatment measures, which need to be implemented
during the development of such systems to avoid overpressure condition in the vessel
during the operation. These risk treatment measures are proactive measures which
would help to prevent/reduce the probability of occurrence of the problem (overpressure
condition in the vessel) [29].

These proactive measures alone are not enough to protect the system against safety
and security risks. This is because we might have overlooked proactive risk treatment
measures for some safety and security risks as the threat landscape changes or not imple-
mented it as it is not cost-effective. This could lead to problems which could be observed.
Reactive measures would help to prevent/reduce the impact/consequence of the problem
[29]. Once the problem is identified, we need to distinguish between technical failures and
attacks to put in place effective reactive measures to minimise the negative consequences.
This is because the effective reactive measure in case of an attack would be to block the
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corresponding attack vector used by an adversary to cause the identified problem. In
contrast, the effective reactive measure in case of a technical failure would be to repair
or replace the component that caused the identified problem. The method which we
develop would act as decision support to operators by providing the most likely cause for
the observed problem to put in place reactive measures that strengthen both safety and
security.

1.2.2. INDUSTRIAL CONTROL SYSTEMS IN WATER MANAGEMENT

An Industrial Control System (ICS) is defined as an information system used to monitor
and steer industrial processes like flood control, gas distribution, power generation and
water treatment [30, 31]. An ICS is a common term which includes several type of control
systems such as Supervisory Control and Data Acquisition (SCADA) systems, Distributed
Control Systems (DCS) [30]. SCADA systems are highly distributed systems used to control
geographically distributed assets, whereas DCS is usually located in one plant area [31].
We use the general term ICS in the rest of this thesis.

The fundamental differences between traditional Information Technology (IT) sys-
tems and ICS need to be understood by security experts to develop effective and feasible
solutions for ICS as not all IT security solutions are suitable for ICS [32]. Some of these
differences includes: (i) the cyber security objective of IT systems is to protect data (con-
fidentiality), whereas the cyber security objective of ICS is to protect the integrity of its
production process and availability of its system components, (ii) availability deficiencies
can often be tolerated in IT systems, whereas availability deficiencies cannot be tolerated
in ICS, (iii) IT systems manage data, whereas ICS control physical world, (iv) IT system
components have a lifetime of 3 – 5 years, whereas the ICS components have a lifetime
of 10 – 15 years, (v) Patching is much easier in IT systems compared to ICS, and (vi) IT
systems may support additional security capabilities, whereas ICS may not support addi-
tional security capabilities such as encryption due to the computing resource constraints
[30, 32].

A typical ICS consists of three layers: (i) field instrumentation, (ii) process control,
and (iii) supervisory control [33], bound together by network infrastructure, as shown in
Figure 1.2.

The field instrumentation layer consists of field devices which includes sensors (Si )
and actuators (Ai ). The sensor is a device which detect environmental changes/events
and send the measurement data to the Programmable Logic Controllers (PLCs)/Remote
Terminal Units (RTUs) in the process control layer. There are different types of sensor
such as proximity sensor, pressure sensor and water-level sensor. The process control
layer consists of Programmable Logic Controllers (PLCs)/Remote Terminal Units (RTUs).
Typically, PLCs have wired communication capabilities whereas RTUs have wired or
wireless communication capabilities. The PLC/RTU receives measurement data from
sensors, executes the program logic and controls the physical systems through actuators
[34]. There are different types of actuator like electric motor actuator, pneumatic control
valve actuator, and solenoid actuator. The supervisory control layer consists of historian
databases, software application servers, the Human-Machine Interface (HMI), and the
workstation. The historian databases logs production and process data timewise which
can be extracted whenever needed. For instance, logs in the historian database could
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help to answer the question like how much time was this equipment running in the last
24 hours. The historian databases and software application servers enable the efficient
operation of the ICS. The low-level components are configured and monitored with the
help of the workstation and the HMI, respectively [34]. The operators are also a part of
the supervisory control layer who monitors the system status through HMI and respond
to problems.

Figure 1.2: Typical ICS Architecture and Layers

Over the last years, floodgates are automated with ICS to reduce the chances of human
error during operation [35]. Furthermore, this could provide real-time information about
the status of floodgates which are significantly related and connected to each other in a
region [36]. This is especially important for decision makers. In addition to dikes, dunes,
and pumping stations, The Netherlands also relies on five different storm surge barriers,
which is a specific type of floodgate designed to prevent a storm surge from flooding
the protected area behind the barrier: (i) Maeslantkering, (ii) Hollandse IJsselkering,
(iii) Oosterscheldekering, (iv) Ramspolkering, and (v) Hartelkering [35]. The location of
these storm-surge barriers is shown in Figure 1.3. Most of these storm surge barriers
are primarily operated with ICS with the manual operation as a backup option [35].
Furthermore, some of the water management infrastructures in the Netherlands solely
relies on ICS without any other backup option. In case of a floodgate operated by an ICS,
the water-level sensor detects the water level and sends the corresponding water level
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measurements to the PLC [37, 38]. Once the PLC receives the water level measurements,
this is now compared with the threshold value. In case the water level measurements
are above/below the threshold, the PLC closes/opens the floodgate through the actuator
which could be an electric motor actuator.

Figure 1.3: Location of Storm-surge Barriers

The automation of floodgates with ICS makes it susceptible to both attacks and tech-
nical failures. The factors which includes vulnerabilities and Indicators of Compromise
(IoC) might help to determine attacks. A vulnerability is a security weakness which
permits unauthorised actions or information handling [39]. Stouffer et al. grouped vulner-
abilities of ICS into six different categories which includes: (i) policy and procedure, (ii)
architecture and design, (iii) configuration and maintenance, (iv) physical, (v) software
development, and (vi) communication and network [39]. For instance, no formal ICS
security training and awareness program is a vulnerability under the category policy and
procedure. These vulnerabilities can be observed in ICS during the operation. Further-
more, Robinson provided a list of vulnerabilities for ICS and mapped each vulnerability to
potential type of attacks which could make use of it [40]. This includes: (i) lack of physical
security, which is mapped to unauthorised local access to ICS components, (ii) lack of
protocol security, (iii) erosion of isolation, (iv) configurations: convenience over security,
(v) weak audit trails, (vi) vendor backdoors, (vii) interconnectedness, (viii) unpatched
systems, (ix) malware, and (x) adoption of standards and common technologies. This
information might play an important role in the diagnosis of attacks and technical failures
as the existence of well-known vulnerabilities in an ICS could increase the likelihood that
an observed problem is caused by attacks.

Indicators of Compromise (IoC) are types of evidence which suggest that an unau-
thorised action or information handling may have happened [41]. Log-in anomaly is
an example IoC. Such IoCs could help in the diagnosis of attacks and technical failures.
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For instance, the presence of log-in anomaly increases the likelihood that an observed
problem is caused by attacks. Furthermore, Hadziosmanovic et al. proposed an approach
which could help to identify anomalies based on process logs [42]. They validated their
approach using data from a real facility. During this phase, they identified an anomalous
event in which an engineering workstation worked during night shifts which is expected
to work only during day shifts. This is one of the existing approaches which could provide
input for IoCs in ICS. For instance, this method could provide input to the IoC log-in
anomaly.

1.3. PROBLEM IDENTIFICATION
In this thesis, we aim to solve the practical problem of distinguishing attacks and technical
failures by addressing the above-mentioned research question. We tackled our research
question using the Design Science Research (DSR) methodology, which is widely used to
create artefacts [43]. The practical problems can be solved using artefacts in numerous
cases. The phases of DSR method is detailed in the next section 1.4.1. This chapter
corresponds to the problem identification phase in the DSR process, which also includes
requirements elicitation for the artefact.

Requirements elicitation is the process of seeking, uncovering, acquiring and elab-
orating requirements for the artefact [44]. There are different requirements elicitation
techniques such as focus groups, interviews, questionnaires and brainstorming [44, 45].
In this thesis, we utilised interviews as it helps to collect data quickly and also it pro-
vides an opportunity for probing to get detailed information compared to questionnaires
[44, 46]. Furthermore, this is probably the most traditional and commonly used tech-
nique for requirements elicitation [44]. There are three different types of interviews which
includes: (i) unstructured interviews, (ii) semi-structured interviews, and (iii) structured
interviews. In this thesis, we used semi-structured interviews as it is flexible and helps to
delve deep into issues. In addition, we also used focus groups as it is an effective way of
tapping the views of a number of experts at a time [47].

In the Netherlands, Rijkswaterstaat is responsible for the construction and mainte-
nance of waterways and roads, and flood protection and prevention. Rijkswaterstaat
is a part of the ministry of infrastructure and water management. We conducted one-
to-one interviews with experts in Rijkswaterstaat who have either of the following roles:
(i) technical managers in industrial automation, (ii) security architects. The experts in
these roles have a lot of experience working with safety and/or security of ICS in the water
management sector. Furthermore, we conducted two focus group sessions during the
solution design phase of the DSR process as it is an iterative process. Both the focus group
sessions had five participants who have a lot of experience working with safety and/or
security of ICS in the water management sector in the Netherlands. We gathered the
requirements and constraints using the above-mentioned methods. The list of questions
which we asked the experts is provided in Appendix A.

Based on the responses which we received from the experts to those questions, the fol-
lowing set of constraints and high-level requirements is extracted by manually analysing
the interview notes and summarising the essence of the responses:

• C1. When the operators notice an abnormal behaviour in a component of the
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ICS, they presume that this is due to a technical failure and initiate corresponding
response procedures. The response strategy initiated towards a technical failure is
not effective in case of an attack.

• C2. There is a lack of real data regarding cyber-attacks as they claim that there are
no/limited cyber-attacks on their infrastructures. Furthermore, this is not shareable
due to the sensitivity of data.

• C3. Technical failures occur in their infrastructures which are documented as
technical failure reports. However, they are also not shareable due to the sensitivity
of data.

• C4. The automation department deals with the technical failures, whereas the secu-
rity department deals with cyber-attacks in the water management infrastructure.
There are experts who have expertise in dealing with both technical failures and
cyber-attacks.

• C5. Experts are limited in this domain with limited time availability.

• C6. The real water management infrastructure like a floodgate is not available for
the evaluation of the developed method due to availability and criticality issues.

• C7. There are system architectures with specific components which are not share-
able due to the sensitivity issues. However, there is a possibility to arrange a visit
to a water management infrastructure which could help to understand the system
architecture on a high-level. Furthermore, the system architecture needs to be
anonymised when publishing it.

• C8. There is a need for decision support that would help operators to distinguish
between intentional attacks and accidental technical failures as it provides input
to the decision-makers to choose appropriate response strategy. However, the
selection of these response strategies also depends on cost-benefit and feasibility.
Therefore, the focus of this research is to distinguish between attacks and failures
which then could be used as an input to choose appropriate response strategy if
used in a real infrastructure.

• R1. An effective and practical alternative to data-driven approaches for developing
decision support to distinguish between attacks and technical failures is required.

• R2. Decision support should help operators to distinguish between attacks and
technical failures by taking into account real-time system information.

• R3. The method for developing decision support should facilitate to involve experts
from the department that deals with technical failures and the department that
deals with cyber-attacks including experts who have expertise in dealing with both
technical failures and cyber-attacks.

• R4. The workload of experts during the knowledge elicitation process for developing
decision support to distinguish between attacks and technical failures should be
limited.
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• R5. The reliability of knowledge elicited for developing decision support to distin-
guish between attacks and technical failures should be ensured.

• R6. The developed decision support should be scalable to different problems in the
real environment.

The above-mentioned set of constraints and high-level requirements plays an impor-
tant role in structuring the problem space and deriving design decisions systematically.
This is used as a basis for the solution design and evaluation phase of the DSR process.
This is highlighted as a part of corresponding studies in Section 1.5. Furthermore, we
reflect on how these requirements are met in Section 7.1.

1.4. METHODOLOGICAL BACKGROUND

This section explains the Design Science Research (DSR) process, which is widely used
to create artefacts [43]. An artefact is defined as an object made by humans for the
purpose of solving practical problems [48]. An artefact could be a construct (or concept),
a model, a method or an instantiation [49]. The practical problems can be solved using
artefacts in numerous cases. In this thesis, we use DSR to create artefacts for solving
the practical problem of distinguishing attacks and technical failures. Furthermore, a
brief introduction to Bayesian Networks (BNs) is provided with an example and also a
few applications of BNs is highlighted. In this thesis, we use BNs as the basis to develop a
decision support based on the real-world applications in different domains.

1.4.1. DESIGN SCIENCE RESEARCH

The DSR process consists of four main phases as shown in Figure 1.4: (i) problem identifi-
cation, (ii) solution design, (iii) evaluation, and (iv) communication [50, 51]. In the first
phase of the DSR process, a practical problem is identified [50]. Literature research and
expert interviews are predominantly used techniques in this phase to identify a practical
problem [49]. The solution is designed in the second phase of the DSR process [50].
Artefact design and supporting literature research are the two steps involved in this phase
of the DSR process. The role of literature research in this phase is to ensure research
rigour by considering state-of-the-art and existing solutions. In the next phase of the
DSR process, the evaluation of the solution is carried out [50]. Finally, the results of the
research are communicated through scholarly and/or professional publications.
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Figure 1.4: Phases of DSR Process

Pries-Heje et al. developed a strategic DSR evaluation framework that could help
researchers build evaluation strategies [52]. This framework distinguishes evaluation
strategies along three dimensions as shown in Figure 1.5: (i) what to evaluate? (‘Design
Process’ or ‘Design Product’), (ii) how to evaluate? (‘Naturalistic’ or ‘Artificial’), and (iii)
when to evaluate? (‘Ex Ante’ or ‘Ex Post’). Building an appropriate evaluation strategy
would guide researchers in choosing appropriate evaluation method based on the eval-
uation patterns identified by Sonnenberg et al. from existing DSR literature related to
evaluation [53]. The evaluation methods used in the DSR scientific literature includes
action research, case study, controlled experiment, field experiment, formal proof, illus-
trative scenario, logical argument, prototype, and survey [54, 55].

Figure 1.5: A Strategic DSR Evaluation Framework
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Artificial evaluation evaluates the artefacts in a contrived and non-realistic way [52, 56].
Naturalistic evaluation evaluates the artefacts in its real environment, i.e., within the real
system [52, 56]. The ‘ex ante’ refers to the evaluation prior to artefact construction,
whereas ‘ex post’ refers to the evaluation after artefact construction [56]. Choosing be-
tween ex ante or ex post evaluation (or both) in DSR depends on the scope of the research
project [52].

1.4.2. BAYESIAN NETWORKS

BNs belong to the family of probabilistic graphical models [57]. BNs consist of both
qualitative and quantitative components [58, 59]. The qualitative component is a Directed
Acyclic Graph (DAG) as shown in Figure 1.6, which is a combination of a set of variables
and directed edges between these variables. The directed edges in DAGs represent the
cause-effect relationship between the corresponding variables. Furthermore, each of
these variables has a finite set of mutually exclusive states. The quantitative component
is the Conditional Probability Tables (CPTs) as shown in Figure 1.6. The CPT includes
conditional probabilities for all possible combinations of the child and parent variable
states. For the variable without any parent, the CPT includes prior probabilities of the
corresponding variable.

Figure 1.6: BN Example

The BN example provided in Figure 1.6 consists of three layers. The upper layer
consists of factors (“visit to Asia”, “smoking”) that would increase the likelihood of a
patient having lung cancer. Furthermore, the middle layer consists of the variable which
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we want to query (“lung cancer”) with evidences for variables in the other layers of the BN.
Finally, the lower layer includes symptoms or test results (“abnormal X-ray”, “dyspnea”).
This BN would help to diagnose whether the patient have lung cancer or not, given
evidence for variables in other layer(s) of the BN. When the evidence for variables in the
BN is obtained, the posterior probabilities of non-evidenced variables would be updated.
This process is termed as belief updating or inference or probability propagation.

BNs support four different types of reasoning which includes: (i) predictive reasoning,
(ii) diagnostic reasoning, (iii) intercausal reasoning, and (iv) combined reasoning. Pre-
dictive reasoning is the reasoning from cause (Example: smoking) to effects (Example:
lung cancer) as shown in Figure 1.7. In the example shown in Figure 1.7, the evidence
for a variable in the upper layer (cause) is provided which in turn would help to query
the posterior probabilities of non-evidenced variable(s) in the middle and lower layer
(effects) of the BN.

Figure 1.7: BN Example - Predictive Reasoning

Diagnostic reasoning is the reasoning from effect (Example: abnormal X-ray) to cause
(Example: lung cancer) as shown in Figure 1.8. In the example shown in Figure 1.8, the
evidence for a variable in the lower layer (effect) is provided which in turn would help to
query the posterior probabilities of non-evidenced variable(s) in the middle and upper
layer (causes) of the BN.

Figure 1.8: BN Example - Diagnostic Reasoning
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Intercausal reasoning is the reasoning about mutual causes (Example: visit to Asia,
smoking) of a common effect (Example: lung cancer) as shown in Figure 1.9. For instance,
the lung cancer could be caused by visit to Asia or smoking. Initially, these causes are
independent. Suppose that we find evidence that the patient smokes. This new informa-
tion explains lung cancer, which in turn lowers the probability that the lung cancer was
caused by visit to Asia. Even though these causes are initially independent, the alternative
cause is explained away with the evidence of another cause.

Figure 1.9: BN Example - Intercausal Reasoning

Combined reasoning is the combination of different types of reasoning. In the example
shown in Figure 1.10, the evidence for a variable in the upper and lower layer is provided
which would help to query the posterior probabilities of non-evidenced variables in the
middle and lower layer of the BN. This is a combination of predictive and diagnostic
reasoning. Unlike FTAs and ATs which are well established in safety and security domain
respectively, BNs support diagnostic (or backward) reasoning [60].

Figure 1.10: BN Example - Combined Reasoning

BNs are used for developing medical decision support systems [61–66]. Furthermore,
BNs are also used in fault diagnosis [67–69], cyber security [70–83]. Kahn Jr et al. de-
veloped and evaluated a BN (MammoNet) that supports diagnosis of breast cancer [61].
MammoNet is a three-layer BN. The upper layer consists of five patient-history features.
Furthermore, the middle layer is a target variable (breast cancer) which we intend to query
with evidences for variables in other layer(s) of the BN. Finally, the lower layer includes
two physical findings and 15 mammographic features. The data sources which were
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used to populate CPTs includes peer-reviewed medical literature, census data, health
statistics reports and an expert mammographer. Once the evidence for variables in the
upper and/or lower layer is provided, the posterior probability of the target variable is
updated. MammoNet is evaluated using 77 cases with known outcomes, in which 23 of
the 25 positive cases were identified correctly by MammoNet.

Curiac et al. developed and evaluated a BN that assists in diagnosis of psychiatric
disease [62]. This is a three-layer BN. The upper layer consists of risk factors such as
recent birth, unwanted incident. Furthermore, the middle layer includes four psychiatric
diseases which are the target variables in this BN which we intend to query with evidences
for variables in other layer(s) of the BN. Finally, the lower layer consists of symptoms such
as personality/emotional life deterioration, social life deterioration. The data sources
which were used to populate CPTs includes medical statistics from the psychiatric division
in the Lugoj municipal hospital, and physicians. Once the evidence for variables in the
upper and /or lower layer is provided, the posterior probabilities of the target variables are
updated. This BN model is evaluated using four imaginary case studies. This BN identify
which of the considered diseases is more likely in a particular patient after providing
evidences for some variables in the BN, whereas the BN model developed by Kahn Jr
et al [61] identify the likelihood of breast cancer in a particular patient after providing
evidences for some variables in the BN.

1.5. RESEARCH APPROACH
This thesis tackles the practical problem of diagnosing attacks and technical failures by
addressing the following research question:

• RQ. How to develop decision support to distinguish between intentional attacks
and accidental technical failures for problems in water management infrastruc-
tures operated by Industrial Control Systems (ICS)?

This chapter corresponds to the problem identification phase in the DSR process.
We identified the practical problem based on literature research and expert interviews.
The main research question is divided into several sub-questions. These sub-questions
are explored in subsequent chapters through five separate studies that addresses main
phases of the DSR process as shown in Table 1.1. The sections below introduce these
studies and their corresponding sub-questions in detail.

1.5.1. STUDY 1: INTEGRATED SAFETY AND SECURITY RISK ASSESSMENT

METHODS: A SURVEY OF KEY CHARACTERISTICS AND APPLICATIONS

(CHAPTER 2)
The first study is a survey of integrated safety and security risk assessment methods,
which corresponds to the literature research step in the solution design phase of the DSR
process. As a part of this phase in the DSR process, the state-of-the-art methods need to be
considered to ensure research rigour [50], which is the aim of this study. There are recent
developments of integrated safety and security risk assessment methods to facilitate the
safety and security community working together in risk management considering the
interdependencies between safety and security. However, a comprehensive review of such
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methods is missing. The objectives of this study are: (a) to identify integrated safety and
security risk assessment methods in scientific literature, and (b) to analyse the identified
methods to pinpoint key characteristics and applications.

In short, the study aims to address the following research question:

• SQ1. What are the key characteristics of integrated safety and security risk assess-
ment methods, and their applications?

1.5.2. STUDY 2: BAYESIAN NETWORK MODELS IN CYBER SECURITY: A SYS-
TEMATIC REVIEW (CHAPTER 3)

In study 1, we concluded that the identified integrated safety and security risk assessment
methods did not consider real-time system information. Therefore, these methods are
not appropriate for the practical problem of diagnosing attacks and technical failures
in the operational phase. BNs possess the potential to address this challenge based on
real-world applications in medical diagnosis and fault diagnosis. BNs have also been used
in cyber security. However, the comprehensive review of BN models in cyber security
is missing. The objectives of this study are: (a) to identify standard BN models in cyber
security literature, and (b) to pinpoint patterns in the use of such models in cyber security
based on the analysis of identified models. This study corresponds to the literature
research step in the solution design phase of the DSR process in which we identify state-
of-the-art BNs in cyber security. This study would subsequently help to design artefact
for our practical problem considering important usage patterns and challenges of the
method which we chose. Furthermore, this study intends to fulfil R1 on the need for an
effective and practical alternative to data-driven approaches by systematically reviewing
the use of BNs in cyber security.

In short, this study aims to address the following research question:

• SQ2. What are the important patterns in the use of standard Bayesian Network (BN)
models in cyber security?

1.5.3. STUDY 3: COMBINING BAYESIAN NETWORKS AND FISHBONE DIA-
GRAMS TO DISTINGUISH BETWEEN INTENTIONAL ATTACKS AND AC-
CIDENTAL TECHNICAL FAILURES (CHAPTER 4)

In study 2, we concluded that BNs possess the potential to develop a BN model that
would help to distinguish between intentional attacks and accidental technical failures.
However, a framework that would help to build BN models for distinguishing attacks and
technical failures is missing. Furthermore, we concluded that expert knowledge is one
of the predominant data sources utilised to build BN models in cyber security due to
lack of data. However, BNs themselves are not suitable for knowledge elicitation. The
objectives of this study are: (a) to develop the attack-failure distinguisher framework for
constructing BN models for determining the major cause of an abnormal behaviour in a
component of the ICS, (b) to leverage fishbone diagrams for knowledge elicitation within
our framework to construct Directed Acyclic Graphs (DAGs) of such BN models, and (c)
to demonstrate the application of the developed methodology via a case study. This study
corresponds to the artefact design step in the solution design phase of the DSR process in
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which an artefact is developed to the problem which we considered.The attack-failure
distinguisher framework aims to realize R2 on the capability of decision support to take
into account real-time system information. Furthermore, using fishbone diagrams for
knowledge elicitation as a part of the attack-failure distinguisher framework intends to
fulfil R3 on involving experts from both the departments that deal with technical failures
and cyber-attacks and also experts who have expertise in both. Furthermore, this intends
to achieve R4 on reducing workload of experts during the knowledge elicitation process
and also to realize R5 on ensuring the reliability of knowledge elicited.

In short, this study aims to address the following research question:

• SQ3. How could we combine Bayesian Networks and Fishbone Diagrams to find out
whether an abnormal behaviour in a component of the ICS is due to (intentional)
attack or accidental technical failure or neither?

1.5.4. STUDY 4: PROBABILITY ELICITATION FOR BAYESIAN NETWORKS TO

DISTINGUISH BETWEEN INTENTIONAL ATTACKS AND ACCIDENTAL

TECHNICAL FAILURES (CHAPTER 5)
The attack-failure distinguisher framework which we developed in study 3 would be
incomplete without the method that would help to elicit prior/conditional probabili-
ties from experts to construct Conditional Probability Tables (CPTs). The objectives of
this study are: (a) to propose a method that would reduce the workload of experts in
probability elicitation, and (b) to demonstrate the application of the proposed method
via a case study. This method should reduce the number of conditional probabilities to
elicit from experts and provide visual aid that could help experts to answer in terms of
probabilities without much difficulty. This will help to elicit reliable probabilities from
experts. This study corresponds to the artefact design step in the solution design phase
of the DSR process. This study also aims to achieve R4 on reducing workload of experts
during the knowledge elicitation process and R5 on ensuring the reliability of knowledge
elicited. The development of an artefact is an iterative process. This study addresses the
major limitation of the artefact designed in the previous study, which is the attack-failure
distinguisher framework did not include a method to effectively elicit probabilities from
experts to construct the CPTs.

In short, this study aims to address the following research question:

• SQ4. How could we elicit expert knowledge to effectively construct Conditional
Probability Tables (CPTs) of Bayesian Network models for distinguishing attacks
and technical failures?

1.5.5. STUDY 5: BAYESIAN NETWORK MODEL TO DISTINGUISH BETWEEN

INTENTIONAL ATTACKS AND ACCIDENTAL TECHNICAL FAILURES: A
CASE STUDY OF FLOODGATES (CHAPTER 6)

The artefact (attack-failure distinguisher framework) is developed in studies 3 and 4.
However, this needs to be evaluated to assess the utility or suitability of the artefact. The
objectives of this study are: (a) to develop a BN model for the problem related to incorrect
water level measurements using the developed attack-failure distinguisher framework,
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and (b) to demonstrate the developed BN model using 2 different scenarios. Due to the
lack of data in cyber security for ICS, we would rely on expert knowledge to develop
the BN model. Furthermore, expert knowledge is substantive information on a specific
domain based on the system knowledge that is not commonly known by others [84]. This
study corresponds to the evaluation phase in the DSR process, in which we evaluate the
artefact (attack-failure distinguisher framework). We utilise artificial evaluation strategy
due to the unavailability of real environment for this evaluation. However, we intend
to make it more realistic by involving real-users, and realistic problems. Therefore, the
results from the artificial evaluation could correspond to real use and fulfil R6. There are
different above-mentioned evaluation methods used in practise, but not all can be used
for ex-post, artificial evaluation. For instance, field experiment can be used for ex-post,
natural evaluation, but not appropriate for artificial evaluation as the real environment is
not available. Therefore, we utilise appropriate evaluation methods for ex-post, artificial
evaluation to assess the utility or suitability of the artefact.

In short, this study aims to address the following research question:

• SQ5. How could we develop Bayesian Network (BN) models for distinguishing
attacks and technical failures in floodgates using the attack-failure distinguisher
framework?

The corresponding output of the main phases of DSR process is also shown in Table
1.1. For instance, we identified the main problem in the first phase of the DSR process:
lack of decision support to distinguish between attacks and technical failures. A practical
problem in this thesis is identified using literature research and expert interviews. Further-
more, the solution design phase of the DSR process utilise state-of-the-art and existing
solutions as the base for the creative process. An output of the solution design phase is
the design artefact which we developed includes attack-failure distinguisher framework
with appropriate methods to effectively elicit expert knowledge to construct DAGs and
CPTs for our application as shown in Figure 1.11. Finally, the evaluation phase of the DSR
process rely on experts via focus groups and questionnaires to gather data to build the
prototype (i.e., the BN model to distinguish between attacks and technical failures for a
problem). This prototype helps to perform illustrative scenarios and demonstrate the
utility or suitability of the developed artefact. In this phase, we conducted two focus group
sessions to build the qualitative and quantitative component of the prototype. The focus
group session to build the qualitative component of the prototype had five participants
who have a lot of experience working with safety and/or security of ICS in the water
management sector in the Netherlands. We complemented it with a questionnaire to
build the qualitative component of the prototype, which had nine respondents who have
at least a year of experience working with safety and/or security of ICS. Furthermore, we
conducted another focus group session to review the completed qualitative component
of the prototype and build the quantitative component of the prototype, which had five
participants who have a lot of experience working with safety and/or security of ICS in the
water management sector in the Netherlands. We complemented it with a questionnaire
to build the quantitative component of the prototype, which had five respondents who
have at least a year of experience working with safety and/or security of ICS in the water
management sector in the Netherlands.
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Table 1.1: Main Phases of DSR Process and Corresponding Chapters in this Thesis

Figure 1.11: Attack-Failure Distinguisher Framework Components and their Role on the BN Model
Development
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1.6. THESIS OVERVIEW

The remainder of this thesis is organised in six chapters as shown in Figure 1.12. Chapter
2 analyses state-of-the-art integrated safety and security risk assessment methods. Chap-
ter 3 analyses BN models in cyber security to identify important patterns that could be
used to develop the BN model for our application. Chapter 4 describes the attack-failure
distinguisher framework that could help to construct BN models for diagnosing attacks
and technical failures. This framework includes a method to elicit expert knowledge to
construct DAGs of such BN models. Chapter 5 includes a method to elicit expert knowl-
edge to populate CPTs of such BN models. The developed attack-failure distinguisher
framework is applied to a case study in floodgates using the problem of incorrect water
level measurements in Chapter 6. Finally, the concluding remarks of this research is
provided in Chapter 7.

Figure 1.12: Thesis Overview



REFERENCES

1

21

REFERENCES
[1] CIPedia.: Critical Infrastructure Sector. Available: https://publicwiki-01.

fraunhofer.de/CIPedia/index.php/Critical_Infrastructure_Sector
(2019)

[2] Hekstra, G.: Will Climatic Changes Flood the Netherlands? Effects on Agriculture,
Land use and Well-being, Ambio, pp. 316 - 326. (1986)

[3] Tofino Security.: Cyber Security Nightmare in the Netherlands. Available: https://
www.tofinosecurity.com/blog/cyber-security-nightmare-netherlands
(2012)

[4] mLIVE.: Faulty Sensor Causes Chemical Spill at Haviland Enterprises. Available:
https://www.mlive.com/news/grand-rapids/2015/08/tank_level_sensor_
cause_of_che.html (2015)

[5] Macaulay, T., Singer, B. L.: Cybersecurity for Industrial Control Systems: SCADA, DCS,
PLC, HMI, and SIS, Auerbach Publications. (2016)

[6] Kaspersky Lab.: Five Myths of Industrial Control Systems Security, Available: https:
//media.kaspersky.com/pdf/DataSheet_KESB_5Myths-ICSS_Eng_WEB.pdf
(2014)

[7] Schoitsch, E.: Design for Safety and Security of Complex Embedded Systems: A
Unified Approach, In Cyberspace Security and Defense: Research Issues, pp. 161 -
174, Springer. (2005)

[8] Avižienis, A., Laprie, J.-C., Randell, B.: Dependability and its Threats: A Taxonomy, In
Building the Information Society, pp. 91 - 120, Springer. (2004)

[9] Al-Kuwaiti, M., Kyriakopoulos, N., Hussein, S.: A Comparative Analysis of Network
Dependability, Fault-tolerance, Reliability, Security, and Survivability, IEEE Commu-
nications Surveys & Tutorials, vol. 11, no. 2, pp. 106 - 124. (2009)

[10] Burns, A., McDermid, J., Dobson, J.: On the Meaning of Safety and Security, The
Computer Journal, vol. 35, no. 1, pp. 3 - 15. (1992)

[11] Piètre-Cambacédès, L., Chaudet, C.: The SEMA Referential Framework: Avoiding
Ambiguities in the Terms “Security” and “Safety”, International Journal of Critical
Infrastructure Protection, vol. 3, no. 2, pp. 55 - 66. (2010)

[12] Zhivich, M., Cunningham, R. K.: The Real Cost of Software Errors, IEEE Security &
Privacy, vol. 7, no. 2, pp. 87 - 90. (2009)

[13] RISI.: German Steel Mill Cyber Attack. Available: http://www.risidata.com/
database/detail/german-steelmill-cyber-attack (2014)

[14] Piètre-Cambacédès, L., Bouissou, M.: "Modeling Safety and Security Interdependen-
cies with BDMP (Boolean Logic Driven Markov Processes)," In 2010 IEEE International
Conference on Systems, Man and Cybernetics, 2010, pp. 2852 - 2861: IEEE.

https://publicwiki-01.fraunhofer.de/CIPedia/index.php/Critical_Infrastructure_Sector
https://publicwiki-01.fraunhofer.de/CIPedia/index.php/Critical_Infrastructure_Sector
https://www.tofinosecurity.com/blog/cyber-security-nightmare-netherlands
https://www.tofinosecurity.com/blog/cyber-security-nightmare-netherlands
https://www.mlive.com/news/grand-rapids/2015/08/tank_level_sensor_cause_of_che.html
https://www.mlive.com/news/grand-rapids/2015/08/tank_level_sensor_cause_of_che.html
https://media.kaspersky.com/pdf/DataSheet_KESB_5Myths-ICSS_Eng_WEB.pdf
https://media.kaspersky.com/pdf/DataSheet_KESB_5Myths-ICSS_Eng_WEB.pdf
http://www.risidata.com/database/detail/german-steelmill-cyber-attack
http://www.risidata.com/database/detail/german-steelmill-cyber-attack


1

22 REFERENCES

[15] Sadvandi, S., Chapon, N., Piètre-Cambacédès, L.: Safety and Security Interdependen-
cies in Complex Systems and SoS: Challenges and Perspectives, In Complex Systems
Design & Management, Springer, pp. 229 - 241. (2012)

[16] Cox, Jr., Anthony, L.: Some Limitations of “Risk= Threat× Vulnerability× Conse-
quence” for Risk Analysis of Terrorist Attacks, Risk Analysis, vol. 28, no. 6, pp. 1749 -
1761. (2008)

[17] European Union Agency for Network and Information Security (ENISA).: The Risk
Management Process, Available: https://www.enisa.europa.eu/activities/
risk-management/current-risk/risk-management-inventory/rm-process
(2019)

[18] Stamatis, D.H.: Failure Mode and Effect Analysis: FMEA from Theory to Execution,
ASQ Quality Press. (2003)

[19] Lee,W.-S., Grosh, D. L., Tillman, F. A., Lie, C. H.: Fault Tree Analysis, Methods, and
Applications: A Review, IEEE Transactions on Reliability, vol. 34, no. 3, pp. 194 - 203.
(1985)

[20] Schneier, B.: Attack Trees, Dr. Dobb’s journal, vol. 24, no. 12, pp. 21 - 29. (1999)

[21] Den Braber, F., Hogganvik, I., Lund, M. S., Støolen, K., Vraalsen, F.: Model-based Se-
curity Analysis in Seven Steps — A Guided Tour to the CORAS Method, BT Technology
Journal, vol. 25, no. 1, pp. 101 - 117. (2007)

[22] Macher, G., Höller, A., Sporer, H., Armengaud, E., Kreiner, C.: A Combined Safety-
hazards and Security-threat Analysis Method for Automotive Systems, In International
Conference on Computer Safety, Reliability, and Security, pp. 237 - 250, Springer.
(2014)

[23] Schmittner, C., Ma, Z., Schoitsch, E., Gruber, T.: A Case Study of FMVEA and CHASSIS
as Safety and Security Co-analysis Method for Automotive Cyber-Physical Systems, In
Proceedings of the 1st ACM Workshop on Cyber-Physical System Security, pp. 69 - 80,
ACM. (2015)

[24] Sabaliauskaite, G., Mathur, A. P.: Aligning Cyber-Physical System Safety and Security,
In Complex Systems Design & Management Asia, Springer, pp. 41 - 53. (2015)

[25] Schmittner, C., Ma, Z., Smith, P.: FMVEA for Safety and Security Analysis of Intelligent
and Cooperative Vehicles, In International Conference on Computer Safety, Reliability,
and Security, pp. 282 - 288, Springer. (2014)

[26] Chen, Y.-R., Chen, S.-J., Hsiung, P.-A., Chou, I.-H.: Unified Security and Safety Risk
Assessment - A Case Study on Nuclear Power Plant, In 2014 International Conference
on Trustworthy Systems and Their Applications, pp. 22 - 28, IEEE. (2014)

[27] Steiner, M., Liggesmeyer, P.: Combination of Safety and Security Analysis - Find-
ing Security Problems that Threaten the Safety of a System, In 2013 International
Conference on Computer Safety, Reliability, and Security Workshops, pp. 233 - 240.
(2013)

https://www.enisa.europa.eu/activities/risk-management/current-risk/risk-management-inventory/rm-process
https://www.enisa.europa.eu/activities/risk-management/current-risk/risk-management-inventory/rm-process


REFERENCES

1

23

[28] Fovino, I. N., Masera, M., De Cian, A.: Integrating Cyber Attacks within Fault Trees,
Reliability Engineering & System Safety, vol. 94, no. 9, pp. 1394 - 1402. (2009)

[29] Aqlan, F., Lam, S.S.: A Fuzzy-based Integrated Framework for Supply Chain Risk
Assessment, International Journal of Production Economics, vol. 161, pp. 54-63. (2015)

[30] NIST 800-30.: Guide for Conducting Risk Assessments (Revision 1). (2012)

[31] Hadziosmanovic, D.: The Process Matters: Cyber Security in Industrial Control
Systems, University of Twente. (2014)

[32] Neitzel, L., Huba, B.: Top Ten Differences between ICS and IT Cybersecurity, InTech,
vol. 61, no. 3, pp. 12 - 18. (2014)

[33] Endi, M., Elhalwagy, Y., Attalla, H.: Three-layer PLC/SCADA System Architecture
in Process Automation and Data Monitoring, The 2nd International Conference on
Computer and Automation Engineering (ICCAE), vol. 2, pp. 774 - 779, IEEE. (2010)

[34] Skopik, F., Smith, P.D.: Smart Grid Security: Innovative Solutions for a Modernized
Grid, Syngress. (2015)

[35] Nogueira, H. I. S., Walraven, M.: Overview of Storm Surge Barriers, Rijskwaterstaat &
Deltares. (2018)

[36] Hajjaj, H., Salama, S., Hameed Sultan, M. T., Moktar, M. H., Lee, S. H.: Utilizing the
Internet of Things (IoT) to Develop a Remotely Monitored Autonomous Floodgate for
Water Management and Control, Water, vol. 12, no. 2. (2020)

[37] Park, S., Kim, B., Won, T., Heo, J.: IoT-based Floodgate Control System, In Proceedings
of the Conference on Research in Adaptive and Convergent Systems, pp. 61-62. (2019)

[38] Sahu, V., Tripathi, N.: Automation of Gates of Water Reservoir Using Programmable
Logic Controller (PLC), International Journal of Research in Applied Science & Engi-
neering Technology, vol. 6, no. 4. (2018)

[39] Stouffer, K., Falco, J., Scarfone, K.: Guide to Industrial Control Systems (ICS) Security,
NIST Special Publication, vol. 800, no. 82. (2011).

[40] Robinson, M.: The SCADA Threat Landscape, In 1st International Symposium for
ICS & SCADA Cyber Security Research 2013 (ICS-CSR 2013), pp. 30 - 41.(2013)

[41] Panwar, A.: iGen: Toward Automatic Generation and Analysis of Indicators of Com-
promise (IoCs) using Convolutional Neural Network,Arizona State University. (2017)
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[81] Ibrahimović, S., Bajgorić, N.: Modeling Information System Availability by using
Bayesian Belief Network Approach. Interdisciplinary Description of Complex Systems,
vol. 14, pp. 125 - 138. (2016)

[82] Herland, K., Hammainen, H., Kekolahti, P.: Information Security Risk Assessment of
Smartphones using Bayesian Networks. Journal of Cyber Security and Mobility, vol. 4,
pp. 65 - 85. (2016)

[83] Apukhtin, V.: Bayesian Network Modeling for Analysis of Data Breach in a Bank.
University of Stavanger, Norway. (2011)

[84] Martin, T.G., et al.: Eliciting Expert Knowledge in Conservation Science, Conserva-
tion Biology, vol. 26, no. 1, pp. 29 - 38. (2012)



2
INTEGRATED SAFETY AND

SECURITY RISK ASSESSMENT

METHODS: A SURVEY OF KEY

CHARACTERISTICS AND

APPLICATIONS*

2.1. INTRODUCTION
Information technologies and communication devices are increasingly being integrated
into modern control systems [1]. These modern control systems are used to operate
life-critical systems where the human lives are at stake in case of failure. At the same time,
they are often vulnerable to cyber-attacks, which may cause physical impact. An incident
in Lodz is a typical example where a cyber-attack resulted in the derailment of 4 trams,
and the injury of 12 people [2]. It is therefore becoming increasingly important to address
the combination of safety and security in modern control systems.

However, safety and security have been represented by separate communities in both
academia and industry [3]. In our context, we think of the safety community as dealing
with unintentional/non-malicious threats caused by natural disasters, technical failures,
and human error. On the other hand, we think of the security community as dealing with
intentional/malicious threats caused by intentional human behavior.

Risk management plays a major role in dealing with both unintentional/non-
malicious, and intentional/malicious threats. In the recent years, we have seen a trans-

*This chapter has been published as Chockalingam, S., Hadžiosmanović, D., Pieters, W., Teixeira, A., and
van Gelder, P.: “Integrated Safety and Security Risk Assessment Methods: A Survey of Key Characteristics and
Applications,” International Conference on Critical Information Infrastructures Security, pp. 50 – 62, 2016.
Springer, Cham. https://doi.org/10.1007/978-3-319-71368-7_5
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formation among the researchers of safety and security community to work together
especially in risk management. As an example, there are developments of integrated
safety and security risk assessment methods [4–10]. Risk assessment is one of the most
crucial parts of the risk management process as it is the basis for making risk treatment de-
cisions [11]. The integrated safety and security risk assessment method helps to improve
the completeness of risk assessment conducted by covering the interactions between
malicious and non-malicious risks. However, a comprehensive review of integrated safety
and security risk assessment methods which could help to identify their key characteris-
tics and applications is lacking. Therefore, this research aims to fill this gap by addressing
the research question: “What are the key characteristics of integrated safety and security
risk assessment methods, and their applications?”. The research objectives are:

• RO 1. To identify integrated safety and security risk assessment methods.

• RO 2. To identify key characteristics and applications of integrated safety and
security risk assessment methods based on the analysis of identified methods.

The scope of this analysis covers important features of identified integrated safety and
security risk assessment methods mainly, in terms of how these methods are created, and
what the existing applications of these methods are. The analysis of identified methods is
performed based on the following criteria: I. Citations in the Scientific Literature, II. Steps
Involved, III. Stage(s) of Risk Assessment Process Addressed, IV. Integration Methodology,
and V. Application(s) and Application Domain. The motivations for selecting these criteria
are described in Section 2.5.

The remainder of this chapter is structured as follows: Section 2.2 describes the related
work, followed by the review methodology in Section 2.3. In Section 2.4, we present the
identified integrated safety and security risk assessment methods, and describe the steps
involved in these methods. In Section 2.5, we perform the analysis of identified methods
based on the criteria that we defined above. Finally, we highlight key characteristics and
applications of integrated safety and security risk assessment methods followed by a
discussion of future work directions in Section 2.6.

2.2. RELATED WORK
Cherdantseva et al. presented 24 cybersecurity risk assessment methods for Supervisory
Control and Data Acquisition (SCADA) systems [12]. In addition, they analyzed the pre-
sented methods based on the following criteria: I. Aim, II. Application domain, III. Stages
of risk management addressed, IV. Key concepts of risk management covered, V. Impact
measurement, VI. Sources of data for deriving probabilities, VII. Evaluation method, and
VIII. Tool support. Based on the analysis, they suggested the following categorization
schemes: I. Level of detail and coverage, II. Formula-based vs. Model-based, III. Quali-
tative vs. Quantitative, and IV. Source of probabilistic data. However, Cherdantseva et
al. did not present integrated safety and security risk assessment methods. We used
and complemented some of the criteria provided by Cherdantseva et al. to perform the
analysis of integrated safety and security risk assessment methods as described in Section
2.5.
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Risk assessment methods like Failure Mode and Effects Analysis (FMEA) [13],
Fault Tree Analysis (FTA) [14], Component Fault Tree (CFT) [15] have been used by
safety community whereas the risk assessment methods like Attack Trees [16], Attack-
Countermeasure Trees (ACT) [17], National Institute of Standards and Technology (NIST)
800-30 Risk Assessment [18] have been used by security community. Several authors used
these methods as a starting point for the development of integrated safety and security
risk assessment methods.

Kriaa et al. highlighted standard initiatives such as ISA-99 (Working Group 7), IEC
TC65 (Ad Hoc Group 1), IEC 62859, DO-326/ED-202 that consider safety and security
co-ordination for Industrial Control Systems (ICS) [1]. They described various generic
approaches that considered safety and security at a macroscopic level of system design or
risk evaluation, and also model-based approaches that rely on a formal or semi-formal
representation of the functional/non-functional aspects of system. They classified the
identified approaches based on the following criteria: I. Unification vs. Integration, II.
Development vs. Operational, and III. Qualitative vs. Quantitative. However, Kriaa et al.
did not primarily focus on integrated safety and security risk assessment methods that
have been already applied in at least one real-case/example involving control system.
Also, Kriaa et al. did not identify key characteristics and applications of integrated safety
and security risk assessment methods. We included methods such as Failure Mode,
Vulnerabilities, and Effect Analysis (FMVEA) [7], Extended Component Fault Tree (CFT)
[9], and Extended Fault Tree (EFT) [10] from Kriaa et al. in our work as they satisfy our
selection criteria. In addition, we included other methods that satisfy our selection
criteria, such as Security-Aware Hazard Analysis and Risk Assessment (SAHARA) [4],
Combined Harm Assessment of Safety and Security for Information Systems (CHASSIS)
[5], Failure-Attack-CountTermeasure (FACT) Graph [6], and Unified Security and Safety
Risk Assessment [8].

2.3. REVIEW METHODOLOGY
This section describes the methodology for selecting the integrated safety and security
risk assessment methods. The selection of these methods mainly consists of two stages:

• Searches were performed on IEEE Xplore Digital Library, ACM Digital Library, Sco-
pus, DBLP, and Web of Science – All Databases. The search-strings were constructed
from keywords “Attack”, “Failure”, “Hazard”, “Integration”, “Risk”, “Safety”, “Security”,
and “Threat”. DBLP provided a good coverage of relevant journals and conferences.

• Methods were selected from the search results according to the following criteria:

I. The method should address any or all of the following risk assessment stages:
risk identification, risk analysis, and/or risk evaluation.

II. The method should consider both unintentional and intentional threats.

III. The method should have been already applied in at least one real-case/
example involving control system.

IV. The literature should be in English language.
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Once an integrated safety and security risk assessment method was selected, the
scientific literature that cited it was also traced.

2.4. INTEGRATED SAFETY AND SECURITY RISK ASSESSMENT

METHODS

This section presents the identified integrated safety and security risk assessment meth-
ods, and describes the steps involved in these methods. This section aims to address the
RO 1. Based on the review methodology described in Section 2.3, we have identified 7
integrated safety and security risk assessment methods: I. SAHARA [4], II. CHASSIS [5],
III. FACT Graph [6], IV. FMVEA [7], V. Unified Security and Safety Risk Assessment [8], VI.
Extended CFT [9], and VII. EFT [10].

2.4.1. SAHARA METHOD

The steps involved in the SAHARA method [4] are as follows: I. The ISO 26262 – Hazard
Analysis and Risk Assessment (HARA) approach is used in a conventional manner to
classify the safety hazards according to the Automotive Safety Integrity Level (ASIL), and
to identify the safety goal and safe state for each identified potential hazard; II. The
attack vectors of the system are modelled. The STRIDE method is used to model the
attack vectors of the system [4, 19]; III. The security threats are quantified according to
the Required Resources (R), Required Know-how (K), and Threat Criticality (T); IV. The
security threats are classified according to the Security Level (SecL). SecL is determined
based on the level of R, K, and T; V. Finally, the security threats that may violate the safety
goals (T>2) are considered for the further safety analysis.

2.4.2. CHASSIS METHOD

The steps involved in the CHASSIS method [5] are as follows: I. The elicitation of functional
requirements which involve creating the use-case diagrams that incorporates the users,
system functions and services; II. The elicitation of safety and security requirements
which involve creating misuse case diagram based on the identified scenarios for safety
and security involving faulty-systems and attackers respectively; III. Trade-off discussions
are used to support the resolution of conflict between the safety, and security mitigations.

2.4.3. FACT GRAPH METHOD

The steps involved in the FACT Graph method [6] are as follows: I. The fault trees of
the system analyzed are imported to start the construction of FACT graph; II. The safety
countermeasures are attached to the failure nodes in the FACT graph; III. The attack trees
of the system analyzed are imported to the FACT graph in construction. This is done by
adding an attack-tree to the failure node in the FACT graph with the help of OR gate, if the
particular failure may also be caused by an attack; IV. The security countermeasures are
attached to the attack nodes in the FACT graph. This could be done based on the ACT
technique [17].
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2.4.4. FMVEA METHOD

The steps involved in the FMVEA method [7] are as follows: I. A functional analysis at
the system level is performed to get the list of system components and functions of each
component; II. A component that needs to be analyzed from the list of system compo-
nents is selected; III. The failure/threat modes for the selected component are identified;
IV. The failure/threat effect for each identified failure/threat mode is identified; V. The
severity for the identified failure/threat effect is determined; VI. The potential failure
causes/vulnerabilities/threat agents are identified; VII. The failure/attack probability is
determined. Schmittner et al. described the attack probability as the sum of threat prop-
erties and system susceptibility ratings. The threat properties is the sum of motivation
and capabilities ratings, whereas the system susceptibility is the sum of reachability and
unusualness of the system ratings; VIII. Finally, the risk number is determined, which is
the product of severity rating and failure/attack probability.

2.4.5. UNIFIED SECURITY AND SAFETY RISK ASSESSMENT METHOD

The steps involved in the Unified Security and Safety Risk Assessment method [8] are as
follows: I. The system boundary, system functions, system and data criticality, system
and data sensitivity are identified; II. The threats, hazards, vulnerabilities, and hazard-
initiating events are identified; III. The current and planned controls are identified; IV.
The threat likelihood is determined; V. The hazard likelihood is determined; VI. The asset
impact value is determined; VII. The combined safety-security risk level is determined;
VIII. The control recommendations are provided; IX. The risk assessment reports are
provided.

2.4.6. EXTENDED CFT METHOD

The steps involved in the extended CFT method [9] are as follows: I. The CFT for the
system analyzed is developed. This could be done based on [15]; II. The CFT is extended
by adding an attack tree to the failure node with the help of OR gate, if the particular event
may also be caused by an attack; III. The qualitative analysis is conducted by calculating
Minimal Cut Sets (MCSs) per top level event. MCSs containing only one event would be
single point of failure which should be avoided; IV. The quantitative analysis is conducted
by assigning values to the basic events. Therefore, MCSs containing only safety events
would have a probability P, MCSs containing only security events would have a rating R,
MCSs containing both safety and security events would have a tuple of probability and
rating (P, R).

2.4.7. EFT METHOD

The steps involved in the EFT method [10] are as follows: I. The fault tree for the system
analyzed is developed by taking into account the random faults; II. The developed fault
tree is extended by adding an attack tree to the basic or intermediate event in the fault
tree, if the particular event in the fault tree may also be caused by malicious actions. The
attack tree concept used in the development of EFT is based on [20]; III. The quantitative
analysis is performed based on the formulae defined in [10] which help to calculate the
top event probability.
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2.5. ANALYSIS OF INTEGRATED SAFETY AND SECURITY RISK

ASSESSMENT METHODS
This section performs the analysis of integrated safety and security risk assessment
methods based on the criteria: I. Citations in the Scientific Literature, II. Steps Involved,
III. Stage(s) of Risk Assessment Process Addressed, IV. Integration Methodology, and V.
Application(s) and Application Domain. This allows us to identify key characteristics and
applications of integrated safety and security risk assessment methods. This section aims
to address the RO 2.

The integrated safety and security risk assessment methods described in the previous
section are listed in Table 2.1. In Table 2.1, country is the country of the first author of the
paper and citations is the number of citations of the paper according to Google Scholar
Citation Index as on 31st August 2016.

From Table 2.1, we observe that the researchers started to recognize the importance
of integrated safety and security risk assessment methods which resulted in the increase
in number of papers produced especially during 2014, and 2015. The largest number
of citations (63) is acquired by the EFT method published in 2009. The second most
cited paper, among analyzed, with 17 citations, is the Extended CFT method published in
2013. However, it is understandable that the methods published during the last few years
received lower number of citations ranging from 1 to 5.
Table 2.1: List of Integrated Safety and Security Risk Assessment Methods (Ordered by the number of citations)

Integrated Safety and Security Risk Assessment
Method

Year Country Citations

EFT [10] 2009 Italy 63
Extended CFT [9] 2013 Germany 17
FACT Graph [6] 2015 Singapore 5
CHASSIS [5] 2015 Austria 4
FMVEA [7] 2014 Austria 4
SAHARA [4] 2015 Austria 2
Unified Security and Safety Risk Assessment [8] 2014 Taiwan 1

Based on the steps involved in each method as described in Section 2.4, we conclude
that there are two types of integrated safety and security risk assessment methods:

• Sequential Integrated Safety and Security Risk Assessment Method: In this type of
method, the safety risk assessment, and security risk assessment are performed
in a particular sequence. For instance, the Extended CFT method starts with the
development of CFT for the system analyzed. Later, the attack tree is added to
extend the developed CFT. This method starts with the safety risk assessment
followed by the security risk assessment. Methods such as SAHARA, FACT Graph,
Unified Security and Safety Risk Assessment, Extended CFT, and EFT come under
the sequential type.

• Non-sequential Integrated Safety and Security Risk Assessment Method: In this type
of method, the safety risk assessment, and security risk assessment are performed
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without any particular sequence. For instance, in the FMVEA method, the results of
safety risk assessment and security risk assessment are tabulated in the same table
without any particular sequence. Methods such as FMVEA and CHASSIS come
under the non-sequential type.

Cherdantseva et al. used ‘stage(s) of risk management process addressed’ as a criteria
to analyze the identified cybersecurity risk assessment methods for SCADA systems
[12]. We adapted and used this criteria as ‘stage(s) of risk assessment process addressed’
because the major focus of our research is on risk assessment. This criteria will allow us to
identify the predominant stage(s) of risk assessment process addressed by the integrated
safety and security risk assessment methods.

A risk assessment process consists of typically three stages:

• Risk Identification: This is the process of finding, recognizing and describing the
risks [21].

• Risk Analysis: This is the process of understanding the nature, sources, and causes
of the risks that have been identified and to estimate the level of risk [21].

• Risk Evaluation: This is the process of comparing risk analysis results with risk
criteria to make risk treatment decisions [21].

Table 2.2 highlights the integrated safety and security risk assessment method and
the corresponding stage(s) of the risk assessment process addressed. This is done based
on the definitions of risk identification, risk analysis, and risk evaluation. We also take
into account the safety risk assessment method, and security risk assessment method
that were combined in the integrated safety and security risk assessment method.

Table 2.2: Stage(s) of Risk Assessment Process Addressed

Integrated Safety and Security Risk
Assessment Method

Risk
Identification

Risk
Analysis

Risk
Evaluation

SAHARA X X ×
CHASSIS X × ×
FACT Graph X × ×
FMVEA X X ×
Unified Security and Safety Risk As-
sessment

X X X

Extended CFT X X ×
EFT X X ×

In Table 2.2, X(×) indicates that the particular method addressed (did not address) the
corresponding risk assessment stage.

From Table 2.2, we understand that all methods addressed the risk identification, 5 out
of 7 methods addressed the risk analysis, whereas only 1 out of 7 methods addressed the
risk evaluation stage of the risk assessment process. This implies that the risk evaluation
stage is not given much attention compared to the other stages of the risk assessment
process in the integrated safety and security risk assessment methods. Cherdantseva et
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al. also highlighted that the majority of the cybersecurity risk assessment methods for
SCADA systems concentrates on the risk identification and risk analysis stages of the risk
assessment process [12]. The risk evaluation phase in the Unified Security and Safety
Risk Assessment method starts by comparing the risk analysis result with the suggested
four levels of risk to determine the appropriate level of risk. Once the level of risk is
determined, the risk treatment decision is made accordingly.

We used the criteria ‘Integration methodology’ because this will allow us to understand
which combination of safety, and security risk assessment methods are being used in the
integrated safety and security risk assessment methods as summarized in Table 2.3.

From Table 2.3, we observe that there are four ways in which the integrated safety and
security risk assessment methods have been developed:

• Integration through the combination of a conventional safety risk assessment
method and a variation of the conventional safety risk assessment method for
security risk assessment. The methods SAHARA and FMVEA come under this
category.

• Integration through the combination of a conventional security risk assessment
method and a variation of the conventional security risk assessment method for
safety risk assessment. The Unified Security and Safety Risk Assessment method
come under this category.

• Integration through the combination of a conventional safety risk assessment
method and a conventional security risk assessment method. The methods FACT
Graph, Extended CFT, and EFT come under this category.

• Others - There is no conventional safety risk assessment, and conventional security
risk assessment method used in the integration. The CHASSIS method come under
this category. The CHASSIS method used a variation of Unified Modeling Language
(UML)-based models for both the safety and security risk assessment.

Table 2.3: Integration Methodology

Integrated Safety and
Security Risk
Assessment Method

Safety Risk Assessment
Method

Security Risk
Assessment Method

SAHARA ISO 26262: HARA Variation of ISO
26262:
HARA

CHASSIS Safety Misuse Case (In-
volving Faulty-systems)

Security Misuse Case
(Involving Attackers)

FACT Graph Fault Tree Attack Tree
FMVEA FMEA Variation of FMEA
Unified Security and
Safety Risk Assessment

Variation of NIST 800-30
Security Risk Estimation

NIST 800-30 Security
Risk Estimation

Extended CFT CFT Attack Tree
EFT Fault Tree Attack Tree
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We used the criteria ‘Application(s) and Application domain’ because this will allow
us to understand the type of application(s), and the corresponding application domain of
integrated safety and security risk assessment methods. Table 2.4 highlights the integrated
safety and security risk assessment method and the corresponding application(s) and
application domain.

Table 2.4: Application(s) and Application Domain

Integrated Safety and
Security Risk Assess-
ment Method

Application(s) Application
Domain

SAHARA Battery Management System use-
case [4]

Transportation

CHASSIS Over The Air (OTA) system [5], Air
traffic management remote tower
example [23].

Transportation

FACT Graph Over-pressurization of a vessel ex-
ample [6]

Power and Utilities

FMVEA OTA system [5], Telematics con-
trol unit [7], Engine test-stand [24],
Communications-based train con-
trol system [25].

Transportation

Unified Security and
Safety Risk
Assessment

High pressure core flooder case-
study [8]

Power and Utilities

Extended CFT Adaptive cruise control system [9] Transportation
EFT Release of toxic substance into the

environment example [10]
Chemical

From Table 2.4, we observe that 4 methods were applied in the transportation domain,
2 methods were applied in the power and utilities domain, and 1 method was applied
in the chemical domain. The major development, and application of integrated safety
and security risk assessment methods, is in the transportation domain. The Threat
Horizon 2017 listed “death from disruption to digital services” as one of the threats
especially in the transportation and medical domain [22]. In the transportation domain,
there is a potential for cyber-attacks which compromises system safety and result in the
injury/death of people which was illustrated by a tram incident in Lodz [2].

2.6. CONCLUSIONS AND FUTURE WORK
In this study, we have identified 7 integrated safety and security risk assessment methods.
Although we cannot completely rule out the existence of other unobserved integrated
safety and security risk assessment methods that fulfil our selection criteria, the review
methodology that we adopted helped to ensure the acceptable level of completeness in
the selection of these methods. Based on the analysis, we identified key characteristics
and applications of integrated safety and security risk assessment methods.

• There are two types of integrated safety and security risk assessment methods
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based on the steps involved in each method. They are: a. Sequential, and b. Non-
sequential.

• There are four ways in which the integrated safety and security risk assessment
methods have been developed. They are: a. The conventional safety risk assessment
method as the base and a variation of the safety risk assessment method for security
risk assessment, b. The conventional security risk assessment method as the base
and a variation of the security risk assessment method for safety risk assessment, c.
A combination of a conventional safety risk assessment method, and a conventional
security risk assessment method, d. Others.

• Risk identification and risk analysis stages were given much attention compared to
the risk evaluation stage of the risk assessment process in the integrated safety and
security risk assessment methods.

• Transportation, power and utilities, and chemical were the three domains of appli-
cation for integrated safety and security risk assessment methods.

The identified integrated safety and security risk assessment methods did not take
into account real-time system information to perform dynamic risk assessment which
needs to be addressed to make it more effective in the future. This study provided the list
of combinations of safety, and security risk assessment methods used in the identified
integrated safety and security risk assessment methods. In the future, this would act as a
base to investigate the other combinations of safety, and security risk assessment methods
that could be used in the development of more effective integrated safety and security
risk assessment methods. Furthermore, this study provided the type of applications
and application domains of the identified integrated safety and security risk assessment
methods. In the future, this would act as a starting point to evaluate the applicability
of these methods in the other domains besides transportation, power and utilities, and
chemical.
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BAYESIAN NETWORK MODELS IN

CYBER SECURITY: A SYSTEMATIC

REVIEW*

3.1. INTRODUCTION
The lack of data, especially historical data on cyber security breaches, incidents, and
threats, hinders the development of realistic models in cyber security [1, 2]. However,
standard (or classical) Bayesian Networks (BNs) possess the potential to address this
challenge. In particular, the capability to combine different sources of knowledge would
help to overcome the scarcity of historical data in cyber security modeling.

Standard BNs belong to the family of probabilistic graphical models [3]. A standard
BN consists of two components: qualitative, and quantitative [4]. The qualitative part
is a Directed Acyclic Graph (DAG) consisting of nodes and edges. Specifically, each
node represents a random variable, whereas the edges between the nodes represent the
conditional dependencies among the corresponding random variables. The quantitative
part takes the form of conditional probabilities, which quantify the dependencies between
connected nodes in the DAG by specifying a conditional probability distribution for each
node. A toy example of a standard BN model, representing the probabilistic relationships
between cyber-attacks (“Denial of Service Attack” and “Malware Attack”) and symptoms
(“Internet Connection” and “Pop-ups”), is shown in Figure 3.1. Given symptom(s), the
BN can be used to compute the posterior probabilities of various cyber-attacks as shown
in Figure 3.1. In this case, the user sets evidence for the “Pop-ups” node as “True”, and
“Internet Connection” node as “Normal” in the BN model based on his/her observations.
Based on these evidences, the BN computes the posterior probabilities of the other nodes
“Denial of Service Attack” and “Malware Attack” using Bayes rule. The BN model shown

*This chapter has been published as Chockalingam, S., Pieters, W., Teixeira, A., and van Gelder, P.: “Bayesian
Network Models in Cyber Security: A Systematic Review,” Nordic Conference on Secure IT Systems, pp. 105 – 122,
2017. Springer, Cham. https://doi.org/10.1007/978-3-319-70290-2_7
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in Figure 3.1 determines that the presence of pop-ups and normal internet connection
are more likely due to a Denial of Service attack rather than to a Malware attack.

Figure 3.1: Standard BN Model - Example

The major advantages of standard BNs include: the ability to combine different
sources of knowledge, the capacity to handle small and incomplete datasets, and the
availability of a broad range of validation approaches apart from data-driven validation
approaches [5, 6]. Some notable real-world applications of standard BNs include medical
diagnosis [7] and fault diagnosis [8]. In addition, the advantages lead to the predominant
use of standard BNs in domains where there is a limited availability of data, notably in
Ecosystem Services (ESS)[5], water resource management [9], and security [10]. Similarly,
we have seen the use of standard BNs in cyber (or information) security in recent years
[11–29]. However, an overarching comparison and analysis of standard BN models in
cyber security which could help to identify important usage patterns is currently lacking.
Kordy et al. give a broader overview of modeling approaches based on DAGs, and thus
only briefly mention BNs [10]. In contrast to Kordy et al., we specifically focus on BN
models with the aim of performing comparison and analysis of these models to identify
important usage patterns and key research gaps. This review would benefit the practical
application of BN models in cyber security by providing important usage patterns and
key research gaps. Therefore, this research aims to fill this gap by addressing the research
question: “What are the important patterns in the use of standard Bayesian Network (BN)
models in cyber security?”. The research objectives are:

• RO 1. To identify standard BN models in cyber security literature.

• RO 2. To identify the important patterns in the use of standard BN models in cyber
security based on the analysis of identified models.

In this study, we focus on comparison and analysis of standard BN models [11–29]
which also include Bayesian Attack Graphs (BAGs) [11–13] as they possess more compara-
ble features. This would help to identify consistent patterns in the use of standard BN
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models in cyber security. However, the approaches in cyber security modeling that extend
BN such as Bayesian Decision Network (BDN) [30], Causal event graph [31], Dynamic BN
[32–34], Extended influence diagram [35, 36], and Multi-entity BN [37, 38] are beyond the
scope of this study as they are incomparable especially based on their structure develop-
ment. For instance, decision and utility nodes are specific to BDN/Influence Diagram
which would allow decision making under uncertainty. In contrast, these types of nodes
are not applicable to standard BN.

The scope of this comparison and analysis is the structured development, application
and validation of the existing standard BN models in cyber security. The comparison
and analysis of identified models is performed using the characteristics that were chosen
based on related literature and domain-specific objectives as described in Section 3.2.
The key contributions of this work are: important patterns in the use of standard BN
models in cyber security, and key research gaps in the use of standard BN models in cyber
security.

The remainder of this chapter is structured as follows. Section 3.2 describes the
review methodology. In Section 3.3, we perform the comparison and analysis of identified
BN models using the characteristics that we chose, followed by a discussion on the key
findings in Section 3.4. Finally, we highlight important patterns in the use of standard BN
models in cyber security followed by future work directions in Section 3.5.

3.2. REVIEW METHODOLOGY
We perform the systematic literature review based on the guidelines provided by Okoli
et al. [39]. The methodology which we used to select the standard BN models in cyber
security literature and the appropriate characteristics to perform the comparison and
analysis of the selected BN models is described below.

The selection of standard BN models in cyber security literature consists of two stages:

• Searches were performed on ACM Digital Library, DBLP, Google Scholar, IEEE
Xplore Digital Library, Scopus, and Web of Science – All Databases. Search-strings
were constructed from keywords “Bayesian”, “Bayesian Belief Network”, “Bayesian
Network”, “BBN”, “BN”, “Cyber*”, “Information*”, and “Security”. The wildcard
“*” was used for “Cyber” and “Information” to match all words around these two
keywords.

• Models were selected from the search results according to the listed criteria:

I. The model should employ standard BN.

II. The model should address problem(s) associated with cyber (or informa-
tion) security.

III.The literature should have basic information about both DAGs and Con-
ditional Probability Tables (CPTs). This criterion is important taking into account
the scope of our comparison and analysis which is the structured development,
application and validation of the existing standard BN models in cyber security.

IV. The literature should be in English language.

Once a standard BN model in cyber security was selected, the scientific literature that
cited it was also traced.
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Table 3.1: Adopted Characteristics from Landuyt et al. and Phan et al.

Characteristics used in our Analysis Adopted from Landuyt
et al.

Adopted from Phan et
al.

I. Citation details X
II. Data sources used to construct DAGs and populate CPTs X X
III. The number of nodes used in the model X
IV. Type of threat actor
V. Application and Application sector
VI. Scope of variables
VII. The approach(es) used to validate models X X
VIII. Model purpose and Type of purpose

The characteristics used to perform the analysis of the selected BN models were
chosen based on related literature and domain-specific objectives as described in Section
3.2 and 3.3. Landuyt et al. presented 47 BN models in ESS published from 2000 to 2012
[5]. In addition, they analysed these models based on 9 characteristics. Similarly, Phan et
al. presented 111 BN models in water resource management [9]. Moreover, they analysed
these models based on 10 characteristics. We adopted the characteristics from Landuyt et
al. and Phan et al. that are generic and relevant to the scope of our analysis, as shown in
Table 3.1. Also, we adapted and used the characteristic: Citation details provided by Phan
et al. to perform the analysis of BN models in cyber security as described in Section 3.3.

3.3. ANALYSIS OF STANDARD BAYESIAN NETWORK MODELS IN

CYBER SECURITY
This section aims to address RO 1. To identify standard BN models in cyber security
literature, and RO 2. To identify the important patterns in the use of standard BN models
in cyber security based on the analysis of identified models. Based on the methodology
described in Section 3.2, we identified 17 standard BN models in cyber security. The
corresponding article titles are listed in Table 3.2. Furthermore, this section performs the
analysis of identified BN models based on the following characteristics.

• Citation details

• Data sources used to construct DAGs and populate CPTs

• The number of nodes used in the model

• Type of threat actor

• Application and Application Sector

• Scope of variables

• The approach(es) used to validate models

• Model purpose and Type of purpose
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3.3.1. CITATION DETAILS

We adapted and used the components of the characteristic “Citation details” provided
by Phan et al. Specifically, we used an additional component citations in our definition
of “Citation details” because this will help us to assess the research impact/quality of
each BN model [40]. In Table 3.2, citations is the number of citations of the article
according to Google Scholar Citation Index as on 15th September 2017. The number of
articles covering standard BN model in cyber security varies between 0 and 3 per year.
No noticeable increase in the number of papers over time is encountered. The largest
number of citations (247) is acquired by Poolsappasit et al. [11] published in 2012. The
second most cited paper, among analysed, with 136 citations, is Frigault et al. [12] which
is published in 2008. Interestingly, BAG-based standard BN models [11–13] are extensively
used compared to the other standard BN models [14–29] in cyber security based on the
number of citations.

3.3.2. DATA SOURCES USED TO CONSTRUCT DAGS AND POPULATE CPTS

We used the characteristic “Data sources used to construct DAGs and populate CPTs”
to identify the type of data sources utilised in the reviewed BN models. We employed
the coding scheme provided by Phan et al. as shown in Table 3.2 [9]. From Table 3.2,
we observe that 5 out of 17 BN models used only expert knowledge to construct DAGs,
whereas 5 out of 17 BN models employed only empirical data to construct DAGs. 7 out 17
BN models made use of both expert knowledge and empirical data to construct DAGs.
In particular, 10 out of 12 BN models which utilised empirical data to construct DAGs
relied on the literature. In contrast, 2 out of 12 BN models which utilised empirical data
to construct DAGs relied on the inputs from vulnerability scanner [11] and incidents data
[18].

From Table 3.2, we infer that 11 out of 17 BN models utilised only expert knowledge
to populate CPTs, whereas 3 out of 17 BN models used only empirical data to populate
CPTs. On the other hand, there were 3 out of 17 BN models which employed both expert
knowledge and empirical data to populate CPTs. Specifically, the sources of empirical data
includes literature, incidents data, National Vulnerability Database (NVD), Open Source
Vulnerability Database (OSVDB), and Exploithub to populate CPTs. Notably, the review
of BN models in water resource management and ESS pointed out model simulations as
another data source used to construct DAGs and populate CPTs [5, 9]. Model simulations
refers to outputs of other empirical, deterministic or stochastic models [5]. Interestingly,
there was no standard BN model in cyber security that used model simulation as the data
source to construct DAGs and populate CPTs.

3.3.3. THE NUMBER OF NODES USED IN THE MODEL

The number of nodes can be used to describe the model complexity [5]. A high number of
nodes often lead to a lot of intermediary layers between the layer of input nodes and the
layer of output nodes. This could weaken the relation between input and output nodes.
Marcot et al. recommended to limit the number of node layers or sequential relationships
to less than five to prevent this dilution of interactions [41].

Landuyt et al. indicate that BN models with nodes lower than 40 can safeguard the
functionalities of BNs [5]. Based on our analysis, we conclude that the amount of nodes is
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Table 3.2: List of Bayesian Network Models in Cyber Security (Ordered by the number of citations)

Article Title (Year) Citations Data
Source
(DAG)

Data
Source
(CPT)

Application Application
Sector

Dynamic Security Risk Man-
agement Using Bayesian Attack
Graphs [11] (2012)

247 D K Risk
Management

Non-specific

Measuring Network Security
Using Bayesian Network-Based
Attack Graphs [12] (2008)

136 K K Risk
Management

Non-specific

Network Vulnerability Assess-
ment Using Bayesian Networks
[13] (2005)

106 K K Risk
Management

Non-specific

Reasoning about Evidence
using Bayesian Networks [14]
(2008)

39 K K Forensic
Investigation

Law Enforce-
ment

A Bayesian Network Model for
Predicting Insider Threats [15]
(2013)

35 D,K D,K Threat Hunt-
ing (Insider
Threat)

Non-specific

Identifying at-risk Employees:
Modeling Psychosocial Precur-
sors of Potential Insider Threats
[16, 17] (2012,2010)

31,24 D,K K Threat Hunt-
ing (Insider
Threat)

Non-specific

Identifying Compromised
Users in Shared Computing
Infrastructures: A Data-Driven
Bayesian Network Approach
[18] (2011)

23 D D Forensic
Investigation

University

Development of Cyber Security
Risk Model using Bayesian Net-
works [19] (2015)

21 D,K K Risk
Management

Nuclear

Studying Interrelationships of
Safety and Security for Soft-
ware Assurance in Cyber Phys-
ical Systems: Approach Based
on Bayesian Belief Networks
[20] (2013)

20 K K Risk
Management

Petroleum
(Oil)

Vulnerability Categorization
using Bayesian Networks [21]
(2009)

10 D D Vulnerability
Management
(Classifica-
tion)

Software

Quantitative Assessment of
Cyber Security Risk using
Bayesian Network-based
Model [22] (2009)

8 D D,K Risk
Management

Non-specific

A Bayesian Network Model for
Likelihood Estimations of Ac-
quirement of Critical Software
Vulnerabilities and Exploits [23]
(2015)

7 D,K D,K Governance Software

Analysis of the Digital Evidence
Presented in the Yahoo! Case
[24] (2009)

2 K K Forensic
Investigation

Law Enforce-
ment

Modeling Information System
Availability by using Bayesian
Belief Network Approach [25]
(2016)

1 D,K K Risk
Management

Non-specific

A Bayesian Network Model for
Predicting Data Breaches [26]
(2016)

0 D,K K Risk
Management

Health Care

Information Security Risk As-
sessment of Smartphones us-
ing Bayesian Networks [27, 28]
(2016,2015)

0,0 D,K K Risk
Management

Smartphone
(In Finland)

Bayesian Network Modelling
for Analysis of Data Breach in a
Bank [29] (2011)

0 D D Risk
Management

Banking

In Table 3.2, “Expert Knowledge (K)” refers to domain expert(s) and/or article’s author(s) knowledge and
“Empirical Data (D)” refers to observational or experimental evidence or data, either available directly to the
authors or derived from the literature.
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relatively kept low in the identified BN models in cyber security as 16 out of 17 BN models
have a node number lower than 40. On the other hand, the BN model developed by Shin
et al. exceeds the node number 40 [19]. However, the BN model developed by Shin et al.
is a combination of two networks. If it is not possible to keep the model structure shallow,
Marcot et al. suggested to break up the model into two or more networks [41]. Shin et
al. utilised this idea to prevent the dilution of interactions between the input and output
nodes.

3.3.4. TYPE OF THREAT ACTOR
We used the characteristic “Type of threat actor” because this will allow us to understand
whether the BN model in cyber security was developed with a focus on particular type of
threat actor(s). We classified threat actors as insider versus outsider [42]. Furthermore, we
also considered their intentions, which could be either malicious/deliberate or accidental
[42]. Figure 3.2 shows the general distribution of the BN models reviewed according to
the type of threat actors and their intent.

Figure 3.2: Characterization of Threat Actors in the BN Models Reviewed

From Figure 3.2, we infer that 4 out of 17 BN models are used only for problems
associated with insiders [15, 16, 26, 29]. In particular, we observe that 4 out of these 4 BN
models are appropriate for malicious insiders [15, 16, 26, 29], and only 1 out of these 4 BN
models is relevant for accidental insiders in addition to malicious insiders [26]. Holm et
al. developed a BN model with a focus on malicious outsider (professional penetration
tester) [23].

Importantly, there was no integrated BN model that considers problem(s) associated
with both insider and outsider type of threat actors, and their interactions. This type
of BN models would help to combat especially social engineering attacks, and outsider
collusion attacks [43]. Finally, there were 12 out of 17 BN models which did not focus on
any specific type of threat actor [11–14, 18–22, 24, 25, 28]. For instance, the BN model
developed by Pecchia et al. is used to identify compromised users in shared computing
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infrastructures based on alerts [18]. This model did not focus on any specific type of
threat actor, but rather focused on alerts which could be appropriate to any type of threat
actor. Therefore, we categorized it as ‘non-specific’.

3.3.5. APPLICATION AND APPLICATION SECTOR
We used the characteristic “Application” to understand the type of applications that
partially or completely benefit from these BN models. We used the Chief Information
Security Officer (CISO) mind map with CISO professional responsibilities as the basis to
classify the reviewed BN models based on their application [44]. In addition, we used
the characteristic “Application Sector” to identify the type of application sectors in which
these BN models were demonstrated. From Table 3.2, we infer that 10 out of 17 BN models
in cyber security completely or partially benefit Risk management. In addition, Forensic
investigation, Governance, Threat hunting, and Vulnerability management were the other
applications which completely or partially benefit from these BN models. From Table
3.2, we observe that the application sectors were quite diverse. However, 15 out of 17
BN models focused on the cyber security of Information Technology (IT) environment.
In contrast, 2 out of 17 BN models focused on the cyber security of Industrial Control
Systems (ICS) environment [19, 20].

Table 3.3: Scope of Variables used in the BN Models Reviewed

Authors Variables - Entities Variables - Key
Element(s) of
Cyber Security

Poolsappasit et al. [11] Mail server, DNS server, SQL server, NAT Gateway server,
Web server, Administrator machine, Local desktops

Technology

Frigault, Wang [12] N/A N/A
Liu, Man [13] Network hosts Technology
Kwan et al. [14] Seized computer Technology
Axelrad et al. [15] Employee People
Grietzer et al. [16, 17] Employee People
Pecchia et al. [18] User profile, Shared computing infrastructure People, Technology
Shin et al. [19] Organization (Management) checklist, Reactor Protector

System (RPS) components
Process, Technol-
ogy

Kornecki et al. [20] Components of ICS used to control oil pipeline flow Technology
Wang, Guo [21] Software Technology
Mo et al. [22] Organization (Management), Attack pathway Process, Technol-

ogy
Holm et al. [23] Software Technology
Kwan et al. [24] Suspect, Seized computer, Yahoo! email account, Internet

service provider
People, Technology

Ibrahimovic, Bajgoric [25] Organization (Management) Process
Wilde [26] Employee, Organization (Management), Mobile Device People, Process,

Technology
Herland et al. [27, 28] Smartphone Technology
Apukhtin [29] Employee, Organization (Management), Security controls People, Process,

Technology

3.3.6. SCOPE OF VARIABLES
We used the characteristic “Scope of Variables” to identify the entities to which the vari-
ables used in the reviewed BN models are related. In addition, we classify the variables
used in the reviewed BN models based on the key elements of cyber security. Cyber
security is a combination of three key elements: People, Process and Technology [45].

From Table 3.3, we observe that the variables used in the BN models that focus on the
cyber security of ICS environment did not consider the ‘people’ element of cyber security
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[19, 20]. Importantly, the variables used in these BN models are mainly related to the
technological components of ICS (‘Technology’ focussed) [19, 20]. In addition, we infer
that the variables used in 2 out of 4 BN models employed for the problems associated with
insiders consider the three key elements of cyber security [26, 29] which are application-
specific, whereas the variables used in 2 out of 4 BN models employed for the problems
associated with insiders take into account only the ‘people’ element of cyber security
[15, 16] which might be applicable to different organizations.

3.3.7. THE APPROACH(ES) USED TO VALIDATE MODELS

We used the characteristic “The approach(es) used to validate models” to identify the type
of validation approaches used in the reviewed BN models. Based on our analysis, we
observe that real-world case study [14, 24], cross-validation [15, 18], goodness of fit [16],
Monte-Carlo simulation [25], expert evaluation [26, 27], and sensitivity analysis [26, 29]
were the approaches used to validate the reviewed BN models. Importantly, there was
no validation performed in 8 out 17 BN models [11–13, 19–23]. Finally, there was only
one BN model which utilized several approaches such as sensitivity analysis, and expert
evaluation to perform the validation [26]. However, the reviewed BN models validated
different aspects depending on their objectives. For instance, Wilde [26] validated the
usefulness of their model in practice, whereas Herland et al.[27, 28] validated the accuracy
and completeness of the qualitative BN model.

Table 3.4: BN Model Purpose and Type of Purpose

Authors Model Purpose Type of Pur-
pose

Poolsappasit et al. [11] To quantify the chances of network compromise at various levels Predictive
Frigault, Wang [12] To determine the likelihood of attaining the goal state by exploiting

vulnerabilities in a network
Predictive

Liu, Man [13] To perform quantitative vulnerability assessment of a network of
hosts

Predictive

Kwan et al. [14] To reason about digital evidence in the BitTorrent case Diagnostic
Axelrad et al. [15] To predict degree of interest in a potentially malicious insider Predictive
Greitzer et al. [16, 17] To predict the psychosocial risk level of an individual Predictive
Pecchia et al. [18] To detect compromised users in shared computing infrastructures Diagnostic
Shin et al. [19] To evaluate the cyber security risk of the reactor protection system Predictive
Kornecki et al. [20] To jointly assess safety and security of a SCADA system used to con-

trol oil pipeline flow
Predictive

Wang, Guo [21] To categorise software security vulnerabilities Diagnostic
Mo et al. [22] To evaluate the security readiness of organizations Predictive
Holm et al. [23] To estimate the likelihood that a penetration tester is able to obtain

information about critical vulnerabilities and exploits for these vul-
nerabilities corresponding to a desired software and under different
circumstances

Predictive

Kwan et al. [24] To reason about digital evidence in the Yahoo! Case Diagnostic
Ibrahimovic, Bajgoric [25] To predict information system availability Predictive
Wilde [26] I. To predict the probability of a data breach caused by a group of

insiders who lose employee- and employer-owned mobile devices or
misuse the employer-owned mobile devices, II. To help health care
organizations determine which additional measures they should take
to protect themselves against data breaches caused by insiders.

Predictive,
Diagnostic

Herland et al. [27, 28] To assess information security risks related to smartphone use in Fin-
land

Predictive

Apukhtin [29] To predict the probability of a data breach in a bank caused by a ma-
licious insider

Predictive
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3.3.8. MODEL PURPOSE AND TYPE OF PURPOSE
We used the characteristic “Model Purpose” to point out the problems that were tackled
using BN models in cyber security. In addition, we used the characteristic “Type of
Purpose” to identify the corresponding category of model purpose. Table 3.4 highlights
the authors of the BN model, the corresponding purpose of the BN model, and the
corresponding type based on the model purpose.

From Table 3.4, we observe that the reviewed BN models in cyber security were mainly
used for two types of purposes based on their model purpose: I. Diagnostic: To reason
from effects to causes, and II. Predictive: To reason from causes to effects. Importantly, 13
out of 17 BN models in cyber security were used for predictive purposes.

3.4. DISCUSSION
In the previous section, we identified key usage patterns of BNs in cyber security. This
section discusses potential reasons for the key findings and suggests future research
directions.

There is an emphasis on problems associated with insiders compared to outsiders
in the use of standard BN models in cyber security. In general, this emphasis could be
due to the most significant threat posed by insiders. This was elucidated by IBM’s cyber
security intelligence index which concluded that 60% of all attacks were carried out by
insiders [46]. In connection with the use of standard BNs, the availability of characteristics
associated with insiders in the literature provided a good starting point to determine
appropriate variables and their relationships which form an integral part of a standard BN.
In addition, the variables and their relationships determined from the literature were fine-
tuned and/or complemented with other suitable variables based on expert knowledge in
a few instances. This is one of the major advantages of standard BNs described in Section
3.1 which is the ability to combine different sources of knowledge. This could be the
rationale behind the predominant use of standard BNs for problems associated with the
insiders.

Special importance is given to problems associated with malicious insiders compared
to accidental insiders in the use of standard BN models in cyber security. In general, this
could be due to the fact that malicious insiders are more natural than accidental insiders
in security contexts, as malicious insiders have a clear intent of compromising security,
while accidental insiders do not. Moreover, malicious insiders have been shown to be the
cause of more incidents than accidental insiders, as it was demonstrated by IBM’s cyber
security intelligence index which concluded that 44.5% of attacks were carried out by
malicious insiders, and accidental insiders were responsible for 15.5% of attacks [46]. In
order to use standard BNs for problems associated with accidental insiders compared to
malicious insiders, it is important to identify features associated with accidental insiders
in the literature to determine appropriate variables and their relationships, which form
an essential part of a standard BN. There are studies which identify features associated
with accidental insiders in the literature [43, 47]. Once the appropriate variables and their
relationships are determined for problems associated with accidental insiders, this could
always be updated based on expert knowledge. It would also be useful to explore variables
and their relationships in the reviewed BN models that focus on problems associated with
malicious insiders, as some of the indicators might also apply for problems associated
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with accidental insiders [43].

The focus on insiders may also explain why there is little research on applications
in the ICS domain. The reviewed BN models that focus on problems associated with
the insiders might not be suitable for ICS environments, especially for control rooms
with an operator. This is prevalent in control rooms that are used to operate sluices in
the Netherlands. Not accepting feedback, Anger management issues, Confrontational
issues, Counterproductive behaviour towards individuals (CPB-I), Counterproductive
behaviour towards the organization (CPB-O) were some of the variables used in the
reviewed BN models [15, 16]. Most of these variables might be measured/observed based
on interactions of the particular individual with the co-workers. However, this would
not be possible in the control rooms where there would be no co-worker. It would be
interesting to explore in the future whether the variables and their relationships in the
reviewed BN models focused on problems associated with the insiders are suitable for
ICS environment, and also whether the size of the organization in which the BN model
would be applied have an effect on these variables and their relationships. In general, the
limited use of standard BN models in cyber security on problems associated with ICS
environment could be due to the shortage of ICS security expertise [48] as majority of
the reviewed BN models relied on expert knowledge especially to construct DAGs and
populate CPTs.

There is no integrated BN model which takes into account the problem(s) associated
with both insiders and outsiders, and their interactions. The German steel mill incident is
a typical example of a cyber-attack which involves both accidental insiders and malicious
outsiders, and their interactions [49]. As an initial step, the adversaries used both the
targeted email and social engineering techniques to acquire credentials for the plant’s
office network. Later, once they acquired credentials for the plant’s office network, they
worked their way into the plant’s control system network and caused damage to the blast
furnace. Standard BNs would help to tackle problem(s) associated with both insiders and
outsiders, and their interactions, for instance a standard BN model that could predict the
probability of an individual being deceived by outsider(s) to cause a cyber-attack in an
organization, given certain risk factors and symptoms. This BN model would especially
help to identify vulnerable individuals in an organization against social engineering at-
tacks, and effective measures which could reduce the likelihood of an individual deceived
by outsiders to cause a cyber-attack in an organization.

It is evident that the initial attempts in the use of standard BN models in cyber security
were using BAG-based standard BN models [11–13]. BAG-based standard BN model
combines acyclic attack graph which acts as the DAG with computational procedures of
BN. Attack graph is one of the extensively used approaches in security modeling which
was introduced in 1998 [10, 50]. The use of BAG-based standard BN models in the intial
attempts could be due to practicality. It could be practical to build attack graphs first
which had been extensively studied in this domain and use BN computational procedures
for quantification during the early stages in the use of standard BN models in cyber
security. Similarly, there were attempts in the safety domain which mapped fault tree to
BN [51, 52]. Importantly, BAG-based standard BN models model static systems. Therefore,
they are not directly applicable to multi-step attacks.

Risk management, forensic investigation, governance, threat hunting, and vulnera-
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bility management were the applications of standard BNs in cyber security. However, it
would also be useful to investigate the potential of standard BNs to benefit other applica-
tions. Chockalingam et al. highlighted the importance of integrating safety and security
especially in the context of modern ICS [53]. BNs possess the potential to develop an
integrated BN model that could diagnose the root cause of an abnormal behavior in the
ICS especially whether the abnormal behavior is caused by an attack (security-related) or
technical failure (safety-related) by taking into account certain risk factors and symptoms.
This would allow the operator(s) to point out the best possible response strategy. For
instance, the process of routing traffic through a scrubbing center would be a suitable
response strategy for a Distributed Denial of Service (DDoS) attack whereas this may not
be an appropriate response strategy for a sensor failure.

The sources of empirical data used to construct DAGs and populate CPTs include:
literature, incidents data, NVD, OSVDB, and exploithub. It is important to identify other
domain-specific empirical data sources which would help to develop realistic models in
cyber security. For instance, Capture-The-Flag (CTF) events like SWaT security showdown
(S3) [48] could be a potential data source to construct DAGs and populate CPTs. CTF
events could generate datasets that are realistic in nature [54]. However, this could have
been overlooked because the data generated in these events would be in most cases
specific to that particular system, and the quality of data generated could depend on the
participants.

3.5. CONCLUSIONS AND FUTURE WORK
In this study, we have identified 17 standard BN models in cyber security. Based on the
analysis, we identified important patterns in the use of standard BN models in cyber
security.

• The standard BN models in cyber security were significantly used for problems
associated with malicious insiders.

• There is an emphasis on the use of standard BN models in cyber security for prob-
lems associated with IT environment compared to ICS environment. In addition,
the standard BN models that focus on the cyber security of ICS environment did
not consider the ‘people’ element of cyber security. This implies that there is no
standard BN model which deal with problem associated with insiders in ICS envi-
ronment.

• There is a lack of standard BN models usage for problems associated with insiders
and outsiders, and their interactions.

• Expert knowledge, and empirical data predominantly from literature were the data
sources utilised to construct DAGs and populate CPTs.

• The standard BN models in cyber security completely or partially benefited risk
management, forensic investigation, governance, threat hunting, and vulnerability
management.
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• The approaches used to validate standard BN models in cyber security were real-
world case study, cross-validation, goodness of fit, monte-carlo simulation, expert
evaluation, and sensitivity analysis.

These patterns in the use of standard BN models in cyber security would help to make
full use of standard BNs in cyber security in the future especially by pointing out the
current trends, limitations and future research gaps.

In the future, it is important to investigate whether the BN models used for problems
associated with insiders are applicable for ICS environments, especially for a control
room with an operator. It would be useful to demonstrate the capacity of standard BNs
to tackle problems associated with both insiders and outsiders, and their interactions
like social engineering attacks, collusion attacks. It would be intriguing to investigate
how to deal with multi-step attacks using standard BNs. The potential of alternative data
sources like model simulations, CTF events to construct DAGs and populate CPTs in cyber
security also needs to be explored, as well as the capability of standard BNs to completely
or partially benefit the other applications in cyber security.
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COMBINING BAYESIAN NETWORKS

AND FISHBONE DIAGRAMS TO

DISTINGUISH BETWEEN

INTENTIONAL ATTACKS AND

ACCIDENTAL TECHNICAL

FAILURES*

4.1. INTRODUCTION
Today’s society depends on the seamless operation of Critical Infrastructures (CIs) in
different sectors such as energy, transportation, and water management, which is essential
to the success of modern economies. Over the years, CIs have heavily relied on Industrial
Control Systems (ICS) to ensure efficient operations, which are responsible for monitoring
and steering industrial processes as, among others, water treatment and distribution, and
flood control.

Modern ICS no longer operates in isolation, but uses other networks to facilitate and
improve business processes [1]. For instance, ICS uses internet to facilitate remote access
to vendors and support personnel. This increased connectivity, however, makes ICS
more vulnerable to cyber-attacks. The German steel mill incident is a typical example
of a cyber-attack in which adversaries made use of corporate network to enter into the

*This chapter has been published as Chockalingam, S., Pieters, W., Teixeira, A., Khakzad, N., and van Gelder,
P.: “Combining Bayesian Networks and Fishbone Diagrams to Distinguish between Intentional Attacks and
Accidental Technical Failures,” International Workshop on Graphical Models for Security, pp. 31 – 50, 2018.
Springer, Cham. https://doi.org/10.1007/978-3-030-15465-3_3
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ICS network [2]. As an initial step, the adversaries used both the targeted email and
social engineering techniques to acquire credentials for the corporate network. Once they
acquired credentials for the corporate network, they worked their way into the plant’s
control system network and caused damage to the blast furnace.

It is essential to distinguish between (intentional) attacks and (accidental) technical
failures that would lead to abnormal behavior in a component of the ICS and take suitable
measures. However, there are challenges to achieve these goals. One particularly impor-
tant challenge is that the abnormal behavior in a component of the ICS due to attacks is
often initially diagnosed as a technical failure [3]. This could be due to the imbalance in
the frequency of attacks and technical failures. On the other hand, this could be based
on one of the myths of ICS security: “our facility is not a target" [4]. In most cases, the
initiation of response strategy aimed at technical failures would be ineffective in case
of a targeted attack, and may lead to further complications. For instance, replacing a
sensor that is sending incorrect measurement data with a new sensor would be a suitable
response strategy to technical failure of a sensor. However, this may not be an appropriate
response strategy to an attack on the sensor as it would not block the corresponding at-
tack vector. Furthermore, the initiation of inappropriate response strategies would delay
the recovery of the system from adversaries and might lead to harmful consequences.
Noticeably, there is a lack of decision support to distinguish between attacks and technical
failures.

Bayesian Networks (BNs) can be potentially used to tackle the challenge of distin-
guishing attacks and technical failures as they enable diagnostic reasoning, which could
help to identify the most likely cause of an event based on certain symptoms (or effects)
[5]. The diagnostic inference capability of BN has been widely employed in real-world
applications especially in medical diagnosis [6], and fault diagnosis [7]. However, BNs are
difficult to interpret for ICS domain experts and are therefore unsuitable for extracting the
necessary knowledge. Conversely, fishbone diagrams are easy-to-use for brainstorming
with experts [8], but lack essential capacities for diagnostic inference. Therefore, fishbone
diagrams can be potentially combined with BNs to suit the purposes of present challenge.
This research aims to provide decision support for distinguishing between attacks and
technical failures by addressing the research question: “How could we combine Bayesian
Networks and Fishbone Diagrams to find out whether an abnormal behavior in a compo-
nent of the ICS is due to (intentional) attack or (accidental) technical failure or neither?".
The research objectives are:

• RO1. To develop a framework for constructing BN models for determining the
major cause of an abnormal behavior in a component of the ICS.

• RO2. To leverage fishbone diagrams for knowledge elicitation within our BN frame-
work, and demonstrate the application of the developed methodology via a case
study.

The scope of our BN framework development is the choice of appropriate types
of variables and relationships between the determined variables. Firstly, we identify
appropriate types of variables from existing diagnostic BN models in other domains
and adapt them to the purposes of the present study (i.e., distinguishing attacks and
technical failures); accordingly, the relationships between the selected variables should
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be established. Furthermore, we provide a systematic method for incorporating fishbone
diagrams within our BN framework to effectively elicit knowledge from different sources.

The remainder of this study is structured as follows: Section 4.2 provides an essential
foundation of diagnostic BNs and previous related work, followed by an overview of the
state-of-the-art regarding fishbone diagrams in Section 4.3. In Section 4.4, we illustrate
the different layers and components of ICS and describe the case study in the water man-
agement domain that is used to demonstrate our proposed methodology. In Section 4.5,
our BN framework is developed with appropriate types of variables and the relationships
between these variables are established. Furthermore, we demonstrate the application of
the developed methodology to a case study in the water management domain in Section
4.5. Section 4.6 presents the conclusions and future work directions.

4.2. DIAGNOSTIC BAYESIAN NETWORKS

This section explains diagnostic BNs with an example, and reviews existing diagnostic
BNs in different domains. BNs belong to the family of probabilistic graphical models
[9]. BNs consist of a qualitative and a quantitative part [10]. The qualitative part is a
directed acyclic graph consisting of nodes and edges. Each node represents a random
variable, while the edges between the nodes represent the conditional dependencies
among the random variables. The quantitative part takes the form of a priori marginal
and conditional probabilities so as to quantify the dependencies between connected
nodes. An example of a BN model, representing the causal relationships between the
risk factor “Smoking", the diseases “Bronchitis" and “Lung Cancer", and the symptoms
“Shortness of Breath" and “Fatigue", is shown in Figure 4.1(a).

When more evidence or information becomes available for some variables in the BN,
the probabilities of other variables in the BN could be updated. This is called probability
propagation, inference, or belief updating [5]. In the example shown in Figure 4.1(b),
the physician provides the evidence (via observation or supposition) for the symptoms
“Shortness of Breath = False" and “Fatigue = True". Based on such evidence, the BN
computes the posterior (updated) probabilities of the other nodes using Bayes’ theorem.
The BN in Figure 4.1(b) determines that the absence of shortness of breath and the
presence of fatigue are more likely due to lung cancer than bronchitis. In this case, we
had evidence for symptoms (or effects) and inferred the most likely cause. This is called
diagnostic or bottom-up reasoning. BNs also support three other types of reasoning: (i)
Predictive or top-down: reasoning from causes to symptoms, (ii) Intercausal: reasoning
about mutual causes of a common effect, and (iii) Combined: combination of different
types of the above-mentioned reasoning [5].

BN models have widely been used for diagnostic analysis in different domains in-
cluding agriculture [11], cyber security [12–15], health care [16–22], and transportation
[23–25]. Chen et al. [11] proposed a two-layer BN for maize disease diagnosis. In their
model, the upper layer consists of diseases and the lower layer consists of symptoms.
However, their BN model did not take into account other variables like risk factors. In this
case, it could be difficult to diagnose a particular disease among other potential diseases
with the same symptoms.
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(a) (b)

Figure 4.1: (a) A Typical BN Model for Disease Diagnosis. (b) Updated Probabilities Given Observed Symptoms
(Evidence).

Pecchia et al. [12] developed a two-layer naïve BN model for detecting compromised
users in shared computing infrastructures. In their model, the upper layer consists of a hy-
pothesis variable “the user is compromised" while the lower layer consists of information
variables. When more evidence or information becomes available for the information
variables, this BN would help to diagnose whether the user has been compromised. In
contrast to the BN model developed by Chen et al. [11], the upper layer consists of only
one variable.

Oniśko et al. [16] proposed a three-layer BN for multiple-disorder diagnosis. In their
model, the upper layer consists of risk factors, the middle layer consists of disorders,
and the lower layer consists of symptoms and test results. In contrast to the BN models
developed by Chen et al. [11] and Pecchia et al. [12], their BN model takes into account
risk factors. Curiac et al. [17] also proposed a similar three-layer BN model for psychiatric
disease diagnosis.

Huang et al. [23] proposed a four-layer BN for fault diagnosis of vehicle infotainment
system. In their work, the upper layer consists of root causes, the middle layer consists of
intermediate nodes which are usually the group or category of the root causes, and two
lower layers being distinguished with different colours. One of the lower layers consists
of observations (or test results) while the other consists of a symptom. In contrast to
the BN models proposed by Oniśko et al. [16] and Curiac et al. [17], their BN model
did not take into account risk factors. On the other hand, their BN model considered
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observations (or test results) and symptom as separate layers. The observations (or test
results) nodes could better help the diagnostic technicians who were not familiar with the
list of diagnostic tests to be performed for diagnosing a particular root cause in the BN.
The accuracy of posterior probabilities of non-evidenced variables in the BN would be
improved as the observations (or test results) would make more evidence or information
available based on the results of diagnostic tests performed.

Huang et al. [23] defined symptom as the failure symptom reported by the customer
such as “no-sound", “no-display" in their vehicle infotainment system. In addition,
they defined observations as any information useful for allocating the root causes such
as those mentioned in the customer’s reports or the outcomes of tests performed by
diagnostic technicians. However, there is no clear distinction between the information
from customer’s reports that could be used to determine the observation nodes and a
symptom node in the BN construction.

4.3. FISHBONE DIAGRAMS

This section explains fishbone diagrams, and highlights their application in both safety
and security. Fishbone diagrams help to systematically identify and organise the possible
contributing factors (or sub-causes) of a particular problem [8, 26–29]. Figure 4.2 shows
the generic structure of a fishbone diagram, consisting of a problem and its possible
contributing factors (or sub-causes) sorted and related under different categories. Each
category represents the major cause of the problem. The categories used in the fishbone
diagram depend on the classification scheme used for that application. In general, the
arrows in the fishbone diagram represent the causal relation between the causes and
the problem (effect). The major advantages of fishbone diagram include: (i) fishbone
diagrams are easily adaptable based on the discussions during brainstorming sessions [8],
(ii) fishbone diagram encourages and guides data collection by showing where knowledge
is lacking [8, 26], (iii) fishbone diagram structure stimulates group participation [8, 26],
(iv) fishbone diagram structure helps to stay focused on the content of the problem during
brainstorming sessions [8].

Figure 4.2: Generic Fishbone Diagram Structure
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Fishbone diagrams are used in security and safety applications [30–33]. Asllani et
al. [30] used fishbone diagrams to identify possible contributory factors of network
failure/intrusions, and used six different categories to sort and relate contributory factors.
For instance, they considered the problem as “Network Failure/Intrusions" and one of
the potential contributory factors as “Antivirus Update" under the category “Processes".
This implies that not updating antivirus could contribute to network failure/intrusions.
Zhao et al. [31] used fishbone diagrams to illustrate possible contributory factors of tower
crane accidents under five different categories. Luca et al. [32] used fishbone diagrams
to illustrate possible contributory factors of noisy functioning of an automotive flue gas
system under four different categories. Zhu et al. [33] used fishbone diagrams to illustrate
possible contributory factors of crude oil vapors explosion in the drain under six different
categories.

4.4. INDUSTRIAL CONTROL SYSTEMS
In this section, we illustrate the three different layers and major components in each layer
of ICS. Furthermore, we provide an overview of a case study in the water management
domain.

4.4.1. ICS ARCHITECTURE

Figure 4.3: Typical ICS Architecture and Layers
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Domain knowledge on ICS is the starting point for the development and application
of our BN framework. A typical ICS consists of three layers: (i) Field instrumentation
layer, (ii) Process control layer, and (iii) Supervisory control layer [34], bound together by
network infrastructure, as shown in Figure 4.3.

The field instrumentation layer consists of sensors (Si ) and actuators (Ai ), while the
process control layer consists of Programmable Logic Controllers (PLCs)/Remote Termi-
nal Units (RTUs). Typically, PLCs have wired communication capabilities whereas RTUs
have wired or wireless communication capabilities. The PLC/RTU receives measure-
ment data from sensors, and controls the physical systems through actuators [35]. The
supervisory control layer consists of historian databases, software application servers,
Human-Machine Interface (HMI), and workstation. The historian databases and software
application servers enable the efficient operation of the ICS. The low-level components
are configured and monitored with the help of workstation and HMI, respectively [35].

4.4.2. CASE STUDY OVERVIEW

This case study overview is based on a site visit to a floodgate in the Netherlands. Some
critical information has purposely been anonymised for security concerns. Figure 4.4
schematises a floodgate being primarily operated by Supervisory Control and Data Acqui-
sition (SCADA) system along with an operations centre.

Figure 4.4: Physical Layout of the Floodgate

Figure 4.5 illustrates the SCADA architecture of the floodgate. The sensor (S1) (which
is located near the floodgate) is used to measure the water level. There is also a water
level scale which is visible to the operator from the operations centre. The sensor mea-
surements are then sent to the PLC. If the water level reaches the higher limit, PLC would
send an alarm notification to the operator through the HMI, and the operator would need
to close the floodgate in this case. The HMI would also provide information like the water
level and the current state of the floodgate (open/close). The actuator opens/closes the
floodgate.
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Figure 4.5: SCADA Architecture of the Floodgate

4.5. DEVELOPMENT AND APPLICATION OF THE METHODOL-
OGY

In this section, we describe our framework with the type of variables and their relation-
ships. Furthermore, we use an illustrative case of a floodgate in the Netherlands to explain
how we combine BN and fishbone diagram to distinguish between (intentional) attacks
and (accidental) technical failures.

4.5.1. FRAMEWORK FOR DISTINGUISHING ATTACKS AND TECHNICAL FAIL-
URES

The developed BN framework is grounded in BN models used for diagnostic purposes in
different domains [12, 16, 17, 23]. Studying the aforementioned diagnostic BN models in
Section 4.2, we adopted and customised a set of variables to develop our BN framework.
The type of variables which we adopted are: (i) risk factors [16, 17], (ii) hypothesis [12],
and (iii) observations (or test results) [23].

Pecchia et al. [12] used a hypothesis variable in their BN model as a classifier node
to classify whether the user is compromised or not in shared computing infrastructures.
We adopted the notion of a classifier node from Pecchia et al. [12] as it is the basis to the
purposes of the present study. However, we defined it as the problem variable as it is an
abnormal behavior in a component of the ICS (observable problem) in our work. For
instance, the sensor (S1) sends incorrect water level measurements. The purpose of the
hypothesis variable in Pecchia et al. is to determine whether the user is compromised
or not in sharing computing infrastructures, whereas in our work it is used to determine
the major cause of the problem. An abnormal behavior in the technological components
could be mainly caused by intentional attacks, accidental technical failures, human
errors, or natural disasters [36]. However, the main objective of our study is to distinguish
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between attacks and technical failures. Therefore, we considered intentional attack and
accidental technical failure as major causes of the problem. In addition, we introduced
a category “others" in case the major cause of the problem is neither intentional attack
nor accidental technical failure. For instance, the sensor (S1) is misplaced in a different
location by an operator. In this case, the major cause of the problem is human error and
would thus be determined as “others".

Figure 4.6: BN Structure to Determine the Major Cause of an Abnormal Behavior in a Component of the ICS

Oniśko et al. [16] and Curiac et al. [17] defined risk factors as the factors that would
increase the likelihood of a disease. We, accordingly, adopted the term risk factors, and
defined them as contributory factors since they contribute to the major cause of the
problem in our work. For instance, “weak physical access-control" could contribute to the
sensor (S1) sending incorrect water level measurements due to an attack. Furthermore,
there might be common contributory factors to different major causes of the problem.
For instance, “outdated technology" could contribute to both the sensor (S1) sending
incorrect water level measurements due to an attack and a technical failure.

In general, observations (or test results) play an important role in diagnostics. Huang
et al. [23] defined observations as any information useful for allocating the root causes
such as those mentioned in the customer’s reports or the outcomes of tests performed
by diagnostic technicians. We defined observations (or test results) as any information
useful for determining the major cause of the problem based on the outcomes of tests.
For instance, the outcome of the test “whether the sensor (S1) sends correct water level
measurements after cleaning the sensor (S1)?" would provide an additional information
to determine the major cause (accidental technical failure) of the problem accurately.
The observation (or test results) variables can be elicited from different sources such as
experts, product manuals, and previous incident reports. For instance, the global water
level sensor WL400 product manual lists troubleshooting tests for incorrect water level
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measurements due to (accidental) technical failures [37]. One of the troubleshooting tests
listed in the product manual is to clean the sensor following the maintenance instructions
and check whether the sensor sends correct water level measurements. Figure 4.6 shows
the BN structure to build BN models for determining the major cause of an abnormal
behavior in a component of the ICS, representing the causal relationship between the
contributory factors, the problem, and the observations (or test results).

4.5.2. COMBINING BAYESIAN NETWORKS AND FISHBONE DIAGRAMS

Knowledge elicitation plays an important role to construct BN model especially with
the appropriate variables for the considered problem [38, 39]. There are challenges
to solely rely on BN for knowledge elicitation. For instance, BN is not easy-to-use for
brainstorming with domain experts as it could be time-consuming to explain the notion of
BN and also to change its structure instantly based on discussions during brainstorming
sessions. Notably, expert knowledge is one of the predominant data sources utilised to
build BN structure with appropriate variables especially in domains where there is a
limited availability of data like cyber security [40]. Therefore, our framework would be
incomplete without an effective method for knowledge elicitation.

In our work, fishbone diagram is used as the foundation to develop an effective
method for knowledge elicitation especially based on their advantages stated in Section
4.3. Furthermore, there are additional benefits in the use of fishbone diagram in our work.
We would mainly rely on experts from two different domains in addition to other sources
for knowledge elicitation to construct BN models: (i) security, dealing with intentional
attacks, and (ii) safety, dealing with accidental technical failures. In case we start building
a BN model directly without utilising the fishbone diagram to elicit data from experts, it
would be difficult to visualise which contributory factors and observations (or test results)
corresponds to each major cause of the problem. This could make it difficult for the
experts especially during brainstorming sessions. The fishbone diagram structure shows
the potential to tackle this challenge. In some cases, there might be common contributory
factors. For instance, “outdated technology" is a common contributory factor to two
major causes of the problem (i.e., “outdated technology" could contribute to the sensor
(S1) sending incorrect water level measurements due to both “intentional attack" and
“accidental technical failure"). If we start building a BN model directly without utilising
the fishbone diagram to elicit data from experts, this could lead to duplication of common
contributory factors using different terminologies in the BN.

In addition, BN structure is not easily changeable especially with a large number
of contributory factors and observations (or test results) elicited from experts during
brainstorming sessions. The fishbone diagram structure makes it easier to refine/update
a large number of contributory factors and observations (or test results) instantly based
on discussions during brainstorming sessions with experts. It would also help to visualise
contributory factors and observations (or test results) from other sources such as literature
and previous incidents. Finally, we can convert the constructed fishbone diagram into a
corresponding BN model after the completion of knowledge elicitation to constitute the
quantitative part of the corresponding BN model.
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4.5.3. EXTENDED FISHBONE DIAGRAMS AND TRANSLATED BNS

We considered the example problem “sensor (S1) sends incorrect water level measure-
ments" as it could develop more complex situations in the case of floodgate. In case the
floodgate closes when it should not based on the incorrect water level measurements sent
by the sensor (S1), it would lead to severe economic damage, for instance, by delaying
cargo ships. On the other hand, in case the floodgate opens when it should not due to
incorrect water level measurements sent by the sensor (S1), it would lead to flooding.

Figure 4.7: Fishbone Diagram Example

Figure 4.7 shows a fishbone diagram based on the example mentioned above. We
considered “sensor (S1) sends incorrect water level measurements" as the problem. Fur-
thermore, we considered two major causes of the problem: intentional attack and acci-
dental technical failure as mentioned earlier. These major causes of the problem would
be the categories in our fishbone diagram. Finally, we mapped the appropriate contrib-
utory factors under each category. In this case, “outdated technology" is the common
contributory factor that could contribute to sensor (S1) sending incorrect water level
measurements due to intentional attack and accidental technical failure. In this case, we
listed “weak physical access-control" as one of the contributory factors in the category
of intentional attack. This is because weak physical access-control could contribute to
sensor (S1) sending incorrect water level measurements due to an intentional attack.

Noticeably, fishbone diagrams do not consist of observations (or test results), which
need to be elicited in our work. However, we could extend the fishbone diagram to incor-
porate observations (or test results) as shown in Figure 4.8. This would allow us to elicit
complete information needed to construct BN models especially with the three different
types of variables and cause-effect relationships in our BN framework. The extended
fishbone diagram is shown in Figure 4.8 with an additional component: observations (or
test results). The arrows in the fishbone diagram represent the causal relationship. The
categories stated on the left side of the problem in the fishbone diagram are the major
causes of the problem. Therefore, these categories has the arrows directing towards the
problem which represent the causal relationship between the causes and the problem.
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However, the categories stated on the right side of the problem are used for reference to
elicit observations (or test results) that would be useful for determining the particular ma-
jor cause of the problem. Figure 4.9 shows the extended version of our fishbone diagram
example with observations (or test results).

Figure 4.8: Extended Fishbone Diagram Structure

Figure 4.9: Extended Fishbone Diagram Example

Extended fishbone diagrams might look similar to qualitative bowtie diagrams, but,
they are different. The observations (or test results) on the right side of the problem node
in the extended fishbone diagram help distinguish between different events (intentional
attack and accidental technical failure), Whereas bowtie diagrams are aimed at repre-
senting the possible consequences of a fixed event. Furthermore, qualitative bowties [41]
consider recovery measures/reactive controls on the right side of the problem node. This
is not relevant to our application because we focus on diagnostics. On the other hand,
extended fishbone diagrams consider preventive controls/barriers implicitly on the left
side of the problem node, as part of the contributory factors. For instance, “weak physical
access-control for the sensor" is one of the contributory factors. The evidence supplied
by the operator in the BN for this node would depend on the preventive controls/barriers
that are in place. In case there are physical access-control measures implemented in that
specific application, the operator would supply the evidence as ‘No’ for this node in the
BN.
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Figure 4.10: Translated BN from Fishbone Diagram Example

Once the fishbone diagram is developed, it should be translated to a BN based on the
following steps:

1. The considered problem in the fishbone diagram is mapped to the problem variable
in the middle layer of the BN as shown in Figure 4.10.

2. The categories used in the fishbone diagram would be states of the problem variable
in our BN. In addition to these states, there would be an additional state “Others" in
our BN. As mentioned in Section 4.5.1, this would be determined in case the major
cause of the problem is neither intentional attack nor accidental technical failure.

3. The elicited contributory factors in the fishbone diagram are mapped to the con-
tributory factor variables in the upper layer of the BN as shown in Figure 4.10.
The contributory factors that correspond to both intentional attack and accidental
technical failure in the fishbone diagram would be treated as a single contributory
factor in the BN. For instance, “outdated technology" in our example would be
treated as a single contributory factor in BN as shown in Figure 4.10. However,
the contributory factors that correspond to both intentional attack and accidental
technical failure would be reflected through the conditional probabilities of “sensor
(S1) sends incorrect water level measurements". We considered the contributory
factors as binary discrete variables based on their features. However, continuous
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variables could also have been used. We utilised the states “Yes" and “No" for our
contributory factors as shown in Figure 4.10.

4. The elicited observations (or test results) in the fishbone diagram are mapped to
the observations (or test results) in the lower layer of the BN as shown in Figure 4.10.
We considered the observations (or test results) as binary discrete variables based
on their characteristics. We employed the states “Yes" and “No" for our observations
(or test results) as shown in Figure 4.10.

Once the fishbone diagram is translated to a corresponding BN model, the quantitative
part of the BN should be populated. Due to limited data availability, expert knowledge
is the predominant data source used to populate CPTs of BNs in cyber security [40]. In
our work, we did not investigate whether fishbone diagrams could be used as a means to
elicit probabilities from experts as our main objective is to elicit appropriate variables in
the construction of the BN structure for the considered problem.

However, it is important to investigate whether fishbone diagrams could be used to
elicit CPTs from experts in the future. The translated BN with illustrative priori marginal
and conditional probabilities, representing the causal relationships between the con-
tributory factors, the problem, and the observations (or test results), is shown in Figure
4.11.

Once the quantitative part of the BN is populated, the BN could be used in practice for
different scenarios and their probabilities could be updated based on evidences obtained.
In the example shown in Figure 4.11, we provided the evidence for the contributory factors
“Weak Physical Access Control = Yes", “Outdated Technology = Yes", “Poor Maintenance =
No" and “Sensor without Self-diagnostic Function = No", and observation (or test result)
“Abnormalities in the other locations = Yes". Based on such evidence, the BN computes
the posterior (updated) probabilities of the other nodes. The BN in Figure 11 determines
that the problem “Sensor (S1) sends incorrect water level measurements" is most likely
due to (intentional) attack based on the evidence provided.
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Figure 4.11: Translated BN with Updated Probabilities Based on the Evidence
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4.6. CONCLUSIONS AND FUTURE WORK
Adequate decision support for distinguishing intentional attacks and accidental tech-
nical failures is missing. In this study, we customised and utilised three different types
of variables from existing diagnostic BN models in a BN framework to construct BN
models for distinguishing intentional attacks and accidental technical failures. In our
BN framework, the upper layer consists of contributory factors, the middle layer con-
sists of a problem variable and the lower layer consists of observations (or test results).
Furthermore, we extended and combined fishbone diagram with our BN framework to
support knowledge elicitation from different sources. The important characteristics of
our framework include: (i) it serves as a basis to provide decision support for responding
to safety and security problems arise in the components of ICS, (ii) While determining
the most likely cause of an abnormal behavior in a component of the ICS, it helps to
consider both the contributory factors and observations (or test results) associated with
it, and (iii) it facilitates knowledge elicitation especially from experts and its integration in
BNs. Finally, we demonstrated the use of the developed methodology with an example
problem “sensor (S1) sends incorrect water level measurements" based on a case study in
water management domain.

This work belongs to the broader theme of “Integrated safety and security". There are
several studies within the sub-theme of “Integrated safety and security risk assessment"
[42]. However, this work is associated with the sub-theme of “Integrated safety and
security diagnostics", which mainly deals with the problem of distinguishing intentional
attacks and accidental technical failures.

In the future, it would be useful to investigate whether fishbone diagrams could be
used to elicit CPTs. The developed methodology would not be directly applicable when
several problems arise at the same time. Therefore, it is important to address how fishbone
diagrams could be used to elicit knowledge for those cases in the future and how it could
be translated to a corresponding BN. Furthermore, we aim to evaluate our methodology
based on applications in the water management domain.
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PROBABILITY ELICITATION FOR

BAYESIAN NETWORKS TO

DISTINGUISH BETWEEN

INTENTIONAL ATTACKS AND

ACCIDENTAL TECHNICAL

FAILURES*

5.1. INTRODUCTION
Modern societies rely on proper functioning of Critical Infrastructures (CIs) in different
sectors such as energy, transportation, and water management which is vital for eco-
nomic growth and societal wellbeing. Over the years, CIs have become over-dependent
on Industrial Control Systems (ICSs) to ensure efficient operations, which are respon-
sible for monitoring and steering industrial processes as, among others, electric power
generation, automotive production, and flood control. ICSs were originally designed for
isolated environments [1]. Such systems were mainly susceptible to technical failures.
The blackout in the Canadian province of Ontario and the North-eastern and Mid-western
United States is a typical example of a technical failure in which the absence of alarm due
to software bug in the alarm system left operators unaware of the need to redistribute
power [2]. However, modern ICSs no longer operate in isolation, but use other networks
to facilitate and improve business processes [3]. This increased connectivity, however,

*This chapter is submitted to a Journal as Chockalingam, S., Pieters, W., Teixeira, A., and van Gelder, P.: “Prob-
ability Elicitation for Bayesian Networks to Distinguish between Intentional Attacks and Accidental Technical
Failures”
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makes ICSs more vulnerable to cyber-attacks apart from technical failures. A cyber-attack
on a German steel mill is a typical example in which adversaries made use of corporate
network to enter into the ICS network [4]. As an initial step, the adversaries used both the
targeted email and social engineering techniques to acquire credentials for the corporate
network. Once they acquired credentials for the corporate network, they worked their
way into the plant’s control system network and caused damage to the blast furnace.

It is essential to distinguish between attacks and technical failures that would lead
to abnormal behavior in the components of ICSs and take suitable measures. In most
cases, the initiation of response strategy presumably aimed at technical failures would be
ineffective in the event of a targeted attack, and may lead to further complications. For
instance, replacing a sensor that is sending incorrect measurement data with a new sensor
would be a suitable response strategy to technical failure of a sensor. However, this may
not be an appropriate response strategy to an attack on the sensor as it would not block
the corresponding attack vector. Furthermore, the initiation of inappropriate response
strategies would delay the recovery of the system from adversaries and might lead to
harmful consequences. Noticeably, there is a lack of decision support to distinguish
between attacks and technical failures.

Bayesian Networks (BNs) have the capacity to tackle this challenge especially based
on their real-world applications in medical diagnosis [5] and fault diagnosis [6]. BNs
belong to the family of probabilistic graphical models [7], consisting of a qualitative and a
quantitative part [8]. The qualitative part is a directed acyclic graph of nodes and edges.
Each node represents a random variable, while the edges between the nodes represent the
conditional dependencies among the random variables. The quantitative part takes the
form of a priori marginal and conditional probabilities so as to quantify the dependencies
between connected nodes.

In order to address the above-mentioned research gap, we developed a framework
in our previous work to help construct BN models for distinguishing attacks and tech-
nical failures [9]. Furthermore, we extended and combined fishbone diagrams within
our framework for knowledge elicitation to construct the qualitative part of such BN
models. However, our previous work lacks a systematic method for knowledge elicitation
to construct the quantitative part of such BN models. This present study aims to provide
a holistic framework to help construct BN models for distinguishing attacks and technical
failures by addressing the research question: “How could we elicit expert knowledge
to effectively construct Conditional Probability Tables of Bayesian Network models for
distinguishing attacks and technical failures?”. The research objectives are:

• RO 1. To propose an approach that would help to effectively construct Conditional
Probability Tables (CPTs) for our application.

• RO 2. To demonstrate the proposed approach using an example in the water
management domain.

Expert knowledge is one of the predominant data sources utilised to populate condi-
tional probability tables (CPTs) especially in domains where there is a limited availability
of data like cyber security [10]. Probability elicitation is the most challenging part of
constructing BN models especially when it relies on expert knowledge as we need to elicit
probability for every possible combination of parent variables state to complete the CPT
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of a child variable from experts. The CPT size of a child variable grows exponentially with
the number of parents. For instance, the CPT size of a binary child with 5 binary parents is
64 (2(5+1)) entries. The burden of probability elicitation could be reduced by: (i) reducing
the number of conditional probabilities to elicit by imposing structural assumptions, and
(ii) facilitating individual probability entry by providing visual aids to help experts answer
elicitation questions in terms of probabilities [11]. We evaluate several techniques for
reducing the number of probabilities to elicit, and conclude that DeMorgan models is
most suitable for our purpose [12]. Furthermore, we review several methods for facilitat-
ing individual probability entry and conclude that probability scales with numerical and
verbal anchors is most appropriate for our application [13, 14].

The remainder of this study is structured as follows. In Section 5.2, we illustrate the
different layers and the components of an ICS and describe a case study in the water
management domain that is used to demonstrate our proposed approach. In Section
5.3, we describe our existing framework that would help to construct BN models for
distinguishing attacks and technical failures in addition to a systematic method for knowl-
edge elicitation to construct the qualitative part of such BN models. Section 5.4 provides
an essential foundation of techniques to reduce the burden of probability elicitation.
In Section 5.5, we demonstrate the proposed approach using an example in the water
management domain. Section 5.6 presents the conclusions and future work directions.

5.2. INDUSTRIAL CONTROL SYSTEMS

5.2.1. ICS ARCHITECTURE

Domain knowledge on ICSs is the starting point for the development and application of
our proposed approach. We illustrated the three different layers and major components
in each layer of an ICS in Section 4.4.1.

5.2.2. CASE STUDY OVERVIEW

The case study overview provided in Section 4.4.2 would be used to demonstrate our pro-
posed approach that would help to effectively construct CPTs involving domain experts.

5.3. FRAMEWORK FOR DISTINGUISHING ATTACKS AND TECH-
NICAL FAILURES

This section describes the framework proposed in our previous work to construct BN mod-
els for distinguishing attacks and technical failures with an example [9]. The framework
consists of three layers as shown in Figure 5.1. The middle layer consists of a problem
variable which is the major cause for an abnormal behaviour in a component of the ICS
(observable problem). In the example shown in Figure 5.1, we considered “Sensor (S1)
sends incorrect water level measurements” as the problem, which is observable. For
instance, this problem could be observed by comparing the water level measurements
sent by the sensor (S1) against the measurements in the water level scale. We considered
the major causes of the problem (intentional attack and accidental technical failure) as
the states of the problem variable.
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Figure 5.1: Framework for Distinguishing Attacks and Technical Failures: Example

The upper layer consists of factors contributing to the major causes of the problem.
For instance, the factor “Weak physical access-control” contributes to “Sensor (S1) sends
incorrect water level measurements” due to intentional attack, whereas “Lack of physical
maintenance” contributes to “Sensor (S1) sends incorrect water level measurements” due
to accidental technical failure. The lower layer consists of observations (or test results)
which is defined as any information useful for determining the major cause of the problem
based on the outcome of tests. For instance, the outcome of the test whether “Sensor
(S1) sends correct water level measurements after cleaning the sensor” would provide
additional information to determine the major cause (accidental technical failure or
intentional attack) of the problem accurately.

The framework which we proposed in our previous work includes a systematic method
based on fishbone diagrams for knowledge elicitation to construct the qualitative part
of BN models [9]. We adopted this approach because there are challenges to solely
rely on BNs for knowledge elicitation to construct the qualitative part of BN models.
It is not easy-to-use for knowledge elicitation involving domain experts as it could be
time-consuming for elicitors to explain the notion of BNs [9]. Furthermore, it could not
encourage and guide data collection by showing where knowledge is lacking as it is not
well-structured. On the other hand, fishbone diagrams help to systematically identify and
organise the possible contributing factors (or sub-causes) of a particular problem [15–
19]. We extended fishbone diagrams to incorporate observations (or test results) in our
previous work, which needs to be elicited for our application in addition to contributory
factors (or sub-causes).



5.4. TECHNIQUES FOR REDUCING THE BURDEN OF PROBABILITY ELICITATION

5

79

Figure 5.2: Extended Fishbone Diagram: Example

Figure 5.2 shows an example extended fishbone diagram which consists of a problem
(“Major cause for sensor (S1) sends incorrect water level measurements”), its possible
contributing factors (or sub-causes) sorted and related under different categories on
the left side of the problem. Each category on the left side of the problem represents
the major causes of the problem (intentional attack and accidental technical failure).
Our example shows that “Lack of physical maintenance” is the contributing factor to
the problem (“Sensor (S1) sends incorrect water level measurements”) due to accidental
technical failure. Furthermore, the observations (or test results) on the right side of
the problem would provide additional information to determine the major cause of the
problem accurately. Each category on the right side of the problem are used for reference
to elicit observations (or test results) that would be useful for determining the particular
major causes of the problem [9]. Our example shows that the observation “abnormalities
in other locations” would increase the probability of the problem (“Sensor (S1) sends
incorrect water level measurements”) due to intentional attack.

Once the extended fishbone diagram is developed, it would be translated into a
corresponding qualitative BN model based on the mapping scheme in our previous
work [9]. However, the proposed framework lacked a systematic method for knowledge
elicitation to construct the quantitative part of BN models (the CPTs), which we address
in the current work.

5.4. TECHNIQUES FOR REDUCING THE BURDEN OF PROBABIL-
ITY ELICITATION

Probability elicitation is a challenging task in building BNs, especially when it relies
heavily on expert knowledge [11]. The extensive workload for experts in probability
elicitation could affect the reliability of elicited probabilities. However, the workload for
experts in probability elicitation could be reduced by reducing the number of conditional
probabilities to elicit and facilitating individual probability entry.

5.4.1. TECHNIQUE FOR REDUCING THE NUMBER OF CONDITIONAL PROBA-
BILITIES TO ELICIT

This section analyses well-known techniques and describes the most suitable technique
for our application, which would help to reduce the number of conditional probabilities
to elicit.
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In order to reduce the number of conditional probabilities to elicit, we could exploit
the causal independence models [11]. Causal independence refers to the situation where
the contributory factors (causes) contribute independently to the problem (effect) [20].
By utilizing these models, only a number of parameters that is linear in the number of
contributory factors is needed to be elicited to define a full CPT for the problem variable
as the total influence on the problem is a combination of the individual contributions
[21]. As an example, we shall consider the BN model depicted in Figure 5.1, where the
problem variable (Y ) is a binary discrete variable with the states “Intentional Attack”
and “Accidental Technical Failure”. In the CPT shown in Figure 5.3, Y = “Intentional
Attack” denotes Y = “True”, and Y = “Accidental Technical Failure” denotes Y = “False”. We
translated the states of Y into “True” and “False” to comply with the inherent assumptions
of the noisy-OR model with regard to the states of variables. The typical state of each
variable in the noisy-OR model is “False”. For instance, the typical state of a child variable
(Fever) in the noisy-OR model is “False” as it is normal. Therefore in our application,
we assigned Y = “False” for Y = “Accidental Technical Failure” as this is the a priori
expected major cause, based on the higher frequency of technical failures compared to
the intentional attacks [9].

In our application, we are dealing with a combination of promoting and inhibiting
influences. In case of a promoting influence, the presence (or absence) of the parent will
result in the child event with a certain probability. When the parent is absent (or present),
it is certain not to cause the child event. In other words, the presence (or absence) of the
contributory factor will result in the problem (“Sensor (S1) sends incorrect water level
measurements”) due to “intentional attack” with a certain probability as it denotes “True”
state. For instance, the presence of “Weak physical access-control” will result in the prob-
lem (“Sensor (S1) sends incorrect water level measurements”) due to “intentional attack”
with a certain probability, whereas the absence of “Weak physical access-control” will not
certainly result in the problem (“Sensor (S1) sends incorrect water level measurements”)
due to “intentional attack”. This type of promoting influence is defined as a cause [12].
On the other hand, the absence of “Sensor data integrity verification” will result in the
problem (“Sensor (S1) sends incorrect water level measurements”) due to “intentional
attack” with a certain probability, whereas the presence of “Sensor data integrity verifi-
cation” will not certainly result in the problem (“Sensor (S1) sends incorrect water level
measurements”) due to “intentional attack”. This type of promoting influence is defined
as a barrier [12].

In case of an inhibiting influence, the presence (or absence) of the parent will inhibit
the child event with a certain probability. When the parent is absent (or present), it
is certain not to inhibit the child event. In other words, the presence (or absence) of
the contributory factor will result in the problem (“Sensor (S1) sends incorrect water
level measurements”) due to “accidental technical failure” with a certain probability as
it denotes “False” state. For instance, the presence of “Lack of physical maintenance”
will result in the problem (“Sensor (S1) sends incorrect water level measurements”) due
to “accidental technical failure” with a certain probability, whereas the absence of “Lack
of physical maintenance” will not certainly result in the problem (“Sensor (S1) sends
incorrect water level measurements”) due to “accidental technical failure”. This type
of inhibiting influence is defined as an inhibitor [12]. On the other hand, the absence
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of “Well-written maintenance procedure” will result in the problem (“Sensor (S1) sends
incorrect water level measurements”) due to “accidental technical failure” with a certain
probability, whereas the presence of “Well-written maintenance procedure” will not
certainly result in the problem (“Sensor (S1) sends incorrect water level measurements”)
due to “accidental technical failure”. This type of inhibiting influence is defined as a
requirement [12].

Our example BN model shows that it possesses a mixture of promoting and inhibiting
influences (causes and inhibitors) especially with regard to the interaction between the
contributory factors and the problem. Therefore, we need a technique that would help
to model opposing influences as we deal with a mixture of promoting and inhibiting
influences in our application, which would help to reduce the number of conditional
probabilities to elicit.

We analysed several techniques and chose the most suitable technique for our ap-
plication which would be described in next Section. The description of techniques that
are unsuitable for our application can be found in Appendix B which includes the noisy-
OR model and Causal Strength (CAST) logic. The noisy-OR model is one of the most
commonly used causal independence models which helps to reduce the number of con-
ditional probabilities to elicit [5, 22]. The noisy-OR model inherently assumes binary
variables [23]. The noisy-MAX model is an extension of the noisy-OR model which is
suitable for multi-valued variables [24]. We analysed the noisy-OR model as we deal with
only binary variables in our application.

Figure 5.3: Application of Noisy-OR: Problem
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The noisy-OR model assumes that the properties of exception independence and
accountability hold true [25]. In case all the modelled contributory factors of the prob-
lem (“Sensor (S1) sends incorrect water level measurements”) are false, the property of
accountability requires that the problem be presumed false (“Sensor (S1) sends incorrect
water level measurements” due to “accidental technical failure”). However, this would not
work for inhibiting influences such as “Lack of physical maintenance” in the noisy-OR
model as shown in Figure 5.3. In case “Lack of physical maintenance” is absent, it is
certain not to inhibit the problem which is incompatible with the property of account-
ability. Therefore, we found that the noisy-OR model is unsuitable for the purposes of our
application because the property of accountability does not hold true.

Alternatively, CAST logic is one of the techniques mainly developed for modelling
opposing influences [26]. CAST logic assumes all the variables in the model are binary.
The parameters which need to be elicited to completely define CPTs using CAST logic
are: (i) causal strengths for each edge, and (ii) baseline probability for each variable. The
baseline probability of a parent variable can be interpreted as the prior probability of
the corresponding parent variable. However, it would not be appropriate to interpret the
baseline probability of the child variable as a prior probability or a leak probability, as the
parent variables have no state in which they are guaranteed to have no influence on the
child variable [27]. As the definition of baseline probability of child variable is not clear, we
cannot formulate appropriate question to elicit baseline probability of child variable. This
is the major disadvantage of CAST logic which resulted in the lack of practical applications
[12, 27]. We conclude that neither the noisy-OR model nor the CAST logic is suitable for
the purposes of our application.

DEMORGAN MODEL

As an alternative to the previously discussed models, the DeMorgan model can potentially
be used to tackle the challenge of modelling opposing influences, which would help
to reduce the number of conditional probabilities to elicit. This section explains the
DeMorgan model.

The DeMorgan model is a technique mainly developed for modelling opposing in-
fluences, which would help to reduce the number of conditional probabilities to elicit
[12, 27]. The DeMorgan model is applicable when there are several parents and a common
child. The DeMorgan model inherently assumes binary variables. The DeMorgan model
assumes that one of the two states of each variable is always the distinguished state as
shown in Figure 5.4. Usually such state of the child variable depends on the modelled
domain [28]. This is a typical state of the corresponding child variable [29]. In case the
child variable consists of two states (“disease”, “no disease”) in the medical domain, the
distinguished state of the corresponding child variable is chosen as “no disease” as it is
normal [28]. In our application, the distinguished state of the problem variable (“Major
cause for sensor (S1) sends incorrect water level measurements”) is chosen as “accidental
technical failure” as this is the a priori expected major cause, based on the higher fre-
quency of technical failures compared to the intentional attacks [12]. The distinguished
state of a parent variable is relative to the type of causal interaction with the child vari-
able [12]. The same parent variable can have different distinguished states in different
interactions that it participates in with the different child variables.
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Figure 5.4: DeMorgan Model: Causal Interaction Types

There are 4 different types of causal interactions between an individual parent (X)
and a child (Y ) in the DeMorgan model: (i) cause, (ii) barrier, (iii) inhibitor, and (iv)
requirement.

(i) Cause: X is a causal factor and has a positive influence on Y. In this type of causal
interaction between an individual parent (X) and a child (Y ), the distinguished state of
the corresponding parent variable is “False” [12]. Consequently, when the parent variable
is “False”, it is certain not to trigger a change from the typical state of the child variable as
shown in Table 5.1. When the parent variable is “True”, it will trigger a change from the
typical state of the child variable, with a certain probability (vX ) as shown in Table 5.1.

Table 5.1: Type of Causal Interaction: Cause

(ii) Barrier: This is a negated counterpart of cause, i.e., X ’ is a causal factor and has a
positive influence on Y. In this type of causal interaction between an individual parent X
and a child Y, the distinguished state of the corresponding parent variable is “True” [12].
Accordingly, when the parent variable is “True”, it is certain not to trigger a change from
the typical state of the child variable as shown in Table 5.2. When the parent variable is
“False”, it will trigger a change from the typical state of the child variable, with a certain
probability (vX ) as shown in Table 5.2.
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Table 5.2: Type of Causal Interaction: Barrier

(iii) Inhibitor: X inhibits Y. In this type of causal interaction between an individual
parent X and a child Y, the distinguished state of the corresponding parent variable is
“False” [12]. As a result, when the parent variable is “False”, it is certain not to prevent a
change from the typical state of the child variable as shown in Table 5.3. When the parent
variable is “True”, it will prevent a change from the typical state of the child variable, with
a certain probability (dX ) as shown in Table 5.3.

Table 5.3: Type of Causal Interaction: Inhibitor

(iv) Requirement: The relationship between an inhibitor and requirement is similar
to the relationship between a cause and barrier. X ’ inhibits Y. In this type of causal
interaction between an individual parent (X) and a child (Y ), the distinguished state of
the corresponding parent variable is “True” [12]. Hence, when the parent is “True”, it is
certain not to prevent a change from the typical state of the child variable as shown in
Table 5.4. When the parent variable is “False”, it will prevent a change from the typical
state of the child variable, with a certain probability (dX ) as shown in Table 4.

Table 5.4: Type of Causal Interaction: Requirement

The DeMorgan model is an extension and a combination of the noisy-OR and noisy-
AND model which supports modelling the above-mentioned types of causal interactions
[12]. Maaskant et al. modelled promoting influences which includes causes and bar-
riers by mimicking the noisy-OR model [12]. Furthermore, Maaskant et al. modelled
inhibiting influences which includes inhibitors and requirements by mimicking the noisy-
AND model [12]. Finally, Maaskant et al. modelled the combination of promoting and
inhibiting influences by combining the noisy-OR and noisy-AND model.

The property of accountability in the noisy-OR model is applicable to the DeMorgan
model with a slight modification as it also exploits causal independence: In case all the
modelled parents of the child are in their distinguished state, the property of accountabil-
ity requires that the child be presumed their distinguished state. However, in many cases,
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this is not a realistic assumption as it is difficult to capture all the possible parents of the
child [23]. Specifically, this is not realistic in our example as it is difficult to capture all
the possible contributory factors of the problem (“Sensor (S1) sends incorrect water level
measurements”) due to “intentional attack”. In the DeMorgan model, the leak parame-
ter (vX L) deals with the possible parents of the child that are not previously known and
explicitly modelled.

In general, the size of the CPT of a binary variable with n binary parents is 2(n+1). How-
ever, only n+1 parameters are sufficient to completely define CPT using the DeMorgan
model as it exploits causal independence. In the example shown in Figure 5.4, only 5
parameters are sufficient to completely define the CPT of child variable (Y ) using the
DeMorgan model instead of 64 entries. There are 2 different parameterisations for the
Noisy-OR model with a leak parameter (the Leaky Noisy-OR model) proposed by Henrion
[30] and Diez [24] which are mathematically equivalent. These 2 parameterisations differ
only in the type of question that needs to be asked to the experts for knowledge elicitation.
Henrion’s parameterisation is supported by a question like: “What is the probability that
the effect is true given that a cause (Xi) is true and all the modelled causes are false?”. On
the other hand, Diez’s parameterisation is supported by a question like: “What is the
probability that the effect is true given that a cause (Xi) is true and all other modelled and
unmodelled causes are false?”. The DeMorgan model utilised the Diez’s parameterisation
with a slight modification.

We could find the values for required parameters from the experts to completely
define CPT using the DeMorgan model based on appropriate question for each type of
causal interaction detailed below:

(i) The leak parameter: To find the value for the leak parameter, the elicitor could ask
experts: “What is the probability that the child is in their non-distinguished state given
that the parents are in their distinguished states?”. In our example shown in Figure 5.4, the
elicitor could ask experts to find the value for parameter (vX L): “What is the probability
that the major cause for the observed problem (sensor (S1) sends incorrect water level
measurements) is intentional attack given that the physical access-control for sensor (S1) is
strong, data integrity verification is performed for sensor (S1) data, sensor (S1) is always
physically maintained, maintenance procedure for sensor (S1) is well-written?”.

(ii) Cause: To find the value for parameter corresponding to a cause, the elicitor could
ask experts: “What is the probability that the child is in their non-distinguished state given
that all the parents are in their distinguished states, except (Xi) and no other unmodelled
causal factors are present?". In our example shown in Figure 5.4, the elicitor could ask
experts to find the value for parameter (vX 1): “What is the probability that the major cause
for the observed problem (sensor (S1) sends incorrect water level measurements) is inten-
tional attack given that the physical access-control for sensor (S1) is weak, data integrity
verification is performed for sensor (S1) data, sensor (S1) is always physically maintained,
maintenance procedure for sensor (S1) is well-written, and no other unmodelled causal
factors are present?”.

(iii) Barrier: To find the value for parameter corresponding to a barrier, the elicitor
could ask experts: “What is the probability that the child is in their non-distinguished
state given that all the parents are in their distinguished states, except (Xi) and no other
unmodelled causal factors are present?”. In our example shown in Figure 5.4, the elicitor
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could ask experts to find the value for parameter (vX 2): “What is the probability that
the major cause for the observed problem (sensor (S1) sends incorrect water level mea-
surements) is intentional attack given that the physical access-control for sensor (S1) is
strong, data integrity verification is not performed for sensor (S1) data, sensor (S1) is always
physically maintained, maintenance procedure for sensor (S1) is well-written, and no other
unmodelled causal factors are present?”.

(iv) Inhibitor: Maaskant et al. did not directly determine the value for parameters
corresponding to inhibitors similar to causes and barriers as it is not practical for the
example which they considered [27]. Specifically, it makes less sense to ask for the
effect of presence of parent (“Rain”) on the child (“Bonfire”), when the child (“Bonfire”)
is “False”. Therefore, they determined the value for parameter corresponding to each
inhibitor by determining the negative influence relative to an arbitrary (non-empty) set of
causes/barriers/leak parameter. However, in our application, it is possible to determine
the value for parameter corresponding to inhibitors directly as we ask for the effect of
presence of parent (“Lack of physical maintenance”) on the child (“Major cause for sensor
(S1) sends incorrect water level measurements”), when the latter (“Major cause for sensor
(S1) sends incorrect water level measurements”) is “Accidental technical failure”. In order
to find the value for parameter corresponding to an inhibitor directly, the elicitor could
ask the experts: “What is the probability that the child is in their distinguished state given
that the parents are in their distinguished states, except (Ui) and no other unmodelled
causal factors are present?”. In our example shown in Figure 5.4, the elicitor could ask
experts to find the value for parameter (dU 1): “What is the probability that the major
cause for the observed problem (sensor (S1) sends incorrect water level measurements) is
accidental technical failure given that the physical access-control for sensor (S1) is strong,
data integrity verification is performed for sensor (S1) data, sensor (S1) is not always
physically maintained, maintenance procedure for sensor (S1) is well-written and no other
unmodelled causal factors are present?”.

(v) Requirement: Maaskant et al. did not directly determine the value for parameters
corresponding to requirements similar to causes and barriers as it is not practical for
the example which they considered [27]. Specifically, it makes less sense to ask for
the effect of absence of parent on the child, when the child is “False”. Therefore, they
determined the value for parameter corresponding to each requirement by determining
the negative influence relative to an arbitrary (non-empty) set of causes/barriers/leak
parameter. However in our application, it is possible to determine the value for parameter
corresponding to requirements directly as we ask for the effect of absence of parent
(“Well-written maintenance procedure”) on the child (“Major cause for sensor (S1) sends
incorrect water level measurements”), when the latter (“Major cause for sensor (S1) sends
incorrect water level measurements”) is “Accidental technical failure”. In order to find the
value for parameter corresponding to a requirement directly, the elicitor could ask the
experts: “What is the probability that the child is in their distinguished state given that
the parents are in their distinguished states, except Ui and no other unmodelled causal
factors are present?”. In our example shown in Figure 5.4, the elicitor could ask experts
to find the value for parameter (dU 2): “What is the probability that the major cause for
the observed problem (sensor (S1) sends incorrect water level measurements) is accidental
technical failure given that the physical access-control for sensor (S1) is strong, data integrity
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verification is performed for sensor (S1) data, sensor (S1) is always physically maintained,
maintenance procedure for sensor (S1) is not well-written and no other unmodelled causal
factors are present?”.

Once we determine the required parameters based on appropriate elicitation ques-
tions, we can completely define the CPT of the child variable using (1):

In the equation (1), Y represents the effect variable which has values y for the effect
being in the non-distinguished state (“Intentional attack”) and y’ for the effect being in
the distinguished state (“Accidental technical failure”). X denotes the set of parents which
interact with the effect variable as promoting influences, U denotes the set of parents
which interact with the effect variable as inhibiting influences, +X denotes the subset of X
that contains all parents that are in their non-distinguished states, +U denotes the subset
of U that contains all parents that are in their non-distinguished states. vX L denotes
the leak parameter which expresses the probability of y (“Intentional attack”) given all
parents are in their distinguished states, (vX i) denotes the probability of y (“Intentional
attack”) given that the parent X i is not in its distinguished state and all other parents
are in their distinguished states, dU i denotes the probability of y’ (“Accidental technical
failure”) given that the parent U i is not in its distinguished state and all other parents are
in their distinguished states.

We choose the DeMorgan model for our application to reduce the number of con-
ditional probabilities to elicit as they support modeling opposing influences with clear
parameterisations.

5.4.2. TECHNIQUE FOR FACILITATING INDIVIDUAL PROBABILITY ENTRY
This section explains our chosen technique for facilitating individual probability entry for
our application.

Our systematic method for knowledge elicitation to construct CPTs of BN models
would be incomplete without a technique that facilitates individual probability entry.
The DeMorgan models would help to reduce the number of conditional probabilities to
elicit and allow elicitors to ask appropriate questions during probability elicitation. In
addition, there should be a suitable technique which would make it easy for experts to
answer elicitation questions in terms of probabilities.

There are well-known methods such as probability scale [13, 31], and probability
wheel [32] which would help to facilitate individual probability entry [11, 33]. The basis
for choosing a particular method includes accuracy, less probability elicitation time, and
usability [33]. Wang et al. compared three different methods: (i) direct estimation, (ii)
probability wheel and (iii) probability scale in terms of their accuracy and time taken
to elicit probabilities from experts [34]. They pointed out that probability scale is better
in terms of both accuracy and probability elicitation time compared to the other two
methods.
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A probability scale can be a horizontal or vertical line with several anchors [33]. Figure
5.5 shows a probability scale with 7 numerical and verbal anchors [35]. However, there are
several variants of probability scales which would help to facilitate individual probability
entry. Witteman et al. compared 3 probability scales: (i) probability scale with numerical
and verbal anchors, (ii) probability scale with only numerical anchors, and (iii) probability
scale with only verbal anchors [36]. They compared 3 probability scales based on a study
with general practitioners in the domain of medical decision making. They concluded
that all 3 probability scales are equally suitable to facilitate individual probability entry.
However, they recommended the probability scale with numerical and verbal anchors to
facilitate individual probability entry as it provides numerical anchors for experts who
prefer numbers and verbal anchors for experts who prefer words. Furthermore, Witteman
et al. compared 2 different probability scales: (i) probability scale with numerical and
verbal anchors, (ii) probability scale with only numerical anchors [37]. They compared 2
probability scales based on a study with arts and mathematics students. They concluded
that the probability scale with numerical and verbal anchors is more comfortable to use
compared to the probability scale with only numerical anchors.

Figure 5.5: Probability Scale with Numerical and Verbal Anchors

There are real-world applications of the probability scale with numerical and verbal
anchors in the elicitation of probabilities to construct the quantitative part of BN models
[13, 31]. Van der Gaag et al. used the probability scale with numerical and verbal anchors
for a case study in oesophageal cancer [13]. This study was conducted with two experts
in gastrointestinal oncology. The experts found that this method is easier to use than
any other method they used before. Van der Gaag et al. also highlighted that the large
number of probabilities are elicited in a reasonable time using this method. Furthermore,
Hanninen et al. used the probability scale with numerical and verbal anchors for the
construction of quantitative part of collision and grounding BN model [31]. This study
was conducted with 8 experts who possessed maritime working experience between 3
and 30 years. These studies show that the probability scale with numerical and verbal
anchors can be used for facilitating individual probability entry involving experts with
different background.

We choose probability scales for our application as they are better in terms of accuracy
and probability elicitation time compared to other methods. In particular, we would
employ the probability scale with numerical and verbal anchors to facilitate individual
probability entry in our application as they are effective and practicable based on previous
studies. We would utilise the probability scale with 7 numerical and verbal anchors to
facilitate individual probability entry with a variation. In our application, the experts
could mark the suitable probability among 7 anchors in the scale directly or express
fine-grained probabilities using the probability scale with numerical and verbal anchors
as a supporting aid to visualise the probability range. This is convenient when the experts
would like to express fine-grained probabilities based on historical data which is realistic
for accidental technical failures in our application.
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5.5. APPLICATION OF THE METHODOLOGY
In this section, we use an illustrative case of a floodgate in the Netherlands to explain
how we effectively construct CPTs of BN models for distinguishing attacks and technical
failures.

Table 5.5: Parameter Elicitation for the Problem Variable Y : Example

In this Table 5.5, the double strikethrough text denotes the child variables being in its
distinguished state.

We considered the upper and middle layer of our framework for the application of
our methodology. It is important to reduce the number of conditional probabilities to
elicit for the problem variable as a considerable number of contributory factors (upper
layer), corresponding to intentional attack and accidental technical failure, typically
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interact with the problem variable (middle layer), which in turn increases the CPT size
of the problem variable exponentially. On the other hand, the conditional probabilities
for observations (or test results) (lower layer) would be easy to elicit directly as there
is only one problem variable (middle layer) in our framework, which makes the CPT
size of an observation (or test result) variable to 4 (2(1+1)). We shall consider the BN
model with the upper and middle layer of our framework depicted in Figure 5.4 for the
application of our methodology. We considered the problem “Sensor (S1) sends incorrect
water level measurements" as it could develop more complex situations in the case of
floodgate. In case the floodgate closes when it should not based on the incorrect water
level measurements sent by the sensor (S1), it would lead to severe economic damage, for
instance, by delaying cargo ships. On the other hand, in case the floodgate opens when it
should not due to incorrect water level measurements sent by the sensor (S1), it would
lead to flooding.

Table 5.6: Application of the DeMorgan Model: CPT Example

We considered 4 contributory factors to the major causes (intentional attack or acci-
dental technical failure) of the observed problem: (i) Weak physical access-control (X 1),
(ii) Sensor data integrity verification (X 2), (iii) Lack of physical maintenance (U1), and
(iv) Well-written maintenance procedure (U2) as shown in Figure 5.4 to depict each type
of causal interaction. The type of causal interaction between individual parent X 1 and
the child Y is cause. The type of causal interaction between individual parent X 2 and the
child Y is barrier. The type of causal interaction between individual parent U1 and the
child Y is inhibitor. The type of causal interaction between individual parent X 2 and the
child Y is requirement. In this example, we need to elicit only 5 (4+1) parameters instead
of 32 (2(4+1)) to completely define CPT for the problem variable. The 5 parameters which
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we need to elicit are: (vX L), (vX 1), (vX 2), (dU 1), (dU 2).
The values for these 5 parameters could be elicited from experts by providing the

appropriate elicitation questions based on the DeMorgan model and the probability
scale with numerical and verbal anchors, which could help experts answer in terms of
probabilities to elicitation questions as shown in Table 5.5. The double strikethrough
text in Table 5.5 makes the probability elicitation process simple as they do not affect
the corresponding probability based on our structural assumptions. The experts could
directly read the remaining text and mark the answer for each question in Table 5.5 which
could also reduce probability elicitation time. Suppose the expert marks the answer for
(vX L) as 0.15, (vX 1) as 0.50, (vX 2) as 0.25, (dU 1) as 0.85, (dU 2) as 0.50. These probabilities
are examples to demonstrate the application of the methodology.

Figure 5.6: BN Model with CPTs Example

Once we elicit all the required parameters, we could use (1) to completely define CPT
for our example BN model. For instance, we could use (1) to calculate: P(Y |X 1’,X 2’,U1,
U2’)=(1-(1-0.15)(1-0.25))(1-0.85)(1-0.50) = 0.03. The red coloured text in Table 5.6 denotes
this probability. The completed CPT for the problem variable (Y ) is shown in Table 5.6.

Once we complete the CPT for the problem variable, we could define the a priori
probabilities for each contributory factor and observation (or test result) by eliciting
corresponding probabilities directly from the experts as they are not complicated. An
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example BN model with corresponding CPTs for each variable is shown in Figure 5.6.

Figure 5.7: BN with Updated Probabilities Based on the Evidence

Once the problem (“Sensor (S1) sends incorrect water level measurements”) is ob-
served in the floodgate, the evidence (True/False) contributory factors and observations
(or test results) could be set by the operator (or end-user) to determine the major cause for
the observed problem. Once the evidence for contributory factors and observations (or
test results) is set, the posterior probability of the problem variable would be computed
accordingly. Based on the computed posterior probability, the appropriate response strat-
egy could be put in place for the most likely major cause (intentional attack/accidental
technical failure) for the observed problem (“Sensor (S1) sends incorrect water level
measurements”) thereby minimising negative consequences.

In the example shown in Figure 5.7, we provided the evidence for the contributory
factors “Weak physical access-control (X 1) = True”, “Sensor data integrity verification (X 2)
= False”, “Lack of physical maintenance (U1) = False”, “Well-written maintenance proce-
dure (U2) = True”, and observation (or test result) “Abnormalities in other locations (Z1) =
True”, “Sensor (S1) sends correct water level measurements after recalibrating the sensor
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((Z3)) = False”. On the other hand, we did not provide the evidence for the problem “Major
cause for sensor (S1) sends incorrect water level measurements (Y )” and observation (or
test result) “Sensor (S1) sends correct water level measurements after cleaning the sensor
(Z2)”. The BN computes the posterior (updated) probabilities of the other nodes (Y, and
(Z2)) based on the provided evidence. The BN in Figure 5.7 determines that the major
cause for the observed problem “Sensor (S1) sends incorrect water level measurements” is
most likely due to intentional attack as the corresponding posterior probability (0.97306)
is higher compared to the posterior probability of accidental technical failure (0.02694).

5.6. CONCLUSIONS AND FUTURE WORK

Limited availability of data is one of the key challenges to construct BN models in domains
like cyber security which result in modellers depending on expert knowledge. However,
BNs are not suitable for knowledge elicitation involving domain experts. In our previous
work, we developed a systematic method using fishbone diagrams for knowledge elici-
tation involving domain experts to construct the DAGs of BN models for distinguishing
attacks and technical failures. Noticeably, the systematic method for knowledge elicita-
tion involving domain experts to construct the CPTs of such BN models is missing in our
previous work.

In this study, we utilised (a) DeMorgan models to reduce the number of conditional
probabilities to elicit and (b) probability scales with numerical and verbal anchors to facil-
itate individual probability entry. We thereby reduce the burden of probability elicitation,
which is critical for BN models that rely on expert knowledge. The proposed approach
ensures the reliability of elicited probabilities by reducing the workload of experts in
probability elicitation, especially DeMorgan models reduces the number of parameters
that need to be elicited from exponential to linear in the number of parents to define a full
CPT for the child variable. The proposed approach also completes a holistic framework
to distinguish between attacks and technical failures by proposing a systematic method
for probability elicitation involving domain experts.

Furthermore, we demonstrated the proposed approach with an example problem of
incorrect sensor measurements in the water management domain. Our holistic frame-
work is directly applicable to different domains for knowledge elicitation involving domain
experts to construct BN models for distinguishing attacks and technical failures. The
constructed BN models could be used by operators/end-users in different domains to
determine the major cause (intentional attack or accidental technical failure) of an abnor-
mal behavior in a component of the ICS, and initiate appropriate response strategies to
minimise negative consequences.

In the future, we aim to evaluate our proposed framework by constructing BN models
for observable problems in the water management domain involving domain experts. In
addition, we aim at addressing the limitation that the DeMorgan model is suitable for
binary variables only. In order to be able to reduce the number of conditional probabilities
to elicit involving parents and/or child with more than two states, it is important to extend
the DeMorgan model for multi-valued variables in the future.
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BAYESIAN NETWORK MODEL TO

DISTINGUISH BETWEEN

INTENTIONAL ATTACKS AND

ACCIDENTAL TECHNICAL

FAILURES: A CASE STUDY OF

FLOODGATES*

6.1. INTRODUCTION
Water management is one of the critical infrastructures in countries like the Netherlands
[1]. The proper functioning of water management infrastructures is vital for economic
growth and societal wellbeing. The unexpected closure of floodgates could lead to severe
economic damage, for instance, by delaying cargo ships. Over the years, water manage-
ment infrastructures have become dependent on Industrial Control Systems (ICSs) to
ensure efficient operations of such infrastructures [2].

ICSs were originally designed for isolated environments [3]. Such systems were mainly
susceptible to technical failures. The blackout in the Canadian province of Ontario and
the North-eastern and Mid-western United States is a typical example of a technical
failure in which the absence of alarm due to a software bug in the alarm system left
operators unaware of the need to redistribute power [4]. However, modern ICSs no longer
operate in isolation, but use other networks to facilitate and improve business processes

*This chapter is submitted to a Journal as Chockalingam, S., Pieters, W., Teixeira, A., and van Gelder, P.: “Bayesian
Network Model to Distinguish between Intentional Attacks and Accidental Technical Failures: A Case Study of
Floodgates”
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[5]. This increased connectivity makes ICSs more vulnerable to cyber-attacks apart from
technical failures. A cyber-attack on a German steel mill is a typical example in which
adversaries made use of corporate network to enter the ICS network [6]. As an initial
step, the adversaries used both the targeted email and social engineering techniques to
acquire credentials for the corporate network. Once they acquired credentials for the
corporate network, they worked their way into the plant’s control system network and
caused damage to the blast furnace.

It is essential to distinguish between attacks and technical failures that would lead
to abnormal behavior in the components of ICSs and take suitable measures. In most
cases, the initiation of response strategy presumably aimed at technical failures would be
ineffective in the event of a targeted attack and may lead to further complications. For
instance, replacing a water level sensor that is sending incorrect measurement data with a
new water level sensor would be a suitable response strategy to technical failure of a water
level sensor. However, this may not be an appropriate response strategy to an attack on
the water level sensor as it would not block the corresponding attack vector. Furthermore,
the initiation of inappropriate response strategies would delay the recovery of the system
from adversaries and might lead to harmful consequences. Noticeably, there is a lack of
decision support to distinguish between attacks and technical failures.

Bayesian Networks (BNs) have the capacity to tackle this challenge especially based
on their real-world applications in medical diagnosis and fault diagnosis [7]. BNs belong
to the family of probabilistic graphical models, consisting of a qualitative and a quanti-
tative part [8]. The qualitative part is a directed acyclic graph of nodes and edges. Each
node represents a random variable, while the edges between the nodes represent the
conditional dependencies among the random variables. The quantitative part takes the
form of a priori marginal and conditional probabilities so as to quantify the dependencies
between connected nodes.

In order to address the above-mentioned research gap, we developed the attack-
failure distinguisher framework in our previous work to help construct BN models for
distinguishing attacks and technical failures [9, 10]. Furthermore, we extended and
combined fishbone diagrams within our framework for knowledge elicitation to construct
the qualitative part of such BN models. Finally, we integrated DeMorgan models and
probability scales with numerical and verbal anchors within our framework for knowledge
elicitation to construct the quantitative part of such BN models. The present study aims to
construct a BN model based on the developed framework to distinguish between attacks
and technical failures for an observable problem in floodgates, providing a full case study
of the framework as well as addressing the problem of floodgate operators. This study
addresses the research question: “How could we develop Bayesian Network (BN) models
for distinguishing attacks and technical failures in Floodgates?”. The research objectives
are:

• RO 1. To develop a BN model for distinguishing attacks and technical failures in
floodgates involving domain experts using the attack-failure distinguisher frame-
work.

• RO 2. To demonstrate the developed BN model for distinguishing attacks and
technical failures in floodgates.
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Expert knowledge is one of the predominant data sources utilised to construct direct
acyclic graphs (DAGs) and populate conditional probability tables (CPTs) especially in
domains where there is a limited availability of data like cyber security [11]. Expert
knowledge is the data source which we used to construct the DAGs and populate CPTs in
our work due to the unavailability of other data sources. Specifically, we utilised experts
who associate themselves with safety and/or security community as it is appropriate for
our application which deals with distinguishing attacks and technical failures. In our
context, we associate the security community as dealing with attacks. On the other hand,
we associate the safety community as dealing with technical failures.

The remainder of this study is structured as follows. In Section 6.2, we illustrate the
different layers and the components of an ICS. In Section 6.3, we describe our existing
framework that would help to construct BN models for distinguishing attacks and techni-
cal failures in addition to the systematic methods for knowledge elicitation to construct
the BN models. Section 6.4 demonstrates the constructed BN model. Section 6.5 presents
the conclusions and future work directions.

6.2. ICS ARCHITECTURE
Domain knowledge on ICSs is the starting point for the application of our proposed
approach. We illustrated the three different layers and major components in each layer of
an ICS in Section 4.4.1.

6.3. FRAMEWORK FOR DISTINGUISHING ATTACKS AND TECH-
NICAL FAILURES

This section describes the attack-failure distinguisher framework proposed in our previ-
ous work to construct BN models for distinguishing attacks and technical failures [9].

Figure 6.1: Framework for Distinguishing Attacks and Technical Failures
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The framework consists of three layers as shown in Figure 6.1. The middle layer
consists of a problem variable which is the major cause for an abnormal behaviour in
a component of the ICS (observable problem). The states of the problem variable are
the major causes of the observable problem (intentional attack and accidental technical
failure). The upper layer consists of factors contributing to the major causes of the
problem. The lower layer consists of observations (or test results) which is defined as any
information useful for determining the major cause of the problem based on the outcome
of tests conducted once the problem is observed by a floodgate operator.

The BN models would be incomplete without the quantitative part (CPTs for each
variable). However, probability elicitation is a challenging task in building BNs, especially
when it relies heavily on expert knowledge [12]. The extensive workload for experts in
probability elicitation could affect the reliability of elicited probabilities. Therefore, the
framework which we proposed in our previous work also includes DeMorgan models
that reduces the number of conditional probabilities to elicit from domain experts in
constructing the quantitative part of BN models, especially this technique reduces the
number of parameters that need to be elicited from exponential to linear in the number
of parents to define a full CPT for the child variable [9, 10]. We adopted DeMorgan models
because it is the most suitable technique for our purpose [10]. Furthermore, we integrated
probability scales with numerical and verbal anchors with DeMorgan models to facilitate
individual probability entry by providing visual aids to help experts answer in terms of
probabilities [10].

Figure 6.2: DeMorgan Model: Causal Interaction Types

The DeMorgan model is applicable when there are several parents and a common
child. The DeMorgan model inherently assumes binary variables. In our application,
the DeMorgan model could be used to elicit conditional probabilities for the problem
variable as they have several contributory factors (parents). On the other hand, the CPTs
of the contributory factors and observations (or test results) could be elicited directly from
experts as they are straightforward when they do not have several parents. The DeMorgan
model assumes that one of the two states of each variable is always the distinguished
state as shown in Figure 6.2. Usually such state of the child variable depends on the
modelled domain [13]. This is a typical state of the corresponding child variable [14]. In
our application, the distinguished state of the problem variable (“Major cause for <an
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observable problem>”) is chosen as “accidental technical failure” as this is the a priori
expected major cause, based on the higher frequency of technical failures compared to
the attacks [9, 10]. The distinguished state of a parent variable is relative to the type of
causal interaction with the child variable [15]. The same parent variable can have different
distinguished states in different interactions that it participates in with the different child
variables.

There are four different types of causal interactions between an individual parent
(X) and a child (Y ) in the DeMorgan model: (i) cause, (ii) barrier, (iii) inhibitor, and (iv)
requirement. This is detailed in Section 5.4.1.

The DeMorgan model is an extension and a combination of the noisy-OR and noisy-
AND model which supports modelling the above-mentioned types of causal interactions
[15]. The property of accountability in the noisy-OR model is applicable to the DeMorgan
model with a slight modification as it also exploits causal independence: In case all the
modelled parents of the child are in their distinguished state, the property of accountabil-
ity requires that the child be presumed their distinguished state. However, in many cases,
this is not a realistic assumption as it is difficult to capture all the possible parents of the
child [16]. Specifically, this is not realistic in our application as it is difficult to capture all
the possible contributory factors of an observable problem due to “intentional attack”.
In the DeMorgan model, the leak parameter (vX L) deals with the possible parents of the
child that are not previously known and explicitly modelled.

In general, the size of the CPT of a binary variable with n binary parents is 2(n+1). How-
ever, only n+1 parameters are sufficient to completely define CPT using the DeMorgan
model as it exploits causal independence. In the example shown in Figure 6.2, only five
parameters are sufficient to completely define the CPT of child variable (Y ) using the
DeMorgan model instead of 64 entries. We could find the values for required param-
eters from the experts to completely define CPT using the DeMorgan model based on
appropriate question for each type of causal interaction shown in Table 6.1.

Table 6.1: Causal Interactions and their Corresponding Elicitation Questions in the DeMorgan Model
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Once we determine the required parameters based on appropriate elicitation ques-
tions, we can completely define the CPT of the child variable using (1):

In the equation (1), Y represents the effect variable which has values y for the effect
being in the non-distinguished state (“Intentional attack”) and y’ for the effect being in
the distinguished state (“Accidental technical failure”). X denotes the set of parents which
interact with the effect variable as promoting influences, U denotes the set of parents
which interact with the effect variable as inhibiting influences, +X denotes the subset of X
that contains all parents that are in their non-distinguished states, +U denotes the subset
of U that contains all parents that are in their non-distinguished states. vX L denotes
the leak parameter which expresses the probability of y (“Intentional attack”) given all
parents are in their distinguished states, (vX i) denotes the probability of y (“Intentional
attack”) given that the parent X i is not in its distinguished state and all other parents
are in their distinguished states, dU i denotes the probability of y’ (“Accidental technical
failure”) given that the parent U i is not in its distinguished state and all other parents are
in their distinguished states.

6.4. APPLYING BNS FOR DISTINGUISHING ATTACKS AND

TECHNICAL FAILURES
This section describes how we constructed the BN model for distinguishing attacks and
technical failures in floodgates.

We considered the observable problem for this application as “Sensor sends incorrect
water level measurements" because it could lead to serious consequences in the case of
floodgate. In case the floodgate closes when it should not, based on the incorrect water
level measurements sent by the sensor, it would lead to severe economic damage, for
instance, by delaying cargo ships. On the other hand, in case the floodgate opens when it
should not, due to incorrect water level measurements sent by the sensor, it would lead to
flooding.

6.4.1. CONSTRUCTION OF QUALITATIVE BN MODEL FOR DISTINGUISHING

ATTACKS AND TECHNICAL FAILURES IN FLOODGATES
We have utilised a multimethodology approach for data collection. Multimethodology
refers to using more than one method of data collection in a research study [17], pro-
viding more comprehensive data. In our study, we utilised a focus group workshop and
a questionnaire to gather data for constructing the qualitative BN model. Firstly, we
conducted a focus group workshop with five participants who have experience working
with safety and/or security of water management infrastructures operated by ICS. The
major objective of this focus group is to discuss and identify contributory factors and
observations (or test results) for the problem which we considered. Each participant was
provided with a set of questions as shown in Appendix C. Most of these questions are
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open-ended that ask for factors that would contribute to the major cause of the considered
problem (attack/technical failure) and tests that would provide additional information to
distinguish between the major cause of the considered problem (attack/technical failure)
after the problem is observed by the floodgate operator. For instance, we considered
the problem “the sensor sends incorrect water level measurements” and asked the partic-
ipants: “Which contributory factors would increase the likelihood of the problem due to
(accidental) sensor failure?”. The moderator explained each question to the participants
and facilitated the discussion among the participants to identify a set of contributory
factors and observations (or test results) for the observable problem which we considered.

After the focus group workshop, we employed a questionnaire to gather data for
constructing the qualitative BN model. We employed snowball sampling to recruit other
participants for this study through initial participants. This sampling technique is useful
as it helps to find experts in ICS safety and/or security quickly. The participants were
provided with the same set of questions which we provided to focus group participants
as shown in Appendix C to elicit contributory factors and observations (or test results)
for the considered problem. We received 10 responses in total for the questionnaire.
However, we excluded one response as the participant did not have any experience
working with ICS. Importantly, seven out of nine respondents have five or more years
working experience with ICS which helps to ensure reliability of data. In addition, we had
a good mix of participants from safety and/or security community which is important for
our application. Specifically, two out of nine respondents associate themselves with both
safety and security, two out of nine respondents associate themselves with safety and five
out of nine respondents associate themselves with security.

We combined the data gathered from the focus group and questionnaire for coding.
We utilised thematic coding by grouping contributory factors which are similar under a
category. For instance, there were nine responses such as “easy access to sensor”, “attacker
has physical access to the sensor”, “free access to sensor” which we categorised into “easy
physical access to sensor”. On the other hand, we grouped and removed contributory
factors which are not contributory factors based on our definition. For instance, “Man-
in-the-Middle attack using the wired connection” is not a specific contributory factor
but rather a type of attack that an attacker might employ. Once we categorised the
contributory factors, there were 14 categories (parent nodes) in total. However, this would
result in the CPT size of the problem variable as 16384, which makes it unmanageable.
Therefore, we utilised parent node divorcing, which allows parent nodes to be grouped
hierarchically to avoid excessive inbound links to the child node. By utilising parent
node divorcing, we reduced the number of parent nodes to eight which in turn reduced
the CPT size of the problem variable to 256. For instance, we grouped hierarchically
three different parent nodes (location of sensor susceptible to severe weather, location of
sensor susceptible to biological fouling, location of sensor susceptible to physical contact
of marine vessel) into a single parent node (location of sensor susceptible to external
factor) as shown in Figure 6.3, because they are of the same theme and no original
interactions are lost in the process. Once the qualitative BN model shown in Figure 6.3 is
constructed, we validated it through a focus group workshop with five experts who have
experience working with safety and/or security of ICS in the water management sector in
the Netherlands. We asked specifically whether anything is missing or not appropriate in
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the qualitative BN model. However, the experts did not find any need to add or update
anything in the constructed qualitative BN model.

Figure 6.3: Constructed Qualitative BN Model
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6.4.2. CONSTRUCTION OF QUANTITATIVE BN MODEL FOR DISTINGUISHING

ATTACKS AND TECHNICAL FAILURES IN FLOODGATES

A multimethodology approach is used for quantitative data collection like we did for the
construction of the qualitative BN model. In order to gather data for populating the BN
model with probabilities, we utilised a focus group workshop and a questionnaire. Firstly,
we conducted a focus group workshop with five participants who have experience working
with safety and/or security of ICS in the water management sector in the Netherlands. The
major objective of this focus group is to elicit probabilities corresponding to each variable
in our qualitative BN model that could help to determine the major cause (intentional
attack or accidental technical failure) of the problem (sensor sends incorrect water level
measurements) when observed.

Appendix D shows a set of questions which we provided to each participant at the
start of the focus group workshop. We asked each participant to answer the question
using a probability scale with numerical and verbal anchors to elicit prior probabilities
corresponding to the contributory factors and conditional probabilities corresponding to
the problem and observations (or test results). For instance, we elicited the prior proba-
bility of the variable “Easy Physical Access to Sensor” and a conditional probability of the
variable “Major cause for sensor sends incorrect water level measurements” as shown in
Figure 6.4. The participants were asked to answer the questions individually to avoid bias
in their responses. Furthermore, the moderator provided clarifications individually in
case there are any questions from the participants. Once the participants answered the
questions individually, the moderator facilitated a discussion on the reasoning behind the
varied probabilities which they provided for some variables. However, the purpose of this
discussion is not to make them reach a consensus as it could make the responses biased.

In addition to the focus group workshop, we utilised a questionnaire to gather data for
populating the BN model with probabilities. We used snowball sampling to recruit other
participants for this study through initial participants in the focus group workshop as the
target group is limited and rare to find. This sampling technique makes it easier to find
experts in safety and/or security of ICS in the water management sector in the Netherlands
quickly. We provided a set of questions to the participants mainly to elicit probabilities
corresponding to each variable in the constructed BN model as shown in Appendix D. For
instance, we asked for the prior probability of the variable “Easy Physical Access to Sensor”
and a conditional probability of the variable “Major cause for sensor sends incorrect water
level measurements” as shown in Figure 6.5. The difference compared to the focus group
workshop questions is that the probability scale with numerical and verbal anchors is
not directly used as it is not practicable in the online questionnaire. However, we utilised
the verbal and corresponding numerical anchors from the probability scale as answer
choices for each question in the online questionnaire in addition to “others” option which
could help participants to provide fine-grained probabilities as shown in Figure 6.5. We
received five responses in total. Overall, seven out of 10 participants have more than five
years work experience with safety and/or security of ICS in the water management sector
in the Netherlands.
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Figure 6.4: Focus Group Workshop - Example Questions

Figure 6.5: Questionnaire - Example Questions

Once we collected the responses from the participants in both the focus group work-
shop and questionnaire, we tabulated them together. Furthermore, we noticed that
there were some missing data due to no or invalid response from some respondents.
For instance, we considered responses like “others” without mentioning any specific
likelihood value as an invalid response. Furthermore, it is also not possible to clarify with
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the respondent as responses are anonymous. Ignoring or discarding missing data is one
of the most common approaches used to deal with the missing data [18, 19]. Listwise
deletion and pairwise deletion are the two different methods which could help to ignore
or discard the missing data [18]. Pairwise deletion is appropriate for our application as it
ignores or discards only the missing data and considers the other data provided by these
experts. This is easy to implement. Therefore, we utilised pairwise deletion to ignore or
discard the missing data in our application. Listwise deletion is not appropriate for our
application as it leads to loss of data by completely ignoring or discarding data from four
out of 10 experts since they have no or invalid response to a question.

Once the missing data is ignored or discarded, the probabilities Pi(X) elicited from
the experts need to be combined. One of the most widely used method to combine the
probabilities elicited from the experts is linear pooling [20, 21]. Using the linear pooling
method, the combined probabilities can be computed using (2):

Where wi are positive weights given to each of the n experts with complete probabili-
ties for the corresponding X and

∑n
i=1 wi = 1.

Table 6.2: CPT Excerpt - Problem Variable

(In this table, C1: Easy physical accessibility, C2: No sensor data integrity verification,
C3: Easy network accessibility, C4: Presence of software in sensor, C5: No sensor firmware
update, C6: Maintenance issue, C7: No use of EMI shielding technique, C8: Location of
sensor susceptible to external factor and Y : Major cause for sensor sends incorrect water
level measurements.)

There are two different types of linear pooling method: (i) prior linear pooling, and
(ii) posterior linear pooling [20]. Prior linear pooling combines elicited probabilities
from experts corresponding to each variable in the BN model, which could then be used
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to compute posterior probabilities of target variables by providing evidences to some
variables. On the other hand, in posterior linear pooling, elicited probabilities from n
experts are used to construct n distinct BNs. Once we construct the n distinct BNs, we
run these BNs by providing same evidences to the same set of variables in these BNs
and compute different posterior probabilities in each of these BNs. Finally, the posterior
probabilities generated in n distinct BNs are combined. However, this is not appropriate
for our application as it is not practicable for performing diagnostics in a timely way.
Furthermore, this is not suitable for our application as we ignored or discarded missing
data which could make it not possible to construct BNs with no probabilities for some
variables.

In our application, we utilised prior linear pooling as it is appropriate based on
its advantages [20]. Each of the 10 experts is given equal weighting as they all have
experience working with safety and/or security of ICS in the water management sector in
the Netherlands. Furthermore, we consider each respondent’s experience to be equal in
value. So, we combined the probabilities from n experts using (2).

The probabilities corresponding to contributory factors and observations (or test
results) are now complete. However, we utilised DeMorgan model to reduce the number
of CPT entries that needs to be elicited from experts to nine. Therefore, we computed the
remaining CPT entries corresponding to the problem variable using (1). An excerpt of
CPT entries corresponding to the problem variable is shown in Table 6.2. The complete
BN model with both the qualitative and quantitative component is shown Figure 6.6.
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Figure 6.6: Constructed BN Model – No Evidence Provided
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(In this figure, SC1: Easy physical access to sensor, SC2: Easy physical access to communication

cable, C1: Easy physical accessibility, C2: No sensor data integrity verification, SC3: Sensor is con-

nected to WIFI, SC4: ICS and corporate networks are interconnected, C3: Easy network accessibility,

C4: Presence of software in sensor, C5: No sensor firmware update, TC1: Lack of maintenance of

sensor, TC2: Lack of maintenance of communication cable, SC5: Lack of maintenance, SC6: Poor

maintenance process, C6: Maintenance issue, C7: No use of EMI shielding technique, SC7: Location

of sensor susceptible to severe weather, SC8: Location of sensor susceptible to physical contact

of marine vessel, SC9: Location of sensor susceptible to biological fouling, C8: Location of sensor

susceptible to external factor, Y : Major cause for sensor sends incorrect water level measurements,

TR1: Test/redundant sensor also sends incorrect water level measurements, TR2: Sudden change of

water level measurements from sensor, TR3: Suspicious traffic in ICS network, TR4: Abnormalities

in other components, TR5: No power in sensor, TR6: Communication cable deteriorated, TR7:

Sensor sends correct water level measurements after cleaning sensor, TR8: Sensor sends correct

water level measurements after recalibrating sensor, TR9: EMI along cable.)

6.4.3. DEMONSTRATION OF THE CONSTRUCTED BN MODEL

In this section, we demonstrate the suitability or utility of the constructed BN model
based on two different illustrative scenarios. It is not possible to utilise the real floodgate
for demonstrating the suitability or utility of the constructed BN model by putting it into
practice due to availability and criticality issues. Therefore, we relied on two different
illustrative scenarios for this purpose. These two different illustrative scenarios help to
show how and when the constructed BN model would be useful in practice. Firstly, we
assume that the floodgate operator observed that a sensor sends incorrect water level
measurements by noticing the mismatch between the measurements from physical water
level scale and water level sensor. In order to choose the appropriate response strategy, the
floodgate operator needs to determine the major cause of this problem (i.e., whether this
problem is caused by an attack or technical failure), which is the aim of the constructed
BN model.

Once the floodgate operator noticed the incorrect sensor measurements problem, they
need to provide the evidence that is available for variables in the upper layer (contributory
factors) and lower layer (test results). This could help the constructed BN model compute
posterior probabilities of both the states in the problem variable (attack and technical
failure) based on the provided evidences.

In the first illustrative scenario, the floodgate operator set evidence for variables based
on the available information as shown in Table 6.3. Based on such evidence, the posterior
probability is computed by the constructed BN model for other variables without any
evidence. The BN model in Figure 6.7 shows that the incorrect water level measurement
problem is most likely due to technical failure based on the provided evidences. This
information would help to select the appropriate response strategy (i.e., to repair or
replace the water level sensor).
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Table 6.3: Evidences Corresponding to both the Illustrative Scenarios

In the second illustrative scenario, the floodgate operator sets different evidence for
variables in the constructed BN model based on the available information as shown in
Table 6.3. Based on the provided evidences, the posterior probability is computed for
other variables without any evidence in the constructed BN model. Figure 6.8 shows that
the incorrect water level measurement problem is most likely due to attack based on the
evidences provided by the floodgate operator. This information would help to choose the
suitable response strategy (i.e., to block the corresponding attack vector).

The difference between the two scenarios can be explained as follows. In the first
illustrative scenario, the sensor/sensor communication cable is not easily accessible to
an unauthorised person, whereas there is a lack of maintenance of the sensor/sensor
communication cable and the location of the sensor is susceptible to external factors such
as biological fouling. In addition, the sensor communication cable is deteriorated, and
the sensor sends correct water level measurements after cleaning the sensor. Typically,
the above-mentioned factors increase the likelihood of the problem due to accidental
technical failure, which is reflected in terms of the posterior probability of Y in Figure
6.7. In contrast, in the second illustrative scenario, the sensor/sensor communication
cable is properly maintained, and the location of the sensor is not susceptible to external
factors such as biological fouling, whereas the sensor/sensor communication cable is
easily physically accessible to an unauthorised person. In addition, the test/redundant
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sensor also sends incorrect water level measurements. Typically, the above-mentioned
factors increase the likelihood of the problem due to intentional attack, which is reflected
in terms of the posterior probability of Y in Figure 6.8.

Figure 6.7: Constructed BN Model – First Illustrative Scenario
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Figure 6.8: Constructed BN Model – Second Illustrative Scenario
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6.5. CONCLUSIONS AND FUTURE WORK
Harmful consequences of a problem could be minimised by choosing the appropriate
response strategy in a timely manner. However, this is not possible without determining
the major cause of a problem. In our previous work, we developed the attack-failure dis-
tinguisher framework which could help to construct BN models that determine whether
the problem is caused by an attack or technical failure. This framework also includes the
knowledge elicitation methods such as the DeMorgan model, and probability scales with
numerical and verbal anchors to effectively elicit expert knowledge to construct such BN
models. This work mainly focused on providing a full case study of the framework on how
to construct the BN model for a problem and demonstrate when and how this could be
used in practice.

In this work, we developed a BN model for the problem of incorrect sensor measure-
ments in floodgates in the Netherlands using the attack-failure distinguisher framework.
Due to the lack of data, we relied on expert knowledge to construct the qualitative and
quantitative part of the BN model for our problem. We elicited contributory factors and
test results (or observations) through a focus group workshop and a questionnaire among
respondents who have experience working with ICS. The data from both the focus group
workshop and questionnaire were used to construct the qualitative BN model, which was
also validated with five experts.

Once the qualitative BN model was constructed, we used the DeMorgan model to
reduce the number of CPT entries that needs to be elicited for the problem variable
to nine instead of 256. Firstly, we elicited probabilities corresponding to contributory
factors, problem and test results (or observations) from experts who have experience
working with safety and/or security of water management infrastructures operated by
ICS in the Netherlands through a focus group workshop and questionnaire. During
this elicitation, we employed probability scales with numerical and verbal anchors to
facilitate individual probability entry by providing it as a visual aid. We computed the
rest of the probabilities for the problem variable using the DeMorgan model. Finally, we
demonstrated the suitability or utility of the constructed BN model using two different
illustrative scenarios. The first illustrative scenario shows that the most likely cause for the
considered problem is technical failure, whereas the second illustrative scenario shows
that the most likely cause for the considered problem is attack based on the evidences
provided.

The results of existing integrated safety and security risk assessment methods would
help to choose suitable risk treatments during the design phase before an attack or
technical failure occurs. On the other hand, our method involving the attack-failure
distinguisher framework would help to choose appropriate response strategies during the
operational phase when an attack or technical failure occurs. Furthermore, our method
would help operators to think more proactively about reactive safety and security.

We provided a case study of attack-failure distinguisher framework by developing
a BN model for the problem of incorrect sensor measurements in floodgates. In the
future, this would help practitioners to develop BN models for different problems in
different domains. Furthermore, we provided two different illustrative scenarios using
the developed BN model to demonstrate the suitability and/or utility of such models.

Historical data on attacks and technical failures in the water management sector in
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the Netherlands is unavailable for research due to sensitivity issues. Therefore, it would
not be possible to develop models that could help to distinguish between attacks and
technical failures for the problem of incorrect sensor measurements using a data-driven
approach. However, in the future, the unavailability of historical data on attacks and
technical failures would not deter modelling cyber security for ICS anymore as we utilised
a knowledge-based approach to develop a model for distinguishing attacks and technical
failures.

In addition, it was not possible to use real systems for evaluating the attack-failure
distinguisher framework due to availability and criticality issues. However, we utilised
real-users and realistic problems to evaluate the attack-failure distinguisher framework
by developing a prototype and using the developed prototype for two different illustrative
scenarios to relate the results to real use. Therefore, the developed BN model is usable in
real settings in the future. However, this BN model can be further updated with appropri-
ate contributory factors, test results and probabilities based on the performance measures
in the confusion matrix, which includes four different combinations of diagnosed and
actual classes. This is only possible when a dataset corresponding to the problem in the
real setting is available for research.

In the future, it would be beneficial to put the constructed BN model into practice in a
real floodgate in case it is available to showcase the value of the constructed BN model.
Furthermore, we developed a root-cause analysis framework with the appropriate type
of variables and relationships between them in our previous work, which would help to
construct BN models to determine the attack-vector (in case of an attack) and failure
mode (in case of a technical failure) [22]. However, the root-cause analysis framework
needs to be applied and evaluated for a problem like incorrect sensor measurements in
the future as it could complement the attack-failure distinguisher framework to determine
the attack-vector (in case of an attack) and failure mode (in case of a technical failure).
This could also help to choose the most effective response strategy between alternatives
like repairing or replacing the sensor.
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7
CONCLUDING REMARKS

In the Netherlands, water management infrastructures like floodgates are automated with
Industrial Control Systems (ICS). The problems such as unexpected opening/closing of
floodgates could be caused by (accidental) technical failures and (intentional) attacks.
This thesis tackled a practical problem in the operational phase of water management in-
frastructures operated by Industrial Control Systems (ICS): when the operators notice such
problems in infrastructures operated by control systems in practice, they predetermine
that the problem is due to an (accidental) technical failure and initiate corresponding
response strategies [1]. The wrong diagnosis could result in choosing ineffective response
strategies. This has culminated into the following research question which this thesis set
out to answer:

• RQ. How to develop decision support to distinguish between intentional attacks
and accidental technical failures for problems in water management infrastruc-
tures operated by Industrial Control Systems (ICS)?

We tackled this research question using the Design Science Research (DSR) method
as it is appropriate for the purpose of our study [2, 3].

This chapter summarises the main findings of this thesis. Furthermore, we discuss
scientific and societal implications of this work. Finally, we present limitations of this
work and point out future research directions.

7.1. SUMMARY OF THE FINDINGS
This thesis has first investigated state-of-the-art of integrated safety and security risk
assessment methods. In particular, Chapter 2, “Integrated Safety and Security Risk As-
sessment Methods: A Survey of Key Characteristics and Applications” [4], addressed the
following sub-question:

• SQ 1. What are the key characteristics of integrated safety and security risk assess-
ment methods, and their applications?
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In Chapter 2, we identified seven integrated safety and security risk assessment meth-
ods based on the review methodology we adopted: (i) Security-Aware Hazard Analysis and
Risk Assessment (SAHARA) [5], (ii) Combined Harm Assessment of Safety and Security for
Information Systems (CHASSIS) [6], (iii) Failure-Attack-CounTermeasure (FACT) Graph
[7], (iv) Failure Mode, Vulnerabilities, and Effect Analysis (FMVEA) [8], (v) Unified Security
and Safety Risk Assessment [9], (vi) Extended Component Fault Tree (CFT) [10], and
(vii) Extended Fault Tree (EFT) [11]. The identified methods were analysed using five
different criteria: (i) citations in scientific literature, (ii) steps involved, (iii) stage(s) of risk
assessment process addressed, (iv) integration methodology, and (v) application(s) and
application domain.

Based on the steps involved in each identified method, there are two types of inte-
grated safety and security risk assessment methods: (i) sequential and (ii) non-sequential.
Sequential methods including SAHARA, FACT Graph, Extended CFT, and EFT identify
security risks that impact safety, with the intent to improve the completeness of safety risk
assessment. However, these methods did not consider safety risks that impact security.
Furthermore, the non-sequential methods and unified security and safety risk assessment
method did not consider either safety risks that impact security or security risks that
impact safety. Risk identification and risk analysis stages of the risk assessment process
were given much attention compared to the risk evaluation stage in the identified meth-
ods. This could be because the interaction between safety and security risk assessments
happens mainly during those phases of the risk assessment process.

There are four ways in which the integrated safety and security risk assessment meth-
ods are developed: (i) the conventional safety risk assessment method as the base and
a variation of the safety risk assessment method for security risk assessment, (ii) the
conventional security risk assessment method as the base and a variation of the security
risk assessment method for safety risk assessment, (iii) a combination of a conventional
safety risk assessment method, and a conventional security risk assessment method
and (iv) others. This shows that the conventional safety risk assessment method can be
adapted to perform security risk assessment and vice versa. The integrated safety and
security risk assessment methods were applied in transportation, power and utilities, and
chemical domain. Noticeably, there is a lack of methods that integrate safety and security
in domains like water management.

Furthermore, the integrated safety and security risk assessment methods did not
consider real-time system information. However, there is a need for integrated safety
and security methods which consider real-time system information to be useful in the
operational phase. This could help to tackle a practical problem in the operational phase:
the abnormal behaviour in a component of the ICS due to attacks is initially diagnosed as
a technical failure, which might result in choosing inappropriate response strategies [1].

Bayesian Networks (BNs) showed the potential to tackle this challenge especially
based on their applications in medical diagnosis [12] and fault diagnosis [13]. BNs have
been used in cyber security, but an overarching overview of BN models which identifies
important usage patterns and key research gaps is missing. The identified usage patterns
would be helpful in using BNs to tackle the practical problem of diagnosing attacks and
technical failures.

This has led to Chapter 3, “Bayesian Network Models in Cyber Security: A Systematic
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Review” [14], which addressed the following sub-question:

• SQ 2. What are the important patterns in the use of standard Bayesian Network
(BN) models in cyber security?

In Chapter 3, we identified 17 standard BN models in cyber security based on the
review methodology we adopted. The identified BN models were analysed using eight
different criteria: (i) citation details, (ii) data sources used to construct Directed Acyclic
Graphs (DAGs) and populate Conditional Probability Tables (CPTs), (iii) the number of
nodes used in the model, (iv) type of threat actor, (v) application and application sector,
(vi) scope of variables, (vii) the approach(es) used to validate models, and (viii) model
purpose and type of purpose.

The data sources used to construct DAGs and populate CPTs in the identified BN
models were expert knowledge and empirical data predominantly from cyber security
reports. The identified BN models were significantly used for problems associated with
malicious insiders. This could be based on the increasing percentage of attacks carried out
by insiders compared to outsiders [15]. However, it would be difficult to obtain evidence
in practise for some variables in BN models used for problems associated with malicious
insiders as it could impact privacy.

The identified BN models were predominantly used to tackle problems associated
with the Information Technology (IT) environment compared to the ICS environment.
This could be because the availability of empirical data in the IT environment is better
compared to the ICS environment as majority of the infrastructures operated by ICS are
safety-critical. Therefore, the owners are reluctant to provide data for research from such
infrastructures. The identified BN models completely or partially benefited risk manage-
ment, forensic investigation, governance, threat hunting and vulnerability management
in cyber security.

The identified BN models were considered as a starting point to develop a framework
for constructing BN models that would help to distinguish between attacks and technical
failures. For instance, the appropriate types of variables used in the identified BN models
could be a basis to develop our framework. Furthermore, the identified patterns in the
use of BN models in cyber security would be used as a basis to construct BN models
for our application. For instance, expert knowledge is an alternate data source to tackle
problems associated with ICS environment which could be a useful pattern to develop
BN models for our application. This also shows that there is a need for methods in our
framework that would help to effectively elicit knowledge from experts to construct DAGs
and populate CPTs of BN models for our application.

Given the above conclusions and the potential of BNs to address the RQ while fulfilling
the problem requirements and constraints, Chapter 4, “Combining Bayesian Networks
and Fishbone Diagrams to Distinguish Between Intentional Attacks and Accidental Tech-
nical Failures” [16], addressed the following sub-question:

• SQ 3. How could we combine Bayesian Networks and Fishbone Diagrams to find out
whether an abnormal behaviour in a component of the ICS is due to (intentional)
attack or (accidental) failure or neither?
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In Chapter 4, we developed attack-failure distinguisher framework to construct BN
models for determining the major cause of an abnormal behaviour in a component of the
ICS. This framework consists of three different types of variables adapted from existing
diagnostic BNs: (i) contributory factors, (ii) problem, and (iii) observations (or test results).
The contributory factors are factors that could lead to the considered problem due to an
attack or technical failure, whereas the observations (or test results) provides information
in the aftermath of the considered problem which could help to determine whether the
problem is due to an attack or technical failure. This framework also embeds cause-effect
relationship between the type of variables adapted from existing diagnostic BNs.

Because the BNs themselves are not suitable for knowledge elicitation, we extended
fishbone diagrams to facilitate knowledge elicitation that would help to construct DAGs
of BN models for our application. Furthermore, the typical fishbone diagrams are also not
enough as they do not include observations (or test results) which needs to be elicited for
our application. Therefore, we extended the typical fishbone diagrams to include obser-
vations (or test results). Extended fishbone diagrams facilitate brainstorming with experts
to elicit knowledge from experts to construct DAGs of BN models for our application.
Furthermore, extended fishbone diagrams allow safety and security community to work
together during knowledge elicitation especially by showing the complete overview of
contributory factors and observations (or test results) for the considered problem, which
are categorised under intentional attack and accidental technical failure.

We demonstrated the developed methodology with an example problem “sensor (S1)
sends incorrect water level measurements” using a case study in the water management
domain. We considered this example problem because this could lead to complex situa-
tions from flooding to severe economic damage. Finally, there is a lack of methods for
knowledge elicitation to populate CPTs of BN models for determining the major cause of
an abnormal behaviour in a component of the ICS.

In order to address the above-mentioned limitation, Chapter 5, “Probability Elicita-
tion for Bayesian Networks to Distinguish between Intentional Attacks and Accidental
Technical Failures” [17], dealt with the following sub-question:

• SQ 4. How could we elicit expert knowledge to effectively construct Conditional
Probability Tables of Bayesian Network models for distinguishing attacks and tech-
nical failures?

In Chapter 5, we analysed state-of-the-art techniques and chose the most suitable
technique to reduce the workload for experts in probability elicitation, which helps to
elicit reliable probabilities from experts. Firstly, we chose the DeMorgan model to reduce
the number of conditional probabilities to elicit as it could help to deal with a combination
of promoting and inhibiting influences. The DeMorgan model would help to completely
define the CPT of a child variable with only (n +1) entries elicited from experts instead
of 2(n+1) entries, where n is the number of parent variables corresponding to the child
variable.

Furthermore, we chose the probability scale with numerical and verbal anchors to
facilitate the individual probability entry as they are effective and practicable based on
previous studies. The probability scale with numerical and verbal anchors provides
numerical anchors for experts who prefer numbers and verbal anchors for experts who
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prefer words. There is also an option for experts to express fine-grained probabilities using
the probability scale with numerical and verbal anchors as an aid. This completes the
holistic attack-failure distinguisher framework for distinguishing attacks and technical
failures.

We demonstrated the developed methodology using a case study in the water man-
agement domain with the example problem “sensor (S1) sends incorrect water level
measurements”. Finally, the attack-failure distinguisher framework needs to be evaluated
realistically.

This has prompted Chapter 6, “Bayesian Network Model to Distinguish between
Intentional Attacks and Accidental Technical Failures: A Case Study in Floodgates” [18],
which tackled the following sub-question:

• SQ 5. How could we develop Bayesian Network (BN) models for distinguishing
attacks and technical failures in Floodgates?

In Chapter 6, we constructed a BN model for determining the major cause of a problem
“sensor sends incorrect water level measurements” using the attack-failure distinguisher
framework. We utilised the multi-methodology approach which includes focus groups
and questionnaires to gather data from experts to construct DAG and populate CPTs. We
conducted a focus group session to gather data from experts to construct DAG, which
had five participants who have a lot of experience working with safety and/or security
of ICS in the water management sector in the Netherlands. We complemented it with a
questionnaire to gather data to construct DAG, which had nine respondents who have
at least a year of experience working with safety and/or security of ICS. Furthermore,
we conducted another focus group session to review the constructed DAG and populate
CPTs, which had five participants who have a lot of experience working with safety and/or
security of ICS in the water management sector in the Netherlands. We complemented it
with a questionnaire to populate CPTs, which had five respondents who have at least a
year of experience working with safety and/or security of ICS in the water management
sector in the Netherlands. In the constructed DAG, there were eight contributory factors
for the problem which we considered. The CPT size of the problem is 512 (2(8+1)) entries.
We elicited nine entries for the CPT corresponding to the problem from the experts and
computed the other probabilities to completely define the CPT of the problem using
the DeMorgan model. This significantly reduced the workload of experts in probability
elicitation. Finally, we evaluated the constructed BN model using two different illustrative
scenarios to demonstrate the utility or suitability of the developed artefact (attack-failure
distinguisher framework). The first illustrative scenario shows that the most likely cause
for the considered problem is technical failure, whereas the second illustrative scenario
shows that the most likely cause for the considered problem is attack based on the
evidences provided.

We tackled the main research question of this thesis by: (i) providing a holistic attack-
failure distinguisher framework which also include methods to effectively elicit knowledge
from experts to construct DAGs and populate CPTs of BN models for our application, (ii)
developing decision support to distinguish between intentional attacks and accidental
technical failures for a problem (“sensor sends incorrect water level measurements”) in a
floodgate operated by ICS.
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Based on the above-mentioned studies, we reflect on how we fulfilled the requirements
elicited from experts during the problem identification phase of the DSR process:

• The review of BNs in cyber security showed that BN is an effective and practical
alternate to data-driven approaches. BN is a knowledge-based approach which
we used as a basis for the decision support we developed. This helps to deal with
unavailability of data by using expert knowledge, which is substantive information
on a specific domain based on system knowledge that is not commonly known by
others. This addressed R1.

• The decision support which we developed take into account real-time system
information in terms of evidences from operators for contributory factors and ob-
servations (or test results) to determine the major cause of the considered problem.
This fulfilled R2.

• The proposed extended fishbone diagrams would facilitate to involve experts from
both the department that deals with technical failures and cyber-attacks and also
experts with expertise in dealing with both technical failures and cyber-attacks
during the knowledge elicitation process for the development of qualitative BN
model. This partly addressed R3. However, this needs to be further evaluated with
safety and security experts in the future.

• BNs are difficult to interpret for ICS domain experts and are therefore unsuitable
for extracting the necessary knowledge. The use of proposed extended fishbone
diagrams would reduce the workload of experts to extract necessary knowledge as
it is easy to understand and guides data collection. This addressed R4.

• The workload of experts during knowledge elicitation of probabilities were limited
by the use of DeMorgan model, which reduces the number of conditional proba-
bilities to elicit from experts to (n+1) instead of 2(n+1). Furthermore, we employed
probability scales with numerical and verbal anchors to facilitate individual proba-
bility entry. This supported experts in visualising probability range and also allowed
us to elicit probabilities in a reasonable time. For instance, we were able to elicit
expert knowledge on 41 probabilities in about 30 - 45 minutes during the focus
group workshop based on Appendix D. This fulfilled R4.

• The reliability of knowledge elicited for developing the decision support is ensured
by reducing the workload of experts and also potentially facilitating discussions
between experts from different departments using the extended fishbone diagrams.
This fulfilled R5.

• We utilised artificial evaluation strategy due to the unavailability of real environ-
ment for this evaluation. However, we made it more realistic by involving real-users,
and realistic problems. Therefore, the results from the artificial evaluation could
correspond to real use. Furthermore, the develop decision support could be used
for different problems in different domains which addressed R6.
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At this point, it is important to answer the key question on the effectiveness of the
attack-failure distinguisher framework: "Is the attack-failure distinguisher framework
effective?". We assessed the BN framework and also the knowledge elicitation method
including DeMorgan model and probability scale with numerical and verbal anchors. This
is done based on a case study in floodgates by developing a BN model involving experts
and using the developed BN model for two illustrative scenarios. The BN framework
helps to structure the BN model with appropriate variables and also causal relationships
between the variables are maintained. Furthermore, the DeMorgan model significantly
reduces the workload of experts by reducing the number of conditional probabilities to
elicit from experts. The probability scale with numerical and verbal anchors makes it
easier for experts to answer in terms of probabilities in a short time. These were evident
from our case study and also make the attack-failure distinguisher framework feasible in
practice. Finally, the extended fishbone diagram needs further evaluation in the future.

7.2. SCIENTIFIC AND SOCIETAL IMPLICATIONS
This thesis contributed towards the answer to the RQ corresponding to a practical problem
in the operational phase of water management infrastructures operated by ICS, which in
turn improves critical infrastructure protection especially by enabling operators to think
more proactively about reactive safety and security. Furthermore, this thesis provides
methods that allow the safety and security community to work together in order to
tackle common problems more effectively. Finally, this thesis contributes to scientific
community mainly on two themes: (i) integration of safety and security, (ii) reactive safety
and security. This section reflects implications of this thesis towards science and society.

Characteristics and limitations pave the way for advancements in integrated
safety and security risk assessment methods: An overarching overview of integrated
safety and security risk assessment methods was missing. A part of this thesis contributes
to the scientific community especially by addressing the above-mentioned research gap.
After the review on existing integrated safety and security risk assessment methods was
conducted as a part of this thesis, the researchers continued to recognise the importance
of integrating safety and security risk assessments by developing integrated safety and
security risk assessment methods [19–23].

This work would act as a starting point for developing more effective integrated
safety and security risk assessment methods especially by considering key characteristics
and limitations of existing methods, which is already evident from some of the scientific
literature that cited our work [19, 20, 24]. We highlighted that this work would act as a base
to investigate the combinations of safety, and security risk assessment methods that could
be used in the future to develop integrated safety and security risk assessment methods.
The scientific literature that cited this work investigated different combinations of safety,
and security risk assessment methods. For instance, Temple et al. combined aspects of
System-Theoretic Process Analysis for Security (STPA-Sec) and FMVEA to develop their
integrated safety and security risk assessment method [19]. In addition, Bernsmed et
al. used the combination of bow-tie diagrams to perform safety risk assessment and the
variation of the bow-tie diagrams to perform security risk assessment [20].

Furthermore, this work would also help in practice as a guide to apply the appropriate
integrated safety and security risk assessment method. The result from the application
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of the relevant method would mainly help to choose appropriate risk treatments and
prevent a problem occurring due to technical failure/attack. This in turn would help to
ensure societal well-being and prevent economic impact. Based on this work, five out
of seven methods are appropriate to perform risk analysis. Moreover, three out of these
five methods were already applied in the transportation domain. This could provide a
shortlist of the integrated safety and security risk assessment methods that are suitable
for performing risk analysis in the transportation domain.

Patterns in the use of BN models in cyber security guide new applications: A com-
prehensive review of BN models in cyber security was missing. A part of this thesis
contributes to the scientific community especially by addressing the above-mentioned
research gap. This work would act as a knowledge base with important patterns in the
use of BNs in cyber security and key research gaps that needs to be addressed in the
future. This work would help in the practical application of BNs in cyber security and to
investigate the use of BNs that could benefit other applications in cyber security. This is
already evident from some of the scientific literature that cited our work [25–27]. Wang et
al. proposed a two-layer framework to construct BN models that would help to determine
the specific attack technique used to cause the identified type of attack [27]. For instance,
we determined that the adversary performed Denial of Service (DoS) attack. However,
DoS attack could be performed using different attack techniques such as teardrop, ping
of death. The attack technique used by the adversary to perform the DoS attack could be
identified using BN models constructed based on the developed framework [27]. We con-
cluded that it would be intriguing to investigate how to deal with multi-step attacks using
standard BNs, which is the basis for the recent scientific work conducted by Solomon on
predicting multi-stage attack with normal IP addresses on a computer network using BNs
[25].

An important pattern on the data sources used to construct DAGs and populate
CPTs could help in practice as a guide to develop new BN models in cyber security. We
concluded that the expert knowledge and empirical data predominantly from cyber
security reports were the data sources utilised to construct DAGs and populate CPTs.
Furthermore, the availability of empirical data in the IT environment is much better
compared to the ICS environment. This pattern guided us to an alternate solution when
the empirical data was not available in developing a BN model for our application, which
also resulted in choosing expert knowledge as the alternate data source to construct DAGs
and populate CPTs.

Attack-failure distinguisher framework can be used for different problems in dif-
ferent domains: As a part of this thesis, we developed an attack-failure distinguisher
framework that would help to construct BN models for distinguishing attacks and techni-
cal failures, which also include methods that would help to effectively elicit knowledge
from experts to construct DAGs and populate CPTs. This framework would support practi-
cal applications in the future, especially to construct BN models for distinguishing attacks
and technical failures for different problems in different domains. This is also evident
from the application of the developed framework for a problem in the water management
domain in this thesis.

When we rely on expert knowledge as the data source, there need to be appropriate
methods to effectively elicit knowledge from experts. The attack-failure distinguisher
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framework includes extended fishbone diagrams to support brainstorming with experts
in constructing the DAGs of BN models for our application. Furthermore, the attack-
failure distinguisher framework includes DeMorgan model and probability scale with
numerical and verbal anchors to effectively elicit probabilities from experts to completely
define CPTs of BN models for our application. These methods would be used in practical
applications for different problems in different domains in the future. Furthermore,
extended fishbone diagrams would also help to elicit knowledge for similar problems. For
instance, Jacobs used extended fishbone diagrams for an example ProRail case related to
carriage registration [28]. They populated the contributory factors on the left side of the
extended fishbone diagram for the problem (“Incorrect registration”). Furthermore, they
populated with observations on the right side of the extended fishbone diagram.

Motivates the need for methods that integrate safety and security: This research
motivates the need for integrated safety and security methods that would facilitate safety
and security community to work together and share relevant information to tackle com-
mon problems in a more effective way. In this thesis, we tackled a common problem that
needs safety and security community to work together and share relevant information. In
order to bring the safety and security community together, there need to be appropriate
methods that facilitate the safety and security community to work together and share
relevant information. In our work, we developed extended fishbone diagrams that facili-
tate brainstorming with experts from the safety and security community to construct the
DAGs of BN models.

Knowledge-based approaches are appropriate for modelling cyber security for
ICS: Currently, there is a lack of empirical data for modelling cyber security in ICS envi-
ronment as majority of the infrastructures operated by ICS are safety-critical. Therefore,
the owners are reluctant to provide data for research from such infrastructures. A part
of this thesis showed that expert knowledge is an alternate data source to model cyber
security for ICS when the empirical data is unavailable. In the future, the unavailability of
empirical data would not deter modelling cyber security for ICS anymore. In this thesis,
we used a knowledge-based approach in constructing models for our application. Further-
more, this would motivate the scientific community to investigate other knowledge-based
approaches to model cyber security for ICS when there is an unavailability of empirical
data.

Developed method enables operators to be more proactive about reactive safety
and security: The results of existing integrated safety and security risk assessment meth-
ods would mainly help to choose appropriate risk treatments during the design phase
before an attack or technical failure occurs. These methods are associated with proactive
safety and security. However, the results of our method would help to choose appropriate
response strategies during the operational phase when an attack or technical failure
occurs. This method is associated with reactive safety and security.

Currently, the abnormal behaviour in a component of the ICS due to attacks is initially
diagnosed as a technical failure [1]. This leads to choosing ineffective response strategies.
In the future, the method which we developed would help operators to be better prepared
when they encounter a problem in a component of the ICS. The developed method would
help to construct BN models for different problems that an operator could observe. In the
constructed BN model, the operators would provide evidences for contributory factors
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and observations (or test results), which would help to determine whether the abnormal
behaviour in component of the ICS is due to an attack or technical failure based on
posterior probabilities. This information would in turn help the operators to be better
prepared as it enables them to know what they are dealing against. This information with
root cause details would also help to reduce/prevent impact on societal well-being and/or
economy by choosing appropriate response strategies once the problem has occurred. In
order to choose appropriate response procedures, this information alone is not enough
as choosing the effective response strategy also depends on the root cause (attack vector
used to cause the problem in case of an attack or failure mode caused the problem in
case of technical failure). BNs could also be used to determine the root cause once we
determine whether it is due to an attack or technical failure, which would be detailed in
future research directions.

This thesis proposed a solution to the practical problem which could impact societal
well-being and economy. Furthermore, this research contributed to methods that would
allow safety and security community to join forces and tackle a common problem. Finally,
this study contributed to the scientific community on the integration of safety and security,
reactive safety and security.

7.3. LIMITATIONS
This section explains the limitations of this thesis.

Historical data on attacks and technical failures in water management sector is
not available for research: At the start of this research, we anticipated that we might
get data from existing attacks and technical failures in the water management sector to
gather appropriate contributory factors, test results (or observations) and probabilities.
However, this is not available for research due to sensitivity issues. Therefore, we relied on
expert knowledge which is an effective alternative when there is a lack of data based on the
inputs which we received from the interviews with experts during requirements elicitation
and related works which we reviewed. The other alternatives such as red team vs. blue
team exercises were not possible due to practicalities, especially there is a lack of testbeds
which could facilitate such exercises in the Netherlands. This could have improved the
reliability of data used to construct DAG and populate CPTs for our application.

Lack of historical data on attacks and technical failures create dependence on ex-
perts: The lack of data excludes the use of data-driven approaches to develop decision
support for distinguishing attacks and technical failures. However, we utilised BNs based
on real-world applications in medical diagnosis and fault diagnosis, which is a knowledge-
based approach. The dependence on experts could impact the reliability of elicited
contributory factors, test results (or observations) and probabilities. Therefore, we devel-
oped a framework with different methods that would support knowledge elicitation from
experts which includes: (i) extended fishbone diagrams to elicit contributory factors and
test results (or observations), (ii) DeMorgan model to reduce the number of conditional
probabilities to elicit from experts and (iii) probability scale with numerical and verbal
anchors to facilitate individual probability entry. These methods would enhance the
reliability of elicited contributory factors, test results (or observations) and probabilities
by reducing the workload of experts during knowledge elicitation from experts.

Limited experts on safety and/or security of ICS in the water management sector
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impacts sample size: We relied on experts who associate themselves with safety and/or
security of ICS to elicit contributory factors and test results (or observations). We also
relied on experts who associate themselves with safety and/or security of ICS in the water
management sector in the Netherlands to elicit probabilities. This enhances the reliability
of elicited contributory factors, test results (or observations) and probabilities as they
have prior knowledge about the system. However, this leads to the limitation of fewer
respondents. In the Netherlands, there is a limited group of safety and/or security experts
in the water management sector. Therefore, we utilised snowball sampling as it helps to
reach more number experts in that limited target group.

Limited time availability of experts impacts sample size: Initially, we employed fo-
cus groups as a technique to elicit contributory factors, test results (or observations) and
probabilities. However, there were practical difficulties to gather a group of people at the
same time due to the limited time availability of experts. This resulted in focus groups
with a bit less number of experts (five). Therefore, we complemented focus groups with
questionnaires to reach a bit more number of experts in that limited target group. Due to
limited target group and time availability of experts, it was not possible to reach much
more experts to elicit contributory factors, test results (or observations) and probabilities.
In case we had a larger sample size, statistical tests would have been possible to identify
significant relationships within the elicited data and generate more accurate results.

Naturalistic evaluation of the developed artefact is not possible as the real system
is unavailable: The real water management infrastructure like a floodgate is not available
for the evaluation of the developed artefact (attack-failure distinguisher framework) due to
availability and criticality issues. Therefore, we could not perform naturalistic evaluation,
which involves evaluating the developed artefact with real users and real systems in the
real setting. Therefore, we relied on the artificial evaluation, which involves evaluating
the developed artefact in a contrived and non-realistic way. However, we made it more
realistic with real-users, and realistic problems to correspond the results to real use.

We evaluated the developed artefact based on a case study in floodgates by developing
a prototype involving experts and using the developed prototype for two illustrative
scenarios. However, the developed artefact including the methods to effectively elicit
expert knowledge to construct DAGs and populate CPTs are generic, which could be
applied in different domains. This is evident from the application of extended fishbone
diagrams for an example ProRail case related to carriage registration [28].

7.4. FUTURE RESEARCH DIRECTIONS
In each chapter of this thesis, we provided future research directions specific to the study.
This section covers future research directions in the broader context and how this could
be addressed in the future.

Need for root cause analysis framework to choose appropriate response strategies:
This thesis developed the attack-failure distinguisher framework to construct BN models
that would help to distinguish between attacks and technical failures. In order to choose
effective response strategies, the operators would also need to identify the root cause. In
case of an attack, they would need to identify the attack vector used to cause the observed
problem. On the other hand, they would need to identify the failure mode that caused the
observed problem in case of technical failure. The attack-failure distinguisher framework
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does not have this capability. However, the attack-failure distinguisher framework could
provide input to the potential root cause analysis framework by determining whether the
problem is due to an attack or technical failure.

In the future, the complete root cause analysis framework could be developed based
on the BN model developed by Curiac et al. that assists in diagnosis of psychiatric disease
[29]. In addition to disease specific risk factors and symptoms, the BN model developed
by Curiac et al. consists of four different psychiatric diseases. Instead of the psychiatric
diseases in the middle layer, the root cause analysis framework would have different
attack vectors in case of an attack or failure modes in case of a technical failure. Once the
attack-failure distinguisher framework provides input, the root cause analysis framework
determines the attack vector in case of an attack or failure mode in case of a technical
failure. It would be much more beneficial to develop a root cause analysis framework
using BNs which determines the attack vector/failure mode as it would help operators to
choose appropriate response strategies considering specific attack vector or failure mode.

Decision tree framework helps visualising and choosing effective response strate-
gies: The attack-failure distinguisher framework is developed in this thesis which would
help to construct BN models for distinguishing attacks and technical failures. The struc-
ture of a decision tree could be used to visualise the effective response strategies for
each attack vector and failure mode. The basic structure of a decision tree involves three
different type of nodes: (i) root node, (ii) internal node, and (iii) leaf node [30]. In our ap-
plication, the root node could be a problem. Furthermore, the first layer of internal nodes
could be the major causes of the problem (attack and technical failure). The second layer
of internal nodes could be the attack vectors and failure modes. Finally, the leaf nodes
could be effective response strategies corresponding to each attack vector and failure
mode. Once the BN model developed using an attack-failure distinguisher framework
determines whether the problem is caused by an attack or technical failure, this could
be used as an input to the BN model developed using a root cause analysis framework in
the future. Based on the input from the BN model developed using a root cause analysis
framework regarding the specific attack vector or failure mode, the decision tree visuali-
sation could support operators to choose effective response strategies. This could also
help to consider safety and security interdependencies especially mutual reinforcement
and antagonism as it visualises effective response strategies corresponding to each attack
vector and failure mode.

Investigate methods to tackle multiple problems at the same time: The attack-
failure distinguisher framework is applicable when there is a problem observed to de-
termine whether the problem is due to an attack or technical failure. However, when
there are multiple problems observed at the same time, it would be interesting to investi-
gate whether we could still consider it as a separate problem and apply the developed
attack-failure distinguisher framework or there needs to be an alternate framework that
is applicable for such cases. Similarly, the extended fishbone diagrams can help to elicit
expert knowledge for each problem separately. It would be useful to extend the extended
fishbone diagrams to allow eliciting expert knowledge for multiple problems at the same
time as it could provide a complete overview.

Important to predict the failure and attack probability in water management do-
main: The Repository of Industrial Security Incidents (RISI) database contains informa-



REFERENCES

7

131

tion about cyber-attacks in different domains like water management, transportation
[31]. However, this is not up-to-date and specific to the water management domain.
With adequate historical data about cyber-attacks and technical failures in the water
management domain, existing integrated safety and security risk assessment methods
could help to predict the failure and attack probability in the future. This is appropriate as
the result would mainly help to choose appropriate risk treatments and prevent a problem
occurring due to technical failure/attack. These methods are associated with proactive
safety and security.

Require further evaluation before use in real environment: A part of the attack-
failure distinguisher framework which includes DeMorgan model and probability scales
with numerical and verbal anchors was validated by developing a BN model for a problem
in water management domain involving safety and security experts in water management
in the Netherlands. However, extended fishbone diagram which is also a part of the attack-
failure distinguisher framework needs further evaluation involving safety and security
experts. Furthermore, the developed BN model is validated using expert evaluation and
illustrative scenarios. However, this BN model needs to be further evaluated when the
problem occurs in real environment. This would also help to answer the key question on
the effectiveness of attack-failure distinguisher framework completely.

Explore use of alternate data sources for our application: This thesis used expert
knowledge to develop decision support for the problem (“sensor sends incorrect water
level measurements”). However, there are other potential data sources which need to
be investigated to make it more objective. For instance, the technical failure report data
could be a data source for eliciting information related to technical failures as it could
provide contributory factors. Furthermore, the red team vs. blue team exercise could be
a data source for eliciting information related to attacks as it could help to improve the
reliability of elicited data. For instance, the Critical Infrastructure Security Showdown
(CISS) is conducted by Singapore University of Technology and Design on their Secure
Water Treatment (SWaT) testbed. Such type of events could provide information about
contributory factors and observations (or test results) corresponding to attacks. For
instance, we could interview members of the red team regarding which factors in the
infrastructure contributed to the success of their attack. Furthermore, we could interview
members of the blue team regarding tests (or observations) which help them to diagnose
an attack.

Availability of data create opportunities for data-driven approaches in modelling
cyber security for ICS: When there is an availability of historical data on attacks and
technical failures in water management infrastructures, the machine learning algorithms
such as logistic regression, artificial neural networks could be used to tackle our problem.
Furthermore, the models developed using such machine learning algorithms could be
evaluated based on their performance.
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A
REQUIREMENTS ELICITATION –

DISCUSSION GUIDE

Q1. When the operator notices an abnormal behaviour in a component of the ICS, how
do they respond to it?

Q2. Do you have a mechanism for the operator to determine whether an abnormal
behaviour in a component of the ICS is due to attacks or technical failures?

Q3. Does the same department deal with the attacks and technical failures? If not, how?

Q4. Which functionalities do you think are important in a system which helps to
distinguish between attacks and technical failures?

Q5. Are there any cyber-attacks reported in your infrastructure?

Q6. Are there any technical failures reported in your infrastructure?

Q7. Do you have a repository of technical failure reports?

Q8. If so, whether this repository of technical failure reports is available for research or
not?

Q9. What do you think are the alternate data sources available for research?

Q10. What are the challenges you foresee in the alternate data sources you proposed?

Q11. In addition to risk factors and symptoms based on tests, what are other elements
that you would take into account when you diagnose an (intentional) attack on a
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component?

Q12. In addition to risk factors and symptoms based on tests, what are other elements
that you would take into account when you diagnose (accidental) technical failure?

Q13. Is it possible to evaluate the developed method in the real water management
infrastructure? If so, are there any challenges?

Q14. Whether do we have access to system architectures of any real water management
infrastructure or not?



B
NOISY-OR MODEL AND CAUSAL

STRENGTH (CAST) LOGIC

B.1. NOISY-OR MODEL
The noisy-OR model is applicable when there are several parents (causes) and a common
child (effect) as shown in Figure B.1. In general, the CPT size of a binary variable with n
binary parents is 2(n+1). However, only n parameters are sufficient to completely define
CPT using the noisy-OR model.

Figure B.1: Noisy-OR Model: Structure
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In the noisy-OR model, each cause variable (X i) has the values xi and xi’ for the
presence and absence of the cause respectively. Furthermore, the effect variable (Y ) has
values y for the effect being present and y’ for the effect being absent. The noisy-OR
model assumes that the properties of exception independence and accountability holds
true [1]. The property of exception independence states that presence of any single
cause is enough to produce the effect and that the hidden processes that may inhibit the
occurrence of the effect are mutually independent [2]. In case all the modelled causes of
the effect are false, the property of accountability requires that the effect be presumed
false, i.e., P(y’|x1’,x2’,...,xn’) = 1.

In the noisy-OR model, the effect can be caused by any cause similar to a logical-OR.
However, the relationship is not deterministic – each of the causes X i alone can cause the
effect with probability pi, which is known as link probability [3].

pi = P(y|only X i is present) = P(y|x1’,x2’,...,xi,...,xn’)

Where x1’,x2’,...,xi,...,xn’ represents the absence of the other causes except X i.
The probability of any combination of active causes can be calculated as:

P(y|X) = 1−ΠxiεX(1−pi)

Where X represents all active causes.

B.2. CAUSAL STRENGTH (CAST) LOGIC
CAST logic is applicable when there are several parents and a common child as shown in
Figure B.2 [4]. CAST logic assumes all the variables in the model are binary. CAST logic is
only applied in the international policy and crisis analysis domain [5]. The interaction
between a parent and the common child can be either promoting or inhibiting. The
promoting influence is depicted by an arrowhead, whereas the negative influence is
illustrated by a filled circle as shown in Figure B.2.

Figure B.2: CAST Parameters
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The parameters which need to be elicited to completely define CPTs using CAST logic
are: (i) causal strengths (gX i,hX i) for each arc, and (ii) baseline probability (b) for each
variable. The values of causal strengths (gX i ,hX i ) are not probabilities and can take any
arbitrary values from the range [-1, 1]. The value of causal strength (hX i) indicates the
change in belief of Y relative to the baseline probability of Y (bY) under the assumption
that X i is in “True” state. For instance, hX 1 indicates how much the presence of X 1 would
change our belief of Y. On the other hand, the value of causal strength (gX i) indicates
the change in belief of Y relative to the baseline probability of effect (bY) under the
assumption that X i is in “False” state. For instance, gX 1 indicates how much the absence
of X 1 would change our belief of Y.

Once we elicit the above-mentioned parameters, we could apply CAST algorithm for
every combination of parent states to completely define the CPT of child variable. CAST
algorithm consists of four steps: (i) aggregate positive causal strengths, (ii) aggregate
negative causal strengths, (iii) combine the positive and negative causal strengths, and
(iv) derive conditional probabilities.

In the first step, the positive causal strengths are aggregated using (B.1):

S+ = 1−Πi (1− sX i) (B.1)

Where sX i can be gX i or hX i depending on the state of the parent.
In the second step, the negative causal strengths are aggregated using (B.2):

S- = 1−Πi (1−|sxi|) (B.2)

Where sX i can be gX i or hX i depending on the state of the parent.
In the third step, the positive and negative causal strengths are combined. The overall

influence (O) of all parents is determined using (B.3) if S+ >= S- and using (B.4) if S- < S+:

O = 1− ((1−S+)/(1−S-)) (B.3)

|O| = 1− ((1−S-)/(1−S+)) (B.4)

In the final step, the conditional probabilities are derived using (B.5) if Oj >= 0 and
using (B.6) if Oj < 0:

P(Y|Xj) = bY + (1−bY)Oj (B.5)

P(Y|Xj) = bY −bY|Oj| (B.6)

Where Oj denotes the overall influence of jth combination of parent states X j.
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C
KNOWLEDGE ELICITATION

METHOD TO DEVELOP

QUALITATIVE BN MODEL

Root Cause Analysis in Industrial Control Systems – Differentiation of Cyber Attacks
and Technical Failures based on Contributory Factors and Test Results (or

Observations)

Objectives: To identify contributory factors (or risk factors) and tests that could help to
differentiate between (accidental) component failure and an (intentional) attack on the
component of Industrial Control System (ICS).

The results of this questionnaire would be used as a basis to develop a Bayesian Network
model-based decision support system that could help to distinguish between (accidental)
component failure and an (intentional) attack on the component of ICS in the water
management sector.

This study is a first-of-its-kind. We will keep you up to date about the results of this study.

Estimated Time: 25 minutes

Examples: The examples provided below would help to clarify the terminologies used
in this questionnaire. The lung cancer example is from medical domain which is not
directly related to the questionnaire. However, this could help to easily understand the
terminologies and translate it into our domain of interest. Furthermore, the computer
crash example is from security domain which is closely related to the questionnaire. In
general, the contributory factor (or risk factor) increases the likelihood of a disease or
problem as shown in Figure C.1 and C.2. In addition, the test result (or observations)
based on a test would help to diagnose a disease or problem after it occurred.
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Figure C.1: Lung Cancer - Example

Figure C.2: Computer Crash - Example

Case Outline

This is a hypothetical floodgate primarily operated by Supervisory Control and Data
Acquisition (SCADA) system. Figure C.3 illustrates the physical layout of the floodgate
and the view of operations centre.

Figure C.3: Physical Layout of the Hypothetical Floodgate

The operator has a clear view of the floodgate from the operations centre. Figure C.4 illus-
trates the SCADA architecture of the hypothetical floodgate. The sensor (which is located
near the floodgate) is used to measure the water level. There is also a water level scale
which is visible to the operator from the operations centre. The sensor measurements are
then sent to the PLC. If the water-level reaches the higher limit, PLC would send an alarm
notification to the operator through Human Machine Interface (HMI), and the operator
would need to close the floodgate through HMI. In addition, HMI would also provide
information like the water-level and the current state of the floodgate (open/closed). The
actuator opens/closes the floodgate.
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Figure C.4: SCADA Architecture of the Hypothetical Floodgate

Note: The case outline is provided to get you started. If you think anything is missing in
the case outline, you could make your own assumptions, and explicitly mention it in your
response.

Questions

Please answer the following questions to the best of your ability.

Background Information

1. How many years of experience do you have working with Industrial Control
Systems (ICS)?

2. Which sector(s) do you work in?

Chemical
Defence
Energy
Financial
Nuclear
Transport
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Water
Others, please specify:

3. Which community do you associate yourself with based on your experience?

Safety (dealing with accidental/non-malicious threats)
Security (dealing with intentional/malicious threats)
Both safety and security
Others, please specify:

Problem: The sensor sends incorrect water level measurements.

4. Which contributory factors would increase the likelihood of the problem due to
(accidental) sensor failure?

5. Which contributory factors would increase the likelihood of the problem due to an
(intentional) attack?

6. Which tests would you execute to distinguish between (accidental) sensor failure
and an (intentional) attack on the sensor for the problem?

7. If you have listed more than 1 test for 6., please rank the tests in the order of
importance with “first rank” being the most significant test that would provide more
clarity on the difference between (accidental) sensor failure and an (intentional)
attack on the sensor, and “last rank” being the least significant test that would provide
less clarity on the difference between (accidental) sensor failure and an (intentional)
attack on the sensor.

Miscellaneous

8. In addition to contributory factors and test results, what are other elements
that you would take into account when you diagnose an (intentional) attack on a
component?
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9. In addition to contributory factors and test results what are other elements that
you would take into account when you diagnose (accidental) component failure?

10. What are the important elements that need to be included when you document an
(intentional) cyber-attack?

11. What are the important elements that need to be included when you document an
(accidental) technical failure?





D
KNOWLEDGE ELICITATION

METHOD TO DEVELOP

QUANTITATIVE BN MODEL

Probability Elicitation for the Bayesian Network (BN) Model to Distinguish Between
Intentional Attacks and Accidental Technical Failures in Industrial Control Systems

(ICS) based Floodgate

Objectives: To elicit probabilities corresponding to each variable in our BN model that
could help to determine the major cause (intentional attack or accidental technical failure)
of the problem (sensor sends incorrect water level measurements) when observed.

The results of this questionnaire would be used to complete a BN model-based decision
support system for Rijkswaterstaat to determine the major cause of the problem when
observed.

This study is a first-of-its-kind. We will keep you up to date about the results of this study.

Estimated Time: 40 minutes

Case Outline

Note: The case outline is provided to get you started and not completely depend on this
for answering the questions.

This is a hypothetical floodgate primarily operated by Supervisory Control and Data
Acquisition (SCADA) system. Figure D.1 schematises a floodgate being primarily operated
by SCADA system along with an operation centre.
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Figure D.1: Physical Layout of the Hypothetical Floodgate

Figure D.2 illustrates the SCADA architecture of the floodgate. The sensor, which is located
near the floodgate, is used to measure the water level. There is also a water level scale
which is visible to the operator from the operations centre. The sensor measurements
are then sent to the PLC. If the water level reaches the higher limit, PLC would send an
alarm notification to the operator through the Human-Machine Interface (HMI), and
the operator would need to close the floodgate in this case. The HMI would also provide
information such as the water level and the current state of the floodgate (open/close).
The actuator opens/closes the floodgate.

Figure D.2: SCADA Architecture of the Hypothetical Floodgate
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BN Model: Please see below to know about the constructed qualitative BN model to
determine the major cause (intentional attack or accidental technical failure) of the
problem (sensor sends incorrect water level measurements) when observed. You will find
the questions in next pages corresponding to each variable in our BN model.

Questions

Please answer the questions taking into account the type of floodgates that have the
criticality rating as “very high” (on a 5-point scale: very low – low – medium – high –
very high). Furthermore, please answer the questions by marking the suitable prob-
ability among 7 anchors ((almost) impossible (0) - Improbable (15) - Uncertain (25) -
Fifty-fifty (50) - Expected (75) - Probable (85) - Certain (almost) (100)) directly or writ-
ing fine-grained probability (in the provided space) using the numerical and verbal
anchors as a supporting aid.
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Background Information

We will keep the background information anonymised for academic publishing.

Q25. Please write your name and email address (Optional).

Q26. How many years of experience do you have working with Industrial Control
Systems?

Q27. Which sector(s) do you work in?

Chemical
Defence
Energy
Financial
Nuclear
Transport
Water
Others, please specify:

Q28. Which community do you associate yourself with based on your experience?

Safety (dealing with unintentional/non-malicious threats)
Security (dealing with intentional/malicious threats)
Both safety and security
Others, please specify:
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