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Predicting non-deposition sediment transport in sewer pipes using 12 

Random Forest 13 

Abstract 14 

Sediment transport in sewers has been extensively studied in the past. This paper 15 
aims to propose a new method for predicting the self-cleansing velocity required 16 
to avoid permanent deposition of material in sewer pipes. The new Random Forest 17 
(RF) based model was implemented using experimental data collected from the 18 
literature. The accuracy of the developed model was evaluated and compared with 19 
ten promising literature models using multiple observed datasets. The results 20 
obtained demonstrate that the RF model is able to make predictions with high 21 
accuracy for the whole dataset used. These predictions clearly outperform 22 
predictions made by other models, especially for the case of non-deposition with 23 
deposited bed criterion that is used for designing large sewer pipes. The volumetric 24 
sediment concentration was identified as the most important parameter for 25 
predicting self-cleansing velocity.   26 

Keywords: non-deposition; random forest; sediment transport; self-cleansing; 27 
sewer systems.  28 

1. INTRODUCTION 29 

Designing sediment-carrying sewer systems is a well-known field of research in hydraulic 30 

engineering. This interest is explained by the problems related to the presence of material 31 

in the systems. Due to the varying environmental conditions (i.e. loading and sediment 32 

characteristics and intermittent flow), the risk of building up a permanent sediment 33 

deposit increases during dry weather seasons. These deposits lead to problems such as 34 

reduced pipe capacity, increased roughness, and premature overflows. As an example, 35 

Ackers et al. (2001) showed that the presence of a permanent deposit at the bottom of 36 

sewer pipes increases hydraulic roughness and reduces discharge capacity by about 20%.  37 
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The most common criterion to avoid permanent deposit of material in sewer pipes 38 

is known as non-deposition. Several authors (Safari et al., 2018; Vongvisessomjai et al., 39 

2010) have classified this criterion into two subgroups: 1) Non-deposition without 40 

deposited bed and 2) Non-deposition with deposited bed. Both groups are based on the 41 

presence of sediments at the bottom of the pipe. In the first case, high water velocities 42 

produce an individual and separate movement of the particles by slicing or rolling over 43 

the pipe invert, i.e. without deposited bed. In contrast, the second case is seen when lower 44 

water velocities are presented and the particles are grouped and move as a transitional 45 

deposited bed. 46 

In the case of ‘without deposited bed’, traditional criteria of minimum velocities 47 

and shear stress values are commonly found in water utilities standards and industry 48 

design codes. Generally, these standards and codes suggest values ranging from 0.30 m 49 

s-1 to 1.0 m s-1 for minimum velocity and from 1.0 Pa to 4.0 Pa for shear stress (Montes 50 

et al., 2019; Nalluri and Ab Ghani, 1996; Vongvisessomjai et al., 2010). Several authors 51 

(Merritt and Enfinger, 2019; Nalluri and Ab Ghani, 1996) have shown how traditional 52 

threshold values lead to over-design of small diameter pipes and under-design of large 53 

diameter pipes (as a rule-of-thumb, pipes with diameter greater than 500 mm). 54 

Consequently, large sewers commonly require frequent removal of sediment deposits 55 

(Ackers et al., 2001) because of the minimum self-cleansing value adopted during the 56 

design stage. A unique design value is inadequate; hence sediment characteristics and 57 

hydraulic conditions must be included in the definition of the self-cleansing design 58 

criterion.  59 

According to Safari and Aksoy (2020), existing traditional self-cleansing criteria 60 

can be up to 20% different from laboratory-scale measured values. The channel cross-61 

section is relevant in the choice of the self-cleansing criterion. For example, rectangular 62 
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cross-sections require lower velocities compared to V-bottom or U-shape channels. Even 63 

criteria based on the Shields diagram, such as the Camp criterion, seem to be inadequate 64 

to define the self-cleansing value due to the non-inclusion of sediment concentration.  65 

The above has motivated extensive experimental research (Ab Ghani, 1993; El-66 

Zaemey, 1991; May, 1993; May et al., 1989; Mayerle, 1988; Montes et al., 2020a, 2020b; 67 

Ota, 1999; Perrusquía, 1991; Vongvisessomjai et al., 2010) aiming to collect data and 68 

developing models for predicting the self-cleansing velocity as a function of sediment 69 

characteristics and system hydraulics, based on the concept of non-deposition. These 70 

studies have been carried out at laboratory scale under well-controlled and steady flow 71 

conditions, using non-cohesive sediments. Different authors collected data in pipes with 72 

different materials (e.g. concrete, acrylic or PVC, among other materials) and internal 73 

diameters, ranging from 100 mm to 595 mm. In the end, all these studies proposed a 74 

model for predicting the self-cleansing conditions in practice that was either developed 75 

with their own experimental data or using the benchmark data reported in the literature. 76 

Most models developed are regression-based and include the group of input parameters 77 

that most affect the prediction of the self-cleansing velocity (Ackers et al., 2001; Ebtehaj 78 

and Bonakdari, 2016a; May et al., 1996). Most of these models are in the form of: 79 

𝑉𝑉𝑙𝑙
�𝑔𝑔𝑔𝑔(𝑆𝑆𝑠𝑠 − 1)

= 𝑎𝑎𝐶𝐶𝑣𝑣𝑏𝑏 �
𝑔𝑔
𝑅𝑅

 𝑜𝑜𝑟𝑟 
𝑔𝑔
𝐷𝐷
�
𝑐𝑐

𝜆𝜆𝑒𝑒𝐷𝐷𝑔𝑔𝑔𝑔
𝑓𝑓 �

𝑊𝑊𝑏𝑏
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𝐷𝐷
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𝑔𝑔

�
𝑃𝑃
𝐵𝐵
�
ℎ

 (1) 

where 𝑉𝑉𝑙𝑙 is the self-cleansing velocity, 𝑔𝑔 the mean particle diameter, 𝑔𝑔 the gravity 80 

acceleration coefficient, 𝑆𝑆𝑠𝑠 the specific gravity of sediments, 𝐶𝐶𝑣𝑣 the volumetric sediment 81 

concentration, 𝑅𝑅 the hydraulic radius, 𝐷𝐷 the pipe diameter, 𝜆𝜆 the channel friction factor, 82 

𝐷𝐷𝑔𝑔𝑔𝑔 the dimensionless grain size �= �(𝑆𝑆𝑠𝑠−1)𝑔𝑔𝑑𝑑3

𝜈𝜈2
�
1
3�, 𝜈𝜈 the water kinematic viscosity, 𝑊𝑊𝑏𝑏 83 

the sediment deposited width, 𝑃𝑃 the wetted perimeter, 𝑦𝑦𝑠𝑠 the sediment deposited 84 

thickness, 𝐵𝐵 the water surface width, 𝑌𝑌 the water level and 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑒𝑒, 𝑓𝑓, 𝑔𝑔 and ℎ regression 85 
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coefficients. Other parameters as 𝑉𝑉𝑡𝑡 the threshold velocity required to initiate movement 86 

�= 0.125�𝑔𝑔𝑔𝑔(𝑆𝑆𝑠𝑠 − 1)�
0.5(𝑌𝑌/𝑔𝑔)0.47� and 𝑆𝑆𝑜𝑜 the pipe slope have also been included in 87 

regression models (May et al., 1996; Montes et al., 2020a). 88 

Most of above studies for both non-deposition criteria, have developed predictive 89 

models which tend to be overfitted to their own experimental data. This problem can be 90 

seen especially in the earlier works, where no advanced techniques were used to develop 91 

regression models. For example, several authors (Montes et al., 2020b; Safari et al., 2018) 92 

have pointed out that early work of Mayerle’s (1988) has developed a model that shows 93 

high accuracy prediction with its data and poor prediction when other datasets are used. 94 

In contrast, recent regression-models, which used novel techniques such as Evolutionary 95 

Polynomial Regression – Multi-Objective Genetic Algorithm (EPR-MOGA) and Least 96 

Absolute Shrinkage and Selection Operator (LASSO) have demonstrated better 97 

prediction results (Montes et al., 2020a, 2020b).  98 

In order to address the above overfitting issue in regression models, new Machine 99 

Learning (ML) and Artificial Intelligence (AI) techniques have been introduced for 100 

predicting the self-cleansing velocity based on the concept of non-deposition sediment 101 

transport. Examples of models developed for the ‘without deposited bed’ case include 102 

using techniques such as Artificial Neural Network (ANN) (Ebtehaj and Bonakdari, 103 

2013), Support Vector Regression (SVR) coupled with the Firefly Algorithm (Ebtehaj 104 

and Bonakdari, 2016b), the Group Method of Data Handling (GMDH) (Ebtehaj and 105 

Bonakdari, 2016a), neuro-fuzzy inference system combined with the Particle Swarm 106 

Optimisation (ANFIS-PSO) (Ebtehaj et al., 2019), Decision Trees (DT), Generalised 107 

Regression Neural Network (GRNN), Multivariate Adaptive Regression Splines (MARS) 108 

(Safari, 2019) and Extreme Learning Machine (ELM) (Ebtehaj et al., 2020). For the other 109 

case of ‘non-deposition with deposited bed’, fewer ML/AI type models have been 110 
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developed. Examples include models based on Particle Swarm Optimisation (PSO) 111 

algorithm (Safari et al., 2017), Gene Expression Programming (GEP) (Roushangar and 112 

Ghasempour, 2017) and Multigene Genetic Programming (MGP) (Safari and Danandeh 113 

Mehr, 2018).   114 

The above models, developed using different ML/AI techniques (for both non-115 

deposition criteria), have improved the prediction accuracy of self-cleansing velocities 116 

and addressed the issues of model overfitting but only partially. As noted by Zendehboudi 117 

et al. (2018), these models still tend to have rather limited extrapolation capabilities 118 

meaning that once they are applied to datasets that were not used for their training they 119 

tend to underperform. Also, the ML/AI based models developed so far are largely black-120 

box type models (e.g. ANN) meaning that, unlike white-box type regression models, they 121 

suffer from low interpretability of physical significance of model inputs (i.e. explanatory 122 

factors), and interactions with the model output.  123 

The aim of this paper is to overcome above deficiencies using the Random Forest 124 

(RF) technique for predicting self-cleansing sewer velocities. RF (Breiman, 2001) is a 125 

flexible and interpretable supervised ML technique that combines the results (outputs) of 126 

multiple individual decision trees to make a prediction of interest. Due to its good 127 

characteristics and easy application, it has been a widely used for addressing many other 128 

problems in water engineering. Tyralis et al. (2019) showed a full review of studies in 129 

which RF was successfully applied to water resources problems. 130 

Using the RF technique, a new predictive self-cleansing model is developed and 131 

presented here for both non-deposition criteria (with and without deposited bed). This 132 

model aims to increase prediction accuracy whilst avoiding overfitting issues and 133 

enabling interpretability of results obtained. The new modelling technique is compared 134 

to ten literature models using multiple datasets.  135 
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2. DATA  136 

2.1. Non-deposition without deposited bed data 137 

Several experimental data were collected from the literature to implement the RF 138 

method. Mayerle (1988) studied the sediment transport in a 152 mm diameter pipe and in 139 

two rectangular channels of 311.5 mm and 462.3 mm bottom width (𝑊𝑊) using granular 140 

sands ranging from 0.50 mm to 8.74 mm. Ab Ghani (1993) collected 221 data in 154 mm, 141 

305 mm and 450 mm diameter pipes, testing sands between 0.46 mm and 8.40 mm. Ota 142 

(1999) used a 225 mm concrete pipe with a constant slope of 0.002, varying the 143 

volumetric sediment concentration between 4.2 ppm to 59.4 ppm. Vongvisessomjai et al. 144 

(2010) used two circular PVC pipes of 100 mm and 150 mm diameter to study the bedload 145 

and suspended load transport. Montes et al. (2020a) collected experimental data in a 242 146 

mm acrylic pipe using granular material with a mean particle diameter of 0.35 mm and 147 

1.51 mm. Montes et al. (2020b) carried out 107 experiments in a 595 mm PVC pipe, using 148 

sediments ranging from 0.35 mm to 2.6 mm. 149 

2.2. Non-deposition with deposited bed data 150 

For the non-deposition with deposited bed, El-Zaemey (1991) studied the 151 

sediment transport in a 305 mm diameter pipe, using granular particles ranging from 0.53 152 

mm to 8.40 mm. Perrusquía (1991) carried out experiments in a 225 mm diameter pipe, 153 

varying the sediment concentration from 18.7 ppm to 408.0 ppm. Ab Ghani (1993) 154 

collected the deposited bed data only in the 450 mm concrete pipe and using granular 155 

sand with a mean particle diameter of 0.72 mm. May (1993) extended their previous study 156 

(May et al., 1989) and collected experimental data with sediment thickness varying from 157 

57.6 mm to 129.6 mm. Finally, Montes et al. (2020b) carried out experiments in a 595 158 

mm PVC pipe, considering a relative sediment thickness (𝑦𝑦𝑠𝑠/𝐷𝐷) between 0.13% and 159 
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1.11%. Table 1 outlines the characteristics of the data used for developing the RF 160 

algorithm. 161 

[Table 1 near here] 162 

As shown in Table 1, a total of 664 and 454 data are available for the development 163 

of models without deposited bed and the deposited bed criteria, respectively.  164 

3. MEHODOLOGY 165 

3.1.  Random Forest Model 166 

Random Forest model developed here predicts the particle Froude number (𝐹𝐹𝑔𝑔∗) as a 167 

function of several well-known dimensionless explanatory factors (Kargar et al., 2019; 168 

Vongvisessomjai et al., 2010):  169 

𝐹𝐹𝑔𝑔∗ =
𝑉𝑉𝑙𝑙

�𝑔𝑔𝑔𝑔(𝑆𝑆𝑠𝑠 − 1)
= 𝑓𝑓 �𝐶𝐶𝑣𝑣,𝐷𝐷𝑔𝑔𝑔𝑔 ,

𝑔𝑔
𝑅𝑅

, 𝜆𝜆,
𝑦𝑦𝑠𝑠
𝐷𝐷
� (2) 

 Random forest (RF) is a bagging algorithm for regression and classification 170 

problem proposed by Breiman (2001). This is a low-variance method, which randomly 171 

split the training data and the input variables predictors to build a set of 𝑏𝑏 decision trees 172 

(𝐵𝐵𝑡𝑡). The results of all decision trees generated from bootstrapped training samples 173 

(𝑇𝑇𝑏𝑏(𝑥𝑥;𝛳𝛳𝑏𝑏)) are then averaged, i.e. the final result (𝑦𝑦�(𝑥𝑥)) is the average of the output of 174 

all decision trees (as shown in Eq. (3)). This procedure ensures the reduction of the model 175 

variance and consequently, the reduction of the risk of overfitting. A simplified 176 

conceptual diagram of the RF method is shown in Figure 1. 177 

𝑦𝑦�(𝑥𝑥) =
1
𝐵𝐵𝑡𝑡
�𝑇𝑇(𝑥𝑥;𝛳𝛳𝑏𝑏)
𝐵𝐵𝑡𝑡

𝑏𝑏=1

 (3) 

[Figure 1 near here] 178 
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In this paper, the R package ‘RandomForest’ (Liaw and Wiener, 2002) was used 179 

for constructing both non-deposition, without deposited bed and deposited bed, self-180 

cleansing models. The number of predictors considered at each split (mtry) and the 181 

number of trees in the forest (𝐵𝐵𝑡𝑡) are the parameters that define the structure of the RF 182 

regression model. The mtry parameter is estimated by using the rfcv() function, which 183 

shows the cross-validation performance for each number of predictors. In addition, the 184 

optimal number of trees is defined as the value that minimises the Mean Square Error 185 

(MSE) value of the training data. These parameters are estimated and the results are 186 

shown in Figure 2. According to this figure, the optimal number of features (i.e. the 187 

random predictors used in each tree) are three and four non-dimensional parameters for 188 

the cases of without deposited bed and with deposited bed, respectively. Similarly, the 189 

optimal number of trees is 471 for without deposited bed and 229 for with deposited bed.  190 

[Figure 2 near here] 191 

Cross-validation is carried out during the training stage using out-of-bag (OOB) 192 

samples. As mentioned above, the method randomly bootstraps the training sample, that 193 

is, some of the training data are left out to build each decision tree. Only two out of three 194 

parts of the total training data are used to build the tree (Breiman, 2001). Based on this, 195 

data not included in the bootstrapped sample (OOB data) are predicted, and the prediction 196 

error is averaged over the trees that do not include these data (OOB Error). 197 

3.1.1.  Splitting of training and testing data 198 

The whole benchmarking data collected from the literature are used for both training and 199 

testing stages of the RF model. Usually, 75% of the data is used during the training stage 200 

of the model and the other 25% to validate the results. According to Safari (2020), the 201 

range of variation in the training data has direct implications for model performance (i.e. 202 

accuracy). As a result, the model can show overfitting issues and poor extrapolation 203 



10 
 

capabilities when narrow datasets are used in the training stage (i.e. data with a low range 204 

of variation).  205 

Checking the non-overfitting of the RF model is carried out by using several sizes 206 

in the training and testing data (i.e. changing the percentage of data used as training and 207 

testing) and by verifying the error, defined by the Coefficient of Determination (R2) (as 208 

shown in Eq. (14)). For this, ten different combinations of percentages are defined (i.e. % 209 

of the training data : % of the testing data = [5:95, 15:85, 25:75, 35:65, 45:55, 55:45, 210 

65:35, 75:25, 85:15, 95:5]), randomly changing the ranges of the training and testing data, 211 

and developing 100 RF models for each combination. As a result, 1000 RF models are 212 

trained and the error is estimated for both training and testing stage. Using this 213 

information, several boxplots are constructed showing the R2 variation for each stage. 214 

Figure 3 shows how the model error decreases as the training sample size increases. For 215 

example, when only 5% of the whole dataset is used for training the model and the 216 

remaining 95% for testing it, the error varies between 0.84 and 0.96, for the training stage, 217 

and between 0.39 and 0.73 for the testing stage. This clearly shows that the model is 218 

under-trained; however, when the ratio is greater than 50:50 the error tends to be constant 219 

and slightly variable for both stages. Ratios greater than 90:10 tend to generate 220 

unsatisfactory results for the testing stage, i.e. the model is over-trained and shows high 221 

variation in the error, i.e. overfitting, (as shown in Figure 3b). Based on this, a 222 

combination of 75:25 is taken as optimal for implementing the model.  223 

[Figure 3 near here] 224 

The variation of the data used for training and testing dataset is presented in Table 225 

2.   226 

[Table 2 near here] 227 
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Using the above considerations, the RF model is implemented with the optimal 228 

parameters defined in Figure 2 and using the ranges of variation of the training data 229 

outlined in Table 2. The full data collected from the literature are shown in the 230 

Supplementary material. Table S1 and Table S2 show the data for non-deposition without 231 

and with deposited bed, respectively, and the corresponding RF particle Froude number 232 

predictions. The implemented code for the RF method is shown in Figure 4. An example 233 

of one of the 471 decision trees generated by the RF model, for the non-deposition without 234 

deposited bed, is shown in Figure S1, in the Supplementary material. 235 

[Figure 4 near here] 236 

3.1.2.  Measure of feature importance 237 

Note that in this paper, a decrease in model accuracy when the jth variable is 238 

permuted (i.e. the percentage of the increase in the MSE, %𝐼𝐼𝐼𝐼𝑐𝑐𝐼𝐼𝑆𝑆𝐼𝐼) is considered as a 239 

measure of the importance of a model input variable. This index shows the strength of 240 

each explanatory variable based on the reduction of the MSE. The step-by-step to 241 

calculate the %𝐼𝐼𝐼𝐼𝑐𝑐𝐼𝐼𝑆𝑆𝐼𝐼 is shown as follows (Hastie et al., 2009): 242 

(1) Calculate the MSE of the OOB-sample data in each tree of the forest (𝐼𝐼𝑆𝑆𝐼𝐼𝑏𝑏). 243 

(2) Randomly permute the value of the jth explanatory variable and calculate the MSE 244 

(𝐼𝐼𝑆𝑆𝐼𝐼𝑗𝑗). 245 

(3) Finally, calculate %𝐼𝐼𝐼𝐼𝑐𝑐𝐼𝐼𝑆𝑆𝐼𝐼 for each explanatory variable as: 246 

%𝐼𝐼𝐼𝐼𝑐𝑐𝐼𝐼𝑆𝑆𝐼𝐼 = 100 ∙
𝐼𝐼𝑆𝑆𝐼𝐼𝑗𝑗 − 𝐼𝐼𝑆𝑆𝐼𝐼𝑏𝑏

𝐼𝐼𝑆𝑆𝐼𝐼𝑏𝑏
 (4) 

 As a result, the more the %𝐼𝐼𝐼𝐼𝑐𝑐𝐼𝐼𝑆𝑆𝐼𝐼 increases for a variable, the more important 247 

it is.  248 
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3.2. Performance Assessment 249 

3.2.1.  Models used for comparing the RF results 250 

In order to evaluate the RF model performance, it is compared to several literature 251 

models. The models selected for comparison are the replicable white-box models with 252 

high prediction accuracy reported in the literature and two black-box models where the 253 

implementing code is provided in the original papers. Other black-box models cannot be 254 

evaluated due to the limited replicability shown by these models (e.g. ANN). Based on 255 

this, in the case of non-deposition without deposited bed, seven models selected are the 256 

EPR-MOGA model (Montes et al., 2020a), the GEP model (Kargar et al., 2019), the 257 

MARS model (Safari, 2019), the May et al. (1996) model, the Safari and Aksoy (2020) 258 

model, the ANFIS-PSO model (Ebtehaj et al., 2019) and the ELM model (Ebtehaj et al., 259 

2020). In the case of non-deposition with deposited bed, three models used for 260 

comparison are the PSO model (Safari and Shirzad, 2019), the LASSO model (Montes et 261 

al., 2020b) and the MGP model (Safari and Danandeh Mehr, 2018). The EPR-MOGA, 262 

LASSO, May et al. (1996) and Safari and Aksoy (2020) are the regression type models 263 

whilst GEP, MARS, ANFIS-PSO, ELM, PSO and MGP models make use of ML/AI 264 

techniques. 265 

The equations used by above ten models are as follows:  266 

EPR-MOGA: 267 

𝑉𝑉𝑙𝑙
�𝑔𝑔𝑔𝑔(𝑆𝑆𝑠𝑠 − 1)

= 5.6𝐶𝐶𝑣𝑣0.16 �
𝑔𝑔
𝑅𝑅
�
−0.58

𝑆𝑆𝑜𝑜0.14𝐷𝐷𝑔𝑔𝑔𝑔0.02 (5) 

GEP:  268 

𝑉𝑉𝑙𝑙
�𝑔𝑔𝑔𝑔(𝑆𝑆𝑠𝑠 − 1)

=
3.05𝐶𝐶𝑣𝑣0.16

atan�atan��𝑔𝑔𝑅𝑅��
+ atan�3.41 − ln�𝐷𝐷𝑔𝑔𝑔𝑔��

+ atan�tan��8.37 − 7.99𝜆𝜆 +
𝑔𝑔
𝑅𝑅
𝜆𝜆�

2

�
2

� + ln���
𝑔𝑔
𝑅𝑅
�
3

�
2𝜆𝜆

� 

(6) 
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MARS:  269 

𝑉𝑉𝑙𝑙
�𝑔𝑔𝑔𝑔(𝑆𝑆𝑠𝑠 − 1)

= 7.26 − 1.75 ∙ 𝑚𝑚𝑎𝑎𝑥𝑥(0,𝑔𝑔/𝑅𝑅 − 0.12) + 2

∙ 𝑚𝑚𝑎𝑎𝑥𝑥(0,0.12 − 𝑔𝑔/𝑅𝑅) + 15.89 ∙ 𝑚𝑚𝑎𝑎𝑥𝑥(0,𝐶𝐶𝑣𝑣 − 0.44) − 16.42
∙ 𝑚𝑚𝑎𝑎𝑥𝑥(0,0.44 − 𝐶𝐶𝑣𝑣) + 0.47 ∙ 𝑚𝑚𝑎𝑎𝑥𝑥�0,𝐷𝐷𝑔𝑔𝑔𝑔 − 0.29� − 7.25
∙ 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝜆𝜆 − 0.3) − 16.03 ∙ 𝑚𝑚𝑎𝑎𝑥𝑥(0,𝐶𝐶𝑣𝑣 − 0.01) + 3.7
∙ 𝑚𝑚𝑎𝑎𝑥𝑥�0,𝐷𝐷𝑔𝑔𝑔𝑔 − 0.12� − 4.33 ∙ 𝑚𝑚𝑎𝑎𝑥𝑥�0,𝐷𝐷𝑔𝑔𝑔𝑔 − 0.08� + 0.43
∙ 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝜆𝜆 − 0.59) + 6.75 ∙ 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝜆𝜆 − 0.28) + 1.67
∙ 𝑚𝑚𝑎𝑎𝑥𝑥(0,𝑔𝑔/𝑅𝑅 − 0.07) 

(7) 

May et al. (1996): 270 

𝐶𝐶𝑣𝑣 = 0.0303 �
𝐷𝐷2

𝐴𝐴
� �

𝑔𝑔
𝐷𝐷
�
0.6

�1 −
𝑉𝑉𝑡𝑡
𝑉𝑉𝑙𝑙
�
4

�
𝑉𝑉𝑙𝑙2

𝑔𝑔𝐷𝐷(𝑆𝑆𝑠𝑠 − 1)�
1.5

 (8) 

Safari and Aksoy (2020): 271 

𝑉𝑉𝑙𝑙
�𝑔𝑔𝑔𝑔(𝑆𝑆𝑠𝑠 − 1)

= 4.83𝐶𝐶𝑣𝑣0.09 �
𝑔𝑔
𝑅𝑅
�
−0.32

𝐷𝐷𝑔𝑔𝑔𝑔−0.14 �
𝑃𝑃
𝐵𝐵
�
0.20

 (9) 

ANFIS-PSO: 272 

No equation. The Matlab code can be found in Ebtehaj et al. (2019). 273 

ELM: 274 

𝑉𝑉𝑙𝑙
�𝑔𝑔𝑔𝑔(𝑆𝑆𝑠𝑠 − 1)

= �
1

�1 + 𝑒𝑒𝑥𝑥𝑒𝑒(−𝐼𝐼𝐼𝐼𝑊𝑊 ∙ 𝐼𝐼𝐼𝐼𝑉𝑉 + 𝐵𝐵𝐵𝐵𝐼𝐼)�
�
𝑇𝑇

∙ 𝑂𝑂𝑂𝑂𝑂𝑂𝑊𝑊 (10) 

where 𝐼𝐼𝐼𝐼𝑊𝑊 and 𝑂𝑂𝑂𝑂𝑂𝑂𝑊𝑊 are the input and output weights, 𝐵𝐵𝐵𝐵𝐼𝐼 the bias of the hidden 275 

neurons and 𝐼𝐼𝐼𝐼𝑉𝑉 the input variables (i.e. 𝐶𝐶𝑣𝑣, 𝑔𝑔/𝑅𝑅, 𝐷𝐷2/𝐴𝐴, 𝑅𝑅/𝐷𝐷, 𝐷𝐷𝑔𝑔𝑔𝑔, 𝑔𝑔/𝐷𝐷 and 𝜆𝜆). Full 276 

details of the values chosen for each parameter are shown in Ebtehaj et al. (2020). 277 

PSO: 278 

𝑉𝑉𝑙𝑙
�𝑔𝑔𝑔𝑔(𝑆𝑆𝑠𝑠 − 1)

= 3.66𝐶𝐶𝑣𝑣0.16 �
𝑔𝑔
𝑅𝑅
�
−0.40

�
𝑦𝑦𝑠𝑠
𝑌𝑌
�
−0.10

 (11) 

LASSO: 279 

𝑉𝑉𝑙𝑙
�𝑔𝑔𝑔𝑔(𝑆𝑆𝑠𝑠 − 1)

= 5.83𝐶𝐶𝑣𝑣0.144 �
𝑔𝑔
𝑅𝑅
�
−0.305

𝜆𝜆−0.059𝐷𝐷𝑔𝑔𝑔𝑔−0.169 �
𝑦𝑦𝑠𝑠
𝐷𝐷
�
−0.104

 (12) 

MGP: 280 
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𝑉𝑉𝑙𝑙
�𝑔𝑔𝑔𝑔(𝑆𝑆𝑠𝑠 − 1)

= 1.96 − 0.61𝜆𝜆 − 0.51𝐶𝐶𝑣𝑣 + 1.18𝐷𝐷𝑔𝑔𝑔𝑔0.50𝜆𝜆1.50

+ 0.61 �2𝐶𝐶𝑣𝑣 +
𝑔𝑔
𝑅𝑅
�
0.50

− 2.45 �
𝑔𝑔
𝑅𝑅
�
1/8

 
(13) 

3.2.2.  Performance Indices 281 

The RF model performance is evaluated and compared to above ten models using 282 

three performance indicators. These are the Coefficient of Determination (R2), the Root 283 

Mean Square Error (RMSE) and the Mean Absolute Percentage Error (MAPE), defined 284 

as follows: 285 

𝑅𝑅2 = 1 −
∑ �𝐹𝐹𝑔𝑔𝑂𝑂𝑂𝑂𝑂𝑂

∗ − 𝐹𝐹𝑔𝑔𝑀𝑀𝑂𝑂𝑀𝑀�
2𝑛𝑛

𝑖𝑖=1

∑ �𝐹𝐹𝑔𝑔𝑂𝑂𝑂𝑂𝑂𝑂∗ − 𝐹𝐹𝑔𝑔𝑂𝑂𝑂𝑂𝑂𝑂∗��������
2𝑛𝑛

𝑖𝑖=1

 (14) 

𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 = �
1
𝐼𝐼
��𝐹𝐹𝑔𝑔𝑂𝑂𝑂𝑂𝑂𝑂∗ − 𝐹𝐹𝑔𝑔𝑀𝑀𝑂𝑂𝑀𝑀�

2
𝑛𝑛

𝑖𝑖=1

 (15) 

𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 =
100
𝐼𝐼

��
𝐹𝐹𝑔𝑔𝑂𝑂𝑂𝑂𝑂𝑂
∗ − 𝐹𝐹𝑔𝑔𝑀𝑀𝑂𝑂𝑀𝑀

𝐹𝐹𝑔𝑔𝑂𝑂𝑂𝑂𝑂𝑂∗ �
𝑛𝑛

𝑖𝑖=1

 (16) 

where 𝐹𝐹𝑔𝑔𝑂𝑂𝑂𝑂𝑂𝑂
∗  is the particle Froude number observed data, 𝐹𝐹𝑔𝑔𝑀𝑀𝑂𝑂𝑀𝑀  the particle Froude 286 

number estimated by RF algorithm (or other predictive model), 𝐼𝐼 the number of data  and 287 

𝐹𝐹𝑔𝑔𝑂𝑂𝑂𝑂𝑂𝑂∗������� the mean of observed particle Froude number data.  288 

The Coefficient of Determination measures the percentage of the model variance 289 

that can be explained. This coefficient varies between 0 and 1, with a value of 1 denoting 290 

a perfect match between observed and modelled data. The Root Mean Square Error 291 

measures the standard deviation of the residuals. Note that a value close to 0 indicates 292 

high model prediction accuracy. Finally, the Mean Absolute Percentage Error assesses 293 

the model prediction accuracy (i.e. bias) as a percentage of the observed value. Value of 294 

0 indicates the perfect model where there are no differences between predictions and 295 
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observations.  296 

4. RESULTS 297 

The results obtained by using the methodology shown in the previous section are 298 

presented in Table 3 and Table 4, for without deposited bed and deposited bed criteria, 299 

respectively. Graphically, these results are shown in Figure 5 and Figure 6. As shown in 300 

these tables, for the MARS, ANFIS-PSO, ELM and MGP models, the outliers of the 301 

particle Froude number (i.e. 𝐹𝐹𝑔𝑔∗ < 0.00 and 𝐹𝐹𝑔𝑔∗ > 20.00) were removed. This is because 302 

these models can produce extreme values (e.g. 𝐹𝐹𝑔𝑔∗ = -58.67 or 𝐹𝐹𝑔𝑔∗ = 163.59, among 303 

others) that misrepresent the model comparison when evaluating the performance indices.  304 

[Table 3 near here] 305 

As it can be seen from Table 3, Random Forest model shows a better 306 

generalisation capacity than other models shown, as demonstrated in high prediction 307 

accuracy observed for all available datasets (0.88 > R2 > 0.98, 0.24 > 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 > 0.73 and 308 

4.36% > 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 > 11.09%). The following observations can be made from the 309 

performance of the other models evaluated:  310 

• EPR-MOGA, similarly to RF, shows good results but has inferior accuracy in 311 

large sewer pipes (R2= 0.86, 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 = 1.03 and 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 = 11.31%). In addition, 312 

EPR-MOGA model shows limitations for predicting the particle Froude number 313 

in non-circular sections (as shown in the Mayerle (1988) rectangular data). This 314 

equation shows good extrapolation capabilities because of the inclusion of the 315 

pipe slope as input feature for the self-cleansing prediction. 316 

• GEP shows acceptable results (0.79 > R2 > 0.87, 0.66 > 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 > 0.89 and 11.45% 317 

> 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 > 22.33%) for the datasets used for its development in circular channels 318 

(Ab Ghani, 1993; Mayerle, 1988; Vongvisessomjai et al., 2010) and poor 319 
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performance for other datasets (0.00 > R2 > 0.76, 1.00 > 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 > 1.95 and 14.35% 320 

> 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 > 37.92%). This model presents good performance for large sewer pipes. 321 

In contrast, for non-circular channels the model quickly loss accuracy.  322 

• According to Safari (2019), MARS model was developed by using the 323 

experimental data collected by Mayerle (1988) (in both circular and rectangular 324 

channels), May (1993), Ab Ghani (1993) and Vongvisessomjai et al. (2010). As a 325 

result, this model shows acceptable performance for these datasets (0.49 > R2 > 326 

0.87, 0.81 > 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 > 1.15 and 13.63% > 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 > 28.08%) but poor performance 327 

for the remaining datasets (R2 = 0.00, 1.48 > 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 > 2.88 and 29.14% > 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 328 

> 51.28%). Based on the above, and compared to the RF model, limited 329 

extrapolation capabilities are identified for the MARS model.    330 

• May et al. (1996) is the best regression-based equation reported in the literature 331 

(Ackers et al., 2001; Ebtehaj et al., 2014), as it was developed using several 332 

experimental datasets. This is the equation proposed by the Construction Industry 333 

Research and Information Association (CIRIA) for designing self-cleansing 334 

sewer pipes transporting coarser granular material as bedload (Ackers et al., 335 

2001). This model shows good performance for pipe diameters less than 500 mm 336 

(0.83 > R2 > 0.99, 0.13 > 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 > 0.82 and 2.38% > 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 > 11.61%). In 337 

contrast, limited extrapolation for large sewer pipes is identified as the low 338 

performance indices values obtained (R2 = 0.00, 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 = 4.88 and 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 = 339 

48.97%). This equation shows better performance than the RF model when 340 

compared to data from Vongvisessomjai et al. (2010), but lower accuracy when 341 

applied to the rest of the datasets.  342 

• Safari and Aksoy (2020) model is a competitive equation for predicting the self-343 

cleansing velocity in both circular and non-circular channels. This model shows 344 
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similar but inferior performance to EPR-MOGA model in small sewer pipes (0.67 345 

> R2 > 0.97, 0.25 > 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 > 1.12 and 7.90% > 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 > 15.60%), but in large 346 

sewers the accuracy is quickly lost (R2 = 0.34, 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 = 2.26 and 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 = 347 

23.46%). In contrast, this model outperforms the results, compared to other 348 

regression models (EPR-MOGA, GEP and MARS) and ML/AI models (ANFIS-349 

PSO and ELM), in non-circular channels  (R2 = 0.87, 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 = 0.66 and 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 = 350 

13.41%), which is a competitive performance compared to the RF model  (R2 = 351 

0.89, 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 = 0.61 and 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 = 10.05%). This is because of the inclusion of the 352 

𝑃𝑃/𝐵𝐵 relation as explanatory variable for predicting the particle Froude number. 353 

This model is competitive and shows good generalisation of the problem for 354 

designing sewers under the non-deposition without deposited bed criterion. 355 

• According to Ebtehaj et al. (2019), ANFIS-PSO model was developed by using 356 

the experimental data collected by Ab Ghani (1993), Ota (1999) and 357 

Vongvisessomjai et al. (2010). As a result, this model shows good performance 358 

for these datasets (0.88 > R2 > 0.97, 0.22 > 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 > 0.74 and 3.62% > 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 > 359 

10.34%). In large sewers and non-circular channels, the model losses accuracy 360 

(R2 = 0.00, 2.74 > 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 > 3.01 and 30.56% > 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 > 45.28%). This model 361 

produces some extreme values when the particle Froude number is calculated, 362 

especially in the Montes et al. (2020b) dataset. The RF model generates better 363 

results compared to this model. 364 

• ELM was trained with the same dataset used for the ANFIS-PSO model. Not 365 

satisfactory results are obtained when this model is applied on the dataset 366 

considered in this study (0.00 > R2 > 0.55, 0.90 > 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 > 3.1 and 19.54% > 367 

𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 > 39.30%). Same comments, as mentioned above for the ANFIS-PSO 368 

model, can be shown here.    369 
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[Figure 5 near here] 370 

[Table 4 near here] 371 

According to the results shown in Table 4 (deposited bed criterion), RF model 372 

outperforms the other models for the entire considered dataset. This model shows good 373 

accuracy levels (0.84 > R2 > 0.98, 0.32 > 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 > 0.81 and 4.70% > 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 > 12.10%) 374 

for all the range of variation of the hydraulics and sediment characteristics. Comments 375 

related to the other models studied are as follows: 376 

• PSO model was developed by using the experimental data collected by El-Zaemey 377 

(1991), Perrusquía (1991), May (1993) and Ab Ghani (1993). As a result, this 378 

model shows good performance for these datasets (0.56 > R2 > 0.78, 0.49 > 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 379 

> 1.32 and 10.15% > 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 > 16.26%). However, when the model is compared 380 

to the data collected in the large sewer pipe, the accuracy quickly decreases (R2 = 381 

0.00, 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 = 3.06 and 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 = 21.05%).  382 

• LASSO model reports good accuracy levels for all the datasets considered (0.62 383 

> R2 > 0.83, 0.50 > 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 > 1.56 and 10.36% > 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 > 14.26%). However, the 384 

accuracy is still inferior compared to the RF model. This model shows good 385 

extrapolation capabilities and generalisation of the problem.   386 

• MGP was developed by using the same experimental datasets of the PSO model. 387 

This model shows less accuracy compared to the PSO model (0.00 > R2 > 0.54, 388 

1.08 > 𝑅𝑅𝐼𝐼𝑆𝑆𝐼𝐼 > 5.54 and 13.07% > 𝐼𝐼𝐴𝐴𝑃𝑃𝐼𝐼 > 58.79%). In large sewer pipes, the 389 

model shows poor performance. In contrast to other models, the MGP was 390 

developed by using normalised values. Based on this, the range of variation used 391 

for training the model can potentially affect the final form/structure of the final 392 

expression shown by the MGP.  393 
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[Figure 6 near here] 394 

RF accuracy shown in the Montes et al. (2020b) data is especially important due 395 

to the relative sediment thickness (𝑦𝑦𝑠𝑠/𝐷𝐷) used at laboratory scale in that study. As Table 396 

1 shows, the sediment thickness used at laboratory scale ranging from 0.8 mm (for Montes 397 

et al. (2020b) data) to 129.6 mm (for May (1993) data), i.e. the variation of 𝑦𝑦𝑠𝑠/𝐷𝐷 is from 398 

1.1% to 20.0% of the pipe diameter. Values of 𝑦𝑦𝑠𝑠/𝐷𝐷 = 20% is an unrealistic consideration 399 

since the optimal sediment thickness design has been defined as 1% of the pipe diameter 400 

(May et al., 1989; Safari and Shirzad, 2019). Data collected by Montes et al. (2020b) 401 

seem to be the closer representation of the real conditions found in sewer systems. Based 402 

on this, RF is the model that best predicts the self-cleansing velocity for data close to real 403 

conditions.  404 

4.1. Variable importance  405 

RF model input variable importance is presented in Figure 7. As shown in this figure, for 406 

both non-deposition criteria the most important variable is the volumetric sediment 407 

concentration, followed by the dimensionless grain size and the relative grain size . This 408 

result is consistent with previous findings reported in the literature (Ackers et al., 2001; 409 

Ebtehaj et al., 2020). Less important parameters for predicting the particle Froude number 410 

and thus the self-cleansing velocity, are the relative sediment thickness and the channel 411 

friction factor, for the deposited bed criterion.  412 

Parameter importance shown by EPR-MOGA, Safari and Aksoy (2020), PSO and 413 

LASSO is quite different. In these techniques, the most important parameter is the relative 414 

grain size due to the highest values of the regression coefficients ��𝑑𝑑
𝑅𝑅
�
−𝑐𝑐

;  0.305 < 𝑐𝑐 <415 

0.58�, as shown in Eq. (5), Eq. (9), Eq. (11) and Eq. (12). The parameter importance for 416 

the GEP, MARS and MGP model is less intuitive because of the form of the equations, 417 
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as shown in Eq. (6), Eq. (7) and Eq. (13), which include logarithmic and inverse tangent 418 

functions for calculating the particle Froude number. Less comparable are the results 419 

shown by ANFIS-PSO and ELM since no practical equation is provided.  420 

[Figure 7 near here] 421 

Based on the above results shown in Figure 7, a good estimate of the volumetric 422 

sediment concentration seems to be essential for increasing the accuracy of the calculation 423 

of the particle Froude number and consequently the minimum self-cleansing velocity for 424 

both non-deposition criteria. In addition, hydraulic characteristics of the pipe (defined by 425 

the hydraulic radius) and the sediment characteristics (i.e. particle diameter and specific 426 

gravity) are proportionally important for model performance. 427 

5. DISCUSSION 428 

The prediction of self-cleansing conditions in sewers remains a challenge despite multiple 429 

models and equations developed and reported in the literature. Existing regression-based 430 

equations and AI/ML models show limited generalisation capabilities and overfitting 431 

problems. In this paper, a new approach for addressing these issues is proposed by using 432 

the Random Forest method.   433 

Due to the nature of the RF method, where the model variance is reduced by 434 

averaging the results from an ensemble of decision trees, the risk of overfitting is low. By 435 

using a reduced number of input features for constructing each decision tree in the forest, 436 

the correlation between base trees is avoided. This is an improvement of the method 437 

compared to a single decision tree, which can be overtrained (i.e. the tree learns the noise 438 

from the training data) and thus shows poor performance in the testing dataset. 439 

RF model showed good generalisation capabilities when the whole dataset is 440 

divided into 75% for the training stage and 25% for the testing stage. For this percentage 441 

of split data, the testing error presented a low variance. In contrast, by increasing the 442 
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number of data used in the training stage (e.g. 95% of the whole data) the testing error 443 

showed high variance, which is an indicator of an over-trained model with limited 444 

extrapolation capabilities (as shown in Figure 3b). Therefore, choosing the right 445 

percentage split is critical to avoid model overfitting. 446 

Variable importance analysis showed that the volumetric sediment concentration 447 

is the most relevant feature for predicting the self-cleansing velocity in practice for both 448 

non-deposition criteria, followed by the dimensionless grain size. The self-cleansing 449 

prediction is no conditioned by the channel material, as the low variable importance 450 

shown by the channel friction factor.  451 

RF results are compared to existing models reported in the literature and showed 452 

better performance for the whole dataset for both non-deposition without and with 453 

deposited bed criteria. This is explained by several factors, such as: 454 

• RF is able to better capture the non-linearity in the data compared to linear 455 

regression models (i.e. regression-based models proposed by May et al. (1996) 456 

and Safari and Aksory (2020)). The RF model also better captures complex 457 

interactions between features. This is because of RF model’s ability to capture 458 

effectively non-linear patterns in data. 459 

• RF showed a good bias-variance trade-off (i.e. low bias and low variance) for both 460 

non-deposition criteria. In contrast, existing non-regression models reported in the 461 

literature (i.e. MARS, ANFIS-PSO and ELM), and compared to the RF model in 462 

this paper, in some cases presented low bias and high variance (i.e. overfitting) 463 

for the non-deposition without deposited bed criterion, as shown in Figure 5. For 464 

the non-deposition with deposited bed criterion, the existing models (i.e. PSO, 465 

LASSO and MGP) showed high bias, since these models systematically 466 
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underestimate the particle Froude number in the testing dataset (as shown in 467 

Figure 6).  468 

• The range of variation used for training and testing the RF model is much larger 469 

than the dataset used in the literature for developing the existing predictive 470 

models. For example, the ANFIS-PSO and ELM were trained and testing with the 471 

Ab Ghani (1993), Ota (1999) and Vongvisessomjai et al. (2010) data (i.e. 290 data 472 

approx.). Given this, the RF model developed here is able to predict the particle 473 

Froude number for a larger range of variation of the input conditions. An example 474 

of this is shown in Figure 6 where the existing models reported for the non-475 

deposition with deposited bed criterion underestimate the particle Froude number 476 

for values above 9.0 (𝐹𝐹𝑔𝑔∗ > 9.0).   477 

Despite the RF presented in this study outperforms the existing models reported 478 

in the literature, further tests with data collected in real sewers should be conducted. The 479 

cohesive effects of the deposited material must be included for future developments. 480 

Finally, further evaluation of the performance of the model in trapezoidal, ovoid, or U-481 

shape channels should be carried out to check the applicability of the model under these 482 

channel characteristics. 483 

6. CONCLUSIONS 484 

Random Forest based model was developed for predicting the self-cleansing velocity 485 

under the concept of non-deposition. This model was implemented using the experimental 486 

benchmark data reported in the literature. The RF model was compared to the following 487 

ten literature models: EPR-MOGA, MARS, MGP, ANFIS-PSO, ELM, LASSO, GEP and 488 

PSO, and two regression-based equations proposed by May et al. (1996) and Safari and 489 

Aksoy (2020). 490 
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The following conclusions are made based on the results obtained: 491 

(1) Random Forest model is able to predict the particle Froude number (i.e. minimum 492 

self-cleansing velocity) for the non-deposition self-cleansing design criteria with 493 

high accuracy on validation (i.e. unseen) data. This is due to the ability of RF to 494 

better generalise the analysed data, i.e. the ability to avoid model overfitting.  495 

(2) RF model prediction accuracy is consistently superior to ten other literature 496 

models considered here. This is likely due to the reason mentioned above but also 497 

the capability to better capture the complex interactions between input variables 498 

when compared to other models considered in this paper. This is especially 499 

relevant for the non-deposition with deposited bed case where the accuracy of RF 500 

model predictions is substantially higher than in other models (i.e. LASSO, MGP 501 

and PSO models).  502 

(3) The volumetric sediment concentration is the most important input variable for 503 

predicting the self-cleansing velocity in sewer pipes. A good characterisation of 504 

this parameter seems to be essential for improving the design of new self-505 

cleansing sewers. 506 

Based on the above, RF can be used for predicting self-cleansing velocity with 507 

high accuracy, especially for large sewer pipes with the presence of deposited bed. This 508 

technique can be used for designing self-cleansing sewer systems.  509 

Further testing of the RF and other self-cleansing models in real sewer systems is 510 

required to further validate these models in those circumstances and ensure their 511 

applicability in engineering practice. 512 

7. SUPPLEMENTARY MATERIAL 513 

Data used for training and testing the Random Forest method is shown in Table S1 and 514 
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Table S2 for non-deposition without and with deposited bed, respectively. In addition, an 515 

example of one of the decision trees considered by the RF method is shown in Figure S1. 516 
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Table 1. Data used for implementing data mining and regression models. 621 

Reference Non-deposition 
criterion 

No. of 
runs 

Pipe diameter or 
bottom width 

(mm) 

Flow 
Velocity 

(m/s) 

Pipe slope 
(%) 

Sediment 
Concentration 

(ppm) 

Sediment 
thickness 
bed (mm) 

Mayerle (1988) circular 
channel Without deposited bed 106 152 0.37 - 1.10 0.13 - 0.56 20.0 - 1275.0 - 

Mayerle (1988) 
rectangular channel Without deposited bed 105 311.5 and 462.3 0.41 – 1.04 0.09 – 0.64 14.0 – 1568.0 - 

Ab Ghani (1993) Without deposited bed 221 154, 305 and 405 0.24 - 1.22 0.04 - 2.56 0.8 - 1450.0 - 

Ota (1999) Without deposited bed 36 305 0.39 - 0.74 0.2 4.2 - 59.4 - 
Vongvisessomjai et al. 
(2010) Without deposited bed 45 100 and 150 0.24 - 0.63 0.20 - 0.60 4.0 - 90.0 - 

Montes et al. (2020a) Without deposited bed 44 242 0.24 - 1.05 0.20 - 0.80 0.3 - 875.7 - 

Montes et al. (2020b) Without deposited bed 107 595 0.41 - 1.41 0.04 - 3.43 1.3 - 19957.0 - 

El-Zaemey (1991) With deposited bed 290 305 0.39 - 0.96 0.05 - 0.44 7.0 - 917.0 47.0 – 120.0 

Perrusquía (1991) With deposited bed 38 225 0.29 - 0.67 0.20 - 0.60 18.7 - 408.0 45.0 – 90.0 

Ab Ghani (1993) With deposited bed 26 450 0.49 - 1.33 0.07 - 0.47 21.0 - 1259.0 52.0 – 108.0 

May (1993) With deposited bed 46 450 0.39 - 1.14 0.07 - 0.97 3.5 - 823.0 57.6 – 129.6 

Montes et al. (2020b) With deposited bed 54 595 0.73 - 1.53 0.46 - 5.42 389.0 - 10275.0 0.8 – 6.6 

  622 
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Table 2. Variation of the data for training and testing the RF model. 623 

Non-deposition 
criterion Stage No. of 

runs 
Channel geometry 

(mm) 

Flow 
Velocity 

(m/s) 

Pipe slope 
(%) 

Sediment 
Concentration 

(ppm) 

Sediment 
thickness bed 

(mm) 

Without 
deposited bed 

Training 498 𝐷𝐷 = 100.0 – 595.0 
𝑊𝑊 = 311.5 – 462.3 0.237 - 1.41 0.04 – 3.43 0.53 – 19957 - 

Testing 166 𝐷𝐷 = 100.0 – 595.0 
𝑊𝑊 = 311.5 – 462.3 0.237 – 1.24 0.04 – 2.74 1.00 – 13840 - 

With deposited 
bed 

Training 340 𝐷𝐷 = 225 - 595 0.294 – 1.53 0.05 – 5.42 3.50 - 10274 0.78 – 129.6 

Testing 114 𝐷𝐷 = 225 - 595 0.319 – 1.28 0.05 – 2.58 17.00 - 9101 1.78 – 120.0 

  624 
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Table 3. Accuracy of self-cleansing models for without deposited bed criterion using 625 

performance indices for training and testing dataset. Bolded values show best 626 

performance model. 627 

Dataset Performance 
Index 

Model 

RF EPR-
MOGA GEP MARS 

May et 
al. 

(1996)1 

Safari 
and 

Aksoy 
(2020) 

ANFIS-
PSO ELM 

Training 
R2 0.98 0.90 0.75 0.00 0.27 0.74 0.51* 0.30* 

RMSE 0.33 0.76 1.22 2.55 2.17 1.25 1.69* 1.95* 
MAPE (%) 4.88 11.54 23.52 34.16 17.49 17.21 19.32* 29.76* 

Testing 
R2 0.91 0.86 0.69 0.00 0.09 0.74 0.40* 0.32* 

RMSE 0.73 0.88 1.33 2.55 2.27 1.21 1.84* 1.92* 
MAPE (%) 11.09 12.35 26.43 36.57 19.15 17.24 20.95* 29.82* 

Mayerle (1988) 
circular 

R2 0.96 0.89 0.87 0.87 0.87 0.75 0.80* 0.42 
RMSE 0.45 0.75 0.81 0.81 0.82 1.12 1.00* 1.71 

MAPE (%) 5.62 8.90 14.77 14.03 11.49 14.91 17.92* 26.75 

Mayerle (1988) 
rectangular 

R2 0.93 0.38 0.30 0.81 - 0.87 0.00 0.47 
RMSE 0.49 1.44 1.54 0.81 - 0.66 2.74 1.33 

MAPE (%) 8.49 28.97 33.00 15.51 - 13.14 45.28 20.75 

Ab Ghani (1993) 
R2 0.97 0.96 0.83 0.72 0.90 0.81 0.88 0.38 

RMSE 0.36 0.43 0.89 1.15 0.67 0.94 0.74 1.69 
MAPE (%) 5.94 9.35 22.33 28.08 10.32 15.60 10.34 23.96 

Ota (1999) 
R2 0.97 0.98 0.44 0.00 0.96 0.97 0.97 0.55 

RMSE 0.24 0.20 1.00 1.48 0.27 0.25 0.22 0.90 
MAPE (%) 5.55 6.90 37.92 51.28 7.78 7.90 6.46 19.54 

Vongvisessomjai 
et al. (2010) 

R2 0.88 0.95 0.79 0.49 0.99 0.71 0.97 0.00 
RMSE 0.49 0.33 0.66 1.03 0.13 0.78 0.24 1.59 

MAPE (%) 6.56 5.78 11.45 13.63 2.38 13.34 3.62 28.50 

Montes et al. 
(2020a) 

R2 0.96 0.98 0.00 0.00 0.83 0.67 0.77* 0.00 
RMSE 0.31 0.25 1.64 2.37 0.67 0.94 0.75* 1.85 

MAPE (%) 4.36 4.94 28.15 49.73 11.61 15.39 12.39* 33.96 

Montes et al. 
(2020b) 

R2 0.94 0.86 0.76 0.00* 0.00 0.34 0.00* 0.00* 
RMSE 0.70 1.03 1.37 2.88* 4.88 2.26 3.01* 3.10* 

MAPE (%) 7.33 11.31 14.35 29.14* 48.97 23.44 30.56* 39.30* 
1 Model not valid for non-circular channels 628 
* Outliers removed  629 
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Table 4. Accuracy of self-cleansing models for deposited bed criterion using performance 630 

indices for training and testing dataset. Bolded values show best performance model. 631 

Dataset Performance Index 
Model 

RF PSO LASSO MGP 

Training 
R2 0.98 0.75 0.82 0.51* 

RMSE 0.32 1.30 1.13 1.69* 
MAPE (%) 4.70 14.36 13.07 28.78* 

Testing 
R2 0.91 0.70 0.83 0.29* 

RMSE 0.80 1.47 1.10 2.19* 
MAPE (%) 12.10 15.94 12.59 31.36* 

El-Zaemey (1991) 
R2 0.94 0.78 0.83 0.54 

RMSE 0.38 0.76 0.66 1.08 
MAPE (%) 6.49 14.28 11.97 30.19 

Perrusquía (1991) 
R2 0.84 0.65 0.62 0.00 

RMSE 0.33 0.49 0.50 1.29 
MAPE (%) 7.07 10.15 12.05 30.58 

Ab Ghani (1993) 
R2 0.91 0.56 0.74 0.51 

RMSE 0.60 1.32 1.01 1.40 
MAPE (%) 6.13 16.26 11.19 13.07 

May (1993) 
R2 0.90 0.63 0.64 0.54 

RMSE 0.62 1.18 1.16 1.31 
MAPE (%) 6.50 13.47 14.26 14.21 

Montes et al. (2020a) 
R2 0.93 0.00 0.73 0.00* 

RMSE 0.81 3.06 1.56 5.54* 
MAPE (%) 6.84 21.05 10.36 58.79* 

* Outliers removed 632 
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 633 

Figure 1. Simplified conceptual diagram of the RF method.  634 
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 635 

Figure 2. Selection of the optimal Random Forest parameters.  636 
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 637 

Figure 3. Variation of the training and testing error using different combination of 638 

percentages between the training and testing dataset. A) Training stage and B) Testing 639 

stage.  640 
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 641 

Figure 4. Random Forest code to calculate the particle Froude number in sewer pipes.    642 
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 643 

Figure 5. Performance of the models applied in the non-deposition without deposited bed 644 

testing dataset.  645 
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646 
Figure 6. Performance of the models applied in the non-deposition with deposited bed 647 

testing dataset.   648 
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 649 

Figure 7. Variable importance estimated by RF model: A) without deposited bed; B) with 650 

deposited bed. 651 
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