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Abstract 

Modeling is a crucial approach for understanding the past and exploring the future of coupled 

human-natural systems. However, uncertainty in various forms challenges inferences from 

modeling results. Model-based support for decision-making has increasingly adopted an 

emerging exploratory approach. This approach addresses uncertainty explicitly through 

systematically exploring the implications of modeling assumptions, aiming to enhance the 

robustness of inferences from models. Despite a variety of applications, the extent and the 

way(s) that exploratory modeling can deal with the challenges that arise from the uncertainty and 

complexity of decision-making with stakeholders has not yet been systematically framed. We 

address this gap in two ways. First, we present a taxonomy of the ways that exploratory 

modeling can be used to inform robust inferences in coupled human-natural systems by mapping 

the technical capabilities of this approach in relation to the diversity of past applications. This 

subsequently guides an investigation of the practical benefits and challenges of these capabilities 

in handling uncertainty and complexity. Second, we discuss different ways for integrating 

genuine stakeholder engagement into exploratory modeling through transdisciplinary research. 

Finally we outline some priorities for future expansion of this research area. 

 

Keywords: Decision-making, adaptation, uncertainty, robustness, stakeholder, participatory, 

sustainability. 

 

1 Introduction 

Significant concerns have arisen from impacts of global change on water resources, 

ecosystems, land use, and food production, worldwide (Eker et al., 2019; Gao & Bryan, 2017; 

Khazaei et al., 2019; Quinn et al., 2018). Data on the not-yet-experienced states and multi-

decadal impacts of global change are limited given the presence of many highly interrelated, 

complex, variable, and poorly understood human-natural systems and because of the long 
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timescales involved (Funtowicz & Ravetz, 1990; Lamontagne et al., 2019; Oddo et al., 2017; 

Weaver et al., 2013). Despite the complexity and limited data availability, computer modeling 

and simulation are widely-used tools to understand environmental and societal risks of global 

change on human-natural systems (Bilskie et al., 2016; Fischer et al., 2005). For the purpose of 

this article, we define a model as a formal description of human knowledge about the nexus of 

systems driven by physical, chemical, and biological mechanisms as well as societal, economic, 

and political forces. A simulation means using such a model, running it to inspect how these 

systems manifest and interact, usually as a function of time. A diverse set of models and model-

based inferences is used to underpin decision-making under global change spanning areas such 

as food and diet (Bijl et al., 2017; Eker et al., 2019; Malek et al., 2020), climate adaptation 

(JGCRI, 2017; Mayer et al., 2017; Small & Xian, 2018), and land use (Doelman et al., 2018; 

Gao & Bryan, 2017). Models can play an important role in our understanding of the Earth’s 

climate, water, land dynamics, and energy conditions in the past (e.g., cycles of ice ages over the 

past two million years) and the ways that this can change in the future (e.g., via global warming). 

These modeling efforts have underlined the importance of systematically dealing with 

complexity and uncertainty as defining properties of all human-natural systems (Verburg et al., 

2016) and of the policy design process (Mercure et al., 2016). Here we analyze the extent of 

modeling capabilities, challenges, and opportunities for navigating the complexity and 

uncertainty that arise in understanding and managing coupled human-natural systems.   

The knowledge we put into models is, in most cases (except perhaps purely mathematical 

or logical models), imperfect and uncertain. Uncertainties lurk throughout different facets of 

modeling and simulation including conceptual framing, boundary conditions, the choice of 

modeling paradigms, model structures and schematizations, input data, scenario assumptions, 

and performance metrics, as systematically pointed out by Morgan et al. (1990), Walker et al. 

(2003), Lempert et al. (2003), McPhail et al. (2018), and Khatami et al. (2019). Traditionally, a 

consolidative approach to modeling — as Bankes (1993) stated — incorporates all known facts 

into a best estimate package which can then be used for predicting system behavior (Lempert & 

Collins, 2007). Such a consolidative approach frames uncertainty as something that is 

imaginable. However, future climate and environmental conditions and their societal risks are a 

not-yet-experienced state of human-natural systems. Therefore, a priori calibration of models 

will not produce reliable long-term forecasts (Weaver et al., 2013). Modeling approaches that 

rely on things being imaginable — if perhaps improbable and implausible — cannot usually deal 

with so-called ‘Grey Swans’ or ‘unknown knowns’, that is unexpected consequences of that 

which we already knew (Di Baldassarre et al., 2016). Consolidative approaches also fail when 

confronted with missing data or inadequate theories (Weaver et al., 2013). Unknown knowns, 

missing data, and inadequate theories are not amenable to probabilistic characterization and may 

not even be assigned a likelihood of occurrence (Maier et al., 2016). Their values are either 

unknowable at present, or no agreement can be reached about their values because of the 

presence of multiple stakeholders with different, often contrasting views. This range of 

uncertainties which cannot be meaningfully couched as probabilities, initially discussed in the 

context of Knightian uncertainty (Knight, 1921), has been recently termed deep uncertainty 

(Lempert et al., 2003) or severe uncertainty (Ben-Haim, 2006). 

Exploratory modeling is an approach, a philosophy, of modeling which is concerned 

specifically with dealing with deep uncertainty and complexity (Bankes, 2002b; Lempert et al., 

2003). The approach was conceived and pioneered at the RAND Corporation, notably by Hodges 

(1991), Hodges and Dewar (1992), Bankes (1993), Bankes (2002b), Lempert (2002), Lempert et 
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al. (2003), and Bankes et al. (2013). The central idea of exploratory modeling is to let go of the 

ideal of a model as a predictive tool which turns best available knowledge into a best estimate, 

and to abandon the notion of a good model being one that gives an accurate prediction of the 

most likely development of the system (Kwakkel & Haasnoot, 2019). Rather, a model is seen as 

a thinking aid where the aim is to capture relevant uncertainties by enumerating a range of 

possible assumptions and systematically exploring the implications of these assumptions via 

large numbers of computational experiments.  

The core idea of exploratory modeling has been adopted in theory and model 

development aimed at explaining a potential phenomenon of interest or to test and refine a set of 

hypotheses and assumptions (de Haan et al., 2016). This corresponds to Bankes (1993) data-

driven and model-driven exploratory modeling. The former aims to reveal regularities, patterns, 

goodness-of-fit, and structure of a dataset, while the latter asks whether and under what 

conditions several models of the same phenomenon can produce similar behavior (Auping et al., 

2016). Exploratory modeling has been adopted much more widely in model-based decision 

support for a variety of human-natural systems under deep uncertainty (Helgeson, 2020), for 

example in water resource management (Gold et al., 2019; Trindade et al., 2017; Trindade et al., 

2019) and in supporting climate-related decisions (Isley et al., 2015; Lamontagne et al., 2019; 

Sriver et al., 2018; Weaver et al., 2013). Exploratory modeling is also a key model-based 

approach for supporting the design of adaptive policy pathways that aim to combine low-regret, 

short-term actions with long-term solutions to adapt (if needed) to uncertain future change 

(Haasnoot et al., 2013; Trindade et al., 2019; Wise et al., 2014). This approach enables the 

investigation of the efficacy of monitoring systems for adapting to global change (Haasnoot et 

al., 2018; Raso et al., 2019). These widely-used applications of exploratory modeling are 

question-driven and case-based (Boero & Squazzoni, 2005), designed to illuminate robust policy 

choices and develop adaptation plans for a specific decision problem.  

Several studies have attempted to inform exploratory modeling through detailed 

classifications of decision support frameworks (Herman et al., 2020; Herman et al., 2015; 

Kwakkel & Haasnoot, 2019; Moallemi et al., 2020b), scenario approaches (Guivarch et al., 

2017; Trutnevyte et al., 2016), robustness metrics (McPhail et al., 2018), and scenario selection 

(McPhail et al., 2020). However, these have either been sector-specific (e.g., water), method-

specific, or focused on a particular topic (e.g., scenarios) rather than discussing the bigger picture 

and the synthesis of different topics. This has led to a major gap where exploratory modeling, as 

an emerging field with interlinkages between its different areas, has not yet been systematically 

framed to guide a broader audience in extending and combining its capabilities in new sectoral 

domains (e.g., integrated assessment modeling (Obersteiner et al., 2016)). This situation has an 

analogy with the related area of sensitivity analysis where there are similar concerns around 

being mostly method- or domain-focused (Saltelli et al., 2019).  

Here we formulate a taxonomy of exploratory modeling approaches for decision-making 

to map emerging technical capabilities in addressing uncertainty and complexity (Section 2). 

While past studies have discussed specific details of these capabilities, we focus on the 

combination of these capabilities and how they can be used to deal with the challenges and 

opportunities that arise in the modeling of coupled human-natural systems. We analyze several 

recent studies through the lens of this taxonomy to illustrate the diversity of the field (Section 3). 

We discuss the strengths of the iterative process of exploratory modeling from which researchers 

can benefit and reflect on some of the known issues and challenges that remain to be addressed 
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(Section 4). As a direction for future research, we discuss different ways for engaging with 

stakeholders in exploratory modeling for the co-creation of model inferences as an emerging and 

popular topic in the literature and a major gap in the literature (Section 5). Our motivation is to 

encourage and guide researchers and practitioners across disciplines to adopt exploratory 

modeling beyond the currently established decision-making frameworks and in new applications 

for sustainability. A simple and widely accessible description of exploratory modeling can pave 

the way for its further contribution to decision-making under uncertainty in high-impact 

international science-policy arenas such as the Sustainable Development Goals (UN, 2015), the 

Intergovernmental Panel on Climate Change (IPCC, 2019), and the Intergovernmental Platform 

on Biodiversity and Ecosystem Services (IPBES, 2019).   

2 A taxonomy of exploratory modeling for decision support 

The use of exploratory modeling in supporting decision-making often starts by 

formulating an initial decision problem that can be revised iteratively throughout the modeling 

process (Quinn et al., 2017). Typically, the problem formulation involves the specification of 

scenarios, decision alternatives, robustness metrics, and models (Lempert et al., 2003; Walker, 

2000). A scenario, in the context of exploratory modeling, is a fully specified realization of 

sampled values from the model parameter uncertainty space, representing a future state of the 

world. An example from climate change scenarios is a multi-dimensional uncertainty space 

created by the combination of different growth rates for population and the economy and 

different time series for the price of fossil fuels and renewable energy technology in the future 

where each point sampled from this space is a single socio-economic scenario (Riahi et al., 

2017). A decision alternative is a vector of decision variables/levers in a multi-dimensional 

decision space that fully specifies all required candidate actions/choices. An example of a lever 

is a feed-in tariff or renewable energy credit price in the electricity sector, where a vector from a 

specific value of each lever forms a decision alternative for supporting the renewable energy 

generation. Models are used to generate computational experiments, analyzing the implications 

of decision alternatives over the diversity of scenarios in an outcome space. The outcome space 

contains the (potential) results of the computational experiments (i.e., simulation runs) which 

could be post-processed using various robustness metrics, indicating how well the system 

performs under a range of plausible conditions (e.g., absolute performance or regret) (McPhail et 

al., 2018).  

Different exploratory modeling approaches share the core idea of systematically 

analyzing the implications of decision and uncertainty spaces in the outcome space. However, 

they can be implemented in different ways through open exploration or directed search. Under 

uncertainty, there is a large set of possible assumptions from which we need to draw inferences 

(i.e., decision insights/conclusions that we obtain from results). Open exploration through the 

design of experiments and stress-testing is one way of investigating global properties of the 

assumption set. These approaches involve systematic sampling (e.g., via Latin Hypercube or 

Monte Carlo Sampling) from the uncertainty/decision space to generate a series of computational 

experiments with good space filling properties. The experiments are used to run the model and to 

analyze the model results for policy-relevant inferences. Open exploration generates a broad 

understanding of the implications and vulnerabilities of alternative assumptions. However, the 

weakness of open exploration emerges for systems with complex combinations of decisions that 

require the attainment of high levels of sustained performance often for conflicting objectives. 

Several studies have shown that in many systems without more formalized directed search, an 
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open exploration is myopic in focusing on a limited set of alternatives and in not capturing key 

trade-offs (Gold et al., 2019; Zeff et al., 2014). This initially led to early work (Kasprzyk et al., 

2009; Reed et al., 2008) on the use of (many-objective) optimization algorithms (Halim et al., 

2016; Kollat & Reed, 2006; Reed et al., 2013) to search for specific decisions and scenarios 

which lead to properties of interest in the outcome space. In other words, optimization 

investigates closely the reasons (assumptions) behind the properties of interest and finds specific 

inferences. More recent work has shown that including open exploration and deep uncertainties 

in directed search can yield substantially more robust and effective candidate decisions, which 

has led to the increasing use of many-objective robust optimization (Bartholomew & Kwakkel, 

2020; Eker & Kwakkel, 2018; Quinn et al., 2018; Trindade et al., 2019).   

Box 1 and Box 2 present the taxonomy of these exploratory modeling approaches, 

articulating the "what" and "why" of different components of the problem framing and 

characterizing the problem type (i.e., the type of research problem that can be answered), 

decision specification (i.e., how decision alternatives are generated), uncertainty 

characterization (i.e., how scenarios are generated), type of outcome implication (i.e., the 

inferences obtained from the analysis), and an example of an application. We also further 

elaborated three examples from different sectors to show how these approaches lead to different 

types of robust inferences in Appendix C. While we characterize different exploratory modeling 

approaches, we avoid rigid divisions (i.e., dichotomy or polychotomy) between them as they can 

overlap and interact with one another. For example, in Box 1, design of experiments and stress-

testing are not mutually exclusive, and they can both use sensitivity analysis. Stress-testing can 

be implemented using sensitivity analysis to identify those factors that most influence certain 

properties of interest (Lamontagne et al., 2018). However, stress-testing can be implemented in 

other ways too, for example using the patient rule-induction method (Guivarch et al., 2016), 

classification and regression trees (CART) (Lempert et al., 2008), many-objective optimization 

(Kwakkel, 2019), and logistic regression (Quinn, 2017). Conversely, not all sensitivity analysis 

processes in exploratory modeling are for the purpose of stress-testing. Sensitivity analysis can 

also be used in the design of experiments for investigating how variation in model output can be 

attributed to variations in inputs to identify the most important decision alternatives or scenarios. 

See Appendix B for a further discussion about sensitivity analysis in relation to exploratory 

modeling. 
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Box 1. Exploratory modeling approaches. (a) design of experiments, (b) stress-testing.  

 

a) Design of experiments (i.e., quasi-random sampling) 

Problem type: how sensitive is the fulfilment of 

objectives to alternatives/scenarios?  

Decision specification: a set of pre-specified 

alternatives is selected a priori (by experts or 

from literature) to be evaluated under many 

scenarios.   

Uncertainty characterization: random values 

from the uncertainty space are systematically 

sampled to generate/represent many possible scenarios/states of the world. 

Outcome implication: identifying the specific alternatives that can leverage performance the most. 

Example: Moallemi and Köhler (2019) used design of experiments and sensitivity analysis to 

identify the most important household behavioral factors that could promote transitions to 

sustainable mobility in the UK. 

b) Stress-testing (i.e., adaptation tipping points and scenario discovery) 

Problem: under what scenarios does a decision 

alternative fail to achieve objectives (or certain 

outcomes of interest)? 

Decision specification: a set of pre-specified 

alternatives is selected a priori, but they are 

refined iteratively for improvement in their 

robustness to future vulnerabilities.    

Uncertainty characterization: random values 

are systematically sampled from the uncertainty space to generate/represent many possible 

scenarios. The generated scenarios are then investigated with subspace partitioning (Bryant & 

Lempert, 2010) or sensitivity analysis (Lamontagne et al., 2018) for stress-testing and scenario 

discovery. 

Outcome implication: specifying scenarios when certain performance thresholds are passed or a 

specific outcome of interest is observed (e.g., when and how to adapt a decision).   

Example: Lamontagne et al. (2018) used statistical scenario discovery to identify global climate 

change scenario assumptions that are most relevant to the outcomes of interest of high or low 

mitigation costs. 
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Box 2. Exploratory modeling approaches (cont’d). (c) worst-case scenario discovery, (d) many-objective 

optimization, and (e) many-objective robust optimization. 
 

c) Worst-case scenario discovery 

Problem: what are the worst possible 

outcomes and under which scenarios do they 

appear?  

Decision specification: a set of pre-specified 

alternatives is selected a priori to be tested 

under worst-case conditions.    

Uncertainty characterization: the uncertainty 

space is searched for specific scenarios that 

could lead to the worst outcome. 

Outcome implication: identifying a set of small changes that substantially deteriorate the 

outcome of each candidate alternative.   

Example: Halim et al. (2016) assessed the implications of various uncertainties that could 

substantially affect the competitive position of European ports in the global container transport 

system.    

d) Many-objective optimization 

Problem: what are ‘good’ decisions that can 

trade-off between a set of conflicting objectives 

under reference scenarios?  

Decision specification: the decision space is 

searched for specific alternatives that can 

capture key trade-offs between conflicting 

objectives.    

Uncertainty characterization: a set of pre-

specified scenarios can be selected a priori for the evaluation of the decision alternatives. 

Outcome implication: identifying decisions which can make good trade-offs between multiple 

objectives under reference scenarios.   

Example: Kasprzyk et al. (2009) analyzed the trade-offs associated with managing the urban 

water supply risks under growing demand and drought.   

e) Many-objective robust optimization 

Problem: what decisions can robustly trade-off 

between a set of conflicting objectives over 

many scenarios? 

Decision specification: the decision space is 

searched for specific alternatives that can 

capture key trade-offs between conflicting 

objectives.  

Uncertainty characterization: random values 

are systematically sampled from the uncertainty space to generate/represent many possible 

scenarios for testing the robustness of the decision alternatives. 

Outcome implication: identifying decisions which can make good trade-offs between multiple 

objectives over many scenarios in the uncertainty space. 

Example: Trindade et al. (2017) used robust optimization for regional water portfolio planning in 

North Carolina, USA.  
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How do these different exploratory modeling approaches fit together? There has been a growing 

interest in combining exploratory modeling approaches to better address complex policy 

questions. For example, Watson and Kasprzyk (2017) used the strength of scenario discovery in 

vulnerability assessment to complement the analysis of candidate decisions identified through 

many-objective optimization. This combination of exploratory modeling approaches has led to 

new ways to support decision-making, broadly categorized into two (not mutually exclusive) 

groups (Herman et al., 2020; Kwakkel & Haasnoot, 2019): robustness frameworks that often 

focus on static plans and suggest decisions which work under a range of uncertain futures, and; 

adaptation frameworks that focus on the importance of flexibility in decision-making and 

suggest adaptive decisions that can respond to emerging challenges and opportunities over time 

(Figure 1). 

  

  
Figure 1. An overview of potential approaches of exploratory 

modeling and their applications in decision-making and 

planning. Different types of exploratory modeling approaches can 

be combined with one another in support of robust or adaptive 

decision-making.  

Examples of robustness frameworks include Robust Decision Making (Lempert et al., 

2003), Info-Gap (Ben-Haim, 2019) and Decision Scaling (Brown et al., 2012). They often use 

stress-testing (Lempert et al., 2013) or worst-case scenario discovery (Halim et al., 2016) to 

identify system vulnerabilities under deep uncertainty and then use the design of experiments 

(Moallemi et al., 2017) or many-objective (robust) optimization (Trindade et al., 2017) to 

recommend decisions with robust performance over scenarios. The process of designing a plan 

with robustness frameworks is often less dependent on uncertainty characterization due to the 

presence of the uniformly sampled values from the uncertainty space and the assessment of 

decision alternatives over the ensemble of sampled scenarios. Adaptation frameworks 

recommend decision alternatives that can be adapted over time in response to a clear signal that 

they are necessary from new information collected. Some adaptation frameworks propose a basic 

plan with protective contingency measures to be implemented if needed (protective adaptivity), 
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for example in Assumption-based planning (Dewar et al., 1993) and Dynamic Adaptive Planning 

(Kwakkel et al., 2010). Others propose a series of decisions with possible transfers between them 

that should be implemented depending on how the future unfolds (i.e., dynamic adaptivity), for 

example in Dynamic Adaptive Policy Pathways (Haasnoot et al., 2013). In both cases, stress-

testing and worst-case scenario discovery are often used to identify when the contingency 

measures for a basic plan may be needed or when a decision fails to meet the objectives and a 

different decision is required. Design of experiments and many objective (robust) optimization 

can also be used in optimizing the sequence, timing, and threshold values of a variable to adapt a 

decision through triggering a contingency measure or transferring to a new decision (Fletcher et 

al., 2019; Kwakkel et al., 2015). The decision-making process in adaptation frameworks is 

generally more dependent on uncertainty specification as it requires specifying the uncertainty 

range as well as the sequences of decision alternatives over time (Herman et al., 2020).       

3 Applying the taxonomy  

In this section we demonstrate the diverse applications of exploratory modeling as a field 

according to the proposed taxonomy and provide specific examples analyzing coupled human-

natural systems under uncertainty using various exploratory modeling approaches. We 

summarized selected studies that have used exploratory modeling (Table 1), organized under the 

framing of the taxonomy (Boxes 1 and 2), their context (i.e., water, climate, energy and 

transport, infrastructure, and land use and food), and type of case study (i.e., 

illustrative/hypothetical or real-world). The list of selected studies in Table 1 is not meant to be 

exhaustive nor represent the entire literature on exploratory modeling, but rather illustrates the 

use of our taxonomy and the diversity of the field across different contexts (see Appendix C for 

the rationale behind selecting these papers). We refer readers interested in a systematic review to 

recent reviews on scenario analysis (Guivarch et al., 2017), decision-making/planning (Herman 

et al., 2020; Kwakkel & Haasnoot, 2019), sensitivity and uncertainty analysis (Maier et al., 

2016; Pianosi et al., 2016), and many-objective optimization algorithms (Maier et al., 2019; 

Reed et al., 2013), where exploratory modeling is used as model-based support. We also provide 

a detailed description of three exploratory modeling studies (Appendix C) from water, 

infrastructure, and energy contexts to further familiarize modelers with the implementation 

process and the type of results and insights obtained.  
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Table 1. Examples of recent studies focused on exploratory modeling of different types, contexts, and 

applications. The examples are selected and categorized in the table based on the authors’ knowledge of studies and 

they do not represent a comprehensive overview of the literature (see Appendix C for the selection process). 

Examples  
Giudici et al. (2020) 

 

Lamontagne et al. (2019) 

Hall et al. (2019) 

Gold et al. (2019) 

Moallemi and Köhler (2019) 

Groves et al. (2019) 

Eker et al. (2019) 

Babovic and Mijic (2019) 

Sriver et al. (2018) 

Lamontagne et al. (2018) 

Eker and Kwakkel (2018) 

Marcos-Martinez et al. (2018) 

Quinn et al. (2018) 

Kwakkel (2017) 

Gao and Bryan (2017) 

Watson and Kasprzyk (2017) 

Quinn et al. (2017) 

Trindade et al. (2017) 

Moallemi et al. (2017) 

Berntsen and Trutnevyte (2017) 

Bryan et al. (2016) 

Zeff et al. (2016) 

Herman et al. (2016) 

Gao et al. (2016) 

Carlsen et al. (2016) 

Guivarch et al. (2016) 

Grundy et al. (2016) 

Eker and van Daalen (2015) 

Kwakkel et al. (2015) 

Halim et al. (2016) 

Borgomeo et al. (2014) 

Herman et al. (2014) 

Zeff et al. (2014) 

Castelletti et al. (2014) 

Zhao et al. (2014) 

Giuliani et al. (2014) 

Rozenberg et al. (2014) 

Hamarat et al. (2014) 

Whateley et al. (2014) 

Hamarat et al. (2013) 

Kasprzyk et al. (2013) 

Song et al. (2013) 

Lempert et al. (2013) 

Nazemi et al. (2013) 

Song et al. (2012) 

Lempert and Groves (2010) 

Bryant and Lempert (2010) 

Kasprzyk et al. (2009) 

Kollat and Reed (2006) 
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The trend of the selected studies in Table 1 shows that the treatment of uncertainty 

improved over time by re-appropriating established approaches such as sensitivity analysis and 

many-objective optimization for exploratory purposes under deep uncertainty, for example, 

through stress-testing and many-objective robust decision-making (Hall et al., 2019; Lamontagne 

et al., 2018; Watson & Kasprzyk, 2017). There is also a growing interest in capitalizing on the 

strengths of one approach to compensate for the limitations of others and the integrated use of 

different types of exploratory modeling (Moallemi et al., 2018), for example, through combining 

stress-testing and robust optimization in decision-making frameworks (Eker & Kwakkel, 2018; 

Gold et al., 2019; Trindade et al., 2017). The abundance of various applications on real-world 

problems in Table 1 supports the practicality of exploratory modeling approaches and 

encourages their further use for decision-making across other applications and for new modeling 

purposes. While the contexts in which exploratory modeling has been applied are diverse, so far 

not all types of exploratory modeling have been widely used across different sustainability areas. 

There is, therefore, an opportunity for enhancing modeling under uncertainty in new contexts 

such as food and land systems, biodiversity, health, and ecology, beyond the standard use of 

scenario analysis and sensitivity analysis. Eker et al. (2019) provides a recent example of an 

exploratory modeling application in these emerging contexts where they used scenario discovery 

to identify a set of behavioral factors that can shift the global food system towards a more 

sustainable diet. 

4 Benefits and challenges of exploratory modeling in practice 

We investigate the motivations and the potential benefits of using exploratory modeling 

in support of good modeling practice and robust decision-making. We enumerate the benefits to 

argue for the further adoption of exploratory modeling addressing sustainability contexts more 

widely across coupled human-natural systems. We also discuss current limitations and potential 

challenges that modelers may face in the use of exploratory modeling. Reflection on current 

issues can highlight the areas for further improvement and direct future research in the field.  

We frame the discussion of potential benefits and challenges in the context of the 

iterative process of model-based decision-making to clarify the impacts (Figure 2). According to 

Sterman (2000), model-based policy analysis typically starts by problem articulation for 

identifying the decision problem, requirements, and the current situation. It continues by system 

conceptualization for developing a conceptual model that can represent the problem at hand. The 

conceptual model, supported by data, is used in model formulation for setting up a simulation 

model. The formulated model, after testing and validation under uncertainty, works as a 

simulation engine in exploratory modeling to generate the system response under different 

assumptions. The validated model is used for the policy evaluation of decisions and scenarios to 

obtain robust inferences. 
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(a) (b) 

Figure 2. An overview of the benefits and challenges of exploratory modeling. (a) shows benefits and (b) shows 

challenges. The circular arrows represent the iterative steps in the general modeling process. The rings around the 

arrows show where potential benefits/challenges overlap with the modeling step(s). 

4.1 Handling uncertainty 

Coupled human-natural systems work in a context of multiple interacting climatic, 

technological, socio-economic, and political uncertainties (Quinn, 2017). Exploratory modeling 

has a major advantage in ‘dealing with the prevalent uncertainties’ of these systems, through 

evaluating models as hypotheses (Khatami et al., 2020) and by a systematic exploration of the 

diversity of (model and dataset) assumptions with minimum prior judgements about their ranking 

or probability. This variety of assumptions can be reflected in different parts of the modeling 

process. Uncertainty can occur in framing a problem (problem articulation) (Quinn et al., 2017), 

the implications of different datasets and system conceptualizations (in system 

conceptualization) (de Haan et al., 2016; Moallemi et al., 2017), and in the multiple alternative 

models of the same problem (in model formulation) (Auping et al., 2016; Pruyt & Kwakkel, 

2014).  

Given these uncertainties, an exploratory approach helps modelers to investigate a wide 

range of assumptions which otherwise might have remained uninvestigated. A key advance of 

exploratory modeling in decision-making over conventional predict-then-act approaches is in 

where and how uncertainty is treated. Conventional approaches to decision-making address 

uncertainty a priori when decision-maker preferences and knowledge are elicited and imposed 

before performing any analysis (Tsoukiàs, 2008). In contrast, the adoption of exploratory 

modeling is more consistent with a posteriori analysis that opens up the space of alternative 

assumptions that can be made, in pursuit of increasing the robustness of inferences across a large 

range of possible uncertainties (Dessai & Hulme, 2007; Huskova et al., 2016). In other words, 

robust inferences are obtained after a thorough exploration and a diverse search over rival 

framings of a problem, conflicting objectives, and divergent stakeholder preferences 

(Hadjimichael et al., 2020b; Herman et al., 2015). Shortridge and Zaitchik (2018) and Taner et 

al. (2019) are two recent examples of a posteriori analysis of likelihood after stress testing. 

Conventional approaches also rely on the maximization of expected utility and an optimal 
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performance as the criterion for a ‘good’ decision against a predicted future with the best-

estimate probability distributions (Lempert, 2019). Instead, exploratory modeling uses robustness 

and flexibility as the mark of quality — that is whether a set of decisions performs well across 

many possible futures (Herman et al., 2015; Herman et al., 2014; Maier et al., 2016; McPhail et 

al., 2018), and whether decision performance remains insensitive to (or minimizes regret) and 

flexible in response to unforeseen futures (Weaver et al., 2013). 

Despite the potential to incorporate various forms of uncertainties, previous exploratory 

modeling studies usually only considered uncertainties in input parameters. This has led to the 

current gap in the literature, that is a ‘limited attention to less explicit forms of uncertainty’, 

which are often non-parametric. Such uncertainties can be reflected in different ways of valuing 

outcomes (in problem articulation) (Giuliani & Castelletti, 2016; McPhail et al., 2018), variation 

in model structural relationships and equations (in model formulation) (Auping et al., 2016; 

Moallemi et al., 2017; Pruyt & Kwakkel, 2014), and disagreement in theories and conceptual 

frameworks underpinning the models (in problem articulation and conceptualization) (de Haan et 

al., 2016; Quinn et al., 2017). The further incorporation of these uncertainties within the 

computational process of modeling can enable more robust decision-making.  

When exploratory modeling is used to investigate a wide range of assumptions through 

batch simulations, it can result in very large data outputs which need to be analyzed and 

understood in decision-making. Statistical and data-mining techniques can be used to analyze big 

data from exploratory modeling. However, current exploratory modeling approaches do not 

provide much guidance for how their outputs should be interpreted. Here a gap exists between 

results and decision-making (in policy evaluation), leading to another challenge, that is the 

‘limitations in communication and interpretation of the results’. The visualization limitation in 

the communication of multi-dimensional data and the limited cognitive capacity of humans (i.e., 

model users and decision-makers) in examining the multiple dimensions of data at once can 

make the interpretation of the exploratory modeling results even more challenging. 

Understanding the results often requires techniques for viewing highly multi-dimensional data. 

The use of advanced visualization techniques (Brodlie et al., 2012; Bryan et al., 2016; Reed & 

Kollat, 2013; Woodruff et al., 2013), which allow users to explore data graphically in multiple 

dimensions, can be a way to mitigate this challenge and assist in interpretation. One example is 

Kasprzyk et al. (2013) where they used Interactive Visual Analytics to support collaboration 

with users and to improve their ability to effectively analyze many decisions generated by an 

exploratory modeling approach. The use of data-mining methods such as clustering which 

summarizes multi-dimensional data into distinct groups is also another way to address this 

challenge (de Haan et al., 2016; Gerst et al., 2013; Guivarch et al., 2016; Rozenberg et al., 

2014). 

4.2 Managing complexity  

Real-world human and natural systems are complex. Complex systems are often 

characterized as incorporating many parts, comprising causally interrelated elements within 

multiple social, technical, and economic dimensions (Bunge, 1997). While this holds true to the 

etymology of the term complex, systems and models can exhibit complexity yet look deceptively 

simple. The logistic map, a fully deterministic, one-variable, discrete, iterated equation, is a 

classic example. However, for certain values of its only parameter, it exhibits full-blown chaos 

(Stewart, 1989). In other words, many parts should not be thought of as a necessary condition for 
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complexity. What does seem to be a necessary condition for complexity is non-linearity. It is the 

non-linearity in the logistic map that is the source of its chaos and if a system of many parts is 

complex it is due to non-linear interactions, side-effects, and emergent features (Bunge, 2003) 

amongst those many parts. Given the complexity, these systems are typically hard to predict or 

explain directly in terms of the behavior of individual elements (de Haan, 2006). A great strength 

of exploratory modeling is in ‘coping with systemic complexity’. An exploratory approach 

enhances model formulation by making valid conclusions not necessarily from individually 

correct models of complex systems, but from an ensemble of different framings of these systems, 

for example with various interactions between elements and different agent rules. To illustrate, 

Pruyt and Kwakkel (2014) and Auping et al. (2016) have used exploratory modeling for 

investigating the implications of model (structural) complexity in energy sector and national 

security contexts, respectively. Real-world systems are also often characterized by a complex 

combination of decisions that requires a high level of performance for multiple (sometimes 

conflicting) objectives. Exploratory modeling can enable the investigation the diversity of 

decision alternatives (instead of a limited set) and capturing key trade-offs (Gold et al., 2019; 

Mitchell, 2009; Singh et al., 2015; Trindade et al., 2017). 

The cognitive complexity of testing various alternative assumptions and observing their 

consequences in the outcome space manually poses a significant barrier, in addition to the 

systemic complexity itself. Exploratory modeling can be helpful in dealing with this aspect of 

complexity in implementation too, by ‘facilitating systematic experimentation’. Exploratory 

modeling has adopted computational support such as the Python-based Exploratory Modeling 

Workbench (Kwakkel, 2017) and OpenMORDM (Hadka et al., 2015) amongst other associated 

libraries (Hadjimichael et al., 2020a; Trindade et al., 2020), for the systematic assessment of 

assumptions and learning about model behavior in a multi-objective space. Exploratory modeling 

using these computational supports can enhance analytical capability through managing, tracing, 

and documenting many quantitative models, large datasets, and conceptual framings. Such 

computational support can help in quantifying the consequences of many assumptions for 

outcomes through experimenting in an automated process (Kwakkel, 2017). This can be a 

helpful feature in model formulation where modelers often experiment with assumptions in an ad 

hoc manner before they settle on their ultimate set of assumptions that constitute their model. For 

example, Kwakkel et al. (2015) and Fletcher et al. (2019) used exploratory modeling (policy 

search and stochastic dynamic programming) as a computational support to address the 

combinatorial problem in policy design arising from many ways in which decision alternatives 

can be sequenced over time and the rules that govern when new decisions are to be triggered in 

adaptive planning. In this way, exploratory modeling can also help in the uncertainty analysis of 

model behavior, contributing to the modeling process in policy evaluation. 

 While exploratory modeling approaches can help in coping with the complexity of 

systems and experimentation, they can still face some ‘computational limitations in working with 

large-scale assessment models’. These models often have extensive and complex structures, 

integrating many interacting components and agents to represent system processes. Examples 

can be found among established environmental models, such as energy and climate models, 

commonly used in global or regional integrated assessment (IPCC, 2018; UN, 2019). 

Complexity may be even greater in agent-based models, which are assumed to have a capacity to 

model and capture in detail the multiple interactions of human-natural systems (Bankes, 2002a, 

2002b; Lempert, 2002). Agent-based models can feature a large number of input parameters for 

different classes of agents, which can significantly expand the size of the assumption space for a 
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model to search through (Moallemi & Köhler, 2019). Producing even a few scenarios with such 

models can sometimes take several days. Such a slow simulation process can impose a challenge 

for some of these large-scale models in adopting exploratory modeling that requires a wide 

exploration/search over various assumptions. One obvious approach to mitigate this challenge is 

the use of efficient algorithms, parallel processing, and high-performance computing (Bryan, 

2013; Reed et al., 2008; Zhao et al., 2013). Another way is via the use of meta-models for 

screening and analyzing an ensemble of model behaviors and observing interesting model 

outcomes (Haasnoot et al., 2014). This can lead to a multi-resolution model of a complex system 

with a high-level of abstraction which can be used initially to facilitate the exploratory modeling 

process. The full resolution model can then be used to investigate model behaviors of interest. 

Adaptive sampling can also be used to search the uncertainty space based on its likelihood of 

uncertainty estimation and the complexity of the likelihood surface of the uncertainty space; the 

complexity that results from the interaction of multiple uncertainty dimensions as well as the 

model structure (Blasone et al., 2008; Islam & Pruyt, 2016; Khu & Werner, 2003).  

5 Exploratory modeling with stakeholders 

Policy agencies and science funding organizations increasingly require scientists and 

stakeholders (e.g., practitioners, policy/decision-makers, civil society, interest groups) to co-

create the knowledge for dealing with the complex challenges of coupled human-natural systems 

(Game et al., 2018; Mauser et al., 2013; Moallemi et al., 2020a; Moser, 2016; Norström et al., 

2020). Co-creation of knowledge has been discussed in the context of participatory modeling and 

decision-making (Halbe et al., 2020; Halbe et al., 2018; Jordan et al., 2018; Voinov et al., 2018). 

Within the context of exploratory modeling, several previous studies have discussed co-creation, 

implicitly or explicitly, through embedding stakeholder input into the iterative process of 

modeling and combining computational and human capabilities interactively (Eker et al., 2017; 

Kasprzyk et al., 2013; Lempert et al., 2003; Moallemi & Malekpour, 2018; van Bruggen et al., 

2019). In the context of decision-making, they urged deliberation with analysis where model 

users can interact with the computational process, observe counterintuitive results based on a 

shared vision of the problem, and inform the improvement of results (National Research Council, 

2009). Some recent studies also further investigated nuances of modeling social/psychological 

dimensions, discussing human factors (such as biases and hidden preferences) that shape 

decision-making (Moallemi et al., 2020b; Zare et al., 2020). Despite this growing interest, 

deliberation with analysis in exploratory modeling remains a black box and the co-creation of 

knowledge with stakeholder participation in the robust decision context remains a topic of lively 

debate (Alrøe & Noe, 2016; Döll & Romero-Lankao, 2017; Glynn et al., 2017, 2018; Walker et 

al., 2018). Learning from previous work (Landström et al., 2011; Lane et al., 2011) and building 

on the Mauser et al. (2013) framework for knowledge co-creation, we discuss some of the ways 

for stakeholder participation in exploratory modeling, aiming to contribute to better approaches 

for socially robust inference.   
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(a) (b) 

Figure 3. The co-creation of knowledge with stakeholders. (a) shows different forms of stakeholder participation, 

based on Tress et al. (2005). The color hue shows participation with diverse participant groups and a high 

integration of knowledge forms from various sources (blue) versus participation with narrow participant groups and 

a low integration (red); (b) shows the three ways for the co-creation of knowledge in exploratory modeling, with 

their varying forms of stakeholder participation. 

Tress et al. (2005) argued that different forms of stakeholder participation can be 

imagined (see Figure 3a), varying based on the type of participants (who is involved?) and the 

strength of integration across research concepts (what is the diversity of incorporated language 

and forms of knowledge?). From these different forms, interdisciplinary and transdisciplinary 

research often involves a stronger integration compared to multidisciplinary and participatory 

approaches. There is also a wider and more inclusive incorporation of academics and non-

academics (e.g., civil society, policy-makers, practitioners) in participatory and transdisciplinary 

research for enhancing legitimacy and accountability among stakeholders. Conversely, 

multidisciplinary and interdisciplinary aim to improve the consistency and salience of the 

research across scientific disciplines, and therefore often focus more on engagement with 

different academic communities (Mauser et al., 2013; Tress et al., 2005). We argue that 

exploratory modeling can learn from these approaches for the co-creation of knowledge to co-

design a shared problem, co-produce sensible results for the problem, and co-disseminate robust 

sensible inferences (Figure 3b). 

The co-design of a shared decision problem involves the joint framing of a pressing 

sustainability challenge from relevant societal sectors through participatory processes (e.g., 

workshops, brainstorming). Co-design also involves the translation of the real-world 

sustainability challenge into an abstract problem that can be analyzed with models. The required 

knowledge for the specification of problem components (i.e., decisions, scenarios, robustness 

metrics, models) can be obtained through the interaction of scientific methods with social 

contexts (Lempert et al., 2003). For example, scientists and stakeholders can together identify a 

range of feasible candidate decisions (e.g., through SWOT analysis and multi-criteria decision 
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analysis) and influential but uncertain factors in future scenarios (e.g., participatory scenario 

development and scenario discovery). Depending on the confidence of stakeholder knowledge 

and agreement among different views, the decision and scenarios can be specified by human 

judgement a priori to analysis (de Neufville et al., 2019) or in an iterative process where the 

initial list of pre-specified decisions are refined based on the feedback from the analytical results 

(Kasprzyk et al., 2013). The selection of appropriate robustness metrics and models is also 

sensitive to stakeholder participation. There are different elicitation tools (Morris et al., 2014; 

Reichert et al., 2013) that can help in defining appropriate robustness metrics by obtaining 

knowledge of context (e.g., about the relevancy of absolute performance or regret measures) and 

decision-maker preferences (e.g., about preferred risk aversion level) (McPhail et al., 2018). 

Eliciting mental models and assumptions of various academic and non-academic participants 

about underlying causal interactions of the problem can also help to delineate meaningful 

boundaries and develop relevant evaluation models in decision-making (Mayer et al., 2017). 

Here the modeling literature has several examples of model development with stakeholders 

through conceptual and cognitive mapping (Gray et al., 2012), system dynamics modeling (Zare 

et al., 2019), and other participatory modeling approaches (Basco-Carrera et al., 2017; Voinov, 

2017). 

The co-production of exploratory modeling results is about the generation of sensible and 

credible outcomes from the quantification of the costs and benefits, not necessarily in monetary 

terms, of various decisions under future scenarios. Co-production involves the interaction of 

interdisciplinary teams to integrate different methods in a way that best serves the problem at 

hand. The integration in exploratory modeling can be as simple as the independent applications 

of two methods and frameworks on the same problem and the comparative analysis of the results 

(Halim et al., 2016). It can also be more sophisticated in design, from a sequential integration 

where the output from one is used as input to another (Glasgow et al., 2018), to a full integration 

where new frameworks emerge from two-way interactions between multiple methods and 

frameworks (Watson & Kasprzyk, 2017). Co-production also involves the generation of 

computational experiments and making sense of the results of the experiments for analyzing the 

efficacy of various decisions and making trade-offs between multiple objectives. Collaborations 

among various scientific expertise can broaden perspectives and expand choices of suitable 

analytical (e.g., sampling and optimization) algorithms (Maier et al., 2019; Reed et al., 2013) 

and toolboxes for their implementation (Hadka et al., 2015; Kwakkel, 2017). 

The co-dissemination of exploratory modeling results aims to enhance the ownership and 

accountability of outcomes and helps to influence policymakers’ decisions via deep and genuine 

engagement with stakeholders. This can be achieved through a transdisciplinary approach that 

brings scientific and stakeholder groups together for shaping a path to impact on the ground. 

Collaborative efforts between academics and non-academics can help in translating the abstract 

results into practical inferences, with an accessible and comprehensive language for different 

audiences. Interaction with these stakeholder groups, for example via role-playing games 

(d'Aquino & Bah, 2013), visual analytics (Reed & Kollat, 2013), and web applications (Nativi et 

al., 2013), can enable joint learning and ongoing reflection of the results. This can also help to 

create new research questions and improve problem framings for the future, contributing to the 

iterative cycle of human deliberation with model-based analysis.  

Future studies can further advance this discussion by translating it in the context of 

different decision-making frameworks and by implementing it in applications. Collaborating 
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with stakeholders with different characteristics, such as willingness to participate, strategic 

thinking maturity, and divergence of values, can pose practical limitations on knowledge co-

creation that need to be addressed within the case studies (Hurlbert & Gupta, 2015; Jordan et al., 

2018; Smajgl & Ward, 2015).          

6 Conclusions 

There is inherent complexity in the interactions and processes in the sustainability of 

coupled human-natural systems, such as climate, land-use, energy, and water (Howells et al., 

2013). These systems are also surrounded by uncertainties arising from the multiple factors 

including long time-scales, spatial heterogeneity, environmental change versus natural 

variability, alternative theories and models of human-nature interactions, contextual 

contingencies, and contested views of stakeholders. The presence of complexity and deep 

uncertainty has challenged the relevance of conventional modeling approaches (which use prior 

information) for understanding the behavior of these systems and for informing decisions 

towards sustainability. Conventional approaches can prematurely close down the assumption 

space in the pursuit of a best-estimate scenario. Through this pre-mature closure, the modeler 

may also forego the ability to even assess how good the best-estimate scenario is and how robust 

inferences are. Exploratory modeling can address the challenges posed by complexity and deep 

uncertainty by modeling coupled human-natural systems under uncertainty and informing 

decision-making for sustainability by generating robust inferences. While exploratory modeling 

can face challenges in practice, such as computational limitations with large-scale assessment 

models and limitations on communications and interpretation of the results, it still offers great 

benefits to modeling and model-based decision-making. There is substantial potential for the 

further use of this approach by researchers and practitioners in new applications spanning 

multiple sustainability contexts. Our taxonomy can guide this wider adoption by illustrating the 

ways in which exploratory modeling can be used across different areas. We hope that the 

proposed taxonomy can be used as a benchmark framework for enhancing robust inferences 

about the impacts of global change on sustainability priorities through recognizing and 

implementing rival ways of modeling under uncertainty. 
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Appendix A  1 

A note on terminology: The literature uses various—sometimes inconsistent—terms to 2 

refer to exploratory modeling practices. The terminology we adopt in this article uses the terms: 3 

approach for referring to a philosophical position to modeling providing context and logics (e.g., 4 

consolidative modeling vs. exploratory modeling approaches in Bankes (1993)); 5 

method/technique/algorithm for a structured set of processes that can be used for a particular 6 

purpose in exploratory modeling (e.g., PRIM or CART in scenario discovery (Lempert et al., 7 

2008)); framework for a mix of methods that interact to support decision-making (e.g., Robust 8 

Decision Making (Lempert, 2019)); toolkit (tool) for well-defined and documented resources 9 

(e.g., programming libraries) that are external to users and can support the exploratory modeling 10 

process (e.g., the Exploratory Modeling Workbench (Kwakkel, 2017) and Rhodium (Hadka et 11 

al., 2015)).  12 

What we are discussing in this article as optimization is the simulation-based 13 

optimization (Amaran et al., 2016) which is connected to Monte Carlo simulation, reliability 14 

engineering, and evolutionary optimization (Beyer & Sendhoff, 2007; Maier et al., 2014; 15 

Nicklow et al., 2010; Reed et al., 2013). This class of optimization has been used widely in the 16 

deep uncertainty literature for policy search (Gold et al., 2019; Herman et al., 2015; Quinn et al., 17 

2017; Trindade et al., 2017). Here we do not discuss stochastic dynamic programming that has 18 

been used for policy design through optimizing the sequence and timing of decision variables to 19 

trigger adaptation (Fletcher et al., 2019). We also do not discuss earlier works that go back to 20 

robust linear programming of the 1980s in operations research (Ben-Tal & Nemirovski, 1998; 21 

Ben-Tal & Nemirovski, 1999). 22 

 23 

  24 



Confidential manuscript submitted to Global Environmental Change 

 

 29 

Appendix B  25 

Exploratory modeling can overlap with other areas that also use model-based 26 

experimentation to analyze the implications of conflicting objectives and alternative 27 

assumptions, such as multi-objective optimization (Reed et al., 2013), design of experiments 28 

(Montgomery, 2017), and sensitivity analysis (Borgonovo & Plischke, 2016; Saltelli et al., 2008; 29 

Saltelli et al., 2000). Therefore, a range of existing methods from other areas can be re-30 

appropriated to support exploratory modeling for new exploratory purposes.  31 

As an example, exploratory modeling overlaps with, and can use methods from, 32 

sensitivity analysis (Giuliani et al., 2014; Kasprzyk et al., 2013; Lamontagne et al., 2018; 33 

Moallemi et al., 2018c; Reed & Kollat, 2013; Singh et al., 2015). Sensitivity analysis, in general, 34 

can be performed in four settings (Jaxa-Rozen & Kwakkel, 2018; Saltelli et al., 2008):  35 

 Factor prioritization to specify important model inputs contributing to output 36 

uncertainties (Loucks et al., 2005);  37 

 Factor fixing to determine the model inputs with the least influence on output 38 

uncertainties (Saltelli et al., 2008);  39 

 Variance cutting to search for input values under which output uncertainty remain below 40 

a threshold (Saltelli & Tarantola, 2002); and  41 

 Factor mapping to identify areas of input uncertainty responsible for a given output (also 42 

related to scenario discovery) (Guivarch et al., 2016; Lamontagne et al., 2018).  43 

The sensitivity analysis literature often uses methods in these four settings for different 44 

purposes: to enhance model structure (Iman et al., 2005) in a consolidative paradigm by 45 

discarding non-influential inputs (Felli & Hazen, 2004); to inform model calibration and further 46 

data collection (Saltelli et al., 2000); and to identify the direction of change in the behavior of 47 

model outputs (Anderson et al., 2014). In contrast, exploratory modeling adopts sensitivity 48 

analysis for different purposes. For example, it uses similar methods (e.g., factor mapping) for 49 

identifying scenario assumptions that can lead to policy relevant outcomes of interest 50 

(Lamontagne et al., 2018). Exploratory modeling also uses sensitivity analysis methods for 51 

stress-testing to identify unexpected model behavior in outcome space (e.g., adaptation tipping 52 

points) and generating a hypothesis about it (Hall et al., 2019). Sensitivity analysis methods can 53 

be also used in an exploratory setting for scenario decomposition to generate a small number of 54 

scenarios as model response to extreme variations of inputs (e.g., worst-case, best-case scenario 55 

discovery) (Tietje, 2005). While the difference between exploratory modeling and other areas is 56 

sometimes just one of disciplinary terminology or purpose, there are also more fundamental 57 

differences related to the treatment of uncertainty. For example, standard uncertainty analysis 58 

tends to rely on well-characterized uncertainties where the joint or marginal probability 59 

distribution of input parameters is known, for example estimated by statistical techniques (e.g., 60 

histograms) or expert judgement (Loucks et al., 2005). In contrast, exploratory modeling uses 61 

probability distributions a posteriori to summarize and describe experiments generated based on 62 

quasi-random samples from the assumption space. 63 

 64 

  65 
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Appendix C 66 

C.1 Selecting papers for representing the taxonomy 67 

Exploratory modeling has been used in a variety of methodological (improvement) work 68 

with illustrative case applications (Kwakkel & Cunningham, 2016; Kwakkel & Jaxa-Rozen, 69 

2016; Rozenberg et al., 2014) as well as in real-world case studies for informing planning and 70 

decision-making (Kwakkel, 2010; Lempert et al., 2013; Lempert et al., 2016). The (illustrative 71 

and real-world) case applications have been across different sectoral domains, including energy 72 

(Auping et al., 2016; Eker & van Daalen, 2015; Moallemi et al., 2017a), climate change 73 

mitigation (Enserink et al., 2013; Greeven et al., 2016; Guivarch et al., 2016; Lempert et al., 74 

1996; Rozenberg et al., 2014), transportation planning (Halim et al., 2016; Kwakkel et al., 75 

2010), flood risk management (Kwakkel et al., 2016; Lempert et al., 2013), water resource 76 

management (de Haan et al., 2016; Huskova et al., 2016; Matrosov et al., 2013), defense 77 

planning (Brooks et al., 1999; Lempert et al., 2016; Moallemi et al., 2018a; Moallemi et al., 78 

2018b; Niese & Singer, 2014), and health management and disease prevention (Auping et al., 79 

2017; Manheim et al., 2016). From these many previous studies, in Section 3 of the manuscript, 80 

we only used some to demonstrate our proposed taxonomy in practice and to represent the 81 

diversity of the field across different types of exploratory modeling (but not covering all previous 82 

work as we were not undertaking a review). For example, there are many studies that use 83 

exploratory modeling for stress-testing, some of which cited in Table 1. We tried to cover 84 

examples of stress-testing across different sectoral domain (e.g., water and energy) and with 85 

different methodological innovations (e.g., stress-testing with sensitivity analysis versus stress-86 

testing with many-objective optimization). In selecting the articles, we focused on diversity 87 

rather than coverage as we aimed to inform modelers about a variety of the ways that exploratory 88 

modeling has been used in the past and can be also used in the future. 89 

The way we selected the articles was guided by the authors’ informed judgement from 90 

the recent literature in the three following steps: 91 

1. We firstly solicited an initial list of representative articles that could exemplify different 92 

types of exploratory modeling in our taxonomy. We identified this initial list by looking at 93 

the modeling papers in the Decision-Making Under Deep Uncertainty (DMDU) literature 94 

(Marchau et al., 2019), as it was the main and closest research community to exploratory 95 

modeling in decision support.  96 

2. We discuss the initial list within the author team to add new papers to the list based on the 97 

less represented areas of the literature. In improving the initial list, we decided to include 98 

the studies where original data and new decision insights are created (rather than 99 

conceptual discussion), the focus is on a method improvement and/or a new application 100 

(rather than a review), and the context of the study is human and natural systems. Given 101 

these selection criteria, we did not to include the original introductory studies that 102 

discussed the foundations and concepts (Bankes, 2002a, 2002b; Bankes et al., 2001; 103 

Brown et al., 2012). We did not include the review studies as their primary aim was to 104 

provide an overarching overview of the field rather than generating decision insights for a 105 

specific application (Giuliani & Castelletti, 2016; Guivarch et al., 2017; Herman et al., 106 

2020; Herman et al., 2015; Kwakkel & Haasnoot, 2019; Reed et al., 2013; Trutnevyte et 107 

al., 2016). We excluded examples from other areas rather than human-natural systems 108 

(e.g., engineering systems and defense planning) as they were not aligned with the 109 
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article’s aim and the journal’s scope. We also did not consider articles from the broader 110 

areas of sensitivity analysis and optimization (Bryan & Crossman, 2013; Jaxa-Rozen & 111 

Kwakkel, 2018; Pianosi et al., 2016; Pye et al., 2015) as they were of the secondary 112 

importance for the specific purpose of the current article. 113 

3. We reviewed each paper in the list to specify its position in Table 1 with respect to type of 114 

exploratory modeling, context, and application. We cross-checked the results within the 115 

author team to make sure about the correct understanding of the position of the papers in 116 

the table. We also acknowledged that the position of the selected studies in the table is 117 

based on the authors’ judgement and according to the proposed taxonomy. 118 

C.2 Examples from exploratory modeling applications 119 

This rest of this appendix briefly summarizes three examples from the variety of 120 

exploratory modeling applications: long-term policy analysis of energy systems, future adaptive 121 

planning for flood risk management, and theory testing of water systems management from a 122 

historic perspective. We choose these three examples as they represent some of the diversity of 123 

exploratory modeling applications discussed in Section 3. 124 

Example I – Policy analysis in energy transitions modeling 125 

The first example combines a methodological work with a real-world case application in 126 

energy sector and is from Moallemi et al. (2017a). The study is about how qualitative narratives 127 

of sustainability transitions can support the computational process of exploratory modeling in 128 

long-term policy analysis. The study also analyses future transition pathways towards renewable 129 

electricity in India for meeting 100 GW solar electricity and 60 GW wind electricity in a period 130 

from 1990 to 2030. This transition unfolds in a context where multiple techno-economic 131 

uncertainties (e.g., fuel prices) and socio-political uncertainties (such as electricity demand) 132 

challenge a robust understanding of possible future pathways. Therefore, it is important to 133 

understand how future transition pathways pan out (i.e. whether the renewable targets will be 134 

met or not) and what conditions can redirect this transition towards the targets.  135 

The study initially develops qualitative narratives, developed based on the interpretation 136 

of raw data from available documents through the lens of sustainability transitions theories 137 

(Moallemi et al., 2017b). These narratives differentiate among different structure of the 138 

electricity sector (whether it would be dominated by market or government control) and the 139 

priorities for the electricity sector (e.g., energy equity, energy security, and sustainability) and 140 

use them to guide the development of some deliberate assumption spaces of future in which 141 

transition could unfold. Computational experiments are performed within each deliberate 142 

assumption space—each experiment corresponds to a single transition pathway. Many transition 143 

pathways are analyzed across assumption spaces to assess the fulfilment of wind and solar 144 

targets across different pathways.  145 

The analysis of experiments using scenario discovery (Bryant & Lempert, 2010) and 146 

multi-dimensional clustering (Gerst et al., 2013) shows that the realization of the 100 GW solar 147 

electricity by 2022 is unlikely while it is most likely around 2028. However, meeting the 60 GW 148 

target for wind electricity by 2022 is closer to reality as the most-likely time for the fulfilment of 149 

this target is around 2024. The analysis also shows that a transition pathway towards a 150 

renewable—mainly solar—electricity is more likely under conditions when the structure for the 151 
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electricity sector is government controlled through systemic coordination of renewable initiatives 152 

and when energy security and sustainability are dual priorities.  153 

Example II – Adaptive planning in flood risk management 154 

The second example combines methodological work with an illustrative application in 155 

flood risk management and is from Kwakkel et al. (2015). The study is about how many-156 

objective robust optimization can computationally support the design of adaptive plans within 157 

the Dynamic Adaptive Policy Pathways framework (Haasnoot et al., 2013). There are two 158 

challenges with the original design of this framework: how to choose a sequence of actions—159 

known as pathways which remain valid under transient scenarios? and how to cope with the 160 

combinatorial problem which arises from the multiplicity of ways which actions can be 161 

concatenated? This computational support is intended to help in identifying the most promising 162 

pathways with respect to multiple objectives using many-objective optimization and assessing 163 

the robustness of pathways over many scenarios by sampling over uncertainty space. The study 164 

uses a hypothetical case in Rhine Delta in the Netherlands over the next 100 years. The flood risk 165 

management in this case is surrounded by uncertain factors, such as socio-economic 166 

development factors (e.g., population and economic growth), global climate change (e.g., 167 

droughts and increase in temperature), and land use (e.g., de-urbanization or fast urbanization).  168 

The design of adaptive plan starts initially by identifying policy actions, such as flood 169 

prevention measures, heightening the dikes, and strengthening the dikes, for meeting objectives 170 

regarding costs, causalities, and damages. Many adaptation pathways can be constructed based 171 

on different concatenation of these policy actions and by considering possible various transfers 172 

between actions at actions’ sell-by dates. The study formulates a many-objective optimization 173 

problem and uses optimization (metaheuristic) evolutionary algorithms to enumerate different 174 

concatenation of these policy actions—in the form of policy pathways—which minimize the 175 

costs, causalities, and damages under two constraints of limiting maximum damages and 176 

maximum causalities. The study generates transient scenarios by sampling from uncertainty 177 

space and then runs computational experiments to test the robustness of enumerated pathways 178 

over generated scenarios. The final result is an adaptation map representing different sequences 179 

of actions (pathways) with their respective sell-by dates leading to specific futures. Decision 180 

makers could decide which sequence of actions to choose based on their preference or a cost-181 

benefit analysis.  182 

Example III – Theory testing in urban water management 183 

The third example combines methodological innovation with a real-world case 184 

application and is from de Haan et al. (2016). The study is an application of exploratory 185 

modeling to theory testing (non-decision support) on a historical case, which is a less 186 

investigated use of exploratory modeling in the literature. The exploratory model—called STM 187 

(Societal Transitions Module)—generates scenarios of transition pathways, more precisely put: 188 

the uptake and phasing out of servicing solutions (types of technology) in urban water systems. 189 

STM implements a theory of change known as the Multi-Pattern Approach by de Haan and 190 

Rotmans (2011) and, perhaps atypically, the model exploits the acknowledged uncertainties in 191 

this theory, rather than in estimated parameter values. The theory states that, given certain 192 

conditions, at any point in time, one of several patterns of change may follow—the theory is 193 

agnostic as to which pattern is more likely. 194 
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Exploratory modeling for STM amounts to producing a portfolio of scenarios starting 195 

from one initial condition. For example, 50 time steps with six patterns possible at each time step 196 

would yield about 650 scenarios. This produces two problems: (1) this is computationally 197 

infeasible, and (2) what should be the interpretation of such a multitude of possibilities? Can 198 

these scenarios give any meaningful information about pathways at all? The former issue is 199 

easily solved by sampling the solution space, limiting the runs to, e.g., 2000-5000 scenarios. The 200 

latter issue is addressed by performing a cluster analysis on the produced scenarios. It turns out 201 

that although each scenario is different, many are very much alike and the thousands of possible 202 

outcomes can be grouped into a handful of clusters. This is the idea behind the title of this study 203 

‘Many Roads to Rome’, there are many scenarios that, though different in detail, lead to 204 

qualitatively similar outcomes. 205 

The STM is set up to re-produce a known historical trajectory of green infrastructure 206 

uptake in Melbourne’s urban water management system from 1960-2010. Though STM produces 207 

several clusters of pathways, one matches the historical data well. The other clusters can be 208 

interpreted as alternative histories, developments that could have been. 209 

 210 
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