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Abstract—Brace Sleeve (BS) plays an essential role in 

connecting and fixing cantilevers of railway catenary systems. It 

needs to be monitored to ensure the safety of railway operations. 

In the literature, image processing techniques that can localize 

BSs from inspection images are proposed. However, the boxes 

produced by existing methods can contain incomplete and/or 

irrelevant information of the localized BS. This reduces the 

accuracy of BS condition diagnosis in further analyses. To 

address this issue, this paper proposes the use of an action-

driven reinforcement learning method that adopts the coarse-

localized box provided by existing methods, and finds the 

movements needed for the box to approach to the true BS 

position automatically and accurately. In contrast to the existing 

methods that predict one position of the box containing a BS, the 

proposed action-driven method sees the localization problem as 

a dynamic position searching process. The localization of BS is 

achieved by following a sequence of actions, which in this paper 

are position-moving (up, down, left or right), scale-changing 

(scale up or scale down) and shape-changing (fatter or taller). 

The policy of selecting dynamic actions is obtained by 

reinforcement learning. In the experiment, the proposed method 

is tested with real-life images taken from a high-speed line in 

China. The results show that our method can effectively 

improve the localization accuracy for 81.8% of the analyzed 

images. We also analyze cases where the method did not 

improve the localization and suggest further research lines. 

Keywords—railway catenary, localization, brace sleeve, 

reinforcement learning, action-driven learning. 

I. INTRODUCTION  

Catenary is an important component of the traction power 

supply system in high-speed railways. A key component in 

catenary is the brace sleeve (BS). BS plays an important role 

in connecting and fixing catenary cantilevers. Due to the 

physical/mechanical impact triggered by the high-speed 

vehicles and other location and environmental factors along 

the railway line, the BSs can develop defective states. 

Defective BSs increase the risk of disrupting the railway 

operation and compromising safety. To automatically 

monitor the catenary components, image processing methods 

have been developed to replace manual checking. Once a 

defective component is detected, the information updates the 

maintenance activities planning so that the component can be 

replaced. The first step of monitoring is the localization of 

BSs. Localization is an important issue because if it is not 

accurate, fault detection methodologies will not count with 

the correct information to perform diagnosis [1]. 

 
(a) Incomplete BS                    (b) Unnecessary information 

 
(c) Complete BS       (d) BS without unnecessary information 

Fig. 1 Examples of detected BS using Faster R-CNN with a box containing 

(a) incomplete information, (b) unnecessary information.  In (c) and (d) it is 

possible to see the optimal boxes for the previous cases. 

In the past decade, two classes of localization algorithms 

have been widely used for railway component localization. 

The first class of algorithms are based on handcrafted features. 

Han et al. [2] used cascade support vector machines to 

classify a series of sliding window images, which are 

represented by a HOG to localize the catenary clevis. Zhong 

et al. [3] applied template matching on a standard catenary 

sleeve image and an original image to search the object 

position based on SIFT. Fan et al. [4] proposed a line LBP 

encoding method to represent a target object, which is used 

to localize fasteners on the rail track. The second class of 

algorithms are based on deep learning, which adopt 

supervised learning to train deep regression models that 

predict object position directly. In [5], a region-based 

convolutional neural network called Faster R-CNN is 

proposed to extract deep CNN features and localize general 

objects. Cai et al. [6] cascaded several regression modules in 

Faster R-CNN to further refine localization. Liu et al. [7, 8] 

and Kang et al. [9] applied improved Faster R-CNN to 

localize class-specific component, such as isoelectric line, 

brace sleeve screws and insulator. In works [10], deep 

learning architectures were developed to localize all catenary 

support components. Redmon et al. [11] introduced a strong 

deep CNN architecture called YOLO (You only look once) 

which allows to obtain a good trade-off between speed of 

detection and accuracy. Chen et al. [12] proposed an *Zhigang Liu is the corresponding author. (e-mail:liuzgcd@126.com). 
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improved YOLO for catenary components localization. 

Overall, handcrafted feature-based methods are simpler, but 

the performance of deep learning-based methods is by far 

superior for detecting catenary components. However, even 

state-of-the-art deep learning methods may provide incorrect 

localizations, either the localized BS is incomplete and/or 

with unnecessary information, as shown in Fig. 1. In this 

work, we propose a reinforcement learning (RL) method to 

address localization problems like the ones shown in Fig. 1. 

The RL refers to a broad group of learning techniques. RL 

emulates the way living beings learn by trying actions and 

learning from successes and failures. As shown in Fig. 2, in 

RL, an agent is trained to make good decisions in a given 

environment by receiving rewards when the decisions are 

considered positive. The agent observes the state of a given 

environment, and takes actions that transform the 

environment to a new state according to its state-action policy, 

which is learned during training. A Markov Decision Process 

(MDP) is a formal mathematical representation of how the 

agent interacts with the environment to learn its policy. 

Recent works [13, 14, 15] in the RL field have proposed to 

combine deep neural networks with RL algorithms such as 

value function or policy function. By resorting of deep 

learning features, many difficult problems such as playing 

Atari games [17] or Go [13] can be successfully solved in a 

semi-supervised setting. For computer vision problems, 

various methods have been proposed in the literature. 

Caicedo et al. [18] proposed an active class-specific 

localization approach. Yun et al. [19] proposed an action 

decision method for object tracking by RL. In [20-21], RL 

was adopted to learn a policy of selecting a region from five 

fixed sub-regions, and realize object localization by only a 

few steps. So far, we are not aware of available literature 

applying RL to solve catenary component localization 

problems. 

Agent

Environment

State

s

Reward

r

Action

a

 

Fig. 2 A schematic flow of reinforcement learning system. 

As shown in Fig.1(a) and Fig. 1(b), the boxes localized by 

existing region-based convolutional neural networks (R-

CNN) methods do not enclose BS components tightly. In this 

paper, motivated by the reward-action in reinforcement 

learning and [19], we consider the localization improving 

problem as a control problem where a sequence of steps to 

refine the geometry of the localization box is to be obtained. 

Then, the localization refinement becomes a Markov 

Decision Process that can be trained with RL. We define the 

actions as position-moving, scale-changing and shape-

changing. The reward is feedback about how well the current 

localization performed. Therefore, the action-decision policy 

can be learned according to the rewards being obtained. The 

agent is a deep CNN called ADNET (Action decision 

network) [19], which is presented in Section II. The 

application of reinforcement learning for BS localization is 

described in Section III. Experimental results and 

conclusions are given in Section IV and Section V, 

respectively. 

 

The contributions of this paper are summarized as follows: 

1. We investigate one possible method that employs RL to 

train an algorithm to generate a better bounding box for 

BS localization through a sequence of actions. 

2. Different than the existing localization strategies for 

railway catenary systems, that localize objects following 

a single structured prediction model, the proposed 

method is a dynamic strategy that requires emphasis in 

the learning procedure and learning based on the time 

evolution of the performance (called history). 

3. The preliminary results indicate that the proposed 

method is effective. The localization accuracy is 

improved while the time cost is low, which is beneficial 

for BS monitoring in railway. 

II. LOCALIZATION IMPROVED BY REINFORCEMENT 

LEARNING 

A. Method Overview 

The overview of the action-driven method is shown in Fig. 

3. The initial box image is an input for a deep CNN called 

ADNET (Action decision network). ADNET will select one 

of the actions, which are defined as transformations of the 

box by moving, scale changing, and shape-changing. Then, 

the initial geometry box is changed after taking the selected 

action and produces a new box image, which is sent to the 

ADNET to decide for the next action. Finally, the BS 

component is accurately localized by taking a sequence of 

actions. In this dynamic process, the applied control strategy 

of action selection is learned by reinforcement learning, 

which considers the performance feedbacks of all actions at 

each step. The learned action policy is aimed to automatically 

adjust the initial box to enclose the BS component 

automatically. 

B. ADNET Structure 

As shown in Fig. 3, the agent ADNET consists of three 

convolutional layers and four fully-connected layers. The 

parameters of conv1~conv3 and fc4 are similar to the widely 

used VGG [22] setting. The fc5 is concatenated by a base 

1*1*512 and an action history vector. The fc6 is set as an 

action layer, whose output is a m-dimensions vector that 

represents probabilities of m actions. The fc7 is a 2-

dimensions vector for classification (object/background). 

The input size is set to be 112*112*3. When an image patch 

is inputted into ADNET, it is firstly resized to 112*112*3, 

and then its deep CNN features are extracted from covn1 to 

fc6 and fc7 for action prediction and class prediction, 

respectively. The action and classification that have the max 

probabilities are selected, and the history c is also updated. 

The action selection strategy is trained by reinforcement 

learning. 
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Fig. 3 The architecture of the proposed method. 

 

III. REINFORCEMENT LEARNING FOR BS 

A. MDP Formulation 

The proposed localization refinement strategy follows a 

Markov Decision Process (MDP). This setting provides a 

formal framework to model an agent that makes a sequence 

of decisions. The MDP is defined by states sS, actions aA, 

state transition function s’ = f (s, a), and the reward r (s, a). 

Here, we take the ADNET as an agent to find accurate box 

regions for BS component by taking sequential actions. 

Through formulating the localization refinement as the MDP, 

the action policy of ADNET can be optimized by 

reinforcement learning. The action, state, state transition 

function and reward are formulated as follows. 

Action: Make the initial box fit the position and shape of BS, 

transformations of moving {left, right, up, down}, scale 

changing {scale up, scale down}, and shape changing {fatter, 

taller} are defined as possible actions. Especially, when the 

agent finds the optimum location, or the current localized box 

is the same as the previous box, a stop action is needed to 

finalize the box searching. Specifically, we define the action 

space A as shown in Fig. 4. The space A consists of 15 actions, 

and provides sufficient transform options for box changing. 

Rotating options are not considered in this paper.  

Move left

1  2  1  2  

Move right Move up Move down

1  2  1  2  

Scale up/down Fatter/Thinner
Taller/Shorter Stop

 
Fig. 4 The defined actions in our method. 

 

State: As the localization refinement is a process of changing 

the geometry of box, using the information of what actions 

ADNET has done before is helping to predict better boxes [18, 

19]. Thus, the image patch within box and the history actions 

are used to form the state s. For localization refinement in 

image I at step t, the state st is defined as a tuple (pt, ct), where 

pt  R112*112*3 is the image within the current box and the ct  

R150 denotes the encoded vector of action history. The pt can 

be formulated as, 

([x , y ,w ,h ], I)t t t t tp =                          (1) 

where (xt, yt) is the coordinate of center point of pt in image I, 

wt and ht are the width and height of pt respectively. The 

function  crops pt from image I and resizes it to the input 

size of ADNET. The ct is a 150-dimensional vector, because 

we choose previous ten actions as history, and each action is 

encoded by 15 dimensions.  

State transition function: When the ADNET selects an 

action at, the current st will transit to st+1. The state transition 

is performed by two functions fp(pt, at) and fc(ct, at), which are 

implemented on current image patch pt and current action 

history ct respectively. As for the fp, the discrete amount of 

action transformations should be given. The discrete amounts 

of moving actions are given in (2). In (3), the discrete 

amounts of scale changing and shape changing actions are 

defined. As the initial box is not far away from the BS, we set 

factors 1 , 2 , 3 and 4 to 0.05 in our experiments. 

1 2,t t t tx w y h =  =                          (2) 

3 4,t t t tw w h h =  =                          (3) 

As for the state transition fc, it adds the current action at 

into action history ct as the latest action, and removes the 

earliest action. 

Reward: The reward can be regarded as feedback after taking 

an action. During the reinforcement learning training, if the 

selected action can make the state transition to a better state, 

then the agent will get a positive reward. Otherwise, a zero 

reward or negative reward will be returned. In this paper, the 

reward function Rt(pt, pt +1) is defined as follows. 

( )

( ) ( )

( ) ( )

( ) ( )

1

1 1

1

1, ,G ,G

, 0, ,G ,G

1, ,G ,G

t t

t t t t t

t t

if IoU p IoU p

R p p if IoU p IoU p

if IoU p IoU p

+

+ +

+

+ 


= =

− =

             (4) 

where G is the ground-truth box of target BS, the IoU(pt ,G) 

denotes overlap ratio of the current patch pt and the ground 

truth G of the target BS with intersection-over-union criterion. 

In (4), only when the next patch gets closer to the ground-

truth of BS than the case of current patch, the agent can obtain 

a positive reward. 

B. Training Objective 

  The agent ADNET is trained by RL, whose goal is to learn 

a state-action policy that makes a sequence of action 

decisions. Before applying RL, we initialize the ADNET by 

utilizing the weight parameters trained by supervised learning 
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(SL), which has been proved useful for policy learning [13, 

19]. 

In the SL stage, training samples pi {i=1, 2, …, N} are 

generated by imposing Gaussian noise on the BS ground-

truth Gi [xi, yi, wi, hi]. The action label 
( )act

io  and class label 

( )cls

io  are defined by (5) and (6), respectively. 

( )( ) argmax ( , ),G ,act

i p i i
a

o IoU f p a a A=             (5) 

( )( )
1, , 0.6

0,

icls

i

if IoU p G
o

otherwise

 
= 


                 (6) 

where A is the action space described in Section III, it has 15 

actions. Then, the initial weight WSL, {w1, w2, …, w7}, is 

learned by minimizing the loss LRL. 

( ) ( )( ) ( ) ( ) ( )

1

1
ˆ ˆ[ , , ]

N
act act cls cls

SL i i i i

i

L L o o L o o
N =

= +           (7) 

The loss LSL includes action prediction loss and 

classification (object/background) loss. N is batch size of 

training samples and L denotes the cross-entropy loss. The 
( )ˆ act

io  and 
( )ˆ cls

io  are the predicted action and predicted class 

for sample i, respectively. Note that the history action vector 

is not used in this stage. 

In the RL training stage, the WRL, {w1, w2, …, w6}, is 

initialized by WSL. The fc7 is ignored because only action is 

concerned in RL. For an image frame l, an initial box will 

take T actions that are successively predicted by ADNET. In 

each step t, new features are drawn from the image, allowing 

the RL algorithm to adapt to new information. The action at,l 

is selected by 

( ), ,argmax | ;t l t l RLa p a s W=                     (8) 

where t = 1, 2, …, T-1, T.  

After action at,l has been taken, the ADNET gets a reward 

Rt,l according to (4). Meanwhile, a history of what actions 

ADNET has done before is also recorded. Then the history 

action vector ct is updated by adding at,l and removing the 

earliest action.  

Finally, WRL is updated using stochastic gradient ascent 

[23] to maximize the accumulated rewards of the training 

samples as follows. 

( ),

,

log | ;lTL
t l RL

RL t l

l t RL

p a s W
W R

W


 


              (9) 

where L is the size of image patches that used at one iteration. 

IV. EXPERIMENTAL RESULTS 

A. Dataset and Training Setting 

The dataset in our system is collected from the Changsha-

Zhuzhou high-speed rail line in China. It has 1596 catenary 

BS images that cropped from global catenary images. Each 

BS image is annotated with a tight box of ground-truth 

position. As BSs component have different sizes in global 

images. The width (or height) of each cropped BS image is 

2.5 times of the truth width (or height) of the BS component, 

which makes the ADNET have proper regions for researching. 

We use 1020 images for training and 576 images for testing. 

To train ADNET, we set the learning rate to 0.0001 for 

conv1-conv3 and 0.001 for fully-connected layers (fc4-fc7), 

momentum to 0.9, weight decay to 0.0005, and mini-batch 

size to 64. The epoch numbers of training iteration are set to 

be 200 for SL and 300 for RL, respectively. The experimental 

environment of reinforcement learning is as follows: Linux 

Ubuntu 14.04, MATLAB 2017a, CUDA 8.0 and NVIDIA 

GTX1080Ti GPU with 11 GB memory. 

B. Experiment and Analysis 

We evaluated our method on the built dataset. As the initial 

localized boxes can be distributed in any position around the 

BS component. Therefore, we apply a Gaussian function on 

the ground-truth BS position to produce the initial boxes. In 

the testing, the agent ADNET takes T consecutive actions 

(steps) in each image to refine the initial boxes. Here, T is set 

to be 20. Some selected localization results are shown in 

Figs.5-8. Performances of the proposed method over the 

entire dataset are summarized in Table 1. Detailed 

experiment analyses are as follows. 

1) Visualization and analysis of RL-based refinement. 

The dynamic processes of localizations by the agent are 

displayed in Figs.5-7, where the white box is the initial box 

and its color gets greener gradually after taking an action until 

reaching the final pink box. We divide these processes into 

three types, namely Type A, Type B and Type C, which are 

shown in Figs.5-7 respectively. 

 

   

Fig. 5 Localization refined by RL agent for Type A cases. Left: case A1. Middle: case A2. Right: case A3. 
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Fig. 6 Localization refined by RL agent for Type B cases. Left: Case B1. Middle: Case B2. Right: Case B3. 

 

   
Fig. 7 Localization refined by RL agent for Type C cases. Left: case C1. Middle: case C2. Right: case C3. 

 

  
(a)                                                                                (b)                                                                               (c) 

Fig. 8 Localization accuracy (IoU) changes for three different types of cases in the testing. (a) IoU changes in Type A cases. (b) IoU changes in Type B cases. 

(c) IoU changes in Type C cases 

 

In Fig. 5, when the Type A initial box is larger than the 

BS component, and it may contain unnecessary information 

from other components, such as case A2 and case A3. The 

agent can adjust these initial boxes closer to BS components 

mainly by taking actions including moving, scale down, 

shorter and thinner. Fig. 8(a) shows the localization accuracy 

(IoU) changes of Type A cases when the step grows. The IoUs 

are getting larger even the initial boxes are with unnecessary 

information. In Fig. 6, the initial boxes of Type B cases are 

partly overlapped with the BSs. Particularly, the initial box of 

case B3 contains not only the incomplete BS, but also 

unnecessary information from near components. However, 

the RL-learned agent can still move these initial boxes closer 

to the BSs. The accuracy changes of each case are shown in 

Fig. 8(b). Both Type A and Type B are cases that can be 

correctly refined by the proposed method. As for the speed of 

refinements, although we set the total steps for each image to 

20, most of the successful cases take less than 12 steps to 

reach the final locations, as shown in Fig. 8 (a) and (b). 

As we use the Gaussian function to randomly produce 

the initial boxes, some initial boxes have fewer overlaps with 

BS component, as the Type C cases showed in Fig. 7. The 

initial (first step) IoUs of Type C cases can be observed in Fig. 

8(c). They are less than 0.15 at the beginning. In the 

experiment, many Type C cases led to failed BS localizations 

and the boxes are moved further away from the BS, as shown 

by the case C2 and case C3 in Fig. 7. However, there are still 

some cases like case C1 can successfully adjust boxes closer 

to the BS component position. We conjecture that case C2 

and case C3 are failed because very few features of BSs are 

contained within their initial boxes, while case C1 still 

contains some useful features of BS, which can be observed 

from the IoUs at the first step in Fig. 8(c). 

2) Quantitative analysis of RL-based refinement result. 
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The localization accuracy metric for the overall dataset 

is the widely used Recall [24]. The RecallTIoU (IoU>0.5) means 

the proportion of having a IoU larger than the threshold TIoU. 

The speed metric adopted is FPS (frame/second). Quantitaive 

localization performances of the proposed method is shown 

in Table 1.  

Table 1. Localization accuracy improvement by RL 

Method 
Recall0.5 

(IoU>0.5) 

Recall0.8 

(IoU>0.8) 

Recall0.9 

(IoU>0.9) 

Improved 

proportion 
FPS 

Gaussian Initial 96.4% 19.9% 3.3% -- -- 

Gaussian Initial 
with RL (ours) 

92.0% 79.2% 65.1% 
81.8% 

(471/576) 
6.13 

Table 1 shows that the Recall0.5 is slightly decreased 

compared with the initial value, because few boxes are 

moving away from the BS positions. However, the Recall0.8 

is increased from 19.9% to 79.2%, and the Recall0.9 is 

increased from 3.3% to 65.1%. Overall, among 576 test 

images, 471 images’ IoUs become larger, which means 81.8% 

test images get better localizations. It indicates that the 

proposed RL method can adjust most of boxes closer to the 

BS positions and improve the localization accuracy. Besides, 

the RL agent takes only 0.163s (1/6.13) for each test image, 

which consumes very little time in applications. 

V. CONCLUSION 

This paper proposes a novel approach for improving the 

localization accuracy of BS (Brace Sleeve) in railway 

catenary systems. Differing from the existing localization 

strategies in railway that localize objects following a single 

structured prediction model, the proposed method adopts a 

dynamic searching strategy. We investigate one method that 

adopts RL to train an agent to generate an improved bounding 

box for BS localizations through a sequence of defined action 

transformations. Experimental results using real-life 

inspection images show that the proposed method can 

adequately and effectively refine the localization from a 

coarse-localized input. Nevertheless, there are still some 

further improvements to be conducted: 

(1) As the case C2 and case C3 shown in Fig. 7 and the 

Recall0.5 comparison shown in Table 1, there are some failed 

cases with the bounding boxes moving away from the BSs. 

This issue should be further researched and improved. 

(2) When a BS is not localized by our agent, exploring and 

implementing a new searching strategy in the failed image 

will also reduce the number of failed cases. 

(3) Except for the policy gradient-based reinforcement 

learning method [23] used in this paper. Elements from 

applications of reinforcement learning in other fields, such as 

robotics and control [25, 26], can also be considered for the 

dynamic monitoring of catenary systems. 

REFERENCES 

[1] S. Gao, Z. Liu, L. Yu., “Detection and monitoring system of the 
pantograph-catenary in high-speed railway (6C),” in 7th International 

Conference on PESA, Hongkong, pp. 779-788, 2017. 

[2] Y. Han, Z. Liu, X. Geng, and J. P. Zhong, “Fracture detection of ear 
pieces in catenary support devices of high-speed railway based on 

HOG eatures and two-dimensional Gabor transform,” J. China 

Railway Soc., vol. 39, no. 2, pp. 52–57, 2017. 

[3] J. Zhong, Z. Liu, G. Zhang, and Z. Han, “Condition detection of 
swivel clevis pins in overhead contact system of high-speed railway,” 

J. China Railway Soc., vol. 39, no. 6, pp. 65–71, Jun. 2017. 

[4] H. Fan, P. Cosman, Y. Hou, et al, “High-speed railway fastener 
detection based on a line local binary pattern,” IEEE Signal 

Processing Letters., vol. 25, no. 5, pp. 788-792, 2018 

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards real-
time object detection with region proposal networks,” IEEE 

Transactions on Pattern Analysis & Machine Intelligence, vol. 39, no. 

6, pp. 1137-1149, Jun. 2015. 
[6] Z. Cai and N. Vasconcelos, “Cascade R-CNN: delving into high 

quality object detection,” IEEE International Conference on 

Computer Vision and Pattern Recognition, pp. 6154-6162, 2018. 
[7] Z. Liu, L. Wang, C. Li, et al., “A high-precision loose strands 

diagnosis approach for isoelectric line in high-speed railway,” IEEE 

Transactions on Industrial Informatics, 10.1109/TII.2017.2774242. 
[8] Z. Liu, Y. Lyu, L. Wang, et al., “Detection approach based on an 

improved faster RCNN for brace sleeve screws in high-speed 

railways,” IEEE Transactions on Instrumentation & Measurement, 
vol. 69, no. 7, pp. 4395-4403, 2020. 

[9] G. Q. Kang, S. B. Gao, L. Yu, and D. Zhang, “Deep architecture for 

high-speed railway insulator defect detection: denoising autoencoder 

with multitask learning,” IEEE Transactions on Instrumentation and 

Measurement, DOI: 10.1109/TIM.2018.2868490. 

[10] Z. Liu, K. Liu, J. P. Zhong, Z. Han and W Zhang, “A high-precision 
positioning approach for catenary support components with multi-

scale difference,” IEEE Transactions on Instrumentation & 
Measurement, vol. 69, no. 3, pp. 700-711, 2020. 

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look 

once: unified, real-time object detection,” in IEEE Conference on 
Computer Vision and Pattern Recognition, 2016, pp. 779-788. 

[12] J. Chen, Z. Liu, H. Wang, et al., “Automatic defect detection of 

fasteners on the catenary support device using deep convolutional 
neural network,” IEEE Transactions on Instrumentation and 

Measurement, 10.1109/TIM.2017.2775345. 

[13] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of go 
with deep neural networks and tree search,” Nature, 529(7587): 484–

489, 2016. 

[14] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning 
with double q-learning,”. CoRR, abs/1509.06461, 2015. 

[15] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. 

Riedmiller, “Deterministic policy gradient algorithms,” In ICML, 

2014. 

[16] F. Ruelens, B.J. Claessens, S. Quaiyum, et al., “Reinforcement 

learning applied to an electric water heater: From theory to practice,” 
IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3792-3800, 2018 

[17] V. Mnih, K. Kavukcuoglu, D. Silver, et al., Playing atari with deep 

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. 
[18] J. C. Caicedo and S. Lazebnik, “Active object localization with deep 

reinforcement learning,” IEEE International Conference on Computer 

Vision, pp. 2488–2496, 2015. 
[19] S. Yun, J. Choi, Y. Yoo, et al., “Action-Decision networks for visual 

tracking with deep reinforcement learning,” IEEE Conference on 

Computer Vision and Pattern Recognition, pp. 2711-2720, 2017. 
[20] M. Bellver, X. Giro-I-Nieto, F. Marques, et al., “Hierarchical object 

detection with deep reinforcement learning,” arXiv preprint 

arXiv:1611.03718, 2016. 
[21] S. Liu, D. Huang and Y. Wang, “Pay attention to them: deep 

reinforcement learning-based cascade object detection,” IEEE 

Transactions on Neural Networks and Learning Systems, PP (99):1-
13. 2019. 

[22] K. Simonyan, and A. Zisserman, “Very deep convolutional networks 

for large-scale image recognition,” arXiv preprint arXiv: 1409.1556, 
2014. 

[23] R. J. Williams, “Simple statistical gradient-following algorithms for 

connectionist reinforcement learning,” Machine Learning, 8(3-
4):229–256, 1992. 

[24] B. Michael, and G. Fredric, “The relationship between recall and 

precision,” Journal of the American Society for Information Science, 
vol. 45, no. 1, pp. 12-19, 1994. 

[25] Y. Pane, S. Nageshrao, J. Kober, et al., “Reinforcement learning based 

compensation methods for robot manipulators,” Engineering 
Applications of Artificial Intelligence, 78:236–247, 2019. 

[26] T. de Bruin, J. Kober, K. Tuyls, et al., “Integrating state representation 

learning into deep reinforcement learning,” IEEE Robotics and 
Automation Letters, 3(3):1394–1401, 2018. 

 

Authorized licensed use limited to: TU Delft Library. Downloaded on November 26,2020 at 10:42:19 UTC from IEEE Xplore.  Restrictions apply. 


