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Abstract - Despite gaining popularity, the use of Motion Cueing Algorithms (MCAs) based on Model Predictive
Control (MPC) remains challenging due to the required tuning of a large number of cost function parameters. This
paper investigates the effects of two critical MPC cost function parameters, the lateral specific force and roll rate
error weights (Way

and Wp), on the motion cueing quality achieved with an MPC-based MCA for a curve driving
scenario. An offline sensitivity analysis, which quantified the effects of varying Way

and Wp on the Root Mean
Square Error (RMSE) and Pearson Correlation Coefficient (PCC) of the resulting simulator motion outputs, shows
that for the same percentage-wise variation, Way

has a more pronounced effect on both cueing quality predictors
than Wp. In addition, for both RMSE and PCC, the effects of Way

and Wp are also found to be largely independent,
i.e., without interaction effects. This was further tested in a passive human-in-the-loop experiment with 20 partic-
ipants and with nine different Way

and Wp parameter combinations as test conditions, performed in the hexapod
moving-base simulator of the Max Planck Institute for Biological Cybernetics in Tübingen. The collected continuous
rating data, which were found to be reliable for 18/20 participants, show a statistically significant variation across all
experiment conditions, and especially a strong interaction effect of Way

and Wp. Somewhat surprisingly, the overall
lowest continuous ratings were given to the combination of both reference weight settings from earlier research
(our baseline condition). In line with the interaction effect in the continuous data, an extended post-experiment
correlation analysis shows that a weighted combination of lateral specific force RMSE and and roll rate RMSE
above the roll rate perception threshold strongly correlates (ρ = 0.98) with the variation in mean continuous ratings
across all experiment conditions. This approach can potentially be used for straightforward prediction of perceived
motion cueing quality and offline MCA optimization.

Keywords: motion cueing, driving simulators, curve driving, model predictive control, continuous subjective ratings

Introduction
In recent years, Motion Cueing Algorithms (MCAs)
based on Model Predictive Control (MPC) have be-
come more popular [Dag09, Bas11, Gar13, Kat15].
The main reason for this is the fact that, un-
like classical filter-based MCAs [Gra97], MPC can
explicitly account for physical limits of simulators’
workspaces and therefore use the available mo-
tion space more effectively. Multiple recent compar-
isons between filter-based MCAs and newly devel-
oped MPC-based MCAs indeed confirm that MPC
has the potential to enable much-improved motion
cueing quality [Cle18, Gar13].

While many different MPC-based MCAs have been
proposed [Dag09, Bas11, Gar13, Kat15], the main
principle of MPC – its use of a cost function to find
a “current” optimal control input accounting for the
current controlled system state as well as its future
trajectory – is common to all implementations. Fur-
thermore, the cost function of an MPC-based MCA
typically contains many parameters that need to be
tuned to achieve satisfactory motion cueing qual-
ity. Especially for online driver-in-the-loop MPC cue-
ing, this parameter tuning is critical, due to the re-

quired use of limited prediction horizons and inac-
curate model predictions [Kat15, Beg12], to reduce
computational costs. While the parameters (i.e., cost
function weights) of an MPC-based MCA can per-
haps be considered to be more intuitive to tune than
the parameters of a filter-based MCA (e.g., damping
ratios and cut-off frequencies), the large number of
parameters (e.g., 39 cost function weight parameters
[Kat17, Kat18]) and their interactions that together re-
sult in an MCP-based MCA output in fact make this a
highly complex problem in practice.

The goal of this paper is to investigate the ef-
fects of two critical parameters of an MPC-based
MCA’s cost function on the motion cueing quality for
a curve driving scenario: the lateral specific force
and roll rate error weights, Way

and Wp. This pa-
per will present an offline sensitivity analysis per-
formed on the MPC-based MCA developed at the
Max Planck Institute (MPI) for Biological Cybernet-
ics [Kat15, Kat17, Kat18], but as equivalent weight
parameters are present in all MPC implementations
these results will be of general interest. In addition
to the sensitivity analysis, this paper presents the re-
sults of a human-in-the-loop experiment performed
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in the hexapod moving-base simulator of the MPI for
Biological Cybernetics, in which 20 participants used
continuous ratings to assess different Way

and Wp

settings in a passive curve driving scenario.

MPC motion cueing
In an MPC-based MCA, an explicit optimisation of the
future trajectory of the simulator is performed using
a cost function that minimises the squared error be-
tween reference values and actual values of the se-
lected output variables (yk), state variables (xk), in-
put variables (uk) and the terminal state (xN ), over a
prediction horizon of N future samples [Kat17]. Such
a cost function is given in (1):

uk = arg min
uk

1

N

N∑

k=1

[
Wy (y(xk,uk) − ŷk)

2

+Wx (xk − x̂k)
2

+Wu (uk − ûk)
2

]
(1)

+WxN
||xN − x̂N ||2

In MPC-based MCAs, the output term of (1) is gener-
ally used to penalize differences between simulator
y(xk,uk) and real vehicle ŷk motion outputs, while
the state term xk − x̂k provides “washout” by limiting
the simulator attitude and position xk compared to
its neutral position x̂k. Furthermore, the input term
uk − ûk provides input limiting, while the terminal
state error term provides an explicit means to ensure
that the simulator state remains bounded, to improve
algorithm stability. The key to effective application of
an MPC cost function as given by (1) is its tuning, i.e.,
selecting appropriate values for the parameters that
influence the trade-off made by the MPC algorithm.
In (1) these tunable parameters are indicated as the
weighting matrices Wy, Wu, Wx and WxN

, which are
generally all diagonal matrices with error weight pa-
rameters on their diagonals, which can be increased
for a higher penalty on the corresponding squared er-
ror term in solving for the optimal uk.

For the MPC-based MCA considered in this paper
[Kat17], the MPC output vector y, state vector x, and
input vector u are defined in (2) to (4). The output
vector y consists of motion states the human vestibu-
lar system is sensitive to: the specific forces (ax, ay,
az), rotational rates (p, q, r), and rotational accelera-
tions (ṗ, q̇, ṙ). The state vector x contains the simu-
lator cabin position (x, y, z) and attitude (φ, θ, ψ), as
well as their time derivatives. The input vector u con-
tains the outputs of the MCA, i.e., the setpoints for
the motion control system of the simulator platform,
here expressed as specific forces (ax, ay, az) and ro-
tational accelerations (ṗ, q̇, ṙ) in simulator body axes.
With this definition of the output, input, and state vec-
tors, the MPC cost function of (1) requires a total of
39 weight parameters (Wy, Wx, Wu WxN

) and an
equal number of reference values (ŷk, x̂k, ûk, x̂N ) to
be tuned, for which the baseline values used in this
paper are listed in Table 1

y = [ax ay az p q r ṗ q̇ ṙ]
T

(2)

x = [x y z φ θ ψ ẋ ẏ ż p q r]
T

(3)

u = [ax ay az ṗ q̇ ṙ]
T

(4)

As can be verified from Table 1, for Wy the weights
on rotational acceleration errors were set to 0, while
the specific force and rotational velocity error weights
were chosen to roughly compensate for the aver-
age magnitude difference of specific forces (in m/s2)
and angular velocities (in rad/s) during typical vehi-
cle manoeuvres [Kat17]. Both the input error weights
(Wu) and terminal state weights (WxN

) were set to
very small values (0.01), to effectively omit input lim-
iting and the stabilizing effect of a terminal state
penalty, as in general there is no need for both on
a hexapod-based motion simulator. Finally, the state
error weights Wx listed in Table 1 were obtained from
an optimization for the current curve driving scenario,
to ensure that the simulator platform would move
back to its neutral position and attitude within a rea-
sonable time span after a curve. This tuning of Wx

was essential to ensure that the motion platform was
again in its neutral position before a next curve would
start in our simulated curve driving scenario.

In addition to the weight factors, an MPC cost func-
tion requires reference trajectories for all outputs,
states, and inputs against which errors should be
minimised, i.e., ŷk, x̂k, ûk, and x̂N in (1), see also
Table 1. First, the state reference x̂k represents the
state towards which the motion platform will perform
washout, i.e., generally the motion platform’s neutral
position. In addition, to achieve their respective in-
tentions, the input (ûk) and terminal state (x̂N ) refer-
ences are generally also set to zero. Finally, for most
MPC problems defining and calculating the output
reference ŷk, i.e., a prediction of the reference out-
put along the prediction horizon, is the key aspect of
MPC controller design, where most differences in im-
plementation are observed. While for passive simula-
tions the (known) true future vehicle trajectory could
be used for ŷk, here we choose to explicitly focus on
an implementation that can also be implemented in
real time: a “constant” prediction strategy, for which
it is assumed that there will be no change in the ve-
hicle motion during the prediction horizon. For MPC-
based MCAs that need to run in real-time, currently
the prediction horizon is generally limited by available
computational power. Here, a real-time feasible pre-
diction horizon of 2 s with a time step of ∆t = 0.1 s
and hence N = 20 prediction steps is used.

Methodology

Scenario and Test Conditions
To tie in with earlier experiments [Cle18, Lee19], in
this paper we focus on motion cueing for a curve
driving scenario. The reference vehicle motion for the
driven curves was generated in CarSim [Car17] and
was tuned to result in a “nominal” trajectory with a
maximum sustained lateral specific force of approxi-
mately 2 m/s2 during the sustained part of the curve.

In addition, in this paper we focus on the combination
of an offline sensitivity analysis and a human-in-the-
loop simulator experiment to study the effects of the
two MPC cost function weight parameters that most
directly affect the cueing quality in curve driving: the
lateral specific force error weightWay

and the roll rate
error weight Wp, two elements in Wy as defined in
(1). As can be verified from Table 2, with respect to
the baseline weights of Way

=1 and Wp=10 [Kat15]
(our condition C5, indicated in bold in Table 2), for
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Table 1. Overview of the parameter values of the cost function of the MPC-controller in the baseline configuration.

Parameter
Spec. forces Rot. vel. Rot. accel.

ax ay az p q r ṗ q̇ ṙ

Outputs and Wy 1 1 1 10 10 10 0 0 0

Inputs ŷk “Constant” prediction (N = 20 and ∆t = 0.1 s)

Wu 0.01 0.01 0.01 – 0.01 0.01 0.01

ûk 0 0 0 – 0 0 0

Parameter
Position Attitude Lin. vel. Rot. vel.

x y z φ θ ψ ẋ ẏ ż p q r

States and Wx 8.2 5.1 3.6 5.4 3.7 6.8 0 0 0 0 0 0

Terminal States x̂k 0 0 0 0 0 0 0 0 0 0 0 0

WxN
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

x̂N 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 1. The output of the simulator for all nine experiment conditions, including perception thresholds for tilt rates.

both weights additional values that were 60% higher
and lower were tested. Both parameters were varied
independently, meaning that in total the full factorial
of nine conditions is investigated.

Table 2. Test conditions with different Way and Wp weights.

Way

0.4 1.0 1.6

4 C1 C2 C3

Wp 10 C4 C5 C6

16 C7 C8 C9

Fig. 1 shows the time traces of the simulator outputs
for all nine test conditions. The vehicle motion (Car-
Sim data) is shown with a thick black line for refer-
ence. Also indicated in the Fig. 1(d) and (e) with red
dashed lines is the perception threshold for tilt rates
of 3 deg/s [Gro04] (0.0524 rad/s). This simulator roll
rate results from tilt commanded by the MPC cueing
to better match the sustained lateral acceleration (ay)

during the curves. Fig. 1 shows that for conditions
with low Wp and high Way

– e.g., C2, C3, and C6 –
the simulator roll rate responses exceed the percep-
tion threshold.

Offline sensitivity analysis

In the offline sensitivity analysis, both the individ-
ual effects of varying only Way

or Wp over a wide
range of values, as well as interaction effects due
to concurrent variations in both weight parameters,
were investigated explicitly. In this paper, however,
only the results for the set of parameter combina-
tions of Table 2 are presented for brevity. To be able
to quantify both magnitude and phase (shape) cue-
ing errors [Gra97, CY15, Ber13], two objective met-
rics were considered as predictors of motion cue-
ing quality in the sensitivity analysis: the Root Mean
Square Error (RMSE, see (5)), which penalizes both
magnitude and shape errors, and the Pearson Cor-
relation Coefficient (PCC, see (6)), which penalises
shape errors.
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RMSE(ay) =

√√√√ 1

N

N∑

k=1

(ayk
− âyk

)2 (5)

PCC(ay) =
1

N − 1

N∑

k=1

(
ayk

− µay

σay

) (
âyk

− µây

σây

)

(6)

In (5) and (6), N is number of data points, ay and ây

represent the simulator and vehicle (reference) lat-
eral specific forces, and µ and σ indicate mean and
standard deviation, respectively. Note that while (5)
and (6) show how both metrics are calculated for the
lateral specific force ay, the same equations can be
used for all other simulator outputs as well.

As a reference for the RMSE and PCC values calcu-
lated for an MPC-based MCA in our sensitivity anal-
ysis, the same two metrics were also calculated for
a representative filter-based Classical Washout Filter
(CWF) implementation for curve driving, as reported
in [Ven15].

Simulator experiment

Experiment participants and procedures

In the experiment, 20 participants were subjected to
the same passive curve driving scenario (i.e., they
were passengers) under the nine different MCA set-
tings of Table 2 and Fig. 1. In each experiment trial, all
nine test conditions were presented back to back, i.e.,
a single trial consisted of nine randomized curves,
each with a different Way

and Wp combination. In
these trials, an initial acceleration and final decelera-
tion were included for a more realistic simulation sce-
nario.

Throughout each trial, participants provided Contin-
uous Ratings (CRs) of their perceived motion in-
congruence according to the procedure outlined in
[Cle18] as the main outcome variable that was com-
pared to the sensitivity analysis results. With this CR,
participants were asked to continuously indicate to
what extent they felt a mismatch between the vehi-
cle motion that was presented visually and through
the platform motion, i.e., their perceived motion in-
congruence as a function of time during the simula-
tion. As part of the continuous rating method [Cle18],
two training trials were performed before collecting
the measurements, to allow participants to familiarize
themselves with the method and the platform cueing
for the different test conditions. After the training tri-
als, participants performed three repeated measure-
ment trials, to be able to quantify whether participants
rated consistently. One simulator trial lasted approxi-
mately 6 minutes.

Finally, to help in the interpretation of the CR results,
participants were asked to fill in a questionnaire af-
ter the experiment, in which participants were asked
structured questions to find out how they decided on
a certain rating (not presented here, see [Plo18]).
Also, after each trial participants were asked to pro-
vide a sickness score (MISC) [Bos05], to monitor
motion sickness development during the experiment.
Overall, however, motion sickness was not an issue
in this experiment.

Apparatus

The experiment was performed in the hexapod
moving-base simulator of the MPI for Biological Cy-
bernetics in Tübingen, see Fig. 2(a), which has a
Bosch Rexroth eMotion-1500-6DOF-650-MK1 mo-
tion platform. During the experiment, participants
were presented with computer-generated visuals
(generated with Unity) projected on a screen in front
of them, see Fig. 2(b), that matched the true (CarSim)
vehicle motion (i.e., the thick black lines in Fig. 1).
Participants provided their CRs by turning a knob
mounted in front of them on the simulator platform,
see Fig. 2(c). In addition, as also shown in Fig. 2(c),
a “rating bar” was shown on the screen to provide
participants with continuous visual feedback of their
own current rating.

Data Analysis

The only dependent variable measured in the exper-
iment was the CR, for which three repeated mea-
surements were collected from each participant. Be-
fore further analysis of the CR data, the consistency
of participants’ rating data was verified using Cron-
bach’s alpha [Cro51], a measure of internal consis-
tency. Table 3 shows the Cronbach’s alpha values
for all 20 participants. Table 3 shows that the CRs
provided by two participants (10 and 18) shows poor
consistency (Cronbach’s alpha < 0.7). Hence, the
data provided by these two participants were ex-
cluded from further analysis.

Table 3. Cronbach’s alpha values for all participants. Bold val-

ues indicate inconsistent participants.

Subj. # Cronbach’s alpha Subj. # Cronbach’s alpha

1 0.8848 11 0.9174

2 0.9536 12 0.9059

3 0.8604 13 0.9273

4 0.9325 14 0.9224

5 0.9106 15 0.9609

6 0.9151 16 0.8225

7 0.9219 17 0.8487

8 0.8945 18 0.6180

9 0.9181 19 0.8650

10 0.2326 20 0.9715

The raw CR data for the consistent participants were
averaged across the three repeated trials to calculate
an “average” CR time trace that was used for further
analysis. The main metric used to compare the CRs
across the nine test conditions was the mean CR, in
this paper indicated as CR, calculated as the time-
average rating across each 30-second curve seg-
ment. The variation in the mean CR was explicitly
compared between conditions using statistical analy-
sis (repeated-measures ANOVA).

Finally, to link the results from the sensitivity anal-
ysis (RMSE and PCC) and the experiment (CR),
an explicit correlation analysis was performed (using
Pearson’s correlation coefficient ρ) between the mea-

sured CR data and predictions of these CRs (i.e.,

ĈR) based on the RMSE and PCC for ay or p or a
weighted combination of both.
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(a) The steering setup. (b) The visual projection screen. (c) The rating knob and rating bar.

Figure 2. The experiment setup in the MPI hexapod simulator, showing the steering setup (a), the visuals and projection screen (b),

and the turning knob participants used to provide their continuous rating (c). In (c) the rating bar on the screen also shows the

current rating.

Results and discussion

Sensitivity analysis
Figures 3 and 4 show the RMSE and PCC values
for all experiment conditions for the considered curve
driving scenario, respectively. In all figures, the dif-
ferent Way

settings are on the x-axis, while the dif-
ferent settings for Wp (4, 10, and 16) are presented
with blue, red, and yellow markers, respectively. In
addition, with a solid gray line all figures present
the RMSE or PCC values for the reference Classical
Washout Filter (CWF) from [Ven15]. Finally, note that
for visual consistency with the RMSE data of Fig. 3,
Fig. 4 presents the PCC data with an inverted y-axis,
as a high PCC indicates better cueing.

As expected,Way
directly influences the tracking per-

formance for the lateral specific force (see Fig. 3(b)),
i.e., increasing Way

reduces RMSE(ay), at the cost
of more perceptible false cues in roll rate due to
stronger tilt coordination. Though a less strong ef-
fect for the same percentage-wise variation in cost
function weight, Wp is found to have the opposite ef-
fects on both RMSE(ay) and RMSE(p), i.e., reduced
roll rate errors with high Wp, at the cost of increased
RMSE(ay). Finally, as can be verified from Fig. 3, the
RMSE for all other degrees-of-freedom (ax, az, q, r)
only shows negligible effects of both Way

and Wp.

For the PCC, Fig. 4(b) shows a variation with Way

and Wp that is mostly consistent with the RMSE data
in Fig. 3(b). Increasing Way

and decreasing Wp are
found to result in a PCC(ay) that is closer to unity and
hence better cueing (reduced shape errors). Some-
what counter-intuitively, Fig. 4(d) shows that increas-
ing Wp results in reduced PCC(p), indicative of in-
creased shape errors in roll cueing. This can be
explained by considering the time responses for p
shown in Fig. 1(d), where the phase lag in the roll
rate peaks compared to the (low magnitude) vehicle
roll rates is seen to be reduced for the bigger peaks
that occur with high Way

and/or low Wp. Finally, while
PCC(ax), PCC(q), and PCC(r) show hardly any ef-
fect of both Way

and Wp (just as was found for the
RMSE), the PCC for the vertical specific force az

is seen to show an even larger variation with both
weights than seen for both ay and p. Considering
Fig. 1(c) this can be attributed to, in terms of abso-
lute value, very small differences in az cueing as a
result of the roll tilt. Overall, the fact that the PCC is

only sensitive to shape errors, while the magnitude
of cueing errors are not taken into account, thus de-
grades the usefulness of the PCC as a predictor of
motion cueing quality for the curve driving scenario
considered in this paper.

From the sensitivity analysis it was thus found that
both Way

and Wp have a significant impact on MPC-
based MCA cueing quality for the key degrees-of-
freedom in a curve driving scenario, i.e., ay and p. In-
creasing Way

results in the expected improved repli-
cation of vehicle lateral specific forces, both in terms
of RMSE and PCC, at the cost of increased roll tilt.
Increasing the roll rate error weight Wp will suppress
roll tilt, which only affects simulator roll during the
curve onsets and exits (see Fig. 1) where tilt coor-
dination is active. Overall, Figures 3 and 4 show that
the effects of Way

and Wp are mostly independent
and additive, as for the tested range of parameter set-
tings no dominant interaction effects were observed.
Finally, the CWF data presented in Figures 3 and
4 also highlight that with appropriate choice of cost
function weights, substantial improvements in RMSE
or PCC can be achieved with an MPC-based MCA.

Simulator experiment
Fig. 5 shows the mean CR over time, averaged
across all participants, for all experiment conditions
and the entire driven curve segment. Please note that
for easy comparison, the same colors are used for
the different experiment conditions as in Fig. 1. Fig. 5
clearly shows, as was also found in earlier experi-
ments [Lee19], that participants on average reported
the largest perceived incongruence (highest CR) dur-
ing the sustained part of the curve. Furthermore, the
highest CRs are consistently given to the conditions
with the low Way

= 0.4 setting (C1, C4, C7), while our
baseline condition (C5) is rated best (lowest CR) by
the experiment participants. During the curve onset
and exit, condition C3 – with the highest Way

and
lowest Wp and thus the highest tilt roll rates, see
Fig. 1 – is clearly awarded the highest CRs. Con-
sistent with the sensitivity analysis data of Figures
3 and 4, the CR data in Fig. 5 also show that, for
the same percentage-wise variation, Way

causes a
larger change in the provided CRs than Wp.

Fig. 6 shows the time-averaged mean rating CR per
condition, in the same figure format as used for Fig. 3
and 4. The errorbars indicate the 95% confidence
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Figure 3. RMSE values for all experiment conditions. The reference Classical Washout Filter (CWF) [Ven15] has been included in gray

for comparison.
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intervals of the mean CR indicated with the circular
markers. Fig. 6 again shows that the lowest ratings
were given to our baseline condition (C5) with Way

=
1 and Wp = 10. Reducing Way

is seen to, on average,

result in increased CR, while only for high Way
(1.6),

increasing Wp is found to result a better mean rat-
ing. A two-way repeated-measures ANalysis Of VAri-
ance (ANOVA) test performed on the mean CR data
of Fig. 6 shows a marginally significant direct effect of
Way

(F (1.2,21.0) = 3.65, p = 0.062) and no significant
variation across all conditions due to Wp (F (1.2,19.7)
= 1.69, p = 0.211). Consistent with the observed ef-
fects of both cost function weights, a significant inter-
action effect (F (2.7,45.1) = 8.08, p < 0.001) is found.
Thus, a statistically significant variation in the mean
CR across all conditions was measured.

Correlation analysis

Fig. 6 suggests that the MPC-based MCA’s weight
setting that was rated to be best by participants in the
experiment was a compromise between replicating
the vehicle lateral acceleration (high Way

) and limit-
ing false roll tilt rates (high Wp). To further investigate
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Figure 7. Correlation between the time-averaged mean ratings

CR and different RMSE predictors ĈR.

how participants’ average ratings CR might be based
on cueing errors in ay and p, a correlation analysis
was performed (by calculating Pearson’s correlation
coefficient ρ) between the measured time-averaged
mean ratings shown in Fig. 6 and the variation in this

rating across conditions that would be predicted (ĈR)
by the RMSE and PCC, see Figs. 3 and 4. The anal-
ysis here is limited the RMSE and PCC for ay and p,
as the sensitivity analysis showed that these are the
critical degrees-of-freedom for the considered curve
driving scenario. To also account for possible inter-
action effects, both the individual (ay or p) correla-
tions between the RMSE/PCC and the mean CR data
were calculated, as well as a predictor that used a
weighted average of RMSE/PCC in ay and p.

For the PCC, as perhaps expected based on the
sensitivity analysis and Fig. 4, no strong correlations
were observed with the CR data: the highest ρ= 0.18
was obtained for PCC(ay). Fig. 7 shows the results
for the different considered predictors – RMSE(ay),
RMSE(p), and RMSE(ay) +Kp × RMSE(p) – in green
dashed, purple dashed, and solid red lines, respec-
tively. As can ben seen in Fig. 7 also the individ-
ual RMSE(ay) and RMSE(p) predictors only result in
weak correlations (ρ < 0.2). The weighted combina-
tion of both RMSE values, however, is found result in
a much stronger correlation (ρ = 0.6) for a Kp value

of around 23 m/s2/(rad/s).

This result can be further improved by comparing
the mean rating per experiment condition in Fig. 6
with the RMSE(ay) data in Fig. 3(b). For most condi-
tions, both figures shows a similar trend, except for
conditions C2, C3 and C6, which all resulted in tilt
roll rates that far exceeded the perception threshold
of 3 deg/s [Gro04]. This suggests that a good indi-
cator of perceived motion quality during curve driv-
ing should include RMSE(ay), but also errors in p
above the perception threshold. For this reason, also
the RMSE of the roll rate signal from which all val-
ues below the perception threshold, indicated as pthr,
was considered as a predictor variable. In Fig. 7, the
correlation of RMSE(pthr) as well as the combina-
tion of RMSE(ay) and RMSE(pthr) are indicated with
a dashed yellow and a solid blue line, respectively.
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Of all single-variable predictors, the correlation of
RMSE(pthr) is found to be highest (0.37). In addition,
the combined predictor is found to achieve very high
correlation coefficients. For a roll rate weight of 49.4
m/s2/(rad/s), a maximum correlation of 0.98 is found.
This result confirms that perceived motion incongru-
ence for a curve driving scenario, as considered here,
can be accurately predicted from a weighted average
of RMSE in ay and p, if small roll rate errors (below
threshold) are excluded.

Conclusions/implications
In this paper, the effects of a percentage-wise varia-
tion of two key error weight parameters (lateral spe-
cific force and roll rate) of the cost function of an
MPC-based MCA were investigated for a realistic
curve driving scenario. This was done with the combi-
nation of an offline sensitivity analysis and a human-
in-the-loop driver experiment. The sensitivity analy-
sis, which quantified the effects of varying the lat-
eral specific force (Way

) and roll rate weight (Wp) pa-
rameters using the Root Mean Square Error (RMSE)
and Pearson Correlation Coefficient (PCC) as met-
rics, clearly indicated that with appropriate weight
settings better motion cueing than obtained with a
reference Classical Washout Filter was achieved with
the MPC-based MCA. In addition, the PCC was found
to be a less valuable predictor for motion cueing
quality, due to the fact that this metric is only sen-
sitive to shape errors (not error magnitude). In the
experiment, 18/20 participants provided consistent
continuous rating data which also show a statisti-
cally significant variation across the tested experi-
ment conditions. Somewhat surprisingly, participants
reported the overall lowest continuous perceived mis-
match ratings during the curve sections for condi-
tion C5 (our baseline condition). In an extended post-
experiment correlation analysis, a weighted combi-
nation of lateral specific force RMSE and roll er-
ror RMSE above the roll rate perception threshold
was found to strongly correlate with the variation in
mean continuous ratings across all experiment condi-
tions. As this metric explained our experiments’ par-
ticipants’ ratings for the differentWay

andWp settings
at very high accuracy (C = 0.98), it is potentially a
very useful indicator for offline prediction of perceived
motion cueing quality and MCA optimization.
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J. Schwandter, H. J. Teufel, B. Vailleau, M. M. van Paassen, M. Vi-
dal and M. Wentink, Motion Scaling for High-Performance Driv-
ing Simulators, IEEE Transactions on Human-Machine Systems,
vol. 43(3): 265–276, 2013.

J. E. Bos, S. N. MacKinnon and A. Patterson, Motion sickness

symptoms in a ship motion simulator: Effects of inside, out-
side, and no view, Aviation, Space, and Environmental Medicine,
vol. 76(12): 1111–1118, 2005.

CarSim, Mechanical Simulation, Ann Arbor (MI), United States,
2017, https://www.carsim.com/products/carsim/index.php.

D. Cleij, J. Venrooij, P. Pretto, D. M. Pool, M. Mulder and H. H.
Bülthoff, Continuous rating of perceived visual-inertial motion
incoherence during driving simulation, in Proceedings of the
Driving Simulation Conference 2015 Europe, Tübingen, Germany,
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