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ABSTRACT
This study evaluates the performance of four Near Real-Time (NRT)
satellite rainfall products in estimating the spatiotemporal character-
istics of different extreme rainfall events in a subtropical catchment in
south-eastern Brazil. The Climate Prediction Centre Morphing algo-
rithm (CMORPH), Tropical Rainfall Measuring Mission, Multisatellite
Precipitation Analysis in real time (TMPA-RT), the Precipitation
Estimation from Remotely Sensed Information using Artificial
Neural Networks-Global Cloud Classification System (PERSIANN-
GCCS), and the Hydro-Estimator are evaluated for monsoon seasons,
based on their capability to represent four types of rainfall events
distinguished for: (1) local and short duration, (2) long-lasting event,
(3) short and spatial extent, and (4) spatial extent and long lasting.
Since the events are defined relative to a percentile, the relative
performance variation at different threshold levels (75th, 90th, and
95th) is also evaluated. The data from the 13 Automatic Weather
Stations (AWSs) for the period from 2007 to 2014 are used as the
reference. The results show that the product performance highly
depends on the spatiotemporal characteristics of rainfall events. All
four products tend to overestimate intense rainfall in the study area,
especially in high altitude zones. CMORPH had the best overall
performance to estimate different types of extreme spatiotemporal
events. The results allow for developing a better understanding of
the accuracy of the NRT products for the estimation of different types
of rainfall events.
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1. Introduction

The distribution and intensity of extreme rainfall play an important role in the hydro-
logical cycle. The characteristics of rainfall events such as the magnitude, duration, and
spatial extent determine the level of damage associated with natural hazards. In this
context, an accurate representation of the temporal and spatial components of extreme
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rainfall is crucial for the correct assessment of water-resource availability and prediction
of potential water-related risks (Thiemig et al. 2012).

A wide range of rainfall measurement devices and systems are available, such as rain
gauges, weather radars, and meteorological satellites. Rainfall gauges are traditionally
used for providing accurate rainfall measurements. However, in many regions, this
information is often scarce, discontinuous, and is not enough to capture the spatiotem-
poral variability of rainfall (Michaelides et al. 2009; Kidd et al. 2016). Additionally,
measurements are subject to systematic errors as a consequence of human interference
and problems in the instruments, among others. Alternatively, weather radars estimate
rainfall over large areas with a spatial resolution as lower as 1 km2 every 5 or 10 min.
Despite the detailed description of rainfall, weather radars are very expensive to install
and are associated with several sources of uncertainty due to errors in the reflectivity–
rain rate (Z–R) relationship, signal attenuation, or contamination (Villarini, Serinaldi, and
Krajewski 2008; Hasan et al. 2014; Peleg, Ben-Asher, and Morin 2013).

During the last two–three decades, earth observation systems have been providing
an important input to the weather monitoring and forecasting systems (e.g. Kidd et al.
2009; Pan, Li, and Wood 2010; Azarderakhsh et al. 2011). Satellite-based rainfall products
provide uninterrupted global information with an up to 0.5 h interval and up to 8 km
spatial resolution. There are many operational high-resolution satellite precipitation
products available for download on the Internet (e.g. Huffman et al. 2007; Joyce et al.
2004; Sorooshian et al. 2000). These products employ multiple algorithms to data from
passive microwave (PMW) and infrared (IR) sensors. IR sensors assess the rainfall via the
cloud-top temperature, while PMW sensors analyse emission, absorption, and diffusion
signals inside the cloud. The combination of those operational instruments has allowed
for a greater accuracy in rainfall estimation (Huffman et al. 2007). Despite the multiple
advantages of satellite-based products, several studies have shown errors in satellite
rainfall estimations related to the measuring devices (e.g. Hu et al. 2016; Qiao et al.
2014), the size of the basin (e.g. Moazami et al. 2013), the climate regimes and seasons
(e.g. Thiemig et al. 2012; Sapiano and Arkin 2009; Mei et al. 2014), and the geographical
conditions (e.g. Mei et al. 2015; Dinku et al. 2007; Guo et al. 2015; AghaKouchak et al.
2011). For extreme rainfall detection, uncertainties associated with the capacity of
detecting the heavy rainfall rate at short temporal resolutions (e.g. AghaKouchak et al.
2011; Marra et al. 2017) have limited their use in operational applications.

Several studies have evaluated the behaviour of satellite-based products to represent
the spatial and temporal characteristics of extreme events. Temporal capabilities of
different NRT satellite products have been investigated by Mehran and Amir (2014)
across the United States. Analysing heavy rainfall at different temporal accumulations,
the authors indicated that all high-temporal resolution products (3-hourly) presented
problems for estimating high rainfall rates. Gebregiorgis and Hossain (2015) analysed the
spatial performance of different NRT products around the world. Based on error variance
models, they showed how diverse geophysical settings impact the products’ perfor-
mance. In the case of South America, just a few studies have analysed the performance
of satellite-based rainfall products in estimating the spatiotemporal characteristics of
extreme rainfall. Ringard et al. (2015) evaluated four satellite-based rainfall products
against in situ measurements over French Guiana and North Brazil. Dividing the study
area into six climatic zones and analysing daily and monthly rainfall data, their analysis
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showed that estimates of low-intensity rainfall have relatively high accuracy, while
convective-type rainfalls were poorly estimated by satellite products. Boers et al.
(2013) analysed the spatial characteristics of extreme events estimated by two satel-
lite-based products and one re-analysis data set over the South American monsoon
system. Using the complex networks theory, these researchers found substantial differ-
ences in estimating the extreme rainfall patterns between the different rainfall products,
especially in the southeast of Brazil.

For hydrological applications, rainfall analysis needs a better understanding of how
the characteristics of an extreme event (intensity, duration, and spatial distribution) are
represented by different data sets. The main objective of this study is to evaluate the
performance of the four near real-time (NRT) satellite-based rainfall products to repre-
sent different extreme rainfall events (EREs). The raw version of Climate Prediction
Centre (CPC) Morphing algorithm (CMORPH; Joyce et al. 2004), the Tropical Rainfall
Measuring Mission, Multisatellite Precipitation Analysis in Real Time (TMPA-RT;
Huffman et al. 2010; Huffman et al. 2007), the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks-Global Cloud Classification System
(PERSIANN-GCCS; Sorooshian et al. 2000) version 7, and the Hydro-Estimator (Hydro;
Scofield and Kuligowski 2003) are compared against an Automatic Weather Station
network (AWS; CIIAGRO, 2017) during the core of monsoon seasons (December,
January, and February) from 2007 to 2014. The spatiotemporal analysis focuses on the
four different extreme event types proposed by Boers et al. (2015).

2. Study area

We are considering the subtropical catchments of the Piracicaba, Capivari, and Jundiai
rivers located at the southeast of Brazil (PCJ) (Figure 1). The PCJ covers a drainage area of
14,138 km2 with an elevation ranging from 436 to 2074 AMSL distributed in three zones:
upper altitude zones, located on the east side and in a small area near to Corumbataí;
intermediate or middle altitude zones, mainly located in the central part; and low
altitude zones, located in the western part, where the rivers flow to Tietê River. The
average rainfall ranges between 1300 and 1500 mm per year.

This area is strongly impacted by inter- and extra-tropical climatic conditions, such as
the convective precipitation band of the South Atlantic Convergence Zone, one of the
most distinctive features of the South American Monsoon System (Boers et al. 2013). This
factor makes the area prone to extreme landslides and flash floods (Sprissler 2011).
During the period of 2000 to 2011, natural hazards related to heavy rainfall affected
more than 26,000 habitants in the PCJ catchments. In this research, we analysed the
climatic conditions during the core of monsoon in South America from December to
February, between the years of 2007 and 2014.

3. Rainfall products

The four NRT satellite-based rainfall products are evaluated in seven monsoon seasons
from a common analysis period from December 2007 to February 2014. This selection is
based on the following criteria: (1) a good correlation in previous studies over the
region; (2) good spatial and temporal resolution; (3) operation in NRT or ‘early run’
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satellite products. It is to be highlighted that the NRT products are referred to non-
gauge corrected rainfall estimations, which are available soon after their generation; (4)
common covering period over the monsoon seasons; and (5) their free access and
publication. The latency of these rainfall products ranges from 1 to 18 h. Within the
products evaluated, two products combine passive microwave and infrared sensors (IR-
PMW) and two use infrared sensors to estimate rainfall (IR)(Table 1).

Since each product has different spatial and temporal resolutions, rainfall products
with spatial resolution finer than 0.25° were scaled up by aggregation in which the
products are averaged to larger scales for matching the spatial resolution of the
referenced data set. Note that assumptions used in the aggregation algorithm and the
whole nature of aggregation bring uncertainties as well. Aggregated rainfall data have
their own contribution to the total error (Gebere et al. 2015), however, in this article,
they are not taken into account.

The following section gives a brief description of the four NRT satellite-based rainfall
products.

3.1. CPC MORPHING (CMORPH)

The CPC MORPHING product (CMORPH) was developed by the NOAA Climate Prediction
Centre to integrate the main advantages of passive microwave (high quality) and infrared
sensors (Joyce et al. 2004). CMORPH combines the data from the sensors in two stages. First,
the atmospheric motion vectors from two successive IR images are generated every 30 min.
Second, the generated motion vectors are used to propagate the rainfall fields from diverse

Figure 1. Elevation map and AWS network (red dots) for the catchment of Piracicaba, Capivari, and
Jundiai rivers. The Shuttle Radar Topography Mission (SRTM) Version 3.0 is available at https://
earthdata.nasa.gov. Catchment areas and river network are available at http://www.ana.gov.br.
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microwave data. CMORPH is available at 8 km (0.0727°) spatial resolution with 3 h temporal
resolution. This study uses the CMORPH Version 1.0 Raw at 0.25° spatial resolution with 3 h
temporal resolution.

3.2. TMPA-RT (3B42V7)

TRMM Multisatellite Precipitation Analysis (TMPA) Version 7 is a rainfall estimation
product from the TRMM NASA mission. In this real-time version, TMPA combines
different passive microwave and infrared sensors to measure rainfall in the tropical
and subtropical regions around the world. The passive microwave sensors used include
the Microwave Imager (TMI), the Special Sensor Microwave Imager/Sounder (SSMIS), the
Advanced Microwaved Scanning Radiometer (AMSR-E), the Advanced Microwave
Sounding Unit (AMSU), and the Microwave Humidity Sounder (MHS). Infrared measure-
ments are obtained from GOES, Meteosat 5 and 7 geostationary meteorological satellites
(GMSs), and NOAA-12 geostationary satellites.

The real-time TMPA (TMPA-RT) is conducted within 6–9 h of the measurement.
Huffman et al. (2010) presented a detailed description of the processing and the
generation of TMPA-RT. It had three major updates during the last decade (versions 5,
6, and 7 (see Yong et al. 2010; Yong et al. 2012)). One of the important upgrades
included in the TMPA-RT is the Climatological Calibration Algorithm (CCA). This algo-
rithm uses climatological gauge information, to reduce the systematic biases of the
estimation, maintaining the near real-time availability (Yong et al. 2014). TMPA-RT is
available since January 1998, at 0.25° spatial resolution, 3 hourly temporal resolution,
and with a 50°N–50°S spatial coverage.

3.3. PERSIANN-GCCS

PERSIANN is an algorithm based on a classification procedure using an artificial neural
network (ANN). The input data of PERSIANN are the brightness temperature measure-
ments obtained from IR sensors of the NOAA’s Geostationary Operational Environmental
Satellite (GOES) and Meteosat 5 and 7 geostationary meteorological satellites (GMSs).
The TMI from TRMM is used as a learning value for training the ANN, which adjusts the
IR-derived rainfall rates to represent the behaviour of the derived TMI. This method
allows for a fast estimation of rainfall at 0.04° each half hour. In this research, we used
the PERSIANN with the Global Cloud Classification System at 3 hourly temporal duration
and the spatial resolution scaled up by aggregation from 0.04° to 0.25°.

4. Hydro-Estimator

The Hydro is based on the automatic precipitation estimation algorithm NESDIS (Vicente,
Scofield, and Paul Menzel 1998). Similar to PERSIANN, Hydro uses the infrared cloud-top
brightness temperature information from GOES as primary information to estimate
rainfall rates. In addition, Hydro uses atmospheric information modelled from the
Global Forecast System (GFS) to correct the rainfall rate estimations for non-detected
factors in the satellite sensor such as moisture availability, evaporation, orographic
modulation, and thermodynamic profile effects. This product has been widely used as
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the main input in many flash flood early warning systems around the world, including
the CAFFG System in Central America, ALERT in the United States, Argentina, Australia,
China, and India among others and the TerraMA2 in Brazil. Hydro is available since 2003
(for the United States only), and global estimations are available since 2007. In this
research, the spatial resolution of Hydro was scaled up by aggregation from 0.04° to
0.25° and the temporal resolution from 15 min to 3 h.

4.1. Reference data

Ground truth data are based on 13 Automatic Weather Station (AWS) observations
provided by the Integrated Centre of Agrometeorological information CIIAGRO
(CIIAGRO, Centro Integrado de Informações Agrometeorológicas 2017) (Figure 1).
These stations are part of a dense network of hourly real-time information for agrome-
teorological monitoring in the PCJ catchment. The data were quality controlled to
reduce possible errors and noise in the measurements. In the first part, we compared
the product at the point-based location scale to avoid taking interpolation errors into
account. However, in the following parts, we used interpolated gridded data to repre-
sent the spatial representation of the referenced data. Hourly AWS measurements were
interpolated using the Inverse Distance Weighed method (IDW) (Wackernagel 2003) set
to 0.25° × 0.25°from 2007 to 2014.

5. Methodology

The methodology involves three parts: First, we analyse the spatial error distribution at
different high intensity levels between satellite-based rainfall products and AWS gauges
during monsoon seasons. In the second part, we evaluate the performance of the
products to identify different extreme rainfall event (ERE) types. In the third part, we
assess the sensitivity of the event-based performance to different intensity rainfall
thresholds.

5.1. Error distribution of satellite products at high-intensity rainfall levels

The spatial error of satellite products is analysed on a point-cell basis for the three
intervals: above the 75th percentile (strong rainfall), above the 90th percentile (extreme
rainfall), and above the 95th percentile (most extreme rainfall). This method compares
the grid points of satellite products and the reference data with the nearest rain gauge
values (Thiemig et al. 2012; Dembélé and Zwart 2016). However, in the areas where two
or more stations lie in a cell, rainfall values are compared using the average-point
measurements to the cell (Thiemig et al. 2012). In these cases, the spatial rainfall
variability will be limited by the product resolution which may lead to an under or
overestimation (Peleg et al. 2016). For this analysis, we used three widely used statistical
measures to quantify the errors: the correlation coefficient (r) to analyse the linear
correlation between the satellite products and AWS measurements, the root mean
square error (RMSE) to evaluate the magnitude error, and the relative bias (Bias) to
evaluate the systematic bias of the products (Li, Zhang, and Xu 2014) (equations 1–3).
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r ¼
Pn
i¼1

Psati � �Psatð Þ � Prefi � �Prefð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Psati � �Psatð Þ2
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Prefi � �Prefð Þ2
s ; (1)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Psati � Prefið Þ2
s

; (2)

Bias ¼
Pn
i¼1

Psati � Prefi

Pn
i¼1

Prefi

� 100; (3)

where n is the number of samples; Psat are the satellite-based measurements and Pref is
the reference value, and �Psat�Pref are the mean of the satellite measurements and the
reference values.

5.2. Performance in detecting different EREs in spatiotemporal context

The performance of NRT products to represent rainfall events is evaluated considering
temporal and spatial characteristics. For intense rainfall considered as extreme (above
the 90th percentile), we defined different ERE types according to the classification
proposed by Boers et al. (2015). This methodology defines four types of rainfall events
defined by their duration and spatial extension:

(a) Local and short extreme (LSE) events, which are only determined by their high
magnitude.

(b) Local and long-lasting extreme (LLE) events, which are characterized by long
duration and high magnitude.

(c) Spatially extensive extreme (SEE) events, which are identified by their extension
and high magnitude. In this study, unlike proposed by Boers et al. (Boers et al.
2015), SEE is composed of events (connected) with a high magnitude. This was
done to analyse the spatiotemporal behaviour at the same threshold.

(d) Spatially extensive and long-lasting extreme (SLE) events, which are determined
by their high magnitude, long duration, and wide extension.

To identify the classes of EREs the following procedure is used:

(1) Estimate the temporal duration of each event, by employing a running-mean filter
to the gridded rainfall time series P at time step i:

~Pi ¼
Pw

s¼�w
Pi�s

2w þ 1
; (4)
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where Pi is the filter input and ~Pi is the filtered rainfall value. This method uses the
moving average period defined as 2w þ 1. w is the width of the running-mean
filter given by Table 2.

(2) Considering Pi and ~Pi to be samples of rainfall intensities, compute the pth
percentile of these samples (for rainfall above 0.2 mm). Rainfall events are defined

as time steps i for which Pi and ~Pi are above a threshold Tp, depending on the
type of event (strong, extreme, and most extreme) (Table 2).

ei :¼ 1; ifPij~Pi > Tp;
0; otherwise

�
; (5)

where ei is a binary event indicator associated with the time step i. Tp is the
threshold corresponding to the pth percentile.

(3) To identify the spatial extent of an extreme rainfall, we employed the so-called
connected component labelling method to group similar rain cells into homo-
geneous groups (Szeliski 2010; He et al. 2017). This method connects cell values
identified as an event in each time step as object pixels. This spatial type of event
eqi is defined by the size of its connected label relative to the spatial threshold Sqi
(Boers et al. 2015).

eqi :¼ 1; ifCq
i > Sq;

0; otherwise

�
;

�
(6)

where Cq
i is the group of connected cells (considered as events) at each time step and

q is the spatial threshold in space. Considering the hydro-meteorological scales of rainfall
systems observed in the region, we defined extensive events as events with an area
bigger than 2° × 2° (Sqi = 8 cells; each of 0.25° × 0.25°).

Taking into account the characteristics of ERE, we defined the spatial and temporal
component of each ERE type. Table 2 shows the components of each type of ERE. It
should be noted that these four classes are not mutually exclusive, so one event may be
classified into two or more types of ERE.

Considering the magnitude, duration, and spatial extension of the reference data set
during monsoon seasons, we analysed the frequency and spatial patterns for all types of
ERE. To avoid double counting of EREs, we separated joint EREs selecting the inter-arrival
time of each type of event (e.g. Dunkerley 2008; Dunkerley 2010). By concept, LSE and
SEE events usually range between 3 and 6 h, while LLE lasts for 9–15 h and the SLE event
ranges from 6 to 12 h.

Table 1. NRT satellite-based rainfall products used.
Product Provider Spatial coverage Temporal coverage Type Spatial and temp res.

CMORPH V1.0 Raw NOAA-CPC
(NOAA 2002a)

60°N–60°S Since 1 January 1998 IR-PMW 0.07°approx./3 h

TMPA-RT NASA/JAXA 50°N–50°S Since 1 January 1998 IR-PMW 0.25°/3 h
(NASA 2000)

PERSIANN-GCCS UC Irvine (UC
Irvine 2003)

60°N–60°S Since 1 March 2000 IR 0.04° approx./0.5 h

Hydro-Estimator NOAA/NESDIS
(NOAA 2002b)

90°N–90°S Since 1 January 2007 IR 0.04°/15 min
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The capabilities of the NRT satellite-based rainfall products for each ERE type are
evaluated based on four skill score metrics proposed by AghaKouchak and Mehran
(2013) and Wilks (2011). The Frequency Bias Index, Probability of Detection, False
alarm ratio, and Critical Success Index are used to evaluate the performance in relation
to rainfall events, as presented in equations 7–10:

(a) The Event-based Frequency Bias Index (EFBI) indicates the level of underestima-
tion or overestimation of an event ‘e’. It ranges from 0 to infinity with the perfect
score of 1. I represents the indicator function and n represents the number
exceedances

EFBI ¼
Pn
i¼1

I Psati jPsati 2 e&Prefi‚eð Þ þPn
i¼1

I Psati jPsati‚e&Prefi 2 eð Þ
Pn
i¼1

I Psati jPsati 2 e&Prefi 2 eð Þ þPn
i¼1

I Prefi jPsati 2 e&Prefi‚eð Þ
(7)

(b) Event-based Probability of Detection (EPOD) is defined as the ratio of the correct
detections of an event ‘e.’ It ranges from 0 to 1, with the perfect score of 1.

EPOD ¼
Pn
i¼1

I Psati jPsati 2 e&Prefi 2 eð Þ
Pn
i¼1

I Psati jPsati 2 e&Prefi 2 eð Þ þPn
i¼1

I Psati jPsati‚e&Prefi 2 eð Þ
(8)

(c) The Event-based False alarm ratio (EFAR) represents the ratio of the incorrect
detections belonging to the event ‘e.’ It ranges from 0 to 1 with the perfect score
of 0.

EFAR ¼
Pn
i¼1

I Psati jPsati 2 e&Prefi‚eð Þ
Pn
i¼1

I Psati jPsati 2 e&Prefi 2 eð Þ þPn
i¼1

I Prefi jPsati 2 e&Prefi‚eð Þ
(9)

(d) The Event-based Critical Success Index (ECSI) corresponds to the combination of
EPOD and EFAR to identify the overall performance skill of ERE. It ranges from 0 to
1, with 0 as the perfect score

Table 2. Spatial and temporal characteristics of each ERE type.
ERE type Magnitude Temporal (w) Spatial (q)

LSE T75, T90, T95 - -
LLE T75, T90, T95 2 -
SEE T75, T90, T95 - 8 cells
SLE T75, T90, T95 2 8 cells
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ECSI ¼
Pn
i¼1

I Psati jPsati 2 e&Prefi 2 eð Þ
Pn
i¼1

I Psati jPsati 2 e&Prefi 2 eð Þ þ IðPrefi jPsati‚e&Prefi> eÞ þ I Psati jPsati 2 e&Prefi‚eð Þ

(10)

5.3. Event-based performance for different rainfall intensities

The sensitivity of the event-based performance at different intensity rainfall thresholds is
evaluated in the third part of the methodology. Following the process described in
section 4.2, we compared the products’ performances for rainfall events defined above
T75, T90, and T95 percentiles. For each satellite product, the performance is evaluated
using EFBI, EPOD, EFAR, and ECSI scores.

6. Results and discussion

6.1. Error distribution of satellite products at high intensity levels

Figure 2 shows the spatial location of errors of the satellite products, compared to the
reference AWS data during monsoon seasons from 2007 to 2014. Figure 2(a–c) present
the spatial distribution of r, RMSE, and Bias, and Figure 2(d) shows the cross-correlation
between the satellite products and the reference data over the study area. According to
the results, the satellite products had problems for the high altitude zones. CMORPH was
the product with the lowest quantitative errors, indicated by the highest correlation
(mean r 0.65), and the lowest magnitude error and the systematic bias (mean RMSE
0.58 mm h−1, Bias 4.5%). For TMPA-RT and PERSIANN-GCCS, errors were generally high
for elevated altitude zones. TMPA-RT presented a better correlation and lower Bias than
PERSIANN-GCCS, however, the error magnitude was higher. Hydro was the product with
the highest error over the whole study area with r and RMSE values of around 0.33 and
1.16 mm h−1, respectively, and a Bias higher than 40%.

Concerning the error measurement at different rainfall levels, Figure 3 shows the r,
RMSE, and Bias errors of NRT products above 75th, 90th, and 95th percentile thresholds:
error increases with an increase in rainfall intensity. CMORPH and TMPA-RT had the
lowest errors at high intensities. CMORPH presented the highest correlation coefficient
dropping from 0.4 at T75 to 0.2 at T95, while TMPA-RT had the lowest overestimation
increasing from 25% at T75 to 38% at T95. In contrast, PERSIANN-GCCS and Hydro have
the highest errors (the lowest correlation and high overestimation).

6.2. Performance of satellite-based products to represent different types of ERE

6.2.1. Local and short extreme (LSE) events
The performance of satellite-based products in terms of EFBI, EPOD, EFAR, and ECSI for
LSEs is shown in Figure 4. In general, performance is not very high, especially at high
altitude zones. CMORPH showed better performance (low EFBI and EFAR). TMPA-RT
showed the best EPOD and together with CMORPH had the better ESCI score distributed
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mainly in the middle and low altitude zones. PERSIANN-GCCS and Hydro had a poor
score for LSE detection, being the products with the lowest performance for LSEs.

6.2.2. Local and long-lasting extreme (LLE) events
Figure 5 presents the performance of satellite products for LLE events. When the
extreme rainfall events are longer in time, TMPA-RT and CMORPH slightly underesti-
mated LLE events as opposed to Hydro and PERSIANN-GCCS, which tend to overesti-
mate them. Compared with the short-duration events, satellite products performed

Figure 2. Spatial distribution of (a) r; (b) RMSE; (c) Bias errors; and (d) scatterplot of the mean rainfall
of (i) CMORPH, (ii) PERSIANN-GCCS, (iii) TMPA-RT, (iv) Hydro, during monsoon seasons from 2007 to
2014.

Figure 3. Quantitative errors of satellite rainfall products versus AWS measurements above different
rainfall thresholds. (a) r; (b) RMSE; and (c) Bias.
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better in detecting LLE events, with higher EPOD detection and a fewer EFAR estima-
tions. CMORPH had a better EPOD score, while TMPA-RT had a better score in false alarm
estimations. Overall, CMORPH presented the highest performance for LEE events with a
mean ESCI of 0.23, followed by TMPA-RT and PERSIANN-GCCS. Hydro is the product with
the lowest performance for LSE.

6.2.3. Spatially extensive extreme (SEE) events
Performances for SEE events are presented in Figure 6. The results show the limited
capacity of satellite products to detect this type of extreme event. Hydro was highly
biased over the whole catchment while PERSIANN-GCCS and TMPA-RT were biased
mainly over lower altitude areas. On the other hand, CMORPH was unbiased in lower

Figure 4. Performance of NRT products in estimating LSE events.

Figure 5. Performance of NRT products in estimating LLE events.
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zones, but underestimates over the elevated areas. Regarding the capacity to detect SEE
events, TMPA-RT is better, with a high EPOD score over lower zones. CMORPH had the
lowest number of false alarm detections with an EFAR value around 0.6. In general,
TMPA-RT had the best performance for SEE events with a mean ECSI of 0.2, followed by
CMORPH with a mean ECSI of 0.15, PERSIANN-GCCS with a mean ECSI of 0.14, and finally
Hydro with ESCI of 0.1.

6.2.4. Long-lasting and spatially extensive extreme (SLE) events
Figure 7 shows the performance of satellite products for the SLE events, and one can see
the products’ higher performance. CMORPH and TMPA-RT were slightly unbiased while
Hydro and PERSIANN-GCCS were slightly biased, mainly in low and middle altitude

Figure 6. Performance of NRT products in estimating SEE events.

Figure 7. Performance of NRT products in estimating SLE events.
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zones. In comparison, CMORPH was slightly better in EPOD and, together with TMPA-RT,
showed the lowest false alarm score.

In terms of ECSI, CMORPH had the best performance for detecting SLE events with a
mean ECSI value of 0.3 distributed over middle and high altitude zones. In contrast,
Hydro was the product with the lowest score with a mean ECSI of 0.15.

6.3. Event-based performance at different rainfall intensity thresholds

In order to analyse the influence of the intensity threshold on the evaluation of satellite
performance, Figure 8 shows the comparison between the skill scores for each type of
event and the rainfall intensity threshold defined as strong, extreme, and most extreme
rainfall (above T75, T90, and T95, respectively). Lines show the average values in the whole
area, while the shaded regions enveloping them represent the dispersion between the
25th and 75th percentiles. Downward- and upward-pointing triangles are the minimum
and maximum score levels for each product.

It can be found that the performance strongly depends on the rainfall intensity level.
In all products, the Bias increases as event thresholds increase, especially for Hydro,
where the EFBI level in LSE and SEE increases significantly. Short-duration rainfall events
were more difficult to estimate than the extensive ones. In the case of EPOD, the
product performance marginally decreased for high-intensity events. However, EFAR
results had a steadily increased trend as the event threshold increases showing con-
siderable deterioration EFAR scores at higher thresholds. Overall, the capacity of estimat-
ing different rainfall events in terms of ECSI showed that long temporal rainfall event
score for all products had a steep drop (50% approximately), except TMPA-RT, the score
of which also dropped, but just marginally. The ECSI score for short-duration events had

Figure 8. The performance of the four products for EREs of different intensities. Lines are 50%
percentiles; shaded ranges – 25% and 75% percentiles. Downward- and upward-pointing triangles
are the minimum and maximum score levels for each product.
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dropped around 30% for all products, which demonstrates low sensitivity at higher
intensities.

7. Conclusions

In this study, we evaluated the performance of four NRT satellite-based products for
representing different types of ERE in the subtropical catchment of the Piracicaba,
Capivari, and Jundiai rivers in Brazil. CMORPH, PERSIANN-GCCS, TMPA-RT, and Hydro
were compared against hourly rain gauge information from AWS during monsoon
seasons from 2007 to 2014. The applied methodology identified the spatiotemporal
characteristics of extreme rainfall events, classifying them as four EREs according to their
magnitude, duration, and spatial extent. We analysed the errors at different rainfall
intensities, the performance to detect different extreme events, and the sensitivity of
the performance at different thresholds.

We can conclude that all products tend to overestimate rainfall over the study area,
specially over high altitude zones. CMORPH had the lowest quantitative error in r, RMSE,
and Bias at the point-based location. However, TMPA-RT showed lower Bias at high
intensities levels. On the other hand, Hydro was the product with the highest error over
the whole study area.

The performance of the NRT rainfall products depends on the spatiotemporal char-
acteristics of rainfall events. In general, the short-duration events are more difficult to
predict than the long ones. For all ERE types, the study showed that CMORPH and TMPA-
RT products exhibited the best performance while PERSIANN-GCCS and Hydro displayed
the lowest. TMPA-RT had the best EPOD detections for short temporal events in the
same way as CMORPH in spatially extensive events. CMORPH presented the lowest false
alarm detections in short-duration events and together with TMPA-RT had the lowest
EFAR for spatially extensive events. For ECSI, CMORPH showed the highest performance
of all satellite products.

It has been found that the performance of the products is strongly affected by
the intensity of rainfall events: the bias increases with intensity. Concerning the
capacity to predict different types of events, in most of the rainfall products, the
performance of correct estimations marginally decreased, while the frequency of
incorrect estimations considerably increased for high-intensity rainfalls. In general,
the performance of all products decreased at high rainfall for all types of events.

The results show the importance of taking into account the spatiotemporal
characteristics for product verification. Even though the methodology analyses the
characteristics of the extreme event using a pixel-based approach, the results show
an interesting evaluation of the capabilities of NRT to estimate different EREs. Further
research will incorporate new verification methods such as feature-based methods to
analyse the spatiotemporal structure of extreme events. These methods can be easily
applied to evaluate the capabilities of products at different resolutions without using
upscaling techniques, which may contribute to the product error. Another further
approach can be the selection of an optimal combination of products. The technol-
ogy of fuzzy committee models (e.g. Fenicia et al. 2007; Kayastha et al. 2013) could
be a possible candidate for this.
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