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Abstract: In this work, the effects of chemical pretreatment and different fiber loadings on mechanical
properties of the composites at the sub-micron scale were studied through nanoindentation.
The composites were prepared by incorporating choline chloride (ChCl) pretreated rice husk waste
(RHW) in low-density polyethylene (LDPE) using melt processing, followed by a thermal press
technique. Nanoindentation experiments with quasi continuous stiffness mode (QCSM) were
performed on the surface of produced composites with varying content of pretreated RHW (i.e., 10,
15, and 20 wt.%). Elastic modulus, hardness, and creep properties of fabricated composites were
measured as a function of contact depth. The results confirmed the appreciable changes in hardness,
elastic modulus, and creep rate of the composites. Compliance curves indicated that the composite
having 20 wt.% of pretreated RHW loading was harder compared to that of the pure LDPE and other
composite samples. The values of elastic modulus and hardness of the composite containing 20 wt.%
pretreated RHW were increased by 4.1% and 24% as compared to that of the pure LDPE, respectively.
The creep rate of 42.65 nm/s and change in depth of 650.42 nm were also noted for the composite
with RHW loading of 20 wt.%, which showed the substantial effect of holding time at an applied
peak load of 100 mN. We believe that the developed composite could be a promising biodegradable
packaging material due to its good tribo-mechanical performance.

Keywords: lignocellulosic biomass; pretreatment; biocomposite; nanoindentation; hardness; modulus

1. Introduction

In recent years, the focus of researchers has been diverted towards the development
of lignocellulosic fiber (LF)-reinforced polymeric composites or biocomposites to replace the
non-biodegradable composites because of their eco-friendly nature, low cost, low wear resistance,
and good mechanical performance [1–4]. Nowadays, biocomposites have been widely utilized in
various sectors, such as automotive, aerospace, construction, and packaging [5]. It was reported
that the biodegradability and renewability of polymeric composites enhance via the addition of
LF [6,7]. Utilization of the fiber reduces the competition between chemical and material industries.
Consequently, the usage of LF for reinforcement of polymeric matrices is a highly promising and
attractive approach for promoting the concept of sustainable development [8].

Various LFs such as rice husk waste, wheat straw, corn cob, bagasse, and cotton stalk have been
used to reinforce the polymeric matrix due to improved mechanical properties, nonabrasive nature,
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easy processing, and low cost as compared to synthetic fibers [7,9]. Basically, LF is composed of three
main components, these include cellulose, hemicellulose, and lignin [10]. Lignin has a complex aromatic
structure that is connected through a covalent bond with cellulose and hemicellulose, which causes
rigidity of the fiber [11]. Lignin in LF is a main cause of poor interfacial adhesion between fiber
and polymer matrix [12]. The hydrophilicity of LF is due to hemicellulose and amorphous part of
cellulose molecules [13]. LF shows dimensional instability because of its heterogeneous structure and
hydrophilic behavior that causes significant machinability problems and weak mechanical properties
related to biocomposites [8].

As implicated from the above discussion, LF is not a problem-free alternative. Therefore, pretreatment is
the necessary and crucial step for the effective utilization of LF in biocomposite fabrication and other
value-added products. Pretreatment, which not only reduces the lignin content but also decreases the
hydrophilic nature of the fiber by removing hemicellulose [4,11]. Many pretreatment methods have been
exploited for breaking the complex lignocellulosic structure for the removal of lignin, pectin, and waxy
impurities [14]. Different pretreatment methods are usually used, such as physical, chemical, and biological
methods [15]. Physical techniques involve steam explosion, size reduction, and ultrasonic radiations
that reduce the crystallinity of the fiber but do not remove the lignin and demands high energy [4].
Biological methods use micro-organisms and enzymes but are very sensitive and time-consuming
processes [4,15]. Chemical pretreatment uses different chemicals, such as acid, alkali, and organic solvents.
Pretreatment of the fiber with these chemicals is not so much suggested because of their adverse
environmental and health hazard effects [16]. Extreme process conditions such as high temperature and
pressure are required for surface modification of the fiber with the above-mentioned methods [14]. Presently,
researchers are focusing on environmentally friendly and economical chemicals to pretreat the LF with the
goal of lignin and impurities free fiber [17,18]. Choline chloride (ChCl) is emerging as a new solvent for
lignocellulose processing that ultimately stimulates the concept of the green environment. ChCl is being
used in various applications, including lignocellulosic fiber pretreatment. It is used as a hydrogen bond
acceptor for deep eutectic solvents [17]. ChCl has been utilized for lignocellulose fractionation, showing
improved cellulose digestibility and efficient removal of lignin [17,18]. Additionally, ChCl can be recycled
and is reusable without degradation [18].

In addition to the above-mentioned attributes, interfacial bonding between the polymeric matrix
and LF plays a vital role in determining the surface mechanical properties of biocomposites [19].
Surface mechanical properties, such as elastic modulus, hardness, and creep behavior are difficult to
measure through conventional characterization techniques due to the anisotropic behavior of LF [3].
Anisotropic behavior is the main reason for the dimensional instability of LF and resultant biocomposites.
LF used for biocomposite applications are in the range of micron-meters [6]. Hence, the measurement
of mechanical properties of biocomposites is still a challengeable task at the sub-micron scale without
the destruction of material.

Nanoindentation is the most powerful and useful technique to analyze the nano-mechanical
properties of biocomposites [3]. A nanoindenter provides quantitative data, which is the good source
of information related to matrix and reinforcement materials in the biocomposites [20]. This technique
has been extensively used for analyzing the mechanical properties of polymers [7]. An indenter in the
nanoindenter, controlled by a high-resolution instrument, penetrates the surface of the material with a
certain rate and afterward unloaded. Hardness and modulus were calculated using load-displacement
data obtained through loading–unloading cycles [21]. In 2007, Lee et al. measured the hardness and
modulus of the fiber-reinforced polymeric composite [21]. In 2017, Kavouras et al. explored the effect of
microstructure on the fiber-based composite using nanoindentation. The service life of the biocomposite
is significantly affected by the creep characteristic of the constituent particles. Tehrani et al. determined
the time-dependent behavior of epoxy nanocomposites through nanoindentation [21]. Mechanical
properties of polychloroprene composites based on flax fiber were also reported [7].

To the best of our knowledge, limited published work is available describing the effects of
pretreated LF on surface mechanical properties of biocomposites. Therefore, the main objective of this
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study was to investigate the mechanical properties (hardness, elastic modulus, and creep behavior)
of biocomposites reinforced with ChCl pretreated rice husk waste (RHW) through nanoindentation.
Particularly, the impact of pretreated RHW loading on the mechanical properties of biocomposites was
studied. Nano-mechanical properties of biocomposites were also conferred as a function of contact
depth using a nanoindenter.

2. Experimental Section

2.1. Materials

RHW was collected from a local rice mill near Lahore. Choline chloride (ChCl) and low-density
polyethylene (LDPE) of 0.93 g/cm3 were purchased from Sigma-Aldrich, Germany and Korea Chemicals
Ltd., respectively. Distilled water was taken from the chemical process laboratory at the Chemical
Engineering Department, UET Lahore (New Campus), Pakistan.

2.1.1. Pretreatment of RHW and Fabrication of Biocomposite

RHW was crushed and sieved to obtain the particle size of ≤ 0.5 mm using a sieve shaker (having
U.S. Taylor standard screen, mode: shaking; manufacturer: Filtra Vibracion S.L., Badalona, Spain) and
dried in an oven (DAIHAN Labtech Co. Ltd., Namyangju Republic of Korea. LDO-030N, convection
type dryer) at 80 ◦C for 2 h. Dried RHW was pretreated with aqueous choline chloride of 25% (w/w)
in the water bath (model: WTB15, Memmert GmbH + Co., KG, Schwabach, Germany) at 90 ◦C for
4 h at 150 rpm. Pretreated RHW was properly washed with distilled water (2 to 3 times) and dried
in the electric oven at 80 ◦C for 24 h. For the fabrication of biocomposite samples, pretreated RHW
with different biomass loadings (10, 15, and 20 wt.%) were incorporated in LDPE at 115 to 130 ◦C for
10 min and 300 rpm using an internal mixer (Banbury internal mixer, model: SBI-35L, Well Shyang
Machinery Co., Ltd., Taiwan). After homogenizing, a compounded mixture of each sample was
thermally pressed (hydraulic platen press, Hartek Technologies Ltd., Guangzhou, China) in a mold
of 10 cm × 10 cm × 0.2 cm at 180 ◦C and 12 MPa for 10 min. Later, the samples were cooled at
room temperature to obtain the biocomposite sheet with a target density of 0.4 g/cm3. The schematic
representation of biocomposite fabrication is depicted in Figure 1. Moreover, RHW loading (wt.%)
in the LDPE matrix material to produce the biocomposite samples is shown in Table 1. Furthermore,
lignin content was determined for untreated and pretreated RHW, as described by Mahmood et al. [22].
Lignin content was reduced from 19.5 wt.% to 14.3 wt.% after the choline chloride pretreatment.

2.1.2. Characterization

Nanoindentation, also called the depth-sensing method, was proposed by Oliver and his
co-workers in 1992 and is used to determine the surface mechanical properties of solid materials [23].
The contact compliance method is basically adopted in the nanoindentation for evaluating the data
analysis to avoid the error occurred during the conventional hardness technique [24]. Reaction force on
the indenter was measured as a function of imposed depth by applying the contact compliance method,
or vice versa, creating the loading–unloading cycles during indentation on the material surface [23].
Consequently, elastic modulus and hardness values are measured using data obtained through loading
and unloading indentation cycles [25]. A nanoindenter (Zwick GmbH & Co. KG, Ulm, Germany) was
used for performing the normal indentation experiments on the surface of fabricated biocomposite
samples. The quasi continuous contact stiffness (dynamic mode) method and Berkovich indenter of
three-sided pyramidal geometry with a diamond-shaped tip were utilized to determine the mechanical
properties of the samples at the nanoscale. Elastic modulus (stiffness) and hardness values were
determined by the fabricated samples without measuring the area of indentation. Basically, indenter tip
geometry and depth of penetration is used for measuring the actual indentation area of the sample in
the contact compliance mode [25]. An indenter was applied at a maximum force of 100 mN on the
surface of each sample to achieve the maximum penetration depth in the tested material. The creep
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behavior of the produced samples was also investigated via holding the indenter for 20 s at peak load.
There were 36 indents selected with a spacing of 60 µm on each sample. Overlapping of residual stress
produced around each indent was avoided by keeping the indent spacing constant. A discrete loading
and unloading cycle of each indent on the sample was acquired.Materials 2020, 13, x FOR PEER REVIEW 4 of 11 
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Figure 1. Schematic representation of biocomposite fabrication.

Table 1. Raw and ChCl pretreated RHW loading (wt.%) in the low-density polyethylene (LDPE) matrix
material, along with their sample ID.

Sample Name Matrix Material Rice Husk Waste (RHW) Loading

0 LDPE 0 wt.% RHW
1 LDPE 10 wt.% raw RHW
2 LDPE 10 wt.% ChCl pretreated RHW
3 LDPE 15 wt.% raw RHW
4 LDPE 15 wt.% ChCl pretreated RHW
5 LDPE 20 wt.% raw RHW
6 LDPE 20 wt.% ChCl pretreated RHW

3. Results and Discussion

3.1. Load Displacement Curves

Figure 2a,b depicts the loading–unloading curves of biocomposite sheets produced at a different
biomass loading. The loading section of all the samples was started at zero and reached a maximum
depth at a peak load of 100 mN. Though, the unloading section was ended between 8 µm to 12 µm after
the creep section. However, zero-depth was not achieved due to the plastic nature of the biocomposites.
In the case of the pure LDPE sheet, a maximum contact depth of 15.7 µm was achieved, as evidently
shown in Figure 2a,b. Whereas contact depth of 14.1, 15.4, and 13.1 µm were obtained after the loading
of 10, 15, and 20 wt.% of raw RHW in the LDPE matrix, respectively. The obtained values revealed that
the penetration depth in biocomposites was reduced after the addition of raw RHW in LDPE. Though,
in the case of ChCl pretreated RHW loading, contact depth of 14.4, 18.0, and 14.7 µm were achieved with
the loading of 10, 15, and 20 wt.% of RHW. It is evident from Figure 2a that the biocomposite produced
with 15 wt.% of ChCl pretreated RHW is significantly softer than other biocomposites. This behavior
may be attributed to the fact that RHW was not uniformly distributed and improperly mixed in LDPE,
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indicating poor interfacial adhesion between LDPE and pretreated RHW [1]. The contact depth of the
biocomposite based on 20 wt % pretreated RHW was increased by 12% as compared to untreated RHW
(20 wt.% loading). It may be due to the presence of void spaces or some crack produced during the
synthesis of the biocomposite. Whereas, almost the same contact depth in composite was reinforced
with 10 wt.% of untreated or pretreated RHW was observed. It could have happened because of the
wrapping of a small quantity of RHW in LDPE.
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Figure 2. The contact compliance curves of pure LDPE and the biocomposites reinforced with (a) raw
RHW and (b) ChCl pretreated RHW with different loadings (10, 15, and 20 wt.%) at a peak load of 100 mN.

3.2. Hardness and Modulus

Figure 3a,b shows the indentation hardness (H) and elastic modulus (Es) of pure LDPE, raw,
and ChCl pretreated RHW reinforced biocomposite sheets with standard deviation. It is clearly
indicated in Figure 3a,b that stiffness and hardness of the biocomposites were decreased by the addition
of ChCl pretreated RHW compared to raw RHW loading. It might have happened due to the removal of
lignin material, which is the main cause of stiffness in the RHW [12]. The hardness and modulus values
of the biocomposite produced from 20 wt.% untreated RHW were significantly higher as compared
to all other sheets. This response may be linked to the presence of impurities, such as lignin, pectin,
and waxy substances in untreated RHW. Moreover, hardness and modulus of the biocomposite based
on 20 wt.% RHW loading, either raw or ChCl pretreated, showed the highest values among all the
produced sheets. It is evidenced by good interfacial bonding of RHW with LDPE. Figure 4a,b illustrates
the H and Es variation that occurred from the top surface to the bulk region of ChCl pretreated RHW
reinforced biocomposites. It was observed that both H and Es were significantly decreased up to
6 µm of contact depth, which represented the top surface of the sheets. It could be concluded that
the top surface of the sheets was rough and uneven, due to which a large variation in hardness and
elastic modulus was observed. This variation might have happened because of surface changes due to
environmental effects, poor determination of the top surface, and a defect in indenter tip geometry [26].
However, no abrupt changes in H and Es of the biocomposites reinforced with pretreated RHW were
noted from 6 to 16 µm of contact depth in Figure 4a,b, indicating the amorphous soft region of the
sheets [27]. Indentation modulus of 0.624 GPa was obtained for the LDPE sheet, as shown in Figure 4a,
representing the compact and semi-crystalline structure of LDPE. The lowest values of modulus and
hardness of the biocomposite reinforced with 15 wt.% of ChCl pretreated RHW were noted among all
produced sheets. It may be due to the greater possibility of improper distribution of RH, ultimately
leading to the formation of agglomerates [19]. Generally, high elastic modulus corresponds to high
hardness value and vice versa [3]. An interesting fact was noted—the sheet with 10 wt.% of ChCl
pretreated RHW loading showed higher hardness and lower elastic modulus as compared to the
LDPE sheet in Figure 4a,b. It might be due to the small quantity of RHW that was wrapped in the
LDPE matrix.
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3.3. Hardness to Modulus Ratio (H/Es)

Wear resistance of material is usually evaluated through H/Es [26]. Basically, this ratio defines the
relative plastic/elastic behavior of the material under applied load and deformation [28]. It could be
used for measuring the fracture toughness, elastic strain to failure, and critical yield stress for plastic
deformation. Figure 5 depicts the H/Es ratio of the biocomposites reinforced with ChCl pretreated
RHW of different loadings. The biocomposites showed the highest value of this ratio as compared
to the LDPE sheet, which indicated good wear resistance. A higher value of this ratio means less
contribution of E compared to H. In 2019, Payman Nikaeen reported that the H/Es ratio of nanofiber
reinforced low-density polyethylene through nanoindentation [26]. However, this H/Es ratio was
observed to decrease with the increase of pretreated RHW loadings from 10 to 20 wt %, showing the
gradual enhancement of stiffness as biomass content increased.

3.4. Creep Behavior

The biocomposites showed viscoelastic behavior due to the semi-crystalline and amorphous
structure of its constituent particles. Stress, holding time, and temperature are the most important
factors that significantly affect the viscoelastic behavior of the composite [29]. Figure 6 presents the
creep rate of pure LDPE and pretreated RHW reinforced biocomposites. The creep rate showed a
decreasing trend at a constant peak load of 100 mN. The creep rate of the pure LDPE decreased from
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55.9 to 40.9 nm/s, whereas the creep rate of the biocomposites was lower than the pure LDPE sheet
because the pretreated RHW contained higher contents of cellulose. This cellulose had a more compact
and crystalline structure; therefore, minimum variation in depth was observed over constant load.
The creep resistance of the biocomposites was increased via the addition of ChCl pretreated RHW in
the LDPE. Reduction in the creep rate (%) was noted as 5.9%, 11.3%, and 22.1% with 10, 20, and 15 wt.%
of pretreated RHW, respectively. It was clearly indicated from the reduction in the creep rate that the
biocomposite with 15 wt.% pretreated RHW loading exhibited a lower creep rate as compared to the
other samples. It might have happened because of the non-uniform and improper mixing of RHW
in LDPE, leading to the formation of agglomerates. Consequently, interfacial adhesion was not only
interrupted, but slippage of RHW particles occurred that ultimately affected the creep resistance of the
material [30].
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3.5. Effect of Holding Time on Depth

Figure 7 represents the creep time effect on the depth change in biocomposites having ChCl
pretreated RHW at a peak load of 100 mN for 20 s. The creep depth was decreased to a significant level
during creep time at peak load by applying the Oliver–Pharr method. The creep depth of the pure LDPE
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sheet varied largely from 291.3 to 1052.2 nm during holding time due to its semi-crystalline structure.
It is shown in Figure 7 that change in creep depth also happened in biocomposites but less than the
pure LDPE because RHW induced the stiffness in the biocomposites [31]. Furthermore, it could be
predicted that the elastic behavior of RHW was reduced due to partial removal of amorphous polymers
(hemicellulose and lignin) by ChCl pretreatment [32]. Therefore, maximum creep depths of 1004.1 nm,
851.6 nm, and 956.5 nm were noted in the biocomposites having 10, 15, and 20 wt.% of ChCl pretreated
RHW loadings, respectively.
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4. Conclusions

The impact of choline chloride (ChCl) assisted processing of rice husk waste (RHW) on
surface mechanical properties of produced biocomposites at nanoscale was reported. The hardness,
elastic modulus, and creep rate of the composites were appreciably changed as a function of operational
parameters such as peak load, contact depth, and holding time. The ChCl pretreatment showed a
profound impact on the contact stiffness and indentation hardness of RHW based composites under
different fiber loadings. The maximum values of elastic modulus and indentation hardness were
exhibited for 20 wt.% of RHW loading. Interestingly, the same fiber loading provoked the lowest
indentation depth under peak load. The creep rate and change in depth of the composites considerably
varied with holding time, which may have revealed the uniform mixing of fiber in the matrix phase.
The obtained H/Es ratio indicated that the plastic behavior of the composites was enhanced with
fiber loading.
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