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A B S T R A C T   

The weakly reflective wave generation is a wave generation and absorption method in phase-resolving models, 
based on the assumption that the waves propagating towards the wave generation boundary are small amplitude 
shallow water waves with direction perpendicular to the boundary. This assumption makes the method weakly 
reflective for dispersive and directional waves. The internal wave generation method was proposed by Vasar-
midis et al. (2019b) as an alternative, for the non-hydrostatic wave model, SWASH, to avoid reflections. In this 
study, a comparison is made between the performance of the new internal wave generation method and the 
weakly reflective wave generation method. It is shown that using the internal wave generation leads to a 
significantly more accurate prediction of the resulting wave field in case of waves reflected back to the numerical 
boundary. Additionally, the internal wave generation method is extended to short-crested waves and SWASH is 
validated for the first time with experimental data for the cases of wave propagation over a shoal and wave 
diffraction around a wall. The proposed extended internal wave generation method increases the capability of 
SWASH towards the study of wave propagation of highly dispersive short-crested waves in coastal environments 
with minimal reflection from the boundaries.   

1. Introduction 

One of the challenges that the engineering world has to face is the 
study of coastal environments, in order to assess their vulnerability due 
to the climate change and the resulting increase of the wave heights. 
Numerical models are used more and more often in order to get a 
realistic and accurate representation of the waves in the field and their 
transformation over time and space. Several numerical models are based 
on the Reynolds-Averaged Navier-Stokes equations (e.g. Higuera et al., 
2013a; Lin and Liu, 1998), which are able to resolve wave propagation 
and breaking processes and to provide three-dimensional velocity and 
pressure profiles, but at the same time add the restriction of very high 
computational cost. As an alternative, numerical models have been 
developed that are using approximated equations, typically averaged 
over the depth. Such models are necessary tools, especially when long 
duration sea states and large domains are considered. 

Boussinesq-type wave models are frequently used to study wave 

transformation in coastal regions. Such models constitute the depth- 
integrated equations of surface wave propagation and include pertur-
bation expansions in order to improve their wave dispersion and 
nonlinear dynamics (e.g. Lynett and Liu, 2002; Shi et al., 2012; Sørensen 
et al., 2004). In addition, high-order Boussinesq-type models have been 
developed to further improve the nonlinear effects, either through the 
use of higher order polynomial approximations for the vertical distri-
bution of the flow field (Gobbi et al., 2000) or by means of the 
multi-layer concept of Lynett and Liu (2004). Typically, Boussinesq-type 
wave models are highly complicated due to e.g. high-order spatial de-
rivatives and thus computationally expensive. 

An alternative to the Boussinesq-type wave models are the non- 
hydrostatic wave models (e.g. Bai and Cheung, 2012; Ma et al., 2012; 
Stelling and Zijlema, 2003) which constitute a robust tool, able to 
accurately describe coastal phenomena. Non-hydrostatic wave models 
can directly resolve the vertical and horizontal flow structure by 
retaining the 3D momentum equations and can improve their wave 
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dispersion and the degree of nonlinearity by making use of a few vertical 
layers, while they use first-order spatial derivatives. A detailed com-
parison between the aforementioned wave model approaches can be 
found in Kirby (2016) and Bai et al. (2018). SWASH (Zijlema et al., 
2011) is a representative non-hydrostatic wave model and is based on 
the nonlinear shallow water equations with non-hydrostatic pressure. 

The correct simulation of the waves in the nearshore zone requires 
the accurate modelling of all the processes involved, such as the gen-
eration of the waves, their propagation, transformation and reflection or 
absorption at the domain boundaries. There are three main methods to 
generate waves in numerical models. Method 1: weakly reflective wave 
generation (e.g. Higuera et al., 2013b; Wei and Kirby, 1995; Zijlema 
et al., 2011), method 2: moving boundary wave generation (e.g. Alto-
mare et al., 2017; Grilli et al., 2002; Grilli and Horrillo, 1997; Higuera 
et al., 2015; Orszaghova et al., 2012), and method 3: internal wave 
generation (e.g. Altomare et al., 2018; Jacobsen et al., 2012; Larsen and 
Dancy, 1983; Lee et al., 2001; Schäffer and Sørensen, 2006; Wei et al., 
1999). 

Method 1 is the most popular since the computational cost is the 
least. According to this method, the horizontal velocity components of 
the target incident waves are imposed at the boundary of the compu-
tational domain over the vertical direction. In addition, in order to avoid 
reflections in front of the wave generator, a weakly reflective boundary 
condition is applied at the same location, according to which the total 
velocity is a linear superposition of the velocity of the target waves and 
the velocity of the waves propagating towards the boundary. This 
method is making use of the assumption that the waves propagating 
towards the boundary of the computational domain are shallow water 
waves with small amplitude and direction perpendicular to the domain 
boundary and thus, this method is considered weakly reflective when 
dispersive and directional waves are examined. Method 2 mimics the 
exact behavior of wave generation paddles of the experimental facilities 
by applying a moving boundary to generate and absorb waves, while the 
validity of the absorption is similar to method 1. Models that are using 
sponge layers, on the other hand, can absorb waves of different fre-
quencies effectively with minimal reflection. To make this absorption 
optimal, each specific case requires tuning of the sponge layer thickness 
based on the lowest frequency component that has to be absorbed. The 
presence of the sponge layers requires that the generation of the waves 
takes place inside the computational domain and not on the boundary. 
In method 3, a spatially distributed mass or pressure forcing is added in 
the continuity or momentum equation, respectively, to internally 
generate waves, while numerical wave absorbing sponge layers are 
applied to absorb waves. The derivation of method 3 requires the 
knowledge of the underlying model equations, and thus its formulation 
differs depending on the governing equations. Although method 3 
makes use of a larger numerical domain and thus the computational cost 
is higher, it is advantageous compared to the other two methods when it 
comes to the study of the interaction of the waves with structures (e.g., 
breakwaters, reefs, artificial islands) and wave energy converter (WEC) 
farms, where dispersive and directional waves are reflected or radiated 
back to the numerical domain boundary. Note, however, that the size of 
the sponge layers is usually significantly smaller than the area of interest 
in view of the coastal wave models (e.g. Boussinesq-type, non-hydro-
static models). 

The present paper features a continuation of the study performed in 
Vasarmidis et al. (2019b), where the internal wave generation was 
mathematically derived and implemented initially in a non-hydrostatic 
wave model, SWASH. The method was validated with simple analytical 
solutions. In this study, however, several new aspects of the method 
have been investigated. To start with, the internal wave generation, 
method 3, for SWASH is further developed for short-crested waves. 
Further, in order to evaluate the method’s performance with respect to 
its ability to accurately generate highly dispersive regular and irregular 
long-crested and short-crested waves and to avoid reflections at the 
location of the wave generator, the model was validated against 

analytical solutions and experimental data. Two benchmark experi-
mental tests have been used, which include wave propagation over a 
shoal and wave diffraction around a vertical wall. Finally, a comparison 
is carried out between the performance of the newly developed internal 
wave generation (method 3) in non-hydrostatic models and the tradi-
tional weakly reflective wave generation (method 1) for the case of 
waves that are reflected back to the numerical boundary due to the 
presence of a structure. 

The structure of the paper is presented as follows. The governing 
equations of the numerical model SWASH, the weakly reflective 
boundary and the implemented internal wave generation are described 
in Section 2. Section 3 provides a detailed presentation of the results of 
the SWASH model for the case of regular and irregular short-crested 
waves, where these results are compared with analytical solutions. In 
addition, validation results are presented in comparison with experi-
mental data in Section 4, in order to evaluate the accuracy of the newly 
developed model. A comparison between the performance of methods 1 
and 3 is presented in Section 3 and 4. The final section includes the 
conclusions of the present study. 

2. SWASH model 

2.1. Mathematical formulation 

SWASH is an open source non-hydrostatic wave model (Zijlema 
et al., 2011) and has admittedly reached a mature stage in the field of 
wave transformation in coastal environments, as it allows for the 
incorporation of nonlinear shallow-water effects, like bound sub- and 
super-harmonics and near-resonant triad interactions (Rijnsdorp et al, 
2014, 2015; Smit et al., 2014). Some recent applications of the model 
include wave overtopping (Suzuki et al., 2017), wave runup (Nicolae 
Lerma et al., 2017), wave forces (Gruwez et al., 2020) and the interac-
tion of waves with vegetation (Suzuki et al., 2019) and wave energy 
converters (Rijnsdorp et al., 2018). 

The model is developed following the Euler equations for an 
incompressible fluid with a free surface η and a constant density ρ0 and 
for the case of a 3D domain the governing equations are given as follows: 

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (1)  

∂u
∂t

+
∂uu
∂x

+
∂uv
∂y

+
∂uw
∂z

= −
1
ρ0

∂(ph + pnh)

∂x
(2)  

∂v
∂t

+
∂vu
∂x

+
∂vv
∂y

+
∂vw
∂z

= −
1
ρ0

∂(ph + pnh)

∂y
(3)  

∂w
∂t

+
∂wu
∂x

+
∂wv
∂y

+
∂ww
∂z

= −
1
ρ0

∂pnh

∂z
(4)  

where x, y and z are the Cartesian coordinates, u and v are the horizontal 
velocity components in x-direction and y-direction, w is the vertical 
velocity component in z-direction, t is the time, ph is the hydrostatic and 
pnh is the non-hydrostatic pressures. The kinematic conditions at the free 
surface z = η and the bottom z = − d, where d is the still water depth, 
are given in Eqs. (5) and (6), respectively: 

w=
∂η
∂t

+ u
∂η
∂x

+ v
∂η
∂y

(5)  

w= − u
∂d
∂x

− v
∂d
∂y

(6) 

The free surface equation is obtained by integrating Eq. (1) for the 
entire water column H = d + η and applying the kinematic condition at 
the free surface (Eq. (5)): 
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∂η
∂t

+
∂
∂x

∫η

− d

udz +
∂
∂y

∫η

− d

vdz = 0 (7) 

For the case that the number of layers in the vertical direction is K, 
Eq. (7) can be rewritten as: 

∂η
∂t

+
∂Qu,K

∂x
+

∂Qv,K

∂y
= 0, Qu,K =

∑K

k=1
hu,kuk and Qv,K =

∑K

k=1
hv,kvk (8)  

where hu,k, hv,k and uk, vk are the thicknesses and the layer-integrated 
horizontal velocities, respectively, corresponding to the k-th layer. 

Sponge layers (relaxation zones) can be applied at the boundaries of 
the computational domain in order to prevent reflections back into the 
domain. In SWASH, the method proposed by Mayer et al. (1998) is 
implemented, according to which the velocity components and the free 
surface elevation are relaxed at each time step. Additionally, in case that 
a small number of layers in the vertical direction are applied, wave 
breaking is reproduced according to the method described in Smit et al. 
(2013). A thorough presentation of the governing equations and the 
numerical methods that are implemented in SWASH can be found in 
Zijlema et al. (2011) and Zijlema and Stelling (2008). 

For all the test cases that are examined in the present study, in the 
horizontal direction a rectangular and uniform computational grid has 
been applied, in which the grid cell resolution is determined by the 
condition of having at least 50 grid cells per peak wave length. Addi-
tionally, an automatic time step control is applied during the simulation 
based on the CFL (Courant–Friedrichs–Lewy) condition, according to 
which the time step is halved when the Courant number is larger than a 
maximum value and is doubled when the Courant number is smaller 
than a minimum value. In the present study a maximum and a minimum 
Courant number of 0.5 and 0.2 is used respectively. 

2.2. Weakly reflective boundary 

According to the weakly reflective wave generation boundary that is 
implemented in SWASH, the inflow depth-averaged horizontal velocity 
at the boundary for the case of one layer is given by: 

u(t)=
ω
kd

ηt +
c0

dcosα (ηt − ηi) (9)  

where k is the wave number, ω is the angular frequency, c0 is the local 
linear wave speed, α is the wave propagation angle, ηt and ηi are the 
target and the instantaneous surface elevations, respectively. In case of a 
multi-layer formulation of the model, the inflow horizontal velocity is 
described by a hyperbolic cosine profile. The values of c0 and α should 
be chosen a priori from the user and in case that the wave propagates 
towards the boundary of the computational domain with a wave speed 
of c = ω/k = c0 and with a wave angle of θ = α, then the wave will be 
perfectly absorbed at the boundary (Higdon, 1987). 

Eq. (9) is obtained by combining the Sommerfeld condition with a 1D 
approximation of the continuity equation (Blayo and Debreu, 2005): 

∂η
∂t

+
c0

cosα
∂η
∂x

= 0 (10)  

∂η
∂t

+ d
∂u
∂x

= 0 (11) 

Substituting Eq. (10) into Eq. (11) we get: 

∂u
∂x

−
c0

d cosα
∂η
∂x

= 0 (12) 

The plane wave solution of Eqs. 10–12 can be written as: 

η= η1 exp[i(ωt − kxcosθ)] + η2exp[i(ωt+ kxcosθ)] (13)  

u= u1 exp[i(ωt − kxcosθ)] + u2exp[i(ωt+ kxcosθ)] (14) 

Fig. 1. Absolute reflection coefficient as a function of the incident wave angle θ and the dimensionless depth kd for the case that c0 =
̅̅̅̅̅
gd

√
and α = 0◦.  
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where the subscripts 1 and 2 stand for incoming and reflected modes, 
respectively. Substituting Eqs. (13) and (14) in Eq. (11) gives: 

u1 − u2 =
ω

kdcosθ
(η1 + η2) (15) 

Substituting Eqs. (13) and (14) in Eq. (12) we obtain: 

u1 − u2 =
c0

dcosα (η1 − η2) (16) 

Finally, eliminating u1 and u2 using Eq. (15), the reflection coeffi-
cient can be obtained: 

R=
η2

η1
= −

c  cosα − c0cosθ
c  cosα + c0cosθ

(17) 

It can be noticed that the amount of reflection is indeed zero for the 
case that the incoming wave speed is equal to c0 and the incident wave 
angle is equal to α. In Fig. 1, the absolute reflection coefficient as a 
function of the incident wave angle θ and the dimensionless depth kd is 
plotted for the case that c0 =

̅̅̅̅̅̅
gd

√
and α = 0◦ which are the conditions 

that have been applied in the present study. It can be clearly observed 
that the absolute reflection coefficient increases for larger values of 
dimensionless depth kd and wave angle θ. The reason that the shallow 
water wave speed (c0 =

̅̅̅̅̅̅
gd

√
) is used as an input, is based on the fact 

that in most nearshore applications the high frequency energy is dissi-
pated near the shoreline while the long waves are reflected back. 
However, in case that man-made structures are considered, both short 
and long waves are reflected back towards the wave generation 
boundary with a range of wave speeds that cannot be estimated a priori. 
This problem can be partly alleviated through the extension of the 
Sommerfeld condition (Eq. (10)) by means of rational polynomials in kd 
of the dispersive wave celerity, c0 = c0(kd), along with the second-order 
vertical derivative of the surface elevation (Wellens and Borsboom, 
2020). Yet, this approach is less suitable for non-hydrostatic models 
using a few layers. 

2.3. Internal wave generation 

Vasarmidis et al. (2019b) developed an internal wave generation 
(method 3) for the SWASH model, similar to the source function pro-
posed by Wei et al. (1999) for the depth averaged Boussinesq-type 
equations and this method has been made freely available through 
SWASH 6.01. According to this method, a spatially distributed mass is 
added in the free surface equation over an area called the “wave gen-
eration source area”, while sponge layers (relaxation zones) are used at 
the domain boundaries to absorb the incoming waves (Fig. 2). In cases of 
dispersive and directional waves, method 3 can be effectively applied to 
avoid reflections at the boundary due to the use of method 1, as 
described in Section 2.2. 

For a single wave component the source function is defined as fol-
lows (Wei et al., 1999): 

f(x, y, t)= g(x)Dcos(ωt − kysinθ) (18)  

where g(x) is the shape of the source function, which is chosen to follow 
the Gaussian distribution and D is the amplitude of the source function, 
given by (Vasarmidis et al., 2019b): 

D= 2Ceη0
cosθ

I
(19)  

where Ce is the energy velocity, and I is an integral defined by (Wei et al., 
1999): 

I=
̅̅̅π
β

√

exp
(

−
(kcosθ)2

4β

)

(20)  

where β has a value of β = 20/W2 and W represents the width of the 
wave generation source area. The width of the source area is related to 
the target wave length L by using the auxiliary coefficient δ as W =

δL/2. For all the simulations of the present study, δ is in the range of 
0.5–0.8 (defined after iterations), where the larger values stand for 
larger wave heights. 

The exact expression for the energy velocity Ce for the system of 
SWASH equations has been mathematically derived by Vasarmidis et al. 
(2019b) for the case of two equidistant vertical layers and is proved to be 
equal to the group velocity Cg = dω/dk (Eq. (22)). In the present study, 
the energy velocity Ce for one and three equidistant vertical layers is also 
introduced (Eq. (21) and (23)). 

Ce,1 =
8

̅̅̅̅̅
dg

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
4 + (kd)2)3

√ (21)  

Ce,2 =
64

̅̅̅̅̅
dg

√ (
256 + 32(kd)2

+ 5(kd)4)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
16 + (kd)2)( 256 + 96(kd)2

+ (kd)4)3
√ (22)  

Ce,3=
72

̅̅̅̅̅
dg

√ (
5038848+933120(kd)2

+147744(kd)4
+3024(kd)6

+35(kd)8)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1296+120(kd)2

+(kd)4)( 46656+19440(kd)2
+540(kd)4

+(kd)6)3
√

(23) 

The rational expression of the energy velocity Ce for the system of 
SWASH equations has been derived by using the linearized governing 
equations. This means that Eqs. 21–23 are less accurate in case that the 
target generated wave is highly non-linear. 

In Fig. 3, the relative error in the normalised energy velocities Ce/

CgAiry is plotted for one, two and three vertical layers as a function of the 
dimensionless depth kd. It can be noticed that the relative error is get-
ting smaller as the number of layers increases, which extends the 
applicability of the model to higher values of kd (dispersive waves) and 
thus the achieved accuracy to deeper water. For three vertical layers the 

Fig. 2. Internal wave generation method definition in a 2D vertical domain.  

Fig. 3. Comparison of relative error in the normalised energy velocities Ce/

CgAiry for one, two and three vertical layers as function of the dimensionless 
depth kd. 
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corresponding relative error in the normalised energy velocity Ce/ CgAiry 

is smaller than 3% for kd ≤ 12.5. In this way, the developed method 
avoids the limitation that Choi and Yoon (2009) and Ha et al. (2013) 
have observed, where the applied internal wave generation in their 
models, was not accurate for deeper water conditions. 

As a result, the free surface equation inside the wave generation 
source area for the case that the number of layers in the vertical direc-
tion is K, is given by: 

∂η
∂t

+
∂Qu,K

∂x
+

∂Qv,K

∂y
= 2g(x)Ce,Kη0cos(ωt − kysinθ)

cosθ
I

(24)  

where Ce,K is the energy velocity for K number of layers. Using Eq. (24) 
the temporal evolution of the free surface is calculated inside the source 
area and subsequently the new layer thicknesses are determined for each 
time step. In this way the source mass is distributed over the water 
column. 

3. Validation with analytical solutions 

3.1. Reflected dispersive waves 

In order to check the performance of the proposed generation 
method (method 3) for handling reflected dispersive waves and to 
compare it with the performance of the weakly reflective wave gener-
ation method (method 1), a computational domain (12L long, where L is 
the wave length) with a sponge layer at the left boundary ( − 6L ≤ x ≤

− 3L) and a closed right boundary (fully reflective wall, x = 6L) is used. 
The wave generation source area is placed at the middle of the 
computational domain (x = 0). The domain for method 1 is halved (0 ≤

x ≤ 6L) with the weakly reflective wave generator positioned at the left 
boundary (x = 0) and a fully reflective wall positioned at the right 
boundary (x = 6L). The generated waves have a height of H = 0.02 m 
and a period of T = 3.0 s, while the still water depth is d = 10 m and the 
dimensionless depth is kd = 4.5. The model is applied with two equi-
distant vertical layers (error < 3% for kd ≤ 6.0, Fig. 3), a uniform grid 
resolution of Δx = 0.3 m and an initial time step of Δt = 0.0125 s. 

Fig. 4 shows two snapshots of normalised water surface elevations η/
η0 (where η0 is the generated wave amplitude) at t = 28T and t = 100T, 

generated using internal (method 3, red solid line) and weakly reflective 
(method 1, blue dashed line) wave generation. The waves that are 
generated at the source area propagate towards both sides of the 
computational domain. The right boundary is fully reflecting the 
incoming waves, while the sponge layer on the other end is absorbing 
them. On the other hand, for method 1 the waves are generated at the 
left boundary and propagate towards the right boundary. At the right 
boundary, full reflection of the incoming waves occurs, while at the 
weakly reflective boundary the waves are being absorbed. Additionally, 
the target wave has the form of a linear wave and the horizontal 
dimension of the computational domain is an integer number of the 
considered wave length. The above gives as a result a theoretical profile 
(black circles) that has a known analytical expression from literature 
and is a standing wave with perfect nodal points. 

In Fig. 4a, where the reflected waves have not yet arrived at the 
generation point, the water surface elevations, computed using wave 
generation methods 1 and 3, are identical and in excellent agreement 
with the analytical solution. However, in Fig. 4b the profile generated 
with method 1 differs significantly from the analytical solution. On the 
other hand, the profile generated with method 3 agrees very well with 
the analytical solution. The reflected dispersive waves pass through the 
internal wave generation area without affecting the generated waves 
and are fully absorbed by the sponge layer. Method 1 is not applicable in 
this case since the assumption that the waves propagating towards the 
boundary of the computational domain are shallow water waves with a 
phase velocity of c =

̅̅̅̅̅̅
gd

√
is not valid and thus reflections are created. 

The theoretical reflection coefficient for the weakly reflective boundary 
as a function of the incident wave angle θ and the dimensionless depth 
kd is derived in Section 2.2. For kd = 4.5 the theoretical reflection co-
efficient is 37% (Fig. 1) and the calculated one is 39% (Fig. 4). 

Additionally, it has to be mentioned that when using method 1, a 
sharp decrease of the wave height was noticed at the first computational 
cells next to the weakly reflective wave generation boundary. This is 
happening due to the fact that the hyperbolic profile of the target ve-
locity component cannot be accurately described when coarse vertical 
resolution is used and thus method 1 needs calibration in case of deep 
water waves, to generate accurately the target wave height. For the case 
of irregular waves this calibration is becoming even more difficult, since 
the behavior of the generation boundary is different for each frequency 
component. On the other hand, method 3 that is presented in this study 
does not need any calibration, since the method is directly connected 
with the surface elevation (Eq. (24)) rather than the horizontal velocity 
component. 

Finally, the influence of the distance between the sponge layer and 
the center of the wave generation source area has been examined. Two 
additional simulations have been executed with the sponge layer at the 
left boundary located at − 6L ≤ x ≤ − 2L and − 6L ≤ x ≤ − 1L. The 
resulted normalised water surface elevations η/η0 at t = 100T are shown 
in Fig. 5, where it can be noticed that the resulted profiles are identical 

Fig. 4. Snapshots of normalised water surface elevations η/ η0 at (a) t = 28T 
and (b) t = 100T using internal wave generation (method 3, red solid line) and 
weakly reflective wave generation (method 1, blue dashed line) compared with 
the analytical solution (black circles) for the case of dispersive waves. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 5. Snapshots of normalised water surface elevations η/η0 at t = 100T using 
internal wave generation for three different sponge layer positions, xsponge ≤ -3L 
(red solid line), xsponge ≤ -2L (blue dash-dot line) and xsponge ≤ -1L (black 
dashed line). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 
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for all the cases outside the sponge layer zone. The above comparison 
leads to the conclusion that the sponge layer can be positioned at a 
distance of only one wave length from the wave generation area without 
influencing the results and thus the computational area and subse-
quently the computational cost can be reduced. 

3.2. Oblique waves in a numerical basin with constant depth 

In this section, the performance of the proposed internal wave gen-
eration method (method 3) for handling incoming oblique waves, that 
are propagating in a numerical basin with constant depth by using two 
internal wave generation areas (Fig. 6), is examined. The numerical 
basin is 210 m long in x-direction, 60 m wide in y-direction and 1 m 
deep. The internal wave generation areas are parallel to the y-axis and 
are positioned at a distance of 75 m from the left and right boundaries (x 

= 0 m and x = 60 m). Sponge layers are placed behind the wave gen-
eration areas with a width of 60 m, while periodic conditions are applied 
at the top and bottom boundaries of the computational domain. 

The generated waves have a height of H = 0.01 m, a period of T =
4.0 s and a dimensionless depth of kd = 0.52. One vertical layer is 
applied since the error is smaller than 3% for kd ≤ 0.55 in case of one 
layer (Fig. 3). Two different wave propagation angle combinations are 
examined, one with θ1 = 15◦, θ2 = 195◦ and one with θ1 = 15◦, θ2 =

165◦ where the subscripts 1 and 2 stand for the left (x = 0 m) and the 
right (x = 60 m) internal wave generators, respectively. θ is the angle 
between the positive x-axis and the propagation direction, measured 
counterclockwise. A uniform grid resolution of Δx = Δy = 0.15 m is 
used, while a duration of 120 s with a time step Δt = 0.0125 s is 
considered, targeting a steady state wave field. 

The computed wave field (normalised water surface elevation η/η0) 
is compared with the corresponding analytical solution at t = 30T, in 
Fig. 7 and Fig. 8. The computed solution agrees very well with the 
analytical one in the whole domain for both wave propagation angle 
combinations. The excellent agreement indicates that the internal wave 
generation is able to generate oblique waves and that oblique waves can 
pass through the wave generation area without any distortion. 

It has to be mentioned that an internal wave generation area parallel 
to y-axis is not able to generate a wave which propagates along y-axis. 
For that reason, in case that the target incident wave forms an angle 
between − 10◦ and 10◦ with the y-axis, an internal wave generation area 
parallel to x-axis should be applied. In addition, an L-shape wave gen-
eration layout can be used to generate oblique waves. According to this 
layout, two internal wave generations areas with sponge layers behind 
them are applied, one parallel to the y-axis and one parallel to the x-axis 
of the numerical domain. However, it has been shown (Vasarmidis et al., 
2019a) that this layout leads to wave diffraction patterns inside the 
numerical domain, caused by the two wave generation areas intersect-
ing with each other and interacting with the lateral sponge layers, and 

Fig. 6. Definition sketch for the case of two internal wave generators at x = 0 m 
and x = 60 m. 

Fig. 7. Comparison between (a) computed and (b) analytical normalised water surface elevation η/η0 at t = 30T for θ1 = 15◦, θ2 = 195◦:(c) cross section at y = 35 m 
(d) cross section at x = 18 m. 
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thus periodic lateral boundaries are preferred in order to avoid such 
diffractions. 

3.3. Irregular short-crested waves in a numerical basin with constant 
depth 

In this section, a test case of short-crested waves is considered, in 
which the target wave frequency spectrum is a JONSWAP spectrum, 
with a significant wave height Hs = 0.5 m, a peak wave period Tp = 12.0 
s and a dimensionless depth kd = 0.48 for the peak frequency. The 
frequency range is defined between 0.5fp and 3fp and the peak 
enhancement factor is γ = 3.3. Two cases with spreading standard de-
viation σθ = 10◦ (swell waves) and σθ = 30◦ (wind waves) are examined. 
The numerical basin is 1500 m long, 500 m wide and 7.6 m deep. Sponge 
layers are placed at the right and left boundaries with a width deter-
mined by the peak wave length, while periodic conditions are applied at 
the top and bottom boundaries of the computational domain. The 
highest frequency (3fp) and the lowest frequency (0.5fp) are used to 
define the grid cell size and the initial time step Δt, respectively. Addi-
tionally, the following directional spreading function is employed 
(Frigaard et al., 1997): 

D(f, θ) =
1̅
̅̅
π

√
Γ(s1 + 1)

Γ
(

s1 +
1
2

)cos2s1 (θ − θ0), −
π
2
< θ − θ0 <

π
2 (25)  

where Γ is the Gamma function, s1 is the directional spreading param-
eter, and θ0 is the wave propagation angle. The relation between the 
spreading standard deviation, σθ, and the directional spreading param-
eter, s1, is given by (Vasarmidis et al., 2019a): 

σθ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2 −
2Γ2(s1 + 1)

Γ
(

s1 +
1
2

)

Γ
(

s1 +
3
2

)

√
√
√
√
√

(26) 

The duration of the simulations is 3 h with a time step Δt = 0.05 s, 
while the wave synthesis method proposed by Sand and Mynett (1987) 
has been employed. 

A group of 5 wave gauges measuring the surface elevations has been 
positioned in the center of the computational domain, following the 
configuration “CERC 5” proposed by Borgman and Panicker (1970). The 
measured time series of surface elevations are used to calculate the 
frequency spectra and the normalised spreading function distributions, 
which are compared with the analytical solution in Fig. 9 for spreading 
standard deviation σθ = 10◦ and σθ = 30◦. The agreement with the 
analytical solution for both cases is very good indicating that the pro-
posed method 3 is capable of generating accurately the target 
short-crested wave field. A mismatch between the calculated and the 
analytical frequency spectra for σθ = 10◦ (Fig. 9a) can be observed in the 
frequency range of 0.15 Hz–0.18 Hz, where the model slightly over-
estimates the spectral density. This mismatch could be due to the posi-
tion of the wave gauges with respect to the wave generation area or due 
to a small reflection from the sponge layers. However, this over-
estimation is not observed in the case of σθ = 30◦ (Fig. 9b). 

4. Validation with experimental data 

4.1. Wave propagation over a shoal 

A three-dimensional version of the developed model with the inter-
nal wave generation, method 3, is applied to study regular and irregular 
waves propagating over an elliptic shoal. The experiment that was 

Fig. 8. Comparison between (a) computed and (b) analytical normalised water surface elevation η/η0 at t = 30T for θ1 = 15◦, θ2 = 165◦:(c) cross section at y = 35 m 
(d) cross section at x = 18 m. 
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carried out by Vincent and Briggs (1989) has been repeatedly used as a 
standard test case for validating wave propagation models (Vasarmidis 
et al., 2019a) and hence it is used here for validation purposes of the 
present numerical model. It has to be mentioned that only the internal 
wave generation method is examined for this experimental layout, since 
there are no waves that are reflected back to the numerical wave gen-
eration boundary, and thus a similar behavior is to be expected when 
using the weakly reflective wave generation method (method 1). 

The bathymetry of the experimental setup of Vincent and Briggs 
(1989) as implemented in SWASH is illustrated in Fig. 10 and is defined 
as: 

( x
3.05

)2
+
( y

3.96

)2
= 1 (27)  

de = − 0.4572 + 0.7620
{

1 −
( x

3.81

)2
+
( y

4.95

)2
}0.5

(28)  

where x and y are the coordinates with x = y = 0 at the center of the 
shoal and de is the bed level inside the shoal area. The shoal geometry 
follows the one used in the experiments of Berkhoff et al. (1982), but 
with a flat bottom (d = 45.72 cm) outside the shoal area. 

In total 9 numerical test cases are executed including breaking and 

Fig. 9. The frequency spectra (top panels) and the normalised spreading function distributions (bottom panels) resulting from the use of method 3 (red dashed line), 
compared with the analytical solution (black solid line) for irregular short-crested waves with spreading standard deviation σθ of (a,c) 10◦ and (b,d) 30◦. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. (a) Bottom levels of the experimental setup as introduced in the numerical domain in SWASH, (b) 3D visualization of short-crested waves propagating over 
the shoal. 
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non-breaking waves of the following types: regular waves, irregular 
long- and short-crested waves. The numerical and experimental input 
parameters for all the test series are listed in Table 1. The dimensionless 

depth is kd = 1.27 for the peak frequency and thus two equidistant 
vertical layers are applied. A uniform grid resolution of Δx = Δy = 0.05 
m is used, while an automatic time step control is applied based on the 
CFL condition. 

The target frequency spectrum is a TMA spectrum (Bouws et al., 
1985) in all the irregular test cases where broad (γ = 2) and narrow (γ =
20) frequency spectra are examined. Additionally, the above spectra are 
combined with standard deviation σθ = 10◦ (narrow directional 
spreading) and σθ = 30◦ (broad directional spreading). The wave heights 
of the numerical model are obtained by sampling the surface elevation 
for 36.4 s and 260 s for the regular and irregular cases, respectively, 
similar to the experiment. 

In Fig. 11 the resulted normalised wave heights H/H0 of the nu-
merical model (red lines) are compared with the experimental data 
(black circles) along five measurement transects (shown in Fig. 10a) for 
the case of regular waves (test case M1). As it can be observed, the 
numerical and the experimental data show a very good agreement. 

The normalised wave heights along transect 4 for the cases of 
irregular non-breaking and breaking waves are presented in Fig. 12 and 

Table 1 
Numerical input wave conditions based on the Vincent and Briggs (1989) 
experimental wave conditions.  

Test 
Case 
ID 

(Peak) 
period, 
T,Tp (s)  

(Significant) 
Wave Height 
H,Hs (cm)  

Phillips 
constant, 
α [-] 

Peak 
enhancement 
factor, γ [-] 

Spreading 
standard 
deviation, 
σθ (◦) 

M1 1.3 5.50 – – – 
U3 1.3 2.54 0.00155 2 0 
N3 1.3 2.54 0.00155 2 10 
B3 1.3 2.54 0.00155 2 30 
U4 1.3 2.54 0.00047 20 0 
N4 1.3 2.54 0.00047 20 10 
B4 1.3 2.54 0.00047 20 30 
N5 1.3 19.0 0.08650 20 10 
B5 1.3 19.0 0.02620 2 30  

Fig. 11. Comparison of normalised wave heights H/H0 between numerical model results (red solid lines) and experimental data (black circles) along different 
measurement transects for test case M1. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 12. Comparison of normalised wave heights H/H0 between numerical model results (red solid lines) and experimental data (black circles) along transect 4 for 
non-breaking irregular waves. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 13, respectively. SWASH correctly predicts the wave focusing due to 
the presence of the shoal for the case of non-breaking waves. The broad 
and narrow frequency spectra, test case U3 and U4 respectively, give a 
maximum normalised wave height at y = 0 with a value around 2.0. On 
the other hand, in test cases with directional spreading (test cases N3, 
B3, N4 and B4) it can be noticed that the influence of the shoal on the 
resulted wave field is reduced. For the case of breaking waves a reduc-
tion of the normalised wave height behind the shoal can be observed. 
This is happening due to the wave induced current (Fig. 13) which 
defocuses wave rays behind the shoal. Choi et al. (2009) proved that 
numerical models that neglect the effect of wave induced current are not 
able to predict the aforementioned physical process. In addition, the root 
mean square error (RMSE) and the Skill factor are utilized for each test 
case in order to evaluate the model capability to predict the normalised 
wave heights: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N

i=1
(Pi − Oi)

2

N

√

Skill = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Pi − Oi)

2

∑N

i=1
Oi

2

√
√
√
√
√ (29)  

where O and P stand for the observed (experimental data) and predicted 
(model results) values, respectively. The small error and the high skill 
factor (Table 2) indicate that the model is able to correctly predict the 
transformation of waves propagating over a shoal. 

4.2. Wave diffraction around a vertical wall 

Finally, to verify the added value of the internal wave generation 
(method 3) in comparison with the weakly reflective wave generation 
boundary (method 1), simulations are conducted for regular and irreg-
ular waves diffracting around a breakwater. In this way, the two 
different wave generation methods will be evaluated for the case that 

Fig. 13. Normalised wave heights H/H0 along transect 4 and wave-induced currents for breaking irregular waves.  

Table 2 
Root mean square error (RMSE) and Skill factor for each test case.  

Test case ID U3 N3 B3 U4 N4 B4 N5 B5 

RMSE 0.073 0.070 0.060 0.060 0.044 0.069 0.024 0.033 
Skill 0.933 0.935 0.943 0.948 0.960 0.925 0.970 0.956  

Fig. 14. (a) Experimental setup of Briggs et al. (1995) as introduced in the numerical domain in SWASH, (b) 3D visualization of short-crested waves diffracting 
around the vertical wall. 
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oblique waves propagate back towards the generation area. The exper-
iment of Briggs et al. (1995), where waves diffract around an imper-
meable vertical wall, is used here to validate the developed model. 

The experimental setup consists of a vertical, rigid and thin wall 
which is positioned parallel to the wave paddles, extending from the 
centerline to the side wall of the basin. The bottom of the basin is flat 
with a still water depth of d = 45.72 cm, while wave absorber material 
is piled on the seaward side of the wall to minimize reflections. Detailed 
information on the experimental setup and results can be found in Briggs 
et al. (1995), where additionally, it is shown that the experimental re-
sults compared well with the theoretical methods for estimating 
diffraction. 

The numerical basin is 46 m long (− 24 ≤ x ≤ 22) and 25 m wide 
(− 12.5 ≤ y ≤ 12.5). The internal wave generation area is parallel to the 
y-axis and is placed at a distance of 8 m (x = − 8 m) from the vertical wall 
(x = 0 m). Closed lateral boundaries are used at y = − 12.5 m and y =

Table 3 
Numerical input wave conditions based on the Briggs et al. (1995) experimental 
wave conditions.  

Test 
Case 
ID 

(Peak) 
period, 
T,Tp (s)  

(Significant) 
Wave Height 
H,Hs (cm)  

Phillips 
constant, 
α [-] 

Peak 
enhancement 
factor, γ [-] 

Spreading 
standard 
deviation, 
σθ (◦) 

M1 1.3 5.50 – – – 
M4 1.3 7.75 – – – 
N1 1.3 7.75 0.0144 2 10 
N2 1.3 7.75 0.0044 20 10 
B1 1.3 7.75 0.0144 2 30 
B2 1.3 7.75 0.0044 20 30  

Fig. 15. Comparison of diffraction coefficients between numerical model results (red plus signs) and experimental data (black circles) for regular waves. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 16. Comparison of diffraction coefficients between numerical model results (red plus signs) and experimental data (black circles) for irregular waves with 
narrow directional spreading distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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12.5 m and sponge layers with a width of 10 m are placed at x = − 14 m 
and x = 12 m (Fig. 14). 

In total 6 numerical test cases are conducted: two with regular waves 
and four with irregular short-crested waves. The target wave charac-
teristics are similar to those in Section 4.1 and are listed in Table 3. The 
dimensionless depth is kd = 1.27 for the peak frequency and thus two 
equidistant vertical layers are applied. The wave heights of the numer-
ical model are obtained by sampling the surface elevation for 36.4 s and 
260 s for the regular and irregular cases, respectively, along three 
measurement transects (Fig. 14a) that are forming an angle of 90◦

(transect 1), 60◦ (transect 2) and 30◦ (transect 3) with the wall tip. A 
uniform grid resolution of Δx = Δy = 0.05 m is used, while an automatic 
time step control is applied based on the CFL condition. 

In Fig. 15, Fig. 16 and Fig. 17, comparisons of diffraction coefficients 
between numerical model results (red plus signs) and experimental data 
(black circles) for all test cases are presented. The diffraction coefficient 
Kd (Kds for irregular) is computed as the ratio of the diffracted wave 
height Hd (Hds for irregular) to the incident wave height Hi (Hs for 
irregular). The x-axis corresponds to the distance from the wall tip, 
normalised by the wave length (L = Lp = 2.25 m). In general, the 
agreement is very good between the numerical model and experimental 
results. The largest deviation is observed for the case of the regular 
waves (M1, M4), where the numerical model underpredicts the 
diffraction coefficients along measurement transect 3. On the other 
hand, the numerical model matches the observed values for the case of 
irregular short-crested waves very well along all the measurement 
transects. In addition, it can be observed that the wave penetration is 
greater for the case of the broad directional spreading distribution (σθ =

30◦), while the directional spreading affects the diffraction coefficients 
more rather than the frequency spreading. 

Furthermore, the weakly reflective wave generation (method 1) has 
been used to simulate the above wave conditions. The numerical set up 
is the same as in the case with method 3, apart from the fact that the 
length of the domain is smaller (− 8 ≤ x ≤ 22) since no sponge layer is 
used behind the generation line. Fig. 18 presents a comparison between 
the performance of the internal wave generation (method 3, red plus 
signs) and the weakly reflective generation (method1, blue circles) for 
predicting the diffraction coefficients observed by Briggs et al. (1995) 
experiment. To calculate the diffraction coefficient the generated wave 
height at the location of the tip of the wall in case of an empty basin 
(without the wall) has been used as incident wave height. In this way, 

the deficiency of the weakly reflective generation boundary to generate 
precisely the target wave height, as mentioned in Section 3.1, is not 
taken into account for the calculation of the RMSE. As it can be 
observed, the performance of the two wave generation methods is 
almost identical for the case of regular waves (M1, M4) despite the 
waves being slightly dispersive. This is happening due to the fact that the 
simulation time is only 54.6 s (sampling duration 36.4 s) similar to the 
experiment and thus the reflected waves due to the weakly reflective 
generation boundary have not yet reached the lee side of the wall. For 
longer simulations the wave fields inside the two numerical domains 
differ significantly, but they cannot be compared with the experimental 
data due to the reflections from the side walls. However, for the case of 
irregular waves where the simulation times are longer, the performance 
of method 3 is better, since the calculated RMSE for method 1 is at least 
double than the one corresponding to method 3. In addition, the RMSE 
of method 1 is larger in case of the broad directional spreading distri-
bution especially along the transect 1. This can be explained by the fact 
that the waves are propagating back towards the generation boundary 
with a larger wave angle than in case of the narrow directional spreading 
distribution. In Section 2.2, where the theoretical reflection coefficient is 
derived for the weakly reflective boundary as a function of the incident 
wave angle θ, it can be observed that the reflection increases for larger 
incident wave angles (Fig. 1). 

5. Conclusions 

In the present study the application of internal wave generation 
method in the open source non-hydrostatic wave model, SWASH, is 
evaluated. According to this method, a spatially distributed mass is 
added in the free surface equation over an area to generate waves, while 
sponge layers are used at the domain boundaries to absorb the incoming 
waves. In the framework of the present study, the method is extended 
and validated for short-crested waves, enabling the study of long- 
existing engineering problems in a more accurate way. Test cases with 
man-made structures (e.g., breakwaters, artificial reefs, artificial 
islands) and wave energy converter (WEC) farms, where the reflected 
and radiated waves cannot be estimated a priori, can be examined. The 
applicability of the developed method to generate regular and irregular 
long-crested and short-crested waves is demonstrated using analytical 
solutions and two benchmark experiments, where the numerical model 
results show a very good agreement with the analytical solutions and 

Fig. 17. Comparison of diffraction coefficients between numerical model results (red plus signs) and experimental data (black circles) for irregular waves with broad 
directional spreading distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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experimental data. 
In addition, the performance of the internal wave generation 

(method 3) is compared with this of the weakly reflective wave gener-
ation boundary (method 1) for the case of waves that are reflected back 
to the numerical boundary due to the presence of a structure. The use of 
sponge layers in method 3 requires an extension of the numerical 
domain and thus the computational cost is higher compared to method 
1. However, in the present study, it has been proven that the internal 
wave generation is advantageous compared to the weakly reflective 
generation boundary since it is able to generate more accurately the 
target wave characteristics even in case of highly dispersive and direc-
tional waves and at the same time any reflection due to the presence of 
the weakly reflective wave generator is avoided. 
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Miles, M., Santas, J., Schäffer, H.A., Hawkes, P.J., 1997. IAHR List of Sea 
Parameteres: an update for multidirectional waves. In: Proc. IAHR Seminar 
Multidirectional Waves and Their Interaction with Structures. 27th IAHR Congress. 
San Francisco. 

Gobbi, M.F., Kirby, J.T., Wei, G., 2000. A fully nonlinear Boussinesq model for surface 
waves. Part 2. Extension to O(kh)4. J. Fluid Mech. 405, 182–210. https://doi.org/ 
10.1017/S0022112099007247. 

Grilli, S.T., Horrillo, J., 1997. Numerical generation and absorption of fully nonlinear 
periodic waves. J. Eng. Mech. 123, 1060–1069. https://doi.org/10.1061/(ASCE) 
0733-9399(1997)123:10(1060). 

Grilli, S.T., Vogelmann, S., Watts, P., 2002. Development of a 3D numerical wave tank 
for modeling tsunami generation by underwater landslides. Eng. Anal. Bound. Elem. 
26, 301–313. https://doi.org/10.1016/S0955-7997(01)00113-8. 

Gruwez, V., Altomare, C., Suzuki, T., Streicher, M., Cappietti, L., Kortenhaus, A., 
Troch, P., 2020. A CFD Inter-model Comparison for Wave Interactions with Sea 
Dikes on Shallow Foreshores (in press).  

Ha, T., Lin, P., Cho, Y.S., 2013. Generation of 3D regular and irregular waves using 
Navier-Stokes equations model with an internal wave maker. Coast. Eng. 76, 55–67. 
https://doi.org/10.1016/j.coastaleng.2013.01.013. 

Higdon, B.R.L., 1987. Numerical absorbing boundary conditions for the wave equation. 
Author ( s ): Robert L Higdon Source : Mathematics of Computation , Jul ., 1987 49 
(179), 65–90 ( Jul ., 1987 ) Published by : American Mathematical Society Stable 
URL : htt 49, 65–90.  

Higuera, P., Lara, J.L., Losada, I.J., 2013a. Simulating coastal engineering processes with 
OpenFOAM®. Coast. Eng. 71, 119–134. https://doi.org/10.1016/j. 
coastaleng.2012.06.002. 

Higuera, P., Lara, J.L., Losada, I.J., 2013b. Realistic wave generation and active wave 
absorption for Navier–Stokes models. Coast. Eng. 71, 102–118. https://doi.org/ 
10.1016/j.coastaleng.2012.07.002. 

Higuera, P., Losada, I.J., Lara, J.L., 2015. Three-dimensional numerical wave generation 
with moving boundaries. Coast. Eng. 101, 35–47. https://doi.org/10.1016/j. 
coastaleng.2015.04.003. 

Jacobsen, N.G., Fuhrman, D.R., Fredsøe, J., 2012. A wave generation toolbox for the 
open-source CFD library: OpenFoam®. Int. J. Numer. Methods Fluid. 70, 
1073–1088. https://doi.org/10.1002/fld.2726. 

Kirby, J.T., 2016. Boussinesq models and their application to coastal processes across a 
wide range of scales. J. Waterw. Port, Coast. Ocean Eng. 142, 1–29. https://doi.org/ 
10.1061/(ASCE)WW.1943-5460.0000350. 

Larsen, J., Dancy, H., 1983. Open boundaries in short wave simulations–A new approach. 
Coast. Eng. 7, 285–297. https://doi.org/10.1016/0378-3839(83)90022-4. 

Lee, C., Cho, Y.S., Yum, K., 2001. Internal generation of waves for extended Boussinesq 
equations. Coast. Eng. 42, 155–162. https://doi.org/10.1016/S0378-3839(00) 
00056-9. 

Lin, P., Liu, P.L.F., 1998. A numerical study of breaking waves in the surf zone. J. Fluid 
Mech. 359, 239–264. https://doi.org/10.1017/S002211209700846X. 

Lynett, P.J., Liu, P.L.F., 2004. Linear analysis of the multi-layer model. Coast. Eng. 51, 
439–454. https://doi.org/10.1016/j.coastaleng.2004.05.004. 

Lynett, P.J., Liu, P.L.F., 2002. A two-dimensional, depth-integrated model for internal 
wave propagation over variable bathymetry. Wave Motion 36, 221–240. https://doi. 
org/10.1016/S0165-2125(01)00115-9. 

Ma, G., Shi, F., Kirby, J.T., 2012. Shock-capturing non-hydrostatic model for fully 
dispersive surface wave processes. Ocean Model. 43–44, 22–35. https://doi.org/ 
10.1016/j.ocemod.2011.12.002. 

Mayer, S., Garapon, A., Sørensen, L.S., 1998. A fractional step method for unsteady free- 
surface flow with applications to non-linear wave dynamics. Int. J. Numer. Methods 
Fluid. 28, 293–315. https://doi.org/10.1002/(SICI)1097-0363(19980815)28: 
2<293::AID-FLD719>3.0.CO;2-1. 

Nicolae Lerma, A., Pedreros, R., Robinet, A., Sénéchal, N., 2017. Simulating wave setup 
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