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Abstract-- Declining levels of rotational inertia in modern 
power systems prompt transmission system operators (TSOs) to 
develop novel ways of maintaining the balance between generation 
and demand. Services such as fast frequency response (FFR) can 
help the TSO achieve this balance. The growing penetration of 
electric vehicles (EVs) promotes the provision of FFR from 
clusters of EVs. Fast charging stations are more geared towards 
destination charging, whereas slow charging stations are more 
attractive as providers of FFR, given the longer connection times. 
In this paper, the provision of FFR from EV clusters is formulated 
as a multi-objective optimisation problem with network security 
constraints and two minimisation objectives, i.e. the maximum 
frequency deviation following a disturbance and the energy 
provided by public EV charging stations. A methodology was 
developed to solve the optimisation problem with a variant of the 
nondominated sorting genetic algorithm (NSGA-II). This 
methodology allows the decision-maker to consider the trade-offs 
among the objectives, leading to a more informed decision. An 
enhanced frequency-responsive aggregate model (EFRAM) of a 
cluster of EVs was developed to study the provision of FFR in a 
multi-area power system. A three-area dynamic model of the 
Nordic power system was used to illustrate the performance of the 
proposed methodology.  

Index Terms—Aggregate models, electric vehicles, Pareto 
optimisation, system frequency response, vehicle-to-grid. 

I. INTRODUCTION

HE modern electricity system is securely managed by 
always matching the amount of power generation with the 

demand. However, several factors, including the massive 
integration of power-converter-based technologies, are 
affecting the total system rotational inertia [1]. Declining levels 
of rotational inertia have a negative effect on the system 
security and economic operation; especially following a 
significant power imbalance. Modern developments in the 
energy capacity and response time of battery energy storage 
systems (BESS), makes them an attractive alternative as 

1 According to their speed, charging stations are classified into four groups: 
Slow (≤ 3 kW), Fast (7 – 22 kW), Rapid (43 – 120 kW) and Ultra-Rapid (> 120 
kW) [5]. 

providers of frequency control services of power systems with 
high penetration of non-synchronous generation [2]. One of 
these services is termed Fast Frequency Response (FFR) and 
refers to a rapid injection of active power to the grid in a 
timeframe of two seconds or fewer and proportional to the 
frequency deviation from its nominal value [2]. Beyond the 
classical BESS, the growing penetration of electric vehicles 
(EV) promotes an appealing option to provide ancillary services 
to the modern power system. The inherent charging flexibility 
of EVs, combined with smart charging functionalities, allow the 
user to provide highly valued ancillary services to the 
transmission system operator (TSO) [3], [4]. However, the 
energy stored in a single EV battery is not nearly enough to be 
of practical use to the TSO in grid-scale applications. Only 
when the combined action from a sufficiently large number of 
vehicles is aggregated, their effect can be useful and valuable 
to the TSO. Incidentally, the ongoing electrification of personal 
and commercial mobility worldwide enables and promotes 
these valuable ancillary services. Countries such as China and 
the USA already have a combined fleet of over 2 million EVs 
on their roads [5], while estimates from the Great Britain (GB) 
electricity system operator, NGESO, put the number of EVs on 
GB roads on up to 10 million by 2030 [6].  

It has been generally accepted that the energy stored in the 
batteries of large groups of EVs can be tapped, via so-called 
Vehicle-to-Grid (V2G), to help the TSO in balancing tasks if 
the remaining capacity after the provision of the service is 
enough to cover the needs of the user [7]. Some analysts cast 
doubts on the commercial viability of the provision of V2G 
services from clusters of EVs, citing substantial connection 
costs and increased battery degradation as the most pressing 
concerns [8]. However, several think-tanks [9], energy 
companies [10] and EV manufacturers [11] worldwide, are 
presently running large-scale trials to explore the benefits of the 
service, and around half of those surveyed in a recent study 
showed a clear interest in delivering V2G services [12]. To 
provide adequate FFR services to the power system, sufficient 
EV charging infrastructure, either at public or private locations, 
needs to be in place and adequately distributed across the grid. 
Charging stations bigger than 22 kW, while able to replenish 
the average EV battery in minutes, take a considerable amount 
of the limited site capacity. Consequently, these rapid and ultra-
rapid1 chargers are better suited for destination charging at 
public locations such as supermarkets and forecourts and are 
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distributed across the transport network to encourage intercity 
journeys. Since the main point of rapid EV chargers is to 
replenish the state of charge (SoC) of the user’s battery as 
quickly as possible, these units are not the best suited for the 
provision of FFR [13]. On the other hand, smaller chargers, 
such as the presently prevalent 7 kW, take a smaller portion of 
the available site capacity at the cost of increasing the average 
charging time to around 3 to 4 hours and are therefore more 
geared towards workplace or overnight private charging. Given 
their longer connection times, these units, become attractive for 
smart charging schemes and provision of ancillary services.  

In this research paper, the question of how much energy to 
provide from each EV charging station, whilst delivering FFR 
services in a multiple area power system, is formulated as a 
multi-objective optimisation problem considering network 
security constraints. Two kinds of network security constraints 
are considered, i.e. those dealing with the rate of change of 
system variables and those related to the active power flow 
limitations between the different areas of the network. To 
represent more accurately the dynamic behaviour of the EV 
cluster while it delivers FFR services to the grid, this paper 
proposes an enhanced frequency-responsive aggregate model 
(EFRAM). The proposed EV model, centred on the work of  
[14], considers the distribution of the different parameters of the 
EVs inside the cluster as opposed to relying only on their 
average values. 

To solve the optimisation problem, it is possible to set the 
frequency deviation as a constraint and get the EV cluster 
parameters that minimise its FFR energetic contribution. 
Alternatively, it is feasible to set an upper limit for the EV 
cluster injected energy and get the parameters that minimise the 
system frequency deviation. Instead, a multi-objective 
approach that allows visualising the trade-offs between the two 
objectives is followed in this paper. Specifically, the inertia-
weighted maximum frequency deviation of the power system 
forms the first objective, whereas the total energetic 
contribution from the EV clusters is the second objective. The 
formulation as a multi-objective optimisation problem, with the 
frequency deviation acting as a goal instead of as a constraint, 
is helpful for two reasons. First, it dispenses with the need for 
choosing a penalty factor, as is traditionally required for 
handling constrained optimisation problems [15]. One 
drawback of the penalty function approach is the sensibility of 
the resulting solution to the chosen penalty factor [16]. A 
second advantage of the multi-objective formulation proposed 
in this paper is that it provides the decision-maker with more 
information about the interaction of the different objectives. 
Indeed, the output of the process is a family of optimal or close 
to optimal solutions instead of a single solution, which aids the 
trade-off analysis and supports the decision-making process.  

A methodology is developed to solve the optimisation 
problem using an implementation of an elitist genetic algorithm 
variant of the nondominated sorting genetic algorithm (NSGA-
II). This algorithm was chosen because of its efficiency in 
constraint handling coupled with its ability to outperform other 
genetic algorithms by finding solutions closer to the true Pareto-
optimal front when a sufficient number of function evaluations 

is performed [17]. 

A.  Literature Review 
Most studies in system frequency response (SFR) 

optimisation have only focused on distributed energy resources 
(DERs) such as photovoltaic and wind energy systems, and in 
most cases, dealing only with the optimisation of a single 
function, typically system losses or frequency deviation [18], 
[19]. In [18], the optimal droop parameters of the DERs on a 
distribution network were derived analytically to allocate the 
active power injected equitably among the DERs. The location 
and size of a BESS to minimise load shedding in a transmission 
system was studied in [19] though it was formulated as a single-
objective optimisation problem, i.e. the location was selected a 
priori, based on system-specific considerations and then, the 
size of the BESS was obtained by solving a constrained 
optimisation problem with an adaptation of a genetic algorithm. 
In [20], the total energy cost and network losses from the 
charging of single-phase EVs were combined for minimisation 
into an augmented objective function. Fuzzy membership 
functions were employed to derive the weights assigned to each 
part of the augmented objective function. A limitation of this 
approach is that, since both objective functions are combined, 
it is not possible to directly visualise the Pareto-optimal front. 

B.  Paper Contributions 
The main contributions of this paper are: (i) Developing a 

frequency-responsive model of a cluster of EVs providing FFR 
that yields adequate results for different measurement delays 
and which can be included in multi-area power system studies 
(see Section II), (ii) Developing a methodology, using NSGA-
II, to find the Pareto-optimal fronts when minimising the 
system frequency deviation and EV cluster injected energy 
following a load disturbance under different power system 
scenarios (see Section III.A), and (iii) Including realistic TSO 
imposed network security constraints in the problem 
formulation related to the rate of change of frequency and 
injected power as well as with inter-area power flows (see 
Section III.D). 

II.  SYSTEM FREQUENCY RESPONSE   
This section describes the dynamic model used to represent 

the aggregated response of a cluster of EVs providing FFR 
services. Next, a multi-area representation of the power system, 
including EV clusters, is developed for the study of the SFR. 

A.  Enhanced Frequency-responsive Aggregate Model 
(EFRAM)  

This paper proposes an enhanced frequency-responsive 
aggregate model (EFRAM) to represent a cluster of EVs 
providing FFR. The proposed EFRAM leverages the existing 
research in aggregate modelling of EV clusters [14], [21] and 
combines it with a frequency-responsive control for the 
provision of FFR, as shown in Fig. 1. A first-order transfer 
function is used to represent the EV charger dynamic with the 
time constant (TEV). The EFRAM uses the Laplace 
transformation of the cumulative distribution function (CDF) of 
the time delay as suggested in [14] to reduce the error that 
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appears when the time delay of the EVs in the cluster is widely 
distributed. 
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Fig. 1. Enhanced frequency-responsive aggregate model (EFRAM) for the 
provision of FFR from a cluster of EVs. 

The EFRAM considers that the change in the output power 
from the EV cluster (ΔPEV), as a consequence of a frequency 
deviation, can be described by the following equation: 

( ) ( ) ( )( )
1EV

a bcluster droop agg s s

EV

P f s
k k k

s e e
s T s

τ τ− −∆ = ∆−
+

  (1) 

where kdroop is the aggregate droop constant of the EV cluster 
which relates the locally measured frequency deviation with the 
reference power output [22], and kagg is the delay distribution 
constant which value depends on the boundaries of the time 
delay distribution, as described by: 

1
agg

b a

k
τ τ

=
−

 ,    b aτ τ>  (2) 

The parameters τa and τb make up the bounds of the delay 
distribution, and their value depends on the probability 
distribution function (PDF) of the EV cluster measurement time 
delay. Table I shows two useful approximations of the 
aggregation bounds for the case when the time delay follows a 
uniform (U) or a normal (N) distribution [14]. 

TABLE I 
AGGREGATION BOUNDS FOR THE TIME DELAY IN THE EV CLUSTER. 

Time delay PDF Lower bound τa Upper bound τb 
U[tL,tU] tL tU 
N[µ,σ] µ - 2σ µ + 2σ 

The effects from the number of V2G enabled EVs in the 
cluster, the rated power of the charging stations and the power 
base of the system for per unit calculations, are summarised in 
the EV cluster constant (kcluster), defined as follows: 

  EV cluster
cluster

base

N P
k

P
α

=  (3) 

where α represents the fraction of EVs that can provide V2G 
services for FFR, NEV is the number of EVs in the cluster, Pcluster 
is the rated power of the charging stations, and Pbase is the power 
base of the system for per unit calculations. 

The EFRAM includes a dead band in the provision of FFR 
to avoid unnecessary charging/discharging events for small 
frequency deviations. This implies that for values of frequency 
deviation with a magnitude smaller than the dead band, there is 
no FFR from the EV cluster. The normalised reference output 
from the EV frequency controller (∆P*

ref) is bounded in the 
range [∆Pmin

ref, ∆Pmax
ref] by a limiter block. 

B.  Multi-area Model Including EFRAM  
In this section, an equivalent frequency response model for 

a multi-area power system is modified to include the EFRAM. 
The starting point is the classic SFR model of a single isolated 
power system, which is extended to form an interconnected 

network comprising N control areas connected by tie-lines. Fig. 
2 shows the SFR model of the i-th control area. It contains 
several EV clusters that represent charging stations with 
different characteristics. 
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Fig. 2. Block diagram depicting the i-th control area in a multi-area SFR model 
considering the EFRAM aggregated FFR from clusters of EVs. 

The aggregated response from the EV clusters connected in 
the i-th area is denoted ΔPEV,i. The frequency deviation (Δfi) 
following a load disturbance (ΔPL,i) in the i-th control area can 
be described by the following equations in the Laplace domain: 

, , , , ,( ) ( ) ( ) ( ) ( )M i L i EV i tie i net iP s P s P s P s P s∆ − ∆ + ∆ − ∆ = ∆  (4) 

, ( )

2
( ) net i

i
i i

P s

H s D
f s

∆

+
∆ =  (5) 

where ΔPM,i (s) is the increment in the mechanical power and 
the term ΔPEV,i (s) corresponds to the change in the injected 
power from the i-th EV cluster to the grid following a frequency 
deviation. Transfer functions CG,i (s) and GT,i (s), model the 
effect that different types of turbine and generator (e.g. thermal, 
hydro) have on the SFR. The equivalent model lumps the 
effects of the system loads and generators into a first-order 
transfer function that considers equivalent inertia constant (Hi) 
and a single damping constant (Di) for each control area. 

High voltage transmission lines or tie-lines interconnect the 
different areas of the multi-control-area power system 
considered. The net tie-line power interchange of each area 
(∆Ptie,i) can be expressed in vector notation (ΔPtie) as: 

2
s
π

= ⋅tieΔP L Δf  (6) 

 , ,
1

N

tie i i j
j
j i

P P
=
≠

∆ = ∆∑    1, ,i N∀ =   (7) 

where ΔPtie = [ΔPtie,1,…,ΔPtie,N]T is a vector in which the i-th 
component is equal to the net tie-line power exchange of the i-
th area (ΔPtie,i > 0 implies that the i-th area is a net exporter);  
∆Pi,j represents the change in the power flow on the 
transmission line between control areas i and j; Δf = 
[Δf1,…,ΔfN]T is a vector that contains the frequency deviation for 
each control area following a load disturbance or an inter-area 
power flow fluctuation; L corresponds to the Laplacian matrix 
of the underlying network graph, weighted by the synchronising 
torque coefficients (Ti,j) and with their elements defined as 
follows: 

, ,
1

N

i i i j
j
j i

L T
=
≠

= ∑  and , ,i j i jL T= −  (8) 

A power mismatch vector, given by ΔPL = [ΔPL,1,…,ΔPL,N]T 
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is defined, with its i-th component, ΔPL,i, indicating the power 
imbalance in the i-th area following a disturbance. The system 
inertia vector, defined as H = [H1,…,HN], is formed by the 
inertia constant of each area’s equivalent synchronous 
generator (on a common power base) and the scalar quantity ρ 
is defined as the inverse of the sum of all the elements of H as 
follows: 

1

1

N

i
i

Hρ
−

=

 
=  
 
∑   (9) 

From the above definitions, it is straightforward to get the 
frequency deviation of the centre of inertia, ΔfCOI as follows: 

( )( )COIf s ρ∆ = HΔf  (10) 
In this research paper, the frequency deviation from each 

area is scaled by its inertia constant; therefore, entailing a 
minimisation of the frequency deviation of the inertial centre. 
This variable is of interest for highly meshed grids, as it 
represents the aggregation of each area’s frequency into the 
frequency of a single representative area.  

III.  MULTI-OBJECTIVE FORMULATION 
In this section, the provision of FFR from clusters of grid-

connected EVs is formulated as a multi-objective optimisation 
problem with TSO imposed constraints. The parameters of the 
EV clusters are adjusted to fulfil the minimisation of two 
objectives: (i) the inertia-weighted maximum frequency 
deviation, and (ii) the energy contribution from the EV clusters 
following a loss of generation in the power system.  

A.  Mathematical Formulation  
The multi-objective optimisation problem is that of 

simultaneously minimising the m objectives Fi(x), i = 1,…,m, 
of a control variable vector x =[x1,…,xn], with n elements. The 
objective function is formulated as a vector of the different 
objectives F(x) = [F1(x),…, Fm (x)] and can be described as: 

min { ( )F x } 

(11) 
Subject to: G(x) =[gj(x)] = 0   ∀j = 1, …, neq  

H(x) =[hl(x)]≤0       ∀l = 1, …, nineq 
l u
k k kx x x≤ ≤ 1, ,k n∀ =   

where neq corresponds to the number of equality constraints and 
nineq is the number of inequality constraints. The set of equality 
constraints is grouped into a vector denoted G(x). The vector of 
inequality constraints is designated H(x) and contains nineq 
inequality constraints. The function gj (x) corresponds to the j-
th equality constraint, whereas hl (x) corresponds to the l-th 
inequality constraint. The k-th control variable is bounded 
inside the range [ l

kx , u
kx ]. 

If any element of the objective function vector F(x) is 
competing with another, there is no unique solution to the 
optimisation problem. Any solution in which an improvement 
in one objective also carries a detriment in another function is 
denoted as a non-inferior solution. The goal of the multi-
objective optimisation is, therefore, to obtain the non-inferior 
solutions of the objective function, also known as the Pareto-
optimal front.  

B.  Control Variables 
In this paper, the control variable vector is formed by the 

frequency droop coefficients of the EV clusters, denoted as: 

, ,droop i jk =  x  1,...i N∀ = , 1,... CAj N∀ =  (12) 
where kdroop,i,j is the droop coefficient of the j-th EV cluster 
inside control area i and NCA is the number of EV clusters in 
each control area. 

C.  Objective Functions 
Two objective functions are considered in this paper. The 

first objective function (F1) corresponds to the minimisation of 
the overall maximum frequency deviation following a 
disturbance in the j-th control area, expressed as: 

( )1 min, max,
1 1

( )
N N

i N i i i
i i

F k f f k f
= =

= − = ∆∑ ∑x  (13) 

where fN is the rated frequency of the system, fmin,i is the 
minimum frequency of the i-th control area following a step 
load disturbance (see Fig. 3). The difference between the 
system’s nominal frequency and the minimum frequency 
obtained in control area i, is defined as Δfmax,i. The term ki 
represents a weighting factor in prioritising the system 
frequency response in the i-th area and N is the number of 
control areas in the power system model. In this paper, the 
weighting factors for each area are selected proportionally, 
according to the area’s inertia constant i.e. ki = ρHi. 

 
Fig. 3. Frequency response in the i-th area following a loss of generation. 

The second objective function (F2) corresponds to the 
minimisation of the total energy contributed to FFR by specific 
clusters of bidirectional EVs following a disturbance in area k, 
expressed as:  

0

0 02 , ,
1 1 0

( ) ( )
TN N

EV EV
i j i j

i i
F W P t dt

= =

 
= = ∆  

 
∑ ∑ ∫x  (14) 

where WEV
i,j0 represents the energetic contribution to the FFR 

scheme from the cluster of vehicles j0 providing V2G services 
in control area i, within a specified time frame T0. The change 
in power consumption from EV cluster j0 in the i-th control area 
is denoted ∆PEV

i,j0. ∆PEV
i,j0 > 0 implies a reduction in the power 

consumption of the EV cluster or, an increase in the net power 
injected from the cluster in V2G modality. ∆PEV

i,j0 < 0  implies 
an increase in the power consumption of the cluster or, a 
reduction of the power injected in a V2G scheme. 

A higher droop value has the effect of reducing the 
maximum frequency deviation [2]. However, (1) implies that 
the energy contribution from the EV cluster following a 
disturbance depends on the selected droop value, and 
consequently, the selected objective functions are conflicting so 
a trade-off must be performed (see Fig. 4).  
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Fig. 4. Maximum frequency deviation and energy injected from V2G clusters 
for different values of the EV droop constant. 

D.  Constraints 
The minimisation problem formulated in (13) and (14) 

includes two network security inequality constraints imposed 
by the TSO. These constraints are divided into two major 
groups. The first group includes constraints related to the rate 
of change of system variables and includes limitations for the 
rate of change of injected power from EV clusters and for the 
rate of change of the system frequency in each control area. The 
second group of constraints includes inter-area power flow 
limitations.  
    1)  Rate of Change Constraints 

A nonlinear inequality constraint related to a limitation in the 
rate of change of the injected power from the EV cluster is 
included in the formulation. This constraint can be stated as: 

( ) ,
1 0

EV
i j

ij

d P
h

dt
κ

∆
= − ≤x ,  

1,...,i N∀ =    1,..., CAj N∀ =  
(15) 

where κi,j represents the TSO imposed limit to the discharging 
rate of the EV cluster j in the i-th control area.  

The rate of change of frequency (ROCOF) is limited by the 
TSO to avoid the spurious triggering of anti-islanding 
protection devices [24]. This constraint is expressed as: 

( ) max
2 0i

i
d f

h ROCOF
dt
∆

= − ≤x  1,...,i N∀ =  (16) 

where |d∆fi/dt| is the absolute value of the maximum frequency 
rate of change in the control area i, which is limited to be less 
than or equal to ROCOFi

max. 
    2)  Inter-area Power Flow Constraints 

To avoid overloading of inter-area transmission lines and the 
associated risk of cascade failure, the power flows between the 
control areas are constrained below a maximum value. The 
inter-area power flow constraint can be written as: 

( ) max
3 , , 0i j i jh P P= − ≤x 1,...,i N∀ = 1,..., CAj N∀ = ,

i j∀ <  (17) 

where |Pi,j| corresponds to the absolute value of the power flow 
between control area i and control area j and Pmax

i,j represents 
the maximum acceptable value of power flow between control 
area i and control area j given by the TSO. 

E.  Nondominated Sorting Genetic Algorithm II (NSGA-II) 
In this paper, NSGA-II is used to find the Pareto-optimal 

front of multiple objective functions. NSGA-II has been used 
extensively in the literature as it is one of the most 
computationally efficient multi-objective optimisation 

algorithms available [25], [26]. Among the advantages of using 
an evolutionary algorithm to perform a multi-objective 
optimisation is that these kinds of algorithms naturally handle 
multiple solutions per iteration, and each iteration produces 
multiple trade-off solutions. 

The nonlinear constraints are included via the simple and 
widely used Penalty Function algorithm [27]. The constrained 
optimisation problem is turned into an unconstrained one by the 
addition of a penalty term to the objective function. Unfeasible 
solutions, therefore, have their fitness value changed as they do 
not abode with the imposed constraints. After this modification, 
an unconstrained optimisation algorithm can be applied to solve 
the problem efficiently. Penalty factors are updated considering 
the hybrid optimisation scheme described in [28] to prevent 
scaling issues among the different constraints which might 
potentially skew the operation of the algorithm. An initial 
population of size P0 is randomly generated by the algorithm. 
The fitness of each individual in the population is evaluated, 
and new individuals are created by the combination 
(tournament selection and mutation) of current individuals. 
Some individuals are removed from the population to make 
room for the evolved individuals. These new individuals are 
inserted into the population, and their fitness is evaluated, 
making a new generation. The maximum number of function 
evaluations is given by: 

( )0 1feval genN P N= +  (18) 
where Ngen is the maximum number of generations and P0 is the 
initial population. The additional generation stems from 
requiring the evaluation of the initial population prior to the 
evolution of further individuals.  

Key performance indicators such as the average Pareto 
spread and average Pareto distance are computed after each 
generation. The optimisation ends when the maximum number 
of generations is attained. This process, based on aspects of 
natural evolution, gives rise to a population of individuals that 
are better suited to their environments, as measured by their 
fitness function, than their ancestors.  

IV.  ILLUSTRATIVE EXAMPLE 
To illustrate the proposed multi-objective optimisation 

methodology, a three-area model of the Nordic power system, 
including clusters of EVs providing FFR, is considered and the 
Pareto-optimal fronts for different network scenarios are 
obtained. The power system model comprises three control 
areas representing the interconnected electrical networks of 
Sweden, Norway and Finland. A second-order low-pass filter 
(Tf = 0.5 s) is connected to the net inter-area power exchange 
block to smooth out the high-frequency components present in 
the model [29]. The power system models and optimisation 
routines are developed in MATLAB® R2018b. 

In this illustrative case, the interest lies in minimising the 
energy injected from the public charging EVs while 
diminishing the maximum frequency deviation that follows a 
disturbance. Since the relative weights of the two objective 
functions depend on different external factors such as market 
and regulation in the area, they cannot be determined a priori. 
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Thus, a wide Pareto-front with several representative solutions 
is required. 

A.  EV Penetration Nordic System and Model Parameters 
The Nordic block of countries makes up the third-largest EV 

market by volume of sales worldwide behind China and the 
United States [30]. At the end of 2018, the number of EVs in 
Norway stands out at over 249,000 units. This makes up over 
70% of the EV stock in the Nordic countries and more than 
double the fleet of Sweden, the second-largest EV market in the 
region with over 78,000 EVs in circulation. The EV stock of 
Finland is around 12,000 vehicles at the end of 2018. 

Norway leads the Nordic block in terms of publicly 
accessible EV chargers (fast and slow) at over 12,000, while 
Sweden and Finland trail behind with 7,000 and 931 chargers, 
respectively. However, less than 6% of the EV charging outlets 
in the region are installed in public areas, highlighting the 
importance of private charging (either at home or work) [30]. 
The combined number of EV chargers in the region (public and 
private) almost reached 264,000 at the end of 2017 [30]. In this 
region, FFR from V2G enabled charging stations and fast active 
power injection from hydro plants, compete for the frequency 
regulation market [31]. The fraction of vehicles able to offer 
FFR via V2G is estimated at 5% for private charging EVs and 
1% for publicly charging EVs [32]. Authors in [33] indicated 
that the typical range for the time delay is between 150 ms and 
2.0 s, while typical values for TEV lie between 35 to 100 ms [34]. 
An average first-order time delay of 35 ms for the private 
chargers and 50 ms for the public chargers is considered [34].  

The index i is used for enumerating the areas as follows: 
Sweden, Norway and Finland, so the characteristics of the EV 
clusters considered in the study are Nev1 = 78,630, Nev,2 = 
249,000, Nev,3 = 12,050. P2,1

max = 4.15 GW [29], P3,1
max = 2.7 

GW [29], P2,1
N(@ 19:00 h) = 1.59 GW, P3,1

N(@ 19:00 h) = -2.1 
GW, κ1,1 = κ2,1 = κ3,1= 40 MW/s, κ1,2 = κ2,2 = κ3,2 = 40 MW/s, 
α1,1 = α2,1 =α3,1 = 5%, α1,2 = α2,2 = α3,2 = 1%, TEV,1,1 = TEV,2,1 = 
TEV,3,1 = 35 ms, TEV,1,1 = TEV,2,2 = TEV,3,2 = 50 ms, ROCOFmax

1= 
ROCOFmax

2 = ROCOFmax
3 = 0.5Hz/s. 

B.  Optimisation Algorithm Parameters 
To arrive close to the Pareto-optimal front using NSGA-II, 

it is necessary to perform many function evaluations, usually 
costly in terms of computation time [35]. The number of 
function evaluations increases with both the population size and 
the number of generations. In this paper, the population size is 
established at 200, as it represents a compromise between the 
computational resources used and the level of detail in the 
solutions obtained [36]. To determine the minimum number of 
generations that would produce an accurate Pareto-front, the 
minimum of the sum of the equally weighted objective 
functions given by (13) and (14) is tracked alongside the 
number of generations. Fig. 5 shows the sum of the equally 
weighted objective functions, plotted against the number of 
generations, for 30 independent runs of the optimisation 
procedure, and in which each colour represents a different run. 
Irrespective of the randomness involved in the NSGA-II 
algorithm, it converges to a steady value after around 40 
generations with the population size selected. Consequently, the 

maximum number of generations is selected as Ngen = 40. 

 
Fig. 5. The best-weighted sum of objectives vs the number of generations. 

The crossover and Pareto fractions are set to 0.8 and 0.35 
respectively, whereas the migration fraction is fixed to 0.2 and 
the migration interval is adjusted to 20. An initial penalty factor 
of 10 is selected [28] while the stopping criteria comprise 
reaching the maximum number of generations.  

C.  Simulations and Results 
The total number of function evaluations for each scenario 

is 8,200 (18). This corresponds to the evolution of the 200 
individuals over the 40 generations and includes the evaluation 
of the initial population before new individuals can be evolved. 
Each simulation takes, on average, around 150 minutes on a 64-
bit Windows 10 operating system, running on a 2.70 GHz Intel 
Core i7 with two cores and 16.0 GB of RAM. The three 
scenarios devised to verify the feasibility of the proposed 
methodology are set forth below. 

Scenario 1: It focuses on the impact of the measurement time 
delay distribution on the Pareto-optimal fronts. Three cases are 
considered in which the delay is uniformly distributed: Case 
1.1: wide range, τd ~U[0.05, 0.35] s, Case 1.2: τd ~U[0.10, 0.30] 
s, and Case 1.3: narrow range, τd ~U[0.15, 0.25] s.  The rated 
power of the charging stations, Pcluster, is set at 10 kW for private 
stations and 22 kW for public charging stations. The Pareto-
optimal fronts for the different cases studied in Scenario 1 are 
shown in Fig. 6.  

 
Fig. 6. Pareto-optimal fronts for Scenario 1 – Impact of the measurement time 
delay. 

Each point represents a combination of the control variables 
that minimise the objective functions. The horizontal part of the 
front remains constant for different cases. However, the 
solutions obtained for Case 1.1, when the time delay 
distribution is wide, dominate the solutions for Cases 1.2 and 
1.3, when a narrower distribution is explored. Solutions that lie 
on the flat region, such as those between 0.5305 Hz and 0.5325 
Hz, the present poor trade-off between objectives, since a small 
reduction in the injected energy causes a relatively significant 
increase to the maximum frequency deviation. More reasonable 
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solutions seem to be those that lie close to the knee of the curve 
as they provide a better trade-off between objectives. 

Scenario 2: The effect of the public charging stations rated 
power is explored in this scenario with three cases: Case 2.1: 
Pcluster = 10 kW, Case 2.2: Pcluster = 22 kW, and Case 2.3: Pcluster 
= 50 kW. Fast and rapid public charging stations are considered, 
and the rated power of the private chargers is fixed at 10 kW 
[30]. For this scenario, the measurement time delay in the EV 
clusters is modelled with a uniform PDF in which τd ~U[0.10, 
0.30] s. The Pareto-optimal fronts for the cases considered in 
Scenario 2 are shown in Fig. 7 (a). The solutions obtained in 
Case 2.3 present higher injected energy and consequently, 
lower frequency deviation than those obtained in Case 2.1 and 
2.2. This suggests that the effect of increasing the rated power 
of the charging stations is of reducing the maximum frequency 
deviation but at the cost of increasing the injected energy from 
the clusters. More importantly, when the rated power of the 
charging stations increases, so does the spread of the solutions 
on the optimal front, which translates into more options for the 
decision-maker. Useful metrics such as the average Pareto 
distance and spread are detailed in the Appendix.  From Fig. 7 
(b) one can observe the evolution of the maximum constraints 
as the optimisation process progresses. After a maximum in the 
first generation, the algorithm finds suitable population 
members, without constraint violations, from around the 30-th 
generation. 

 

 
Fig. 7. (a) Pareto-optimal fronts for Scenario 2 – Impact of the rated power of 
charging stations. (b) Evolution of the maximum constraint violation during the 
optimisation.  

Scenario 3: It evaluates the sensitivity of the Pareto-front to 
a ±10% change in the filter time constant Tf. The measurement 
time delays are set as per Scenario 2, and the rated power of the 
EV charger is fixed as per Scenario 1. The values used for the 
low-pass filter constant are Case 3.1: Tf = 0.45 s, Case 3.2: Tf = 
0.50 s, and Case 3.3: Tf = 0.55 s. Fig. 8 (a) shows the optimal 
Pareto-fronts for the cases studied in Scenario 3. It is observed 
that the solutions obtained in Case 3.3 dominate those got in 
Cases 3.1 and 3.2. This suggests that for a given value of 
maximum frequency deviation, in this case, measured by F1, the 

amount of energy injected by the EVs connected to public 
charging stations, showed by F2, declines when the low-pass 
filter value Tf is increased. This difference between the fronts is 
more pronounced for lower values of F1 that do not require 
significant V2G energy contribution. For larger values of F1, 
the Pareto-fronts converge since the energy required from the 
EV clusters falls, and the filter impact becomes less relevant.  

To observe the impact on the SFR after choosing different 
sets of control variables from the Pareto-optimal front, two 
solutions are plotted in Fig. 8 (b). Solution A derives from Case 
3.3 and corresponds to a high energy injection from the EV 
clusters while solution B stems from Case 3.2 and presents a 
larger frequency deviation and lower energy throughput. 

 

 
Fig. 8. (a) Pareto-optimal fronts for Scenario 3 – Sensitivity to filter time 
constant Tf. (b) Time response of the fCOI (10) for different trade-off solutions. 

V.  CONCLUSION 
The main goal of the current study was to develop a 

methodology, based on multi-objective techniques, to optimise 
the provision of FFR from EV clusters following a large power 
system unbalance. Network security constraints, such as 
limitations in the inter-area power flows and rate of change of 
frequency, are included in the proposed methodology. An 
advantage of the proposed method is that it allows for the 
objectives and constraints to be handled simultaneously, 
therefore reducing the simulation time. The insights gained 
from this study may be of help to decision-makers, such as 
TSOs and EV aggregating entities involved in the ancillary 
services market. It is essential to highlight that the decision-
maker must select one solution from the Pareto-optimal front 
presented, based on different techno-economic criteria which 
fall outside the scope of this paper. The procedure outlined, 
however, reveals the shape of the Pareto-optimal front to the 
decision-maker, which makes up a great advantage when 
choosing the appropriate solution. Further research might 
explore the impact of more detailed power system models on 
the Pareto-optimal fronts obtained. 

(a) 

(b) 

A 

B 

(a) 

(b) 
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VI.  APPENDIX 
Key performance indicators of the proposed methodology. 

Scenario. 
Case 

Overall 
run-time 

(min) 

Function 
evaluations 

Maximum 
constraint 

Average 
Pareto 

distance 

Average 
Pareto 
spread 

1.1 138.1 8,201 0 0.0083 0.8985 
1.2 293.5 8,201 0 0.0059 0.7274 
1.3 134.7 8,201 0 0.0054 0.2567 
2.1 179.9 8,201 0 0.0111 0.4829 
2.2 222.6 8,201 0 0.0057 0.6744 
2.2 156.3 8,201 0 0.0085 0.8928 
3.1 147.7 8,201 0 0.0033 0.5948 
3.2 147.8 8,201 0 0.0124 0.5408 
3.3 349.01 8,201 0 0.0051 0.2729 

VII.  REFERENCES 
[1] H. R. Chamorro, I. Riaño, R. Gerndt, I. Zelinka, F. Gonzalez-Longatt, and 

V. K. Sood, “Synthetic inertia control based on fuzzy adaptive differential 
evolution,” Int. J. Electr. Power Energy Syst., vol. 105, no. September 
2017, pp. 803–813, Feb. 2019. 

[2] F. Sanchez, J. Cayenne, F. Gonzalez-Longatt, and J. L. Rueda, “Controller 
to Enable the Enhanced Frequency Response Services from a Multi-
Electrical Energy Storage System,” IET Gener. Transm. Distrib., Nov. 
2018. 

[3] Zhenpo Wang and Shuo Wang, “Grid Power Peak Shaving and Valley 
Filling Using Vehicle-to-Grid Systems,” IEEE Trans. Power Deliv., vol. 
28, no. 3, pp. 1822–1829, Jul. 2013. 

[4] F. Mwasilu, J. J. Justo, E.-K. Kim, T. D. Do, and J.-W. Jung, “Electric 
vehicles and smart grid interaction: A review on vehicle to grid and 
renewable energy sources integration,” Renew. Sustain. Energy Rev., vol. 
34, pp. 501–516, Jun. 2014. 

[5] I. International Energy Agency, “Global EV Outlook 2018,” 2018. 
[Online]. Available: https://www.iea.org/gevo2018/. [Accessed: 12-Jun-
2019]. 

[6] National Grid, “Future Energy Scenarios,” 2017. [Online]. Available: 
http://fes.nationalgrid.com/fes-document/. [Accessed: 06-Jun-2018]. 

[7] W. Kempton and J. Tomić, “Vehicle-to-grid power fundamentals: 
Calculating capacity and net revenue,” J. Power Sources, vol. 144, no. 1, 
pp. 268–279, Jun. 2005. 

[8] J. Geske and D. Schumann, “Willing to participate in vehicle-to-grid 
(V2G)? Why not!,” Energy Policy, vol. 120, no. September 2018, pp. 392–
401, Sep. 2018. 

[9] Cenex, “Ebbs and Flows of Energy Systems.” [Online]. Available: 
https://www.cenex.co.uk/energy/vehicle-to-grid/efes/. [Accessed: 13-Apr-
2019]. 

[10] EDF_Energy, “EDF Energy and Nuvve Corporation announce plans to 
install 1,500 smart electric chargers in the United Kingdom.” [Online]. 
Available: https://www.edfenergy.com/media-centre/news-releases/edf-
energy-and-nuvve-corporation-announce-plans-install-1500-smart. 
[Accessed: 13-Apr-2019]. 

[11] Nissan, “Nissan and Enel launch vehicle-to-grid trial,” Nissan Insider. 
[Online]. Available: http://nissaninsider.co.uk/nissan-and-enel-launch-
vehicle-to-grid-trial/. [Accessed: 13-Apr-2019]. 

[12] Energyst, “2019 EV Report Survey.” [Online]. Available: 
https://theenergyst.com/EV/. [Accessed: 13-Apr-2019]. 

[13] F. Sánchez, F. Gonzalez-Longatt, J. L. Rueda, and P. Palensky, “Impact of 
Electric Vehicle Charging Control on the Frequency Response : Study of 
the GB System,” in 2018 IEEE PES Innovative Smart Grid Technologies 
Conference Europe, ISGT-Europe 2018 - Proceedings, 2018, pp. 3–8. 

[14] C. Ziras, J. Hu, S. You, and H. W. Bindner, “Modelling the aggregated 
dynamic response of electric vehicles,” in 2017 IEEE PES Innovative 
Smart Grid Technologies Conference Europe, ISGT-Europe 2017 - 
Proceedings, 2018, vol. 2018-Janua, pp. 1–6. 

[15] Thomas Krechel; F. Sanchez; F. Gonzalez-Longatt; H. Chamorro; Jose 
Luis Rueda, “Transmission System Friendly Micro-grids: An option to 
provide Ancillary Services,” in Distributed Energy Resources in 
Microgrids, R. K. Chauhan; and K. Chauhan, Eds. Elsevier, 2019. 

[16] K. Deb and R. Datta, “A fast and accurate solution of constrained 
optimization problems using a hybrid bi-objective and penalty function 
approach,” 2010 IEEE World Congr. Comput. Intell. WCCI 2010 - 2010 
IEEE Congr. Evol. Comput. CEC 2010, pp. 1–8, 2010. 

[17] R. Datta and K. Deb, “An adaptive normalization based constrained 
handling methodology with hybrid bi-objective and penalty function 

approach,” 2012 IEEE Congr. Evol. Comput. CEC 2012, pp. 1–8, 2012. 
[18] S. S. Guggilam, C. Zhao, E. Dall’Anese, Y. C. Chen, and S. V. Dhople, 

“Optimizing Power–Frequency Droop Characteristics of Distributed 
Energy Resources,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3076–
3086, May 2018. 

[19] M. Ramírez, R. Castellanos, G. Calderón, and O. Malik, “Placement and 
sizing of battery energy storage for primary frequency control in an isolated 
section of the Mexican power system,” Electr. Power Syst. Res., vol. 160, 
pp. 142–150, Jul. 2018. 

[20] M. Esmaili and A. Goldoust, “Multi-objective optimal charging of plug-in 
electric vehicles in unbalanced distribution networks,” Int. J. Electr. Power 
Energy Syst., vol. 73, pp. 644–652, 2015. 

[21] S. You, J. Hu, and C. Ziras, “An Overview of Modeling Approaches 
Applied to Aggregation-Based Fleet Management and Integration of Plug-
in Electric Vehicles,” Energies, vol. 9, no. 11, p. 968, Nov. 2016. 

[22] M. Marinelli, S. Martinenas, K. Knezović, and P. B. Andersen, “Validating 
a centralized approach to primary frequency control with series-produced 
electric vehicles,” Adv. Life Course Res., vol. 7, pp. 63–73, 2016. 

[23] V. T. Sæmundsson, M. Rezkalla, A. Zecchino, and M. Marinelli, 
“Aggregation of Single-phase Electric Vehicles for Frequency Control 
Provision Based on Unidirectional Charging,” 52nd Int. Univ. Power Eng. 
Conf., pp. 1–6, 2017. 

[24] D. Doheny and M. Conlon, “Investigation into the local nature of rate of 
change of frequency in electrical power systems,” in 2017 52nd 
International Universities Power Engineering Conference (UPEC), 2017, 
vol. 2, no. 1, pp. 1–6. 

[25] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist 
Multiobjective Genetic Algorithm: NSGA-II,” IEEE Trans. Evol. Comput., 
vol. 6, no. 2, pp. 182–197, 2002. 

[26] A. Nasri, A. Abdollahi, M. Rashidinejad, and M. Hadi Amini, 
“Probabilistic–possibilistic model for a parking lot in the smart distribution 
network expansion planning,” IET Gener. Transm. Distrib., vol. 12, no. 13, 
pp. 3363–3374, Jul. 2018. 

[27] K. Deb, “An efficient constraint handling method for genetic algorithms,” 
Comput. Methods Appl. Mech. Eng., vol. 186, no. 2–4, pp. 311–338, Jun. 
2000. 

[28] R. Datta and K. Deb, “An Adaptive Normalization based Constrained 
Handling,” 2012 IEEE Congr. Evol. Comput., pp. 1–8, 2012. 

[29] L. Saarinen, P. Norrlund, U. Lundin, E. Agneholm, and A. Westberg, “Full-
scale test and modelling of the frequency control dynamics of the Nordic 
power system,” IEEE Power Energy Soc. Gen. Meet., vol. 2016-Novem, 
2016. 

[30] International Energy Agency, “Nordic EV Outlook 2018,” 2018. [Online]. 
Available: https://www.nordicenergy.org/publications/nordic-ev-outlook-
2018/. [Accessed: 03-Jul-2019]. 

[31] J. Kester, L. Noel, G. Zarazua de Rubens, and B. K. Sovacool, “Promoting 
Vehicle to Grid (V2G) in the Nordic region: Expert advice on policy 
mechanisms for accelerated diffusion,” Energy Policy, vol. 116, no. 
February, pp. 422–432, May 2018. 

[32] A. Zecchino, A. M. Prostejovsky, C. Ziras, and M. Marinelli, “Large-scale 
provision of frequency control via V2G: The Bornholm power system 
case,” Electr. Power Syst. Res., vol. 170, no. December 2018, pp. 25–34, 
May 2019. 

[33] M. Rezkalla, A. Zecchino, S. Martinenas, A. M. Prostejovsky, and M. 
Marinelli, “Comparison between synthetic inertia and fast frequency 
containment control based on single phase EVs in a microgrid,” Appl. 
Energy, vol. 210, pp. 764–775, Jan. 2018. 

[34] Y. Mu, J. Wu, J. Ekanayake, N. Jenkins, and H. Jia, “Primary Frequency 
Response From Electric Vehicles in the Great Britain Power System,” 
Smart Grid, IEEE Trans., vol. 4, no. 2, pp. 1142–1150, Jun. 2013. 

[35] G. Li, T. Goel, and N. Stander, “Assessing the Convergence Properties of 
NSGA-II for Direct Crashworthiness Optimization,” Design, no. 1, pp. 31–
38. 

[36] C. Versèle, O. Deblecker, Z. De Grève, and J. Lobry, “Multiobjective 
optimal design of a voltage supply inverter fed in-wheel synchronous 
motor,” 2010 IEEE Veh. Power Propuls. Conf. VPPC 2010, 2010. 

 


	I.   Introduction
	A.   Literature Review
	B.   Paper Contributions

	II.   System Frequency Response
	A.   Enhanced Frequency-responsive Aggregate Model (EFRAM)
	B.   Multi-area Model Including EFRAM

	III.   Multi-objective Formulation
	A.   Mathematical Formulation
	B.   Control Variables
	C.   Objective Functions
	D.   Constraints
	1)   Rate of Change Constraints
	2)   Inter-area Power Flow Constraints

	E.   Nondominated Sorting Genetic Algorithm II (NSGA-II)

	IV.   Illustrative Example
	A.   EV Penetration Nordic System and Model Parameters
	B.   Optimisation Algorithm Parameters
	C.   Simulations and Results

	V.   Conclusion
	VI.   Appendix
	VII.   References



