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Consensus in High-Power Multiagent Systems With
Mixed Unknown Control Directions via Hybrid

Nussbaum-Based Control
Maolong Lv , Wenwu Yu , Senior Member, IEEE, Jinde Cao , Fellow, IEEE,

and Simone Baldi , Senior Member, IEEE

Abstract—This work investigates the consensus tracking
problem for high-power nonlinear multiagent systems with
partially unknown control directions. The main challenge of
considering such dynamics lies in the fact that their linearized
dynamics contain uncontrollable modes, making the standard
backstepping technique fail; also, the presence of mixed unknown
control directions (some being known and some being unknown)
requires a piecewise Nussbaum function that exploits the a pri-
ori knowledge of the known control directions. The piecewise
Nussbaum function technique leaves some open problems, such
as Can the technique handle multiagent dynamics beyond the
standard backstepping procedure? and Can the technique han-
dle more than one control direction for each agent? In this work,
we propose a hybrid Nussbaum technique that can handle uncer-
tain agents with high-power dynamics where the backstepping
procedure fails, with nonsmooth behaviors (switching and quan-
tization), and with multiple unknown control directions for each
agent.

Index Terms—Consensus tracking, input quantization,
multiagent systems, switched dynamics, unknown control
directions.

I. INTRODUCTION

DURING the last two decades, the coordination of
multiagent systems has gained tremendous attention,

where the consensus problem is one of the most stud-
ied coordination tasks [1]–[3]. Consensus problems have
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been studied for various classes of uncertain and non-
linear agent dynamics, including multiagent systems with
unparameterized nonlinearities [4]–[9]; switched multiagent
systems [10]–[12]; nonsmooth multiagent systems (e.g., with
quantization, saturation, deadzone, etc.) [11], [13]; multiagent
systems with unknown control directions [13]–[15]; time-
delay multiagent systems [9], [16]; event-triggered multiagent
systems [17], [18]; and so on. Most of these approaches to
consensus rely on a distributed version of the well-known
backstepping iterative procedure [19]. Such a procedure, also
known in the literature as adding-one-linear-integrator pro-
cedure, introduces one linear integrator at each iteration
and can be applied to strict-feedback [4]–[9], [20]–[22]
and pure-feedback multiagent systems [10]–[12], [23], [24].
The procedure can be successfully combined with tools
known for single-agent systems, such as function approx-
imators [25]–[29], switched Lyapunov functions [30]–[33],
and so on. However, for some classes of nonlinear systems,
the adding-one-linear-integrator backstepping procedure can-
not be applied. The most famous example is the high-power
dynamics, also known in the literature as high-order nonlin-
ear dynamics: for this class, the adding-one-power-integrator
procedure was proposed in [34] by introducing iteratively one
high-power integrator instead of a linear one. The procedure
was further extended in a distributed sense, and combined with
function approximators and switched Lyapunov function [35],
[36]. The class of high-power dynamics is the object of the
present work, which we study via the Nussbaum function
method in the presence of multiple unknown control directions
and nonsmooth behaviors (switching and quantization).

The Nussbaum function method to handle unknown control
directions [37]–[41] has not been explored in the distributed
adding-one-power-integrator scenario, that is, for coordina-
tion of multiagent systems with high-power dynamics. The
peculiar characteristic of a Nussbaum function lies in its capa-
bility of alternatively changing sign. This characteristic will
occasionally provide inputs in the “wrong” direction, lead-
ing to large transients [37], [42], [43]. The transient issue
becomes even more pronounced in networks with unknown
control directions. The Nussbaum function method is chal-
lenging even for multiagent systems controlled with the
distributed adding-one-linear-integrator backstepping proce-
dure [44]–[46]: researchers have studied unknown but identical
control directions [44], mixed unknown control directions
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(some directions being known and some being unknown)
via a piecewise Nussbaum function that exploits the a pri-
ori knowledge of the known control directions [45], [46] or
multiple nonidentical unknown control directions with switch-
ing topologies [14], [15] and communication delays [16].

For the single-agent case, it was shown that addressing
multiple unknown control directions requires novel conditional
inequalities involving the summation of multiple Nussbaum
functions terms [39]; a novel Nussbaum function whose sign
keeps the same on some periods of time was proposed in [41],
so that the Nussbaum integral terms do not cancel each other
in the summation. Recently, the properties of different classes
of Nussbaum functions, namely, type A and type B have been
investigated for handling constant and time-varying unknown
control coefficients [42], [43]. Even when a single control
direction is considered for each agent [44]–[46], a summa-
tion of Nussbaum terms occurs as the result of considering a
global conditional inequality for the whole network. Therefore,
the Nussbaum function should be carefully designed to avoid
cancelation of the integral terms. The aforementioned inves-
tigations open the questions on whether techniques exist to
handle high-power dynamics (for which adding-one-linear-
integrator backstepping would fail) in the presence of multiple
unknown control directions. The main contribution of this
work is to give positive answers to these questions.

1) To the best of our knowledge, this is the first Nussbaum-
based approach going beyond the distributed adding-
one-linear-integrator backstepping setting, by consider-
ing uncertain agents with high-power dynamics.

2) The Nussbaum function techniques in [37]–[41] are
designed to handle one unknown control direction
for each agent, whereas the proposed technique uses
hybrid Nussbaum gains that can handle multiple mixed
unknown directions for each agent.

3) The proposed technique can handle nonsmooth behav-
ior, that is, switching dynamics and input quantization.
The relevance of considering input quantization stems
from works, such as [47] and [48], showing that appro-
priate designs must be proposed in the presence of input
nonlinearities. Our proposed design relies on a variable-
separable lemma to extract quantized control signal in a
“linear-like” manner.

The remainder of this article is organized as follows.
Preliminaries and problem formulation are given in Section II.
Sections III and IV present the proposed distributed protocol
and stability analysis, respectively. The simulation results are
in Section V and Section VI draws the conclusions.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph Theory

A weighted directed graph describes how agents interact
with each other: the agents are represented by nodes, and the
interactions by edges. A weighted directed graph is defined
by G = (V, E,A), with the node set being V = {v1, . . . , vN}
(N ≥ 2), the edge set being E ⊆ V × V , and the adja-
cency matrix A = [afl] ∈ R

N×N being utilized to represent
the communication topology among the agents. An edge
efl = (f , l) ∈ E means that agent l can receive information

from agent f . The set of nodes to which an agent f can send
information is denoted by Nf , representing the neighboring
set. The entries af ,l of the adjacency matrix A are defined as
follows: if the information of agent l can be received by agent
f , afl > 0; otherwise, afl = 0. Let us also define the diago-
nal matrix D = diag[d1, . . . , dN] ∈ R

N×N with df =∑N
l=1 afl.

The Laplacian matrix of G is defined as L = D−A. The com-
munication topology for the N follower agents and a leader
agent is defined as an augmented directed graph Ḡ = (V̄, Ē)
with V̄ = {v0, v1, . . . , vN} and Ē ⊆ V̄ × V̄ where index 0 is
used for the leader agent. The set of neighbors of the f th fol-
lower agent in Ḡ is denoted as N̄f . Then, the Laplacian matrix
L̄ corresponding to Ḡ is defined as

L̄ =
[

0 0T
N×1−b H
]

where 0N×1 = [0, . . . , 0]T ∈ R
N×1, H = L + B, L is the

Laplacian matrix of the subgraph G, and B is the leader agent
adjacency matrix defined as B = diag[b1, . . . , bN] where bi >

0 if 0 ∈ N̄f , f = 1, . . . ,N, and bi = 0 otherwise, and b =
[b1, . . . , bN]T . The directed graph Ḡ is said to have a spanning
tree with the root node being the leader if a directed path exists
from the leader to all the other nodes.

Assumption 1 [49]: The graph Ḡ contains a spanning tree
with the root node being the leader. This implies that L̄ + B
is a nonsingular M-matrix.

B. Problem Statement

Let us consider a multiagent system composed of N(N ≥ 2)
follower agents, under a directed communication topology
described by G = (V, E,A). Let the dynamics of the f th fol-
lower agent, f = 1, . . . ,N, be represented by the high-power
nonlinear dynamics

⎧
⎪⎨

⎪⎩

χ̇f ,m = ϕ
σf (t)
f ,m

(
χ̄f ,m
)+ φσf (t)

f ,m

(
χ̄f ,m
)
χ

rf ,m
f ,m+1

χ̇f ,nf = ϕ
σf (t)
f ,nf

(
χf
)+ φσf (t)

f ,nf

(
χf
)(

Qf
(
uf
))rf ,nf

yf = χf ,1

(1)

where 1 ≤ m ≤ nf − 1, χ̄f ,m = [χf ,1, χf ,2, . . . , χf ,m]T ∈ R
m,

χf = [χf ,1, χf ,2, . . . , χf ,nf ]T ∈ R
nf , and yf ∈ R are the states

and the output of the f th follower agent, respectively. For
f = 1, . . . ,N and m = 1, . . . , nf , ϕ

σf (t)
f ,m (·) and φ

σf (t)
f ,m (·) are

unknown continuous nonlinearities, and rf ,m are positive odd
integers. In (1), σf (·) : [0, + ∞) → Mf = {1, 2, . . . ,mf }
is a switching signal which selects at each time t the nonlin-
earities for agent f among mf possibilities. The control signal
to be designed is uf , with the quantized input Qf (uf ) being
defined as

Qf
(
uf
) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uf ,hsgn
(
uf
)
, if

{ uf ,h
1+�f

<
∣
∣uf
∣
∣ ≤ uf ,h, u̇f < 0, or

uf ,h <
∣
∣uf
∣
∣ ≤ uf ,h

1−�f
, u̇f > 0,

ūf ,hsgn
(
uf
)
, if

{
uf ,h <

∣
∣uf
∣
∣ ≤ uf ,h

1−�f
, u̇f < 0, or

uf ,h
1−�f

<
∣
∣uf
∣
∣ ≤ uf ,h(1+�f )

1−�f
, u̇f > 0,

0, if

⎧
⎪⎨

⎪⎩

0 ≤ ∣∣uf
∣
∣ ≤ umin

f
1+�f

, u̇f < 0, or
umin

f
1+�f

<
∣
∣uf
∣
∣ ≤ umin

f , u̇f > 0,

Qf (uf (t−)), otherwise

(2)
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with ūf ,h = uf ,h(1 + �f ), uf ,h = ρ1−h
f umin

f (h = 1, 2, . . .) and
�f = [(1 − ρf )/(1 + ρf )] with umin

f > 0 and 0 < ρf < 1, and
umin

f and ρf represent the deadzone range of Qf (uf ) and the
measure of quantization density, respectively. Due to quanti-
zation, we have that the continuous signal uf is mapped into
a discrete set F f = {0,±uf ,h,±uf ,h(1 + �f ), h = 1, 2, . . .}.

Remark 1: The quantizer parameter ρf , f = 1, . . . ,N,
is a measure of quantization density. The smaller ρf , the
coarser the quantizer, that is, Qf (uf ) will have less and less
quantization levels [47], [48].

Lemma 1 [47]: The relation between the continuous input
uf and the quantized input Qf (uf ) can be described by

Qf
(
uf
) = κf

(
uf
)
uf +�f

(
uf
)

(3)

where κf (uf ) and �f (uf ) satisfy 1 − �f ≤ κf (uf ) ≤ 1 + �f ,
and |�f (uf )| ≤ umin

f .
Remark 2: When all the powers rf ,m are equal to one,

the multiagent dynamics in [44]–[46] are obtained. However,
a different design is required because, while the dynamics
in [44]–[46] allow the use of the adding-one-linear-integrator
procedure (backstepping), this procedure cannot be used for
(1) (see discussion in [34]).

The leader agent 0 is represented by a leader output signal
yL(·). As compared to a single-agent case, the challenge of
controlling multiple agents is that not all the agents can access
the leader signal.

Assumption 2 [49]: The leader output signal yL(·) is con-
tinuous, bounded, and available only to a subset of the follower
agents according to the graph Ḡ. Furthermore, ẏL(·) is bounded
and not available to any follower agent. The bounds for yL(·)
and ẏL(·) are unknown.

Assumption 3 [35]: For each follower agent f , there exist
known constants φ

f ,m
> 0 and φ̄f ,m > 0, (1 ≤ m ≤ nf ) such

that

φ
f ,m

≤
∣
∣
∣φk

f ,m(·)
∣
∣
∣ ≤ φ̄f ,m, k ∈ Mf .

Furthermore, some control directions of φf ,m can be unknown.
Remark 3: Assumption 2 implies that the leader output is

continuously differentiable, which is standard in [49]. The
bounds φ

f ,m
and φf ,m ensure the controllability of each agent,

but instead of assuming known sign of φk
f ,m as in [35],

[36], and [50], Assumption 3 allows some signs to be
unknown.

Problem 1: The goal is consensus tracking, that is, to
design uf such that the output of each agent can track the
leader agent’s signal while respecting the communication
topology defined by the graph Ḡ. Practical consensus track-
ing will be sought, due to the fact that asymptotic tracking
cannot be realized in general for high-power systems [51].

It is worth mentioning that the problem of unknown control
directions for the dynamics (1) is open and requires a new
design that is not available in the literature.

C. Nussbaum-Based Technical Tools

In this section, we give the main result concerning hybrid
Nussbaum-based control. To counteract the lack of a pri-
ori knowledge of control directions, we define the Nussbaum

function as [45]

NR(ν) =
{
N 1̄

R (ν), if unknown control direction

N 2̄
R (ν), if known control direction

(4)

where N 1̄
R(ν) = −μ exp(ν2/2)(ν2 + 2) sin(ν), and N 2̄

R(ν) =
− exp(ν2/2)ν with ν being a real variable and μ being a
positive constant.

Remark 4: To explain the meaning of (4), note that in the
mixed situation in which some control directions are known
and some are unknown, it is not appropriate to adopt the stan-
dard Nussbaum function for every agent. This is because,
differently from the hybrid Nussbaum function in (4), a
standard Nussbaum function typically does not guarantee a
boundedness of the summation of multiple Nussbaum integral
terms [39], [41].

The following result is proposed to establish the bounded-
ness of a Lyapunov function when a hybrid Nussbaum function
as in (4) is adopted.

Lemma 2: Let Vf (t) be a smooth positive-definite func-
tion with bounded initial value Vf (0). Let ξf ,n(t) for n =
1, 2, . . . , nf be smooth and increasing functions with their
initial values ξf ,n(0) bounded. Furthermore, let φf ,n(t) be a
time-varying gain, nonzero in the closed interval [φ

f ,n
, φ̄f ,n]

for f = 1, 2, . . . ,N. If the following inequality holds:

Vf (t) ≤
nf∑

n=1

∫ t

0
φf ,n(ν)θf ,nNR

(
ξf ,n(ν)

)
ξ̇f ,n(ν)

+
nf∑

n=1

∫ t

0
ιf ξ̇f ,n(ν)dν +f (5)

where ιf and f are constants, θf ,n is a positive and
bounded function, and NR(·) as in (4), then ξf ,n(t), Vf (t), and
∑nf

n=1

∫ t
0 (φf ,n(ν)θf ,nNR(ξf ,n(ν))+ιf )ξ̇f ,n(ν)dν are bounded

on the time interval [0, tν) for f = 1, 2, . . . ,N.
Proof: See Appendix A.
Remark 3: Similar to the lemmas in [12], [13],

[16], [29], and [44]–[46], the proposed lemma (Lemma
2) holds over a finite-time interval. Such lemmas to the entire
time domain are not trivial, as discussed in [52]. Nevertheless,
works such as [16] have shown that boundedness on the
entire time domain can be obtained during stability analysis,
by using the continuation of the maximal solution of the
closed-loop system. In this work, we will adopt a similar
argument to obtain stability (see proof of Theorem 1).

D. Other Technical Tools and Lemmas

The following technical lemmas will be employed to derive
the main results of this article.

Lemma 3 [50]: Let x1, x2 ∈ R be real-valued functions.
There exist a positive odd integer b and a constant −λ ≥ 1
such that

∣
∣
∣xb

1 − xb
2

∣
∣
∣ ≤ b|x1 − x2|

∣
∣
∣xb−1

1 + xb−1
2

∣
∣
∣

|x1 + x2|−λ ≤ 2−λ−1
(
|x1|−λ + |x2|−λ

)
.
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Lemma 4 [50]: Let x1, x2 ∈ R and r1 and r2 be positive
constants. For any real-valued function υ(·, ·) > 0, one has

|x1|r1 |x2|r2 ≤ r1

r1 + r2
υ|x1|r1+r2 + r2

r1 + r2
υ

− r1
r2 |x2|r1+r2 .

Lemma 5 [11]: For any x1, x2 ∈ R and positive odd integer
b, there exist real-valued functions ζ1(·, ·) and ζ2(·, ·) such that

(x1 + x2)
b = ζ1(x1, x2)x

b
1 + ζ2(x1, x2)x

b
2

where ζ1(x1, x2) ∈ [1 − ε̄, 1 + ε̄] for ∀ε̄ ∈ (0, 1) and
|ζ2(x1, x2)| ≤ M where M is a positive constant that is
independent of x1 and x2.

Lemma 6 [25]: For any continuous function h(Z) defined
on a compact set �Z , for ∀ε̄ > 0, there exists a fuzzy-logic
system (FLS) y(Z) = W∗T�(Z) such that

sup
Z∈�Z

∣
∣h(Z)− W∗T�(Z)

∣
∣ ≤ ε̄ (6)

where W∗ is the ideal parameter vector, and �(Z) is the fuzzy
basic function vector.

III. PROPOSED CONSENSUS TRACKING DESIGN

To start the design, let us define rf = max
1≤m≤nf

{rf ,m} and let

us define the following changes of coordinates:
{

ef ,1 =∑l∈N̄f
afl
(
yf − yl

)+ bf
(
yf − yL

)

ef ,m = χf ,m − αf ,m, m = 2, 3, . . . , nf
(7)

where αf ,m represents the virtual control law which will be
specified later. After defining e1 = [e1,1, e2,1, . . . , eN,1]T ∈
R

N , one has e1 = (L̄ + B)δ where δ = ȳ − ȳL with
ȳ = [y1, y2,... . . , yN]T and ȳL = [yL, yL, . . . , yL]T . Due to the
nonsingularity of L̄ + B, it holds that ‖δ‖ ≤ ‖e1‖

σ(L̄+B) , being

σ(L̄ + B) the minimum singular value of L̄ + B.
The design proceeds iteratively along with the following

steps.
Step 1 for the f th Agent (f ∈ {1, . . . ,N}): Using (1) and (7),

we obtain the time derivative of ef ,1 as

ėf ,1 = (df + bf
)
φk

f ,1

(
χf ,1
)
χ

rf ,1
f ,2 + Hk

f ,1

(
Zf ,1
)
, k ∈ Mf (8)

where Zf ,1 = [χf ,1, χl,1, χl,2]T(l ∈ N̄f ) and

Hk
f ,1

(
Zf ,1
) = −

∑

l∈N̄f

afl

(
φk

l,1

(
χl,1
)
χ

rl,1
l,2 + ϕk

l,1

(
χl,1
))

+ (df + bf
)
ϕk

f ,1

(
χl,1
)− bf ẏL. (9)

From Lemma 6, it follows that the unknown continuous
function Hk

f ,1(Zf ,1) can be approximated by

Hk
f ,1

(
Zf ,1
) = Wk∗T

f ,1 �
k
f ,1

(
Zf ,1
)+ εk

f ,1

(
Zf ,1
)

where |εk
f ,1(Zf ,1)| ≤ ε̄k

f ,1 includes both the bounded approxi-
mation error and the bounded ẏL.

According to Lemma 4, it holds that

e
rf −rf ,1+3
f ,1 Hk

f ,1

≤ rf − rf ,1 + 3

rf + 3
ν

rf +3
rf −rf ,1+3

f ,1 e
rf +3
f ,1

∥
∥
∥Wk∗

f ,1

∥
∥
∥

rf +3
rf −rf ,1+3

∥
∥
∥�k

f ,1

∥
∥
∥

rf +3
rf −rf ,1+3

+ rf ,1

rf + 3
ς

− rf +3
rf ,1

f ,1 ε̄
k

rf +3
rf ,1

f ,1 + rf ,1

rf + 3
�
− rf +3

rf ,1
f ,1

+ rf − rf ,1 + 3

rf + 3
ς

rf +3
rf −rf ,1+3

f ,1 e
rf +3
f ,1

≤ e
rf +3
f ,1

(

�

rf +3
rf −rf ,1+3

f ,1 βf ,1
∥
∥�f ,1

∥
∥

rf +3
rf −rf ,1+3 + ς

rf +3
rf −rf ,1+3

f ,1

)

+ λf ,1

(10)

where βf ,1 = max{βk
f ,1, k ∈ Mf }, �f ,1 = max{�k

f ,1, k ∈ Mf },
βk

f ,1 = ‖Wk∗
f ,1‖([rf +3]/[rf −rf ,1+3]), ε̄f ,1 = max{ε̄k

f ,1, k ∈ Mf },
and λf ,1 = �

−([rf +3]/[rf ,1])
f ,1 + ς−([rf +3]/[rf ,1])

f ,1 ε̄
([rf +3]/[rf ,1])
f ,1 .

Let us start constructing the Lyapunov function as

Vf ,1 = e
rf −rf ,1+4
f ,1

rf − rf ,1 + 4
+ 1

2ϑf ,1
β̃2

f ,1 (11)

where β̃f ,1 = βf ,1 − β̂f ,1 and ϑf ,1 > 0 is a design parameter.
It follows from (8), (10), and (11) that the time derivative

of Vf ,1 is:

V̇f ,1 ≤ e
rf −rf ,1+3
f ,1

(
df + bf

)(
φk

f ,1(χf ,1)α
rf ,1
f ,2 + e

rf ,1
f ,1ψf ,1

)

− β̃f ,1
˙̂
β f ,1

ϑf ,1
+ e

rf +3
f ,1 �

rf +1
rf −rf ,1+3

f ,1 βf ,1
∥
∥�f ,1

∥
∥

rf +3
rf −rf ,1+3

+ e
rf −rf ,1+3
f ,1

(
df + bf

)
φk

f ,1(χf ,1)
(
χ

rf ,1
f ,2 − αrf ,1

f ,2

)

− e
rf +3
f ,1

(
df + bf

)
ψf ,1 + e

rf +3
f ,1 ς

rf +3
rf −rf ,1+3

f ,1 + λf ,1. (12)

Design the virtual controllers αf ,2 and adaptive laws β̂f ,1 as

αf ,2 = N
1

rf ,1
R

(
ξf ,1
)
ψ

1
rf ,1

f ,1 ef ,1 (13)

ψf ,1 = (df + bf
)−1

(

�

rf +3
rf −rf ,1+3

f ,1 β̂f ,1
∥
∥�f ,1

∥
∥

rf +3
rf −rf ,1+3

+ cf ,1 + ς
rf +3

rf −rf ,1+3

f ,1

)

(14)

ξ̇f ,1 = e
rf +3
f ,1

(
df + bf

)
ψf ,1 (15)

˙̂
βf ,1 = ϑf ,1�

rf +3
rf −rf ,1+3

f ,1 e
rf +3
f ,1

∥
∥�f ,1

∥
∥

rf +3
rf −rf ,1+3 − γf ,1β̂f ,1 (16)

where �f ,1, cf ,1, γf ,1, and ςf ,1 are positive design parameters.
Substituting (13)–(16) into (12) yields

V̇f ,1 ≤ e
rf −rf ,1+3
f ,1

(
df + bf

)
φf ,1
(
χf ,1
)(
χ

rf ,1
f ,2 − αrf ,1

f ,2

)

+ ξ̇f ,1
(
φf ,1
(
χf ,1
)NR
(
ξf ,1
)+ 1

)+ λf ,1

+ 1

ϑf ,1
γf ,1β̃f ,1β̂f ,1 − cf ,1e

rf +3
f ,1 . (17)

By using Lemmas 3 and 4, we have that
∣
∣
∣e

rf −rf ,1+3
f ,1 φf ,1(χf ,1)

(
χ

rf ,1
f ,2 − αrf ,1

f ,2

)∣
∣
∣

≤ η
−rf
f ,1 e

rf +3
f ,2

rf + 3

(

rf ,1φ̄f ,1N
1

rf ,1
R (ξf ,1)ψ

rf ,1−1
rf ,1

f ,1

)rf +3
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+ rf ,1e
rf +3
f ,2

rf + 3
η

− rf −rf ,1+3
rf ,1

f ,1

(
2rf ,1−2rf ,1φ̄f ,1

) rf +3
rf ,1

+ η
−rf
f ,1 e

rf +3
f ,2

rf + 3

(
2rf ,1−2rf ,1φ̄f ,1ψ

rf ,1−1
f ,1

)rf +3

+ rf − rf ,1 + 7

rf + 3
ηf ,1e

rf +1
f ,1 + 2rf ηf ,1e

rf +1
f ,1

rf + 3

≤ e
rf +3
f ,1 + (df + bf

)−1
e

rf +3
f ,2 �f ,1 (18)

with ηf ,1 = ([rf + 3]/[3rf − rf ,1 + 7]) and �f ,1 being a
function given by

�f ,1 = (df + bf
)
[

rf ,1

rf + 3
η

− rf −rf ,1+3
rf ,1

f ,1

(
2rf ,1−2rf ,1φ̄f ,1

) rf +3
rf ,1

+ 1

rf + 3
η

−rf
f ,1

(

rf ,1φ̄f ,1N
1

rf ,1
R (ξf ,1)ψ

rf ,1−1
rf ,1

f ,1

)rf +3

+ 1

rf + 3
η

−rf
f ,1

(
2rf ,1−2rf ,1φ̄f ,1ψ

rf ,1−1
f ,1

)rf +3
]

.

From (18), the time derivative of Vf ,1 can be rewritten as

V̇f ,1 ≤ γf ,1

ϑf ,1
β̃f ,1β̂f ,1 − (cf ,1 − (df + bf

))
e

rf +3
f ,1

+ ξ̇f ,1
(
φf ,1
(
χf ,1
)NR
(
ξf ,1
)+ 1

)

+ e
rf +3
f ,2 �f ,1 + λf ,1. (19)

Defining φf ,1 = max{φk
f ,1, k ∈ Mf } and using Young’s

inequality

β̃f ,1β̂f ,1 =
(
β̃f ,1βf ,1 − β̃2

f ,1

)
≤ 1

2

(
β2

f ,1 − β̃2
f ,1

)
(20)

it can be obtained that V̇f ,1 is

V̇f ,1 ≤ ξ̇f ,1
(
φf ,1(χf ,1)NR(ξf ,1)+ 1

)+ e
rf +3
f ,2 �f ,1

− (cf ,1 − (df + bf )
)
e

rf +3
f ,1 + λf ,1

+ γf ,1

2ϑf ,1

(
β2

f ,1 − β̃2
f ,1

)
. (21)

Step m for the f th Agent (f ∈ {1, . . . ,N}, m ∈
{2, . . . , nf − 1}): From (1) and (7), the time derivative of ef ,m

is given by

ėf ,m = φk
f ,m

(
χ̄f ,m
)
χ

rf ,m
f ,m+1 + Hk

f ,m

(
Zf ,m
)
, k ∈ Mf (22)

where Zf ,m = [χ̄T
f ,m, χ̄

T
l,m,

¯̂
βf ,m−1, ξ̄f ,m−1, yL]T(l ∈ N̄f ),

¯̂
βf ,m−1 = [β̂f ,1, β̂f ,2, . . . , β̂f ,m−1], ξ̄f ,m−1 = [ξf ,1, ξf ,2,

. . . , ξf ,m−1] and

Hk
f ,m

(
Zf ,m
) =

−
m−1∑

n=1

∑

l∈N̄f

∂αf ,m

∂χl,n

(
φk

l,n

(
χ̄l,n
)
χ

rl,n
l,n+1 + ϕk

l,n

(
χ̄l,n
))

−
m−1∑

n=1

∂αf ,m

∂χf ,n

(
φk

f ,n

(
χ̄f ,n
)
χ

rf ,n
f ,n+1 + ϕk

f ,n

(
χ̄f ,n
))

− ∂αf ,m

∂yL
ẏL −

m−1∑

n=1

∂αf ,m

∂β̂f ,n

˙̂
β f ,n

−
m−1∑

n=1

∂αf ,m

∂ξf ,n
ξ̇f ,n + ϕk

f ,m

(
χ̄f ,m
)
. (23)

Along similar lines as step 1, the following inequality holds:

e
rf −rf ,m+3
f ,m Hk

f ,m

(
Zf ,m
) ≤ e

rf +3
f ,m ς

rf +3
rf −rf ,m+3

f ,m + λf ,m

+ e
rf +3
f ,m �

rf +3
rf −rf ,m+3

f ,m βf ,m
∥
∥�f ,m

∥
∥

rf +3
rf −rf ,m+3 (24)

where βk
f ,m = ‖Wk∗

f ,m‖([rf +3]/[rf −rf ,m+3]), βf ,m = max{βk
f ,m, k ∈

Mf }, �f ,m = max{�k
f ,m, k ∈ Mf }, ε̄f ,m = max{ε̄k

f ,m, k

∈ Mf
}
, and λf ,m = �

−([(rf +3)]/[rf ,m])
f ,m + ς

−([(rf +3)]/[rf ,m])
f ,m

ε̄
([(rf +3)]/[rf ,m])
f ,m .

Starting from (11), the Lyapunov function is constructed
iteratively as

Vf ,m = Vf ,m−1 + e
rf −rf ,m+4
f ,m

rf − rf ,m + 4
+ 1

2ϑf ,m
β̃2

f ,m (25)

where β̃f ,m = βf ,m − β̂f ,m and ϑf ,m > 0 is a design constant.
Combining (21), (22), and (24) with (25), the time derivative

of Vf ,m is written as

V̇f ,m ≤ e
rf +3
f ,m �f ,m−1 − e

rf −rf ,m+3
f ,m φk

f ,m

(
χ̄f ,m
)
α

rf ,m
f ,m+1

+ e
rf −rf ,m+3
f ,m φf ,m

(
χ̄f ,m
)(
χ

rf ,m
f ,m+1 − αrf ,m

f ,m+1

)

+
m−1∑

n=1

(
γf ,n

2ϑf ,n

(
β2

f ,n − β̃2
f ,n

))

− β̃f ,m
˙̂
β f ,m

ϑf ,m

−
m−1∑

n=2

(
cf ,n − 1

)
e

rf +3
f ,n + e

rf +3
f ,m ς

rf +3
rf −rf ,m+3

f ,m

+ e
rf +3
f ,m �

rf +3
rf −rf ,m+3

f ,m βf ,m‖�f ,m‖
rf +3

rf −rf ,m+3

+
m−1∑

n=1

ξ̇f ,n
(
φf ,n
(
χ̄f ,n
)NR
(
ξf ,n
)+ 1

)

+
m∑

n=1

λf ,n − (cf ,1 − (df + bf
))

e
rf +3
f ,1 . (26)

Design the virtual controllers αf ,m+1 and adaptive
laws β̂f ,m as

αf ,m+1 = N
1

rf ,m
R

(
ξf ,m
)
ef ,mψ

1
rf ,m

f ,m (27)

ψf ,m = cf ,m + �
rf +3

rf −rf ,m+3

f ,m β̂f ,m
∥
∥�f ,m

∥
∥

rf +3
rf −rf ,m+3 +�f ,m−1

+ ς

rf +3
rf −rf ,m+3

f ,m (28)

ξ̇f ,m = e
rf +3
f ,m ψf ,m (29)

˙̂
βf ,m = ϑf ,m�

rf +3
rf −rf ,m+3

f ,m e
rf +3
f ,m

∥
∥�f ,m

∥
∥

rf +3
rf −rf ,m+3 − γf ,mβ̂f ,m (30)

where �f ,m, cf ,m, γf ,m, and ςf ,m are positive design parameters.
Substituting (27)–(30) into (26) and along similar lines as

(17)–(20), we can obtain the time derivative of Vf ,m as

V̇f ,m ≤ e
rf +3
f ,m+1�f ,m − (cf ,1 − (df + bf

))
e

rf +3
f ,1

+
m∑

n=1

ξ̇f ,n
(
φf ,n
(
χ̄f ,n
)NR
(
ξf ,n
)+ 1

)
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+
m∑

n=1

λf ,n −
m∑

n=2

(
cf ,n − 1

)
e

rf +3
f ,n

+
m∑

n=1

(
γf ,n

2ϑf ,n

(
β2

f ,n − β̃2
f ,n

))

(31)

where φf ,m = max
{
φk

f ,m, k ∈ Mf

}
.

Step nf for the f th agent (f ∈ {1, . . . ,N}): In view of
Lemma 5 and using (1), (3), and (7), the time derivative of
ef ,nf can be written as

ėf ,nf ≤ φk
f ,nf

(
χf
)
ζ1,f κ

rf ,nf
f uf

rf ,nf + Hk
f ,nf

(
Zf ,nf

)
, k ∈ Mf (32)

where Zf ,nf = [
χT

f , χ
T
l ,

¯̂
βf ,nf −1, ξ̄f ,nf −1, yL

]T(
l ∈ N̄f

)
,

¯̂
βf ,nf −1 = [

β̂f ,1, β̂f ,2, . . . , β̂f ,nf −1
]
, ξ̄f ,nf −1 = [

ξf ,1,

ξf ,2, . . . , ξf ,nf −1
]

and

Hk
f ,nf

(
Zf ,nf

) =

−
nf −1∑

n=1

∑

l∈N̄f

∂αf ,nf

∂χl,n

(
φk

l,n

(
χ̄l,n
)
χ

rl,n
l,n+1 + ϕk

l,n(χl)
)

−
nf −1∑

n=1

∂αf ,nf

∂χf ,n

(
φk

f ,n

(
χ̄f ,n
)
χ

rf ,n
f ,n+1 + ϕk

f ,n

(
χf
))

−
nf −1∑

n=1

∂αf ,nf

∂β̂f ,n

˙̂
β f ,n − ∂αf ,m

∂yL
ẏL + ϕk

f ,nf

(
χf
)

−
nf −1∑

n=1

∂αf ,nf

∂ξf ,n
ξ̇f ,n + φk

f ,nf

(
χf
)
ζ2,f�f (t)

rf ,nf . (33)

Similar to step f ,m, it can be obtained that

e
rf −rf ,nf +3

f ,nf
Hk

f ,nf

(
Zf ,nf

) ≤ e
rf +3
f ,nf

ς

rf +3
rf −rf ,nf

+3

f ,nf
+ λf ,nf

+ e
rf +3
f ,nf

�

rf +3
rf −rf ,nf

+3

f ,nf
βf ,nf ‖�f ,nf ‖

rf +3
rf −rf ,nf

+3
(34)

where βk
f ,nf

= ∥
∥Wk∗

f ,nf

∥
∥([rf +3]/[rf −rf ,nf +3]), βf ,nf = max

{
βk

f ,nf
, k ∈ Mf

}
, �f ,nf = max

{
�k

f ,nf
, k ∈ Mf

}
,

ε̄f ,nf = max
{
ε̄k

f ,nf
, k ∈ Mf

}
and λf ,nf = �

−([rf +3]/[rf ,nf ])

f ,nf

+ ς
−([rf +3]/[rf ,nf ])

f ,nf
ε̄
([rf +3]/[rf ,nf ])

f ,nf
.

The last step in the construction of the Lyapunov function
for agent f is

Vf ,nf = Vf ,nf −1 +
e

rf −rf ,nf +4

f ,nf

rf − rf ,nf + 4
+ 1

2ϑf ,nf

β̃2
f ,nf

(35)

where β̃f ,nf = βf ,nf −β̂f ,nf and ϑf ,nf > 0 is a design parameter.
The derivative of Vf ,nf along (31), (32), and (34) is given by

V̇f ,nf ≤
nf∑

n=1

λf ,n +
nf −1∑

n=1

ξ̇f ,n
(
φf ,n
(
χ̄f ,n
)NR
(
ξf ,n
)+ 1

)

−
nf −1∑

n=2

(
cf ,n − 1

)
e

rf +3
f ,n − (cf ,1 − (df + bf

))
e

rf +3
f ,1

+
nf −1∑

n=1

(
γf ,n

2ϑf ,n

(
β2

f ,n − β̃2
f ,n

))

− β̃f ,nf
˙̂
β f ,nf

ϑf ,nf

+ e
rf +3
f ,nf

�

rf +3
rf −rf ,nf

+3

f ,nf
βf ,nf

∥
∥�f ,nf

∥
∥

rf +3
rf −rf ,nf

+3

+ e
rf −rf ,nf +3

f ,nf
φk

f ,nf

(
χf
)
ζ1,f κ

rf ,nf
f uf

rf ,nf

+ e
rf +3
f ,nf

ς

rf +3
rf −rf ,nf

+3

f ,nf
+�f ,nf −1e

rf +3
f ,nf

. (36)

Let us design the actual controller uf and parameters
adaption laws β̂f ,nf as follows:

uf = N
1

rf ,nf
R

(
ξf ,nf

)
ψ

1
rf ,nf

f ,nf
ef ,nf (37)

ψf ,nf = cf ,nf + �
rf +3

rf −rf ,nf
+3

f ,nf
β̂f ,nf ‖�f ,nf ‖

rf +3
rf −rf ,nf

+3

+ �f ,nf −1 + ς
rf +3

rf −rf ,nf
+3

f ,nf
(38)

ξ̇f ,nf = e
rf +3
f ,nf

ψf ,nf (39)

˙̂
β f ,nf

= ϑf ,nf �

rf +3
rf −rf ,nf

+3

f ,nf
e

rf +3
f ,nf

∥
∥�f ,nf

∥
∥

rf +3
rf −rf ,nf

+3

− γf ,nf β̂f ,nf (40)

where �f ,nf , cf ,nf , λf ,nf , and ςf ,nf are positive design
parameters.

Substituting (37)–(40) into (36) results in

V̇f ,nf ≤
nf∑

n=1

λf ,n +
nf∑

n=1

γf ,n

2ϑf ,n
β2

f ,n −
nf∑

n=2

(
cf ,n − 1

)
e

rf +3
f ,n

−
nf∑

n=1

γf ,n

2ϑf ,n
β̃2

f ,n − (cf ,1 − (df + bf
))

e
rf +3
f ,1

+
nf∑

n=1

ξ̇f ,n
(
φf ,n
(
χ̄f ,n
)
θf ,nNR

(
ξf ,n
)+ 1

)
(41)

where φf ,nf = max
{
φk

f ,nf
, k ∈ Mf

}
, and when 1 ≤ n ≤ nf −1,

let θf ,n = 1, when n = nf , let θf ,n = ζ1,f κ
rf ,nf
f .

IV. STABILITY ANALYSIS

We are now at the position to present the main results of
the proposed method in the following theorem.

Theorem 1: Under Assumptions 1–3, consider the closed-
loop multiagent system composed by the high-power switched
nonlinear dynamics (1), the virtual control laws (13) and (27),
the actual control law (37), and the parameter adaptation laws
(14)–(16), (28)–(30), and (38)–(40). Then, it holds that: 1) all
signals of the closed-loop multiagent system remain bounded
and 2) the tracking error δ converges to the compact set �e

defined by

�e =

⎧
⎪⎨

⎪⎩
‖δ‖ ≤

√
√
√
√NN−1

(
N2 + N − 1

)2∑N
f =1ϒ

2
f

(N − 1)N−1

⎫
⎪⎬

⎪⎭
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where ϒf = ((
!f + Pf

)(
rf − rf ,1 + 4

))(1/[rf −rf ,1+4]). The
constants !f and Pf are not given here for compactness, but
they are derived during the proof.

Proof: See Appendix B.
Remark 4: Consensus tracking is solved in Theorem 1 via

a common Lyapunov function, by estimating the maximum
value of the switching weights in the linear-in-the-parameter
approximator [see (10), (24), and (34)]. A multiple Lyapunov
function approach is in principle possible by estimating dif-
ferent switching weights for different subsystems. However,
in this case, the stability analysis becomes more challenging
because it requires to impose conditions at switching instants,
whereas a common Lyapunov function can guarantee stability
under arbitrary switching.

Remark 5: Some guidelines for selecting appropriate
design parameters are: 1) choosing small positive constants
γf ,m and increasing ϑf ,m results in a faster convergence rate of
adaptation parameters β̂f ,m; 2) decreasing cf ,m, λf ,m, and γf ,m,
while increasing ϑf ,m helps to reduce "f , and thus reduces the
size of �e; and 3) enhancing the connectivity of the com-
munication link L̄ + B also contributes to reduce the size
of �e.

Remark 6: To clarify the importance of Lemma 2 and
Theorem 1, consider that [39] has shown that the summation
of conditional inequality may be bounded even when each
term approaches infinity individually, but with opposite signs.
For example, to avoid this problem, Huang et al. [41] proposed
new Nussbaum functions having the same signs on some peri-
ods of time. The results in [45] and [46] proposed conditional
inequalities where no sign assumption is necessary; however,
these results are applied to systems with one single control
direction. Lemma 2 and Theorem 1 solved the open problem
of handling multiple mixed unknown control directions with
multiple hybrid Nussbaum functions.

V. SIMULATION RESULTS

In this section, we provide one numerical and one practical
examples to validate the effectiveness of the proposed scheme.

A. Numerical Example

One leader (labeled by 0) with three (switched) follower
agents is considered by the directed graph as in Fig. 1.

From Fig. 1, it can be seen that the signal of leader is
accessible to follower 1 only. The leader output is yL(t) =
5 sin(t) + 10 sin(0.5t). The follower agents are described by
the following dynamics:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ̇1,1 = ϕ
σf (t)
1,1

(
χ1,1
)+ φσf (t)

1,1

(
χ1,1
)
χ3

1,2

χ̇1,2 = ϕ
σf (t)
1,2 (χ1)+ φσf (t)

1,2 (χ1)(Q1(u1))
3

χ̇2,1 = ϕ
σf (t)
2,1

(
χ2,1
)+ φσf (t)

2,1

(
χ2,1
)
χ3

2,2

χ̇2,2 = ϕ
σf (t)
2,2 (χ2)+ φσf (t)

2,2 (χ2)(Q2(u2))
5

χ̇3,1 = ϕ
σf (t)
3,1

(
χ3,1
)+ φσf (t)

3,1

(
χ3,1
)
χ5

3,2

χ̇3,2 = ϕ
σf (t)
3,2 (χ3)+ φσf (t)

3,2 (χ3)(Q3(u3))
5

yf = χf ,1, f = 1, 2, 3

(42)

Fig. 1. Communication graph between leader 0 and follower agents 1–3.
Each agent can switch among three dynamics, represented as three squares
around each agent.

Fig. 2. Asynchronous switching signals σf (t).

where σf (·): [0, + ∞) → Mf = {1, 2, 3} : note that each
follower has its own switching signal, and thus can switch
asynchronously with respect to the other followers (see Fig. 2).

For follower agent 1, the three switching dynamics are

ϕ1
1,1 = 1.3 − cos

(
χ1,1
)
, φ1

1,1 =
∣
∣
∣tanh

(
χ3

1,2

)∣
∣
∣+ 1.6

ϕ2
1,1 = 0.6 + exp

(
−χ2

1,2

)
, φ2

1,1 = cos
(
χ3

1,1

)
+ 2

ϕ3
1,1 = 0.8 + 0.2 cos

(
χ1,1
)
, φ3

1,1 = 2 cos
(
χ1,2
)2

ϕ1
1,2 = χ1,2χ1,1 + 0.8, φ1

1,2 = 2
(∣
∣
∣cos
(
χ2

1,1

)∣
∣
∣+ 1.3

)

ϕ2
1,2 = 0.7 + 0.2χ2

1,2, φ2
1,2 = 3 sin

(
χ1,2
)2 + 4

ϕ3
1,2 = cos

(
χ2

1,2

)
+ 0.3, φ3

1,2 = 5
∣
∣sin
(
0.1χ1,1

)| + 1.5.

For follower agent 2, the three switching dynamics are

ϕ1
2,1 = 1.1χ2,1 + χ2,2, φ1

2,1 = 1.5 sin
(
χ2

2,1 + χ2
2,2

)

ϕ2
2,1 = χ2

2,1χ2,2, φ2
2,1 = sin

(
χ2,2χ

2
2,1

)
+ 2.5
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(a) (b) (c)

Fig. 3. Evolutions of (a) yL, y1, y2, and y3, (b) β̂1,1, β̂2,1, and β̂3,1, and (c) β̂1,2, β̂2,2, and β̂3,2.

Fig. 4. Trajectories of u1 and Q1(u1), u2 and Q2(u2), and u3 and Q3(u3).

ϕ3
2,1 = χ2,1χ

2
2,2 + 1.2, φ3

2,1 = cos
(
χ2

2,2χ
3
2,1

)
+ 3

ϕ1
2,2 = χ2,1χ

2
2,2 + 0.5, φ1

2,2 = 3 + 2 cos
(
χ3

2,1χ2,2

)

ϕ2
2,2 = 1.3χ3

2,2 + 0.8χ2,1, φ2
2,2 = 2 cos

(
χ2

2,1

)
+ 4

ϕ3
2,2 = cos

(
χ2,1
)
χ2,2, φ3

2,2 = 5 + 3 sin
(
χ2,2χ

2
2,1

)
.

For follower agent 3, the three switching dynamics are

ϕ1
3,1 = 1.5 sin

(
χ3,2
)+ χ3,1, φ1

3,1 = ∣∣sin
(
χ3,1
)∣
∣+ 6

ϕ2
3,1 = 0.3χ2

3,1 + sin
(
χ3,2
)
, φ2

3,1 =
∣
∣
∣sin
(
χ3

3,2

)∣
∣
∣+ 3

ϕ3
3,1 = χ3,1 + 0.2χ3,2, φ3

3,1 = cos
(
χ2

3,2χ
3
3,1

)
+ 4.5

ϕ1
3,2 = 0.5χ2

3,1 + χ3,2, φ1
3,2 = cos

(
χ2

3,2

)
+ 2

ϕ2
3,2 = χ3,2 + 0.8 sin

(
χ3,1
)
, φ2

3,2 = 4 cos
(
χ3,1
)+ 5.5

ϕ3
3,2 = cos

(
χ3,2
)2 + 0.7, φ3

3,2 = cos
(
χ3,2
)3 + 3.5.

While conducting the simulation, the control directions of
φ
σf
f ,1, σf = 1, 2, 3, f = 1, 2, 3, are assumed known and the con-

trol directions of φ
σf
f ,2, σf = 1, 2, 3, f = 1, 2, 3, are assumed

unknown. The initial conditions are χ1(0) = [0.1,−0.1]T ,
χ2(0) = [0.3,−0.3]T , χ3(0) = [0.5,−0.5]T , β̂1,1(0) = 3,
β̂1,2(0) = 1, β̂2,1(0) = 7, β̂2,2(0) = 5, β̂3,1(0) = 12,
β̂3,2(0) = 9, and ξ1,1(0) = ξ1,2(0) = ξ2,1(0) = ξ2,2(0) =
ξ3,1(0) = ξ3,2(0) = 0. The design parameters are chosen
to be c1,1 = c2,1 = c3,1 = 10, c1,2 = c2,2 = c3,2 = 15,
ς1,1 = ς2,1 = ς3,1 = 0.8, ς1,2 = ς2,2 = ς3,2 = 1,

�1,1 = �2,1 = �3,1 = 0.5, �1,2 = �2,2 = �3,2 = 0.75,
ϑ1,1 = ϑ2,1 = ϑ3,1 = 1, ϑ1,2 = ϑ2,2 = ϑ3,2 = 2,
γ1,1 = γ2,1 = γ3,1 = 1.4, γ1,2 = γ2,2 = γ3,2 = 2,
umin

1 = umin
2 = umin

3 = 0.05, ρ1 = 0.02, ρ2 = 0.025, and
ρ3 = 0.015. The simulation results are shown in Figs. 3–5.
Fig. 3(a) shows that the three followers track the leader out-
put signal with bounded consensus tracking errors. Fig. 3(b)
and (c) depicts the boundedness of β̂1,1, β̂2,1, and β̂3,1, and of
β̂1,2, β̂2,2, and β̂3,2, respectively. Fig. 4 reveals the trajectories
of the actual control signals ui and quantized control Qi(ui),
i = 1, 2, 3. Fig. 5 provides the evolutions of the adaptation
parameters ξ1,1, ξ1,2, ξ2,1, ξ2,2, ξ3,1, and ξ3,2.

B. Practical Example

To further validate the developed control method, a
multiagent version of the underactuated weakly coupled
mechanical benchmark in [53] is considered, also shown in
Fig. 6. The system includes a mass m

σf
f ,1 on a horizontal smooth

surface and an inverted pendulum m
σf
f ,2 supported by a mass-

less rod. The mass is connected to the wall surface by a linear
spring and to the inverted pendulum by a nonlinear spring with
a cubic force deformation relation. Thus, the dynamics of the
f th agent can be represented by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ̈f = g sin(θf )
l + k

σf (t)

f ,s

m
σf (t)

f ,2 l

(
xf − l sin

(
θf
))3 cos

(
θf
)

ẍf = − k
σf (t)

f ,ω

m
σf (t)

f ,1

xf − k
σf (t)

f ,s

m
σf (t)

f ,1

(
xf − l sin

(
θf
))3 + uf

m
σf (t)

f ,1

(43)
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Fig. 5. Curves of ξ1,1 and ξ1,2, ξ2,1 and ξ2,2, and ξ3,1 and ξ3,2.

Fig. 6. Underactuated weakly coupled mechanical system.

for f = 1, 2, 3, and σf (·) : [0, + ∞) → Mf = {1, 2, 3},
where θf ∈ (−[π/2], [π/2]), xf is the displacement of m

σf (t)
f ,1 ,

uf is the control force acting on m
σf (t)
f ,1 . Moreover, k

σf (t)
f ,s and

k
σf (t)
f ,ω are spring coefficients, and l is the pendulum length. The

following change of coordinates:

χf ,1 = θf , χf ,2 = θ̇f , χf ,3 = xf ,3, χf ,4 = ẋf ,3 (44)

transform (53) into
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

χ̇f ,1 = χf ,2

χ̇f ,2 = ϕ
σf (t)
f ,2

(
χ̄f ,2
)+ φσf (t)

f ,2

(
χ̄f ,2
)
χ3

f ,3
χ̇f ,3 = χf ,4

χ̇f ,4 = ϕ
σf (t)
f ,4

(
χ̄f ,4
)+ φσf (t)

f ,4

(
χ̄f ,4
)
uf

(45)

where ϕ
σf (t)
f ,2 (χ̄f ,2) = (g/l) sin(χf ,1) + ([k

σf (t)
f ,s ]/[m

σf (t)
f ,2 l])

cos(χf ,1)[3χf ,3l2 sin2(χf ,1)−3 χ2
f ,3l sin(χf ,1)−l3×sin3 (χf ,1)],

ϕf ,4 (χ̄f ,4) = −([kσf (t)
f ,ω ]/[m

σf (t)
f ,1 ]) χf ,3 − ([k

σf (t)
f ,s ]/[m

σf (t)
f ,1 ])

[χ3
f ,3 − l3 sin3(χf ,1) − 3χ2

f ,3l sin(χf ,1) + 3χf ,3l2 sin2(χf ,1)],

φ
σf (t)
f ,2 (χ̄f ,2) = ([k

σf (t)
f ,s ]/[m

σf (t)
f ,2 l]) cos(χf ,1), and φ

σf (t)
f ,4 (χ̄f ,4) =

(1/[m
σf (t)
f ,1 ]). We take m1

1,1 = 1.25 kg, m2
1,1 = 1.5 kg,

m3
1,1 = 1.75 kg, m1

1,2 = 3 kg, m2
1,2 = 2 kg, m3

1,2 = 1.25 kg,
m1

2,1 = 1.5 kg, m2
2,1 = 3.75 kg, m3

2,1 = 3 kg, m1
2,2 = 2 kg,

m2
2,2 = 2.25 kg, m3

2,2 = 1.5 kg, m1
3,1 = 5 kg, m2

3,1 = 1.75 kg,
m3

3,1 = 1 kg, m1
3,2 = 5 kg, m2

3,2 = 1.5 kg, m3
3,2 = 2.5 kg;

k1
1,s = 85 N/m3, k2

1,s = 70 N/m3, k3
1,s = 65 N/m3,

k1
2,s = 95 N/m3, k2

2,s = 90 N/m3, k3
2,s = 75 N/m3,

k1
3,s = 75 N/m3, k2

3,s = 98 N/m3, k3
3,s = 80 N/m3,

k1
1,ω = 50 N/m, k2

1,ω = 45 N/m, k3
1,ω = 37 N/m, k1

2,ω =
50 N/m, k2

2,ω = 40 N/m, k3
2,ω = 45 N/m, k1

3,ω = 35 N/m,
k2

3,ω = 55 N/m, k3
3,ω = 60 N/m, and g = 9.8 m/s2.

TABLE I
PERFORMANCE INDICES FOR FOUR DIFFERENT SETS

OF QUANTIZER PARAMETERS ρ̄

While carrying out the simulation, the control directions of
φ
σf (t)
f ,2 , f = 1, 2, 3, are assumed unknown and the other control

directions are assumed known. The switching signal is as in
Fig. 2. Let the initial conditions be χ1,1(0) = 5.5, χ1,2(0) =
0.25, χ1,3(0) = 0.75, χ1,4(0) = −0.5, χ2,1(0) = 3.7,
χ2,2(0) = 0.2, χ2,3(0) = 0.35, χ2,4(0) = 0.25, χ3,1(0) = 1.5,
χ3,2(0) = −0.75, χ3,3(0) = 0.5, χ3,4(0) = −0.75, β̂1,1(0) =
3, β̂1,3(0) = 1, β̂1,4(0) = 5, β̂2,1(0) = 7, β̂2,2(0) = 5,
β̂2,3(0) = 3.5, β̂2,4(0) = 2.5, β̂3,1(0) = 12, β̂3,2(0) = 9,
β̂3,1(0) = β̂3,2(0) = 9, β̂3,3(0) = β̂3,4(0) = 5.5, and
ξ1,1(0) = ξ1,2(0) = ξ1,3(0) = ξ1,4(0) = ξ2,1(0) = ξ2,2(0) =
ξ2,3(0) = ξ2,4(0) = ξ3,1(0) = ξ3,2(0) = ξ3,3(0) = ξ3,4(0) = 0.
The design parameters are chosen to be c1,1 = c2,1 = c3,1 =
7.5, c1,2 = c2,2 = c3,2 = 10, c1,3 = c2,3 = c3,3 = 5,
c1,4 = c2,4 = c3,4 = 5, ς1,1 = ς2,1 = ς3,1 = 0.8,
ς1,2 = ς2,2 = ς3,2 = 1, ς1,3 = ς2,3 = ς3,3 = 0.25,
ς1,4 = ς2,4 = ς3,4 = 1.5, �1,1 = �2,1 = �3,1 = 0.5,
�1,2 = �2,2 = �3,2 = 0.75, �1,3 = �2,3 = �3,3 = 0.35,
�1,4 = �2,4 = �3,4 = 0.5, ϑ1,1 = ϑ2,1 = ϑ3,1 = 1,
ϑ1,2 = ϑ2,2 = ϑ3,2 = 2, ϑ1,3 = ϑ2,3 = ϑ3,3 = 2.75,
ϑ1,4 = ϑ2,4 = ϑ3,4 = 1.5, γ1,1 = γ2,1 = γ3,1 = 1.4,
γ1,2 = γ2,2 = γ3,2 = 2, γ1,3 = γ2,3 = γ3,3 = 2.5,
γ1,4 = γ2,4 = γ3,4 = 3.5, and umin

1 = umin
2 = umin

3 =
0.05. Let ρ̄ = ρ1 = ρ2 = ρ3. To investigate the effects
of quantizer parameter ρf , f = 1, 2, 3, on system perfor-
mances, several performance indices are used: integral time
absolute error (ITAE) [(1/3)

∫ T
0 t|∑3

f =1 ef ,1(t)|dt], root mean-

square error (RMSE) [(1/3T)
∫ T

0 |∑3
f =1 e2

f ,1(t)|dt](1/2), and

mean absolute control action (MACA) [(1/3T)
∫ T

0 |∑3
f =1 uf |].

The simulation results are given in Fig. 7 and the calcula-
tion results are summarized in Table I. It can be seen from
Table I that the tracking accuracy improves as ρf increases,
while larger control effort is required, that is, a finer quan-
tizer leads to improved precision, which might require larger
controls.
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(a) (b) (c) (d)

Fig. 7. Evolutions of yL, y1, y2, and y3 under four cases: (a) ρ̄ = 0:02; (b) ρ̄ = 0:03; (c) ρ̄ = 0:05; and (d) ρ̄ = 0:08.

VI. CONCLUSION

This work investigated a Nussbaum function approach in
the distributed adding-one-power-integrator scenario. Studying
this scenario becomes necessary for classes of systems where
the distributed backstepping scenario fails: this is the case
of high-power dynamics, also known in the literature as
high-order nonlinear dynamics. The distributed control chal-
lenges lie in the high-power nonlinear dynamics, in the
switching behavior, in the input quantization and, most impor-
tantly, in the partially unknown control directions. A new
lemma involving multiple Nussbaum functions and quantiza-
tion decomposition parameter was constructed to handle these
challenges.

APPENDIX A
PROOF OF LEMMA 2

The main idea is to prove the boundedness of ξn on [0, tν)
through seeking a contradiction.

For simplicity, the index f is removed in the following
analysis. Without loss of generality, let us assume ξ1(t), . . .,
ξλ(t) are unbounded and ξλ+1(t), . . ., ξnf (t) are bounded for
1 ≤ λ ≤ nf . we first rewrite (5) as

V
(
ξi, ξj
) =

l∑

n=1

{∫ ξj

ξi

N 1̄
R (ξn(ν))θnφn(ν)dξn(ν)

}

+
nf∑

n=l+1

{∫ ξj

ξi

θnN 2̄
R (ξn(ν))φn(ν)dξn(ν)

}

+
nf∑

n=1

∫ ξj

ξi

ιndξn(ν) (46)

where we have used the following notation for compactness:
V(ξi, ξj) = V(ξ(ti), ξ(tj)) = V(ti, tj). At this point, two situa-
tions should be taken into account: the first one is when ξn(t)
has no upper bound on [0, tν) and the second one is when
ξn(t) has no lower bound on [0, tν).

1) Situation 1: ξn(t) has no upper bound on [0, tν) for
1 ≤ n ≤ λ. Let us first consider the case φn(t) > 0.
Following the method in [45], we construct three increas-
ing time sequences {t"}, {t′"}, and {t′′"} defined by t" =
min

1≤n≤λ{t : ξn(t) = (2"+1)π}, t′" = min
1≤n≤λ{t : ξn(t) = (2"−1)π},

and t′′" = min
1≤n≤λ{t : ξn(t) = 2"π}. It follows from the above

definitions that there exists a set �" = {ω"} ⊂ Rω" satisfying

ξn(t") = (2n + 1)π for ω" ∈ [1, λ]. To facilitate later anal-
ysis, we define sets �′

" ⊂ Rω′
" and �′′

" ⊂ Rω"−ω′
" , where

ω′
" ∈ [0, ω"]. Furthermore, the bound ξn(t") ≤ (2" + 1)π

holds if n is not from �". The following steps are standard in
the Nussbaum-based control literature [45] and we shall pro-
vide only the main steps for compactness. Using the above
definitions, (46) can be expressed by

V
(
ξn
(
t"
)) ≤

λ∑

n=1,n/∈�"
{
∫ ξn(t")

0
φn(ν)θnNR(ξn(ν))dξn(ν)}

+
ω′
"∑

k=0,k∈�" ′

{∫ ξk(t")

0
φk(ν)θkN 1̄

R (ξk(ν))dξk(ν)

}

+
ω′′
"∑

k=0,k∈�′′
"

∫ ξk(t")

0

{
N 2̄

R (ξk(ν))φk(ν)θkdξk(ν)
}

+
λ∑

n=0

ξn
(
t"
)
ιn +% (47)

where % = ∑nf
n=λ+1

∫ ξn(t")
0 φn(ν)NR(ξn(ν))dξn(ν) +

∑nf
n=λ+1(ξn(t"))ιn and ξn(0) = 0. The function V(ξn(t")) can

be further bounded as

V
(
ξn
(
t"
)) ≤

λ∑

n=1

⎧
⎨

⎩

∫ ξn

(
t′"
)

0
φn(ν)θnNR(ξn(ν))dξn(ν)

⎫
⎬

⎭

+
λ∑

n=1,k/∈�"′′
{
∫ 2"π

2"π−π
φ̄&|N 1̄

R (ν)|dν} +%

+
ω"∑

k=1,k∈�"

∫ 2"π+π

2"π
φ&NR(ν)dν +

λ∑

n=0

ξn(t")ιn

(48)

where φ̄& = φ̄nθ̄n and φ& = φ
n
θn with θ̄n > 0 and θn > 0

being the upper and lower bounds of θn for 1 ≤ n ≤ nf ,
respectively. Note that the integral value of NR(ν)

(
represented

by NT(ν)
)

on [0, tν) is

NT(ν) =
⎧
⎨

⎩

−μ
(

1 + exp
(
ν2

2

)
(ν sin(ν)− cos(ν))

)

1 − exp
(
ν2

2

)
.

(49)
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Substituting (49) into (48) and after arrangements gives

V
(
ξn
(
t"
)) =

λ∑

n=1

⎧
⎨

⎩

∫ ξn

(
t′"
)

0
φn(ν)θnNR(ξn(ν))dξn(ν)

⎫
⎬

⎭

+ (2" + 1)πλιmax − exp

(
4"2π2

2

)

×
{

�& exp

(
(4" + 1)π2

2

)

− ε&φ̄&μ
}

− exp

(
(2" − 1)2π2

2

)

{�& exp

(
(4" − 1)π2

2

)

− ε&φ̄&} +% (50)

where �& = ω′
" exp(−t&μ&)μ+ (ω" −ω′

")φ
& exp(−t&μ&) with

t& = t" − t′′", ε& = λ + ω′
" − ω" and ιmax = max

1≤n≤nf

{ιn}.
Apparently, the terms on the right-hand side of (50) (except
the first term) approach to negative infinity as " → +∞.
For the first term in (50), we define three sequences {t2π" },
{t4π" }, and

{
t(2"−4)π
"

}
defined by t2π" = min

1≤n≤λ{t : ξn(t) = 2π},
t4π" = min

1≤n≤λ{t : ξn(t) = 4π}, and t(2"−4)π
" = min

1≤n≤λ{t : ξn(t) =
(2"− 4)π}. Then, it can be deduced that the value of the first
term approaches to zero as " → +∞. To this end, one can
conclude that

V
(
ξn
(
t"
)) −→ −∞ as " −→ +∞ (51)

which leads to a contradiction with the fact that V(·) is pre-
designed to be non-negative. As a result, ξn(t), 1 ≤ n ≤ nf ,
are upper bounded.

2) Situation 2: ξn(t) has no lower bound on [0, tν) for 1 ≤
n ≤ λ. The proof is similar to Situation 1 and, thus, it is
omitted due to space limitations.

APPENDIX B
PROOF OF THEOREM 1

Consider the total Lyapunov function

V =
N∑

f =1

Vf ,nf =
N∑

f =1

nf∑

m=1

⎛

⎝
e

rf −rf ,m+4
f ,m

rf − rf ,m + 4
+ 1

2ϑf ,m
β̃2

f ,m

⎞

⎠. (52)

Applying Lemma 3 to the term s

rf ,n−1
rf +3

f e
rf −rf ,n+4
f ,n with sf > 0

being a constant, the following inequality holds:

s

rf ,n−1
rf +3

f e
rf −rf ,n+4
f ,n ≤ sf + e

rf +3
f ,n ,

(
n = 1, 2, . . . , nf

)
. (53)

Substituting (53) into (52) and synthesizing the previous
analysis, it is possible to obtain

Vf ,nf (t) ≤
nf∑

n=1

∫ t

0
φf ,n
(
χ̄f ,n
)
θf ,nNR

(
ξf ,n
)
ξ̇f ,ndν

+
nf∑

n=1

∫ t

0
ξ̇f ,ndν +!f (54)

where !f = Vf ,nf (0) + ∑nf
n=1

(
sf
(
cf ,n − −λf ,n

)+ λf ,n
) +

∑nf
n=1 ([γf ,n]/[2ϑf ,n])β2

f ,n is a positive constant.

At this point, we aim to extend the bounded-
ness of Lemma 2 from a finite interval to the entire
time domain. Along similar lines as [16], for the f th
agent, we consider an augmented state vector xag �
[χf ,1, . . . , χf ,nf , ξf ,1, . . . , ξf ,nf , β̂f ,1, . . . , β̂f ,nf , αf ,1, . . . , uf ]T

so that they can describe the closed-loop dynamic system as
ẋag(t) = �ag(t, xag(t)) for t ∈ [0, tf ). We start from t = 0;
since �ag(·) : R

+ × R
4×nf → R is a locally Lipschitz

map with respect to xag(t), a solution exists on the time
interval [0, tν) with tν ≤ tf (where the strict inequality
holds if there is finite-time escape phenomenon [54]). It
follows from (54) and Lemma 2 that ξf ,n(·), Vf (·), and
∑nf

n=1

∫ t
0

(
φf ,n(ν)θf ,nNR

(
ξf ,n(ν)

)+ ιf
)
ξ̇f ,n(ν)dν are bounded

on the time interval [0, tν) for n = 1, . . . , nf , which implies
χf ,1, . . . , χf ,nf , β̂f ,1, . . . , β̂f ,nf , and αf ,1, . . . , uf remain
bounded on [0, tν). Hence, the whole solution xag is bounded
on [0, tν). In accordance with [54, Ch. 8, Sec. 5], the
solution of the closed-loop system ẋag(t) = �ag(t, xag(t))
can be extended to tf . Repeating the above analysis on the
continuation of the solution of the closed-loop system and
invoking [55, p. 476, Th. 54] we conclude that there is
no finite-time escape phenomenon that will occur and the
solution of the closed-loop system exists on the entire time
domain [0,∞) and that ξf ,n(·), β̂f ,n(·), αf ,n(·), Vf (·), χf ,n· for
n = 1, . . . , nf are bounded on the entire time domain.

Let Pf be the upper bound of the integral term
∑nf

n=1

∫ t
0 φf ,n(χ̄f ,n)θf ,nNR

(
ξf ,n
)
ξ̇f ,ndν +∑nf

n=1

∫ t
0 ξ̇f ,ndν.

Considering (11) and (54), the following inequality holds:

e
rf −rf ,1+4
f ,1

rf − rf ,1 + 4
≤ !f + Pf . (55)

Noting (55), we know that Vf (t) ≤ !f + Pf , and the
following inequality holds:

∣
∣ef ,1
∣
∣ ≤ ϒf (56)

where ϒf = ((!f + Pf
)(

rf − rf ,1 + 4
))(1/[rf −rf ,1+4]).

From (56), we can obtain

‖e1‖ ≤
√
∑N

f =1

∣
∣ef ,1
∣
∣2 ≤

√
∑N

f =1
ϒ2

f . (57)

Consequently, we can obtain that ‖δ‖ ≤
(1/[σ

(L̄ + B)])
√∑N

f =1ϒ
2
f . It is known that σ

(L̄ + B) can

be replaced by a more conservative bound (N̄/[N2 + N − 1])
with N̄ = ([N − 1/N])[N−1/2] [56]. This completes the proof.
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