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Design of Haptic Feedback Control for Steer-by-Wire*

Tushar Chugh1, Fredrik Bruzelius2, Matthijs Klomp1 and Barys Shyrokau3

Abstract— This paper illustrates a comparison of different
haptic feedback control strategies; primarily focusing on open
and closed-loop methods for a Force-Feedback Steer-by-Wire
system. Due to shortcomings caused by the feedback motor
impedance in the open loop architecture, the tracking perfor-
mance is deteriorated. Consequently it is shown that the closed-
loop solutions provide an improved response within the desired
steering excitation range.

The closed-loop possibilities, torque and position control, are
designed and objectively compared in terms of performance and
stability. The controller objectives are inertia compensation and
reference tracking. For a given reference, the stability constraint
between the controller gains responsible for the two objectives is
contrasting in both the methods. Higher bandwidth is achieved
for torque controller, whereas the driver arm inertia limits
the position control performance. The linear system analysis
is supported by the experimental results.

I. INTRODUCTION

With an increasing amount of driver support automated
functions in a passenger car, the Steer-by-Wire (SbW) con-
cept could be introduced in the near future. A typical hard-
ware configuration consists of two actuators for controlling
the road wheel and steering wheel respectively. This paper is
about the latter, where the feedback motor is coupled to the
steering wheel as a Human-Machine-Interface (HMI), also
known as Force-Feedback (FF) system [1]. It eliminates the
mechanical road coupling and relies on the steering feedback
software. The challenge is integration of steering feedback
software and automated functionality as mentioned in [2].
Keeping this motivation in context, the paper aims to present
an unbiased comparison from haptic feedback (or steering
feel) control viewpoint which could influence the interface
design between them in hands-on/off situation.

Unlike the torque support provided in an Electric Power
Assisted Steering (EPAS) system [3], [4], here the servo mo-
tor is responsible for creating the complete haptic feedback.
In conventional steering systems with mechanical couping
to the road, there are two sources of excitation; driver and
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external tire-road contact disturbance. The reference gener-
ator for SbW (refer [5], [6]) defining the haptic feedback is
stated as the higher level control in the paper. An ideal higher
level control should consider both the excitation sources to
generate a realistic feedback, since it is an important part
of the steering feel [3]. The road excitation is still an open
question and a different domain in itself. This paper focuses
on the feedback controller design using only driver excitation
for a virtual feedback.

The higher level control algorithms presented by [5], [6]
are implemented in an open loop configuration (direct feed-
back motor torque request). This compromises high fre-
quency tracking performance. The question under investi-
gation is to analyze the different haptic feedback control
strategies and quantify their improvement potential. For
closed-loop methods, a lower level controller is introduced
with the feedback control law acting on the higher level
request. As a consequence, the proposed control architecture
exhibits a cascade structure similar to [7], [8]. The inner loop
minimizes the error in the control variable, whereas the outer
loop ensures generation of the reference variable, see for
example [7], [8], [9]. There are two possibilities: torque and
position control; also known as impedance and admittance
control respectively [10]. The position control approach
categorizes the concept of controlling one of the motion
states. It could also be defined as a velocity controller. The
definition is made on the basis of feedback control variable.
The research in [11], [12] proposed a hybrid controller,
which by the definition applied in this paper would categorize
them under position/velocity controller. The higher level
control is designed to provide a good steering feel, while
the lower level control aims to track it.

In biomechanics [8], [11], the stability and performance
are studied for the higher level control (to design the
reference parameters) given the lower level control. This
paper considers the higher level control to be given. And
the stability criteria and performance are discussed for the
lower level control (or feedback control law) using linear
system analysis. Furthermore, the human coupled interaction
with the haptic controller (in terms of driver’s muscular
arm properties) is discussed to highlight the fundamental
differences between the two approaches.

II. SYSTEM DYNAMICS AND IDENTIFICATION
A. Force-Feedback (FF) System and Driver Arm Mechanics

A FF-system (further stated as plant model) is an HMI
where the feedback motor interacts with the driver via
torsion bar compliance, refer Fig. 1. The purpose is to
generate the required steering torque feedback. Linear plant
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TABLE I
DESCRIPTION OF VARIABLES, NOTATIONS AND PARAMETERS

Name Description Name Description

Marm
Muscular arm

θs,req
Steering wheel

torque (Nm) angle request (rad)

Mtb
Torsion bar

θs
Steering wheel

torque (Nm) angle (rad)

Mtb,re f
Reference torsion

θmot Motor angle (rad)bar torque (Nm)

Mmot
Motor torque

θmot,re f
Reference motor

(Nm) angle (rad)

Ms
Steering wheel

θpin Pinion angle (rad)torque (Nm)

karm
Driver arm bs

Steering viscous
damping (Nms/rad) damping (Nms/rad)

ktb
Torsion bar bmot

Motor viscous
damping (Nms/rad) damping (Nms/rad)

kre f
Reference damping

ω Frequency (rad/s)(Nms/rad)

carm
Driver arm D Damping ratio (-)stiffness (Nm/rad)

ctb
Torsion bar t Time domain
stiffness (Nm/rad) operator

cre f
Reference stiffness s Laplace operator(Nm/rad)

Js
Steering wheel vx

Longitudinal
inertia (kgm2) vehicle speed (m/s)

Jmot
Motor inertia Tf

Filter time
(kgm2) constant (s)

Jarm
Driver arm Gi,Li Transfer functions
inertia (kgm2)

Jre f
Reference inertia Ki Feedback gains
(kgm2)

is considered without Coulomb friction. Because for high
input amplitudes and excitation frequencies, this is a valid
assumption [13]. Equation (1), (2) and (3) represent system
(or plant) dynamics in time domain.

The driver arm inertia, Jarm, is reasonably assumed rigidly
coupled to the steering wheel [14], such that Jarmθ̈s(t) =
Marm(t) − Ms(t). As a result the controller bandwidth
depends on it, further discussed below. Human applies
force/torque to a mechanical system and position becomes
the feedback [15]. Therefore, the plant considers Marm
as the primary input. Equation (4) represents the driver’s
arm muscle co-contraction (as an actuator). The parameters
muscular intrinsic stiffness, damping and arm inertia are
taken from [14]. The motor current controller and sensors
(for angle and torque) have fast dynamics, such that the
bandwidth is much higher than the controller. Hence, they
are assumed as unit transfer functions.

Jsθ̈s(t)+bsθ̇s(t) = Ms(t)−Mtb(t) (1)

Jmot θ̈mot(t)+bmot θ̇mot(t) = Mtb(t)−Mmot(t) (2)

ktb(θ̇s(t)− θ̇mot(t))+ ctb(θs(t)−θmot(t)) = Mtb(t) (3)

karm(θ̇s,req(t)− θ̇s(t))+carm(θs,req(t)−θs(t)) =Marm(t) (4)

B. Experimental Setup

The FF-system consists of steering wheel actuated using
a direct drive brushless DC-motor with an external torque
sensor mounted between the steering wheel and servo motor

𝜃𝑠,𝑟𝑒𝑞

𝐽𝑎𝑟𝑚 𝐽𝑠

𝑏𝑠

𝑘𝑡𝑏

𝐽𝑚𝑜𝑡

𝐷𝑟𝑖𝑣𝑒𝑟 𝑎𝑟𝑚

𝑘𝑎𝑟𝑚

𝑐𝑎𝑟𝑚

𝐹𝑜𝑟𝑐𝑒 − 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑠𝑦𝑠𝑡𝑒𝑚

𝑐𝑡𝑏

𝑏𝑚𝑜𝑡
𝑀𝑠

𝑀𝑚𝑜𝑡

𝜃𝑠 𝜃𝑚𝑜𝑡

𝑀𝑎𝑟𝑚

Fig. 1. Block diagram of FF-system and driver arm mechanics. The plant
overall has 2-DOF; steering wheel angle and feedback motor angle.

input shaft. The feedback motor has a rated torque of 7.5Nm
with a resolution of 0.03Nm. The motor angle resolution
is 0.009◦ incremental. The communication between the FF-
system and dSPACE real-time (DS1006) machine is realized
via CAN interface at 1kHz. During experiments, the motor
torque saturation limit was maintained at all times.

C. Data Post-processing

Frequency response data analysis has been done as ex-
plained in [16]. The linear time invariant (LTI) transfer
function estimate is defined as the ratio of output-input cross
spectral and input spectral estimates. Consequently, for lower
noise interference 95% coherence spectrum criteria is fixed.

D. System Identification

The parameters feedback motor inertia, Jmot , and viscous
damping, bmot , are unknown. It is important to quantify
them for the development and validation of the control
strategy. System identification is employed for parameter
estimation. At first, the passive FF-steering is excited by
the driver such that Mmot(t) = 0. The resulting relationship
between the torsion bar torque to motor angle becomes (5)
in Laplace domain. From the frequency response data, the
transfer function is estimated using the weighted least square
criterion for the linear regression on gain and phase as
shown in Fig. 2(a). These parameters are further validated
by setting up the motor torque with a reference, Mmot(t) =
cre f θmot(t)+ kre f θ̇mot(t). The resulting transfer function (6)
as shown in Fig. 2(b) is obtained with driver excitation.
Lastly, the validation is done by motor excitation with a
low amplitude disturbance signal in hands-off condition. The
transfer function is same as (5), but with motor torque in the
denominator and −1 in the numerator, refer Fig. 2(c).

θmot(s)
Mtb(s)

=
1

Jmots2 +bmots
(5)

Mtb(s)
Mmot(s)

= 1+
Jmots2 +bmots

kre f s+ cre f
(6)

III. HAPTIC FEEDBACK CONTROL STRATEGIES
In this section, the steering feel reference is introduced

at first which primarily defines the open loop architecture.
Then the problem formulation is covered in the open loop
explanation. Finally the closed-loop solutions, torque and
position control, are designed analytically and then evaluated
in simulation before the experiments and comparison.
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Fig. 2. System identification results from 3 test cases for estimation of
parameters Jmot and bmot . (a) Frequency response of torsion bar torque to
motor angle for a passive system (Mmot = 0) with driver excitation. (b)
Frequency response of motor torque to torsion bar torque with a known
reference and driver excitation. (c) Frequency response of motor torque to
motor angle with external motor torque excitation in hands-off condition.

A. Reference

The haptic feedback is generated with virtual dynamics
in the higher level control. Since the system is mechani-
cally decoupled from the road contact, the reference defines
the desired response (consisting of stiffness, damping and
inertia). The steering feel reference is objectified in terms
of torsion bar torque to pinion angle for a state-of-the-
art EPAS system using open loop maneuvers as described
in [17]. The same reference has been implemented for the
closed-loop EPAS in [18]. The difference between an EPAS
and SbW is downstream of the torque sensor. The upstream
architecture which includes driver arms, steering wheel, etc.
is the same. Hence, the control reference is selected at
the torque sensor where both signals, torque and angle,
are measurable. The driver arm’s muscular admittance is
time-variant [19]. However, the controllers are designed by
coupling the arms to the steering wheel with high muscle
co-contraction as the worst case. The linearized reference
is already given for a vehicle speed of 75km/h assuming a
good steering feel representation. This function only models
the driver-side of the steering excitation. The external road
disturbance source is not included. The resulting reference
transfer function is given in (7). The two eigenfrequencies
correspond to vehicle yaw (≈1−2Hz) and pinion dynamics
(≈2−3Hz), refer [17], [20]. The reference function is proper
because torsion bar torque acts as an input and pinion angle
as an output. As a result, the reference inverse is improper
and therefore requires a second-order filter as shown in (8),
further discussed in detail. The reference and reference
inverse are required for the higher level control. The same
higher level control in [18] signifies that the EPAS pinion
angle must be equivalent to the SbW feedback motor angle,
θmot(t)≡ θpin(t).

Gre f =
θpin(s)
Mtb(s)

=
b2s2 +b1s+b0

a4s4 +a3s3 +a2s2 +a1s+a0
(7)

G−1
re f =

Mtb(s)
θpin(s)

=
1

Gre f

ω2
f

s2 +2D f ω f s+ω2
f

(8)

𝐻𝑖𝑔ℎ𝑒𝑟 𝐿𝑒𝑣𝑒𝑙
𝐶𝑜𝑛𝑡𝑟𝑜𝑙

+𝑀𝑡𝑏,𝑟𝑒𝑓 = +𝑀𝑚𝑜𝑡,𝑟𝑒𝑞
+𝜃𝑚𝑜𝑡

𝑣𝑥

(𝒂)

𝐻𝑖𝑔ℎ𝑒𝑟 𝐿𝑒𝑣𝑒𝑙
𝐶𝑜𝑛𝑡𝑟𝑜𝑙

+𝑀𝑚𝑜𝑡,𝑟𝑒𝑞

+𝑒𝑀𝑡𝑏
+𝑀𝑡𝑏,𝑟𝑒𝑓

−𝑀𝑡𝑏

𝐿𝑜𝑤𝑒𝑟 𝐿𝑒𝑣𝑒𝑙
𝐶𝑜𝑛𝑡𝑟𝑜𝑙+𝜃𝑚𝑜𝑡

𝑣𝑥

(𝒃)

𝐻𝑖𝑔ℎ𝑒𝑟 𝐿𝑒𝑣𝑒𝑙
𝐶𝑜𝑛𝑡𝑟𝑜𝑙

+𝑀𝑚𝑜𝑡,𝑟𝑒𝑞

+𝑒𝜃𝑚𝑜𝑡
+𝜃𝑚𝑜𝑡,𝑟𝑒𝑓

−𝜃𝑚𝑜𝑡

𝐿𝑜𝑤𝑒𝑟 𝐿𝑒𝑣𝑒𝑙
𝐶𝑜𝑛𝑡𝑟𝑜𝑙+𝑀𝑡𝑏

𝑣𝑥

(𝒄)

+𝑀𝑎𝑟𝑚

𝐻𝑎𝑝𝑡𝑖𝑐 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑎 , 𝑏 𝑜𝑟 (𝑐)

+𝑀𝑚𝑜𝑡

𝑣𝑥𝑀𝑡𝑏

𝜃𝑚𝑜𝑡

+𝑀𝑚𝑜𝑡,𝑟𝑒𝑞

Fig. 3. Haptic feedback control for SbW FF-system. (a) Open loop:
Reference inverse as the higher level control and no feedback control. (b)
Torque control: Reference inverse and torsion bar torque feedback as the
higher and lower level control respectively. (c) Position control: Reference
and motor angle feedback as the higher and lower level control respectively.

B. Open Loop

The straightforward FF-steering architecture is open loop
where the feedback motor angle (or angular position) com-
putes the reference torque, refer Fig. 3(a). Typically, the
higher level control represents a vehicle model [6] with em-
pirical steering feel functions [5]. Using reference inverse (8)
as the higher level control, the reference torsion bar torque
(9) is requested to the feedback motor.

Mtb,re f (s) = G−1
re f θmot(s) (9)

Equation (2) is important for the haptic feedback control
because it couples the virtual environment to mechanical
hardware. Transforming (2) to Laplace domain, the refer-
ence haptic feedback function is derived in (10). It should
ideally be close to unity within the driver’s periodic steering
excitation range (up to 4−5Hz) [21]. Using (9) and (10), the
reference tracking performance is defined in terms of torsion
bar torque to motor angle (or angular velocity) as (11). Due
to motor inertia and viscous damping, the haptic feedback
deteriorates at higher frequencies. The compromised (open
loop) tracking performance (with respect to given reference)
is shown in Fig. 6(a) and (b), frequency response of torsion
bar torque to motor angle and angular velocity respectively.
Also, Fig. 6(c) represents the problem more objectively based
on the frequency response of reference to actual torsion bar
torque (deviating from unity at frequencies greater than 2Hz).

Mtb(s)
Mmot(s)

=
Mtb(s)

Mtb,re f (s)
= 1+

Jmots2 +bmots
G−1

re f
(10)

θmot(s)
Mtb(s)

=
1

(Jmots2 +bmots)+G−1
re f

(11)

The loop transfer function, LO, determines the character-
istic equation and subsequently ensures a stable coupling of

1739

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2021 at 08:47:46 UTC from IEEE Xplore.  Restrictions apply. 



the haptic feedback control to the plant model, refer (12).
The ‘plant’ transfer function signifies the passive model
behavior obtained using (1)−(3). For the given reference, the
phase margin is used to design the reference inverse filter as
mentioned in (8). The selected filter time constant, Tf = 5ms
(or cut-off frequency ω f = 200rad/s), with critical damping
ratio provides 45◦ phase margin for LO.

Gchar,O = 1+LO : LO =−G−1
re f

∣∣∣∣ θmot(s)
Mmot(s)

∣∣∣∣
plant

(12)

C. Torque Control

The closed-loop torque control architecture requires the
same higher level control as in open loop along with a
lower level (or feedback) control function, GFb,M , as shown
in Fig. 3(b). The strategy has been termed on the basis of
control error in torsion bar torque. The reference torque (9) is
requested to the lower level control. The control objective is
to improve reference tracking by compensating the feedback
motor impedance. The lower level control has been designed
independent of the higher level control with fast response
keeping a desired stability margin. Considering (2), the
motor torque request, reference haptic feedback and tracking
transfer functions are given as follows respectively.

Mmot(s) = GFb,M(Mtb,re f (s)−Mtb(s)) (13)

Mtb(s)
Mtb,re f (s)

=
(Jmots2 +bmots)+G−1

re f GFb,M

G−1
re f (1+GFb,M)

(14)

θmot(s)
Mtb(s)

=
1+GFb,M

(Jmots2 +bmots)+G−1
re f GFb,M

(15)

The feedback control law is derived using lower and upper
bounds. The lower bound in (16) replicates the open loop
behavior assuming an infinitely stiff torsion bar, such that
Jsys = Jarm + Js + Jmot and bsys = bs + bmot . Whereas the
upper bound is obtained by assuming a desired controller
bandwidth as first-order transfer function, Gdes = 1/(1+Tf s).

GFb,M
∣∣
lower =

−G−1
re f

Jsyss2 +bsyss

GFb,M
∣∣
upper =

Gdes

(1−Gdes)
∣∣ Mtb(s)

Mmot (s)

∣∣
plant

(16)

The above derived bounds analytically indicates an ideal
torque control law. As seen in Fig. 4(a), the integrator is
a necessary requirement because there is no stiffness in
the system. This is due to the plant pole at the origin
from motor torque to motor angle. Hence an integral gain,
Ki,M , eliminates the steady state error and ensures transient
tracking. The closed-loop LTI system remains both reachable
and observable (for motor angle on the outer loop) with
integral controller since there are no pole/zero cancellations,
see [9], [22].

For a simplified analytical explanation, the reference in-
verse is assumed as a second-order (inertia-spring-damper)
model in (17). Using the final value theorem for an angular

step disturbance, ∆θdist (at t = 0), results in steady state
torque (18), for given reference inverse and integral con-
troller (GFb,M = Ki,M/s). For minimum steady state error,
Ki,M (>0) should be higher. Higher Ki,M also results in higher
controller bandwidth but at the expense of gain margin. The
final control law also includes a proportional gain, Kp,M ,
such that GFb,M = Ki,M/s+Kp,M . The motor impedance is
effectively reduced by a factor of (1+Kp,M), ∀ Kp,M > 0 [23].
This can be seen in (19) using the initial value theorem
on (14) for a step reference torque disturbance, ∆Mdist (at
t = 0).

G−1
re f = Jre f s2 +bre f s+ cre f (17)

∆Mtb = lim
s→0

Mtb(s)
θmot(s)

∆θdist = lim
s→0

cre f ∆θdist

[
1

1+ s
Ki,M

]
(18)

∆Mtb = lim
s→∞

Mtb(s)
Mtb,re f (s)

∆Mdist = ∆Mdist

[ Jmot
Jre f

+Kp,M

1+Kp,M

]
(19)

The controller is developed in a sequential manner as
described in [18]. At first, the inner loop stability criteria
is satisfied for the loop transfer function (20) if the con-
straint (21) holds true, where α = 1+Kp,M . This is a nec-
essary and sufficient stability condition for the characteristic
equation (Gchar = 1+L), excluding the reference inverse to
have LHP closed-loop poles. The condition has been verified
numerically for a stiff torsion bar (as an approximation)
because as ctb reduces Ki,M upper bound increases. The
inner loop stability and performance primarily depends on
the torsion bar and motor viscous damping. Removing the
torsion bar demands a robust estimated torque signal for the
closed-loop approach because the stability limit is dependent
on it. On the contrary, lower magnitude of Ki,M and Kp,M is
undesirable for higher bandwidth. In the given setup they are
selected to achieve infinite gain margin, 35◦ phase margin
for (20) and 12Hz torque controller bandwidth.

Lin,M = GFb,M

∣∣∣∣ Mtb(s)
Mmot(s)

∣∣∣∣
plant

(20)

Ki,M <

[
α +

Jmot

Js + Jarm

]2 ktb

Jmot
+α

bmot

Jmot
+

Jmotbs

(Js + Jarm)2
(21)

The next step is to include the outer loop (with higher
level control). The loop transfer function becomes (22). With
known reference stiffness, cre f , and inner loop bandwidth,
ωin, the sufficient closed-loop stability condition is to have no
loop gain encirclements of −1 (Nyquist criterion). It yields
in (23) with reasonable assumptions, {Jre f ,bre f ,ktb} = 0 and
ctb→∞. This condition is satisfied for the given parameters.
With the defined control law, (22) has 32◦ phase margin.

Lo,M = GFb,M

[∣∣∣∣ Mtb(s)
Mmot(s)

∣∣∣∣
plant
−G−1

re f

∣∣∣∣ θmot(s)
Mmot(s)

∣∣∣∣
plant

]
(22)

ωin >
cre f

bs
− bs

Js + Jarm
(23)

The coupled stability of a haptic controller ultimately
depends on its interaction with the environment, considering
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Fig. 4. (a) Torque feedback control transfer function (GFb.M) as an integrator (Ki,M/s), also with lower and upper bounds as defined in (16). The lower
bound function replicates the open loop result assuming stiff torsion bar. Whereas the upper bound function defines a desired torque controller bandwidth
(ωin = 1/Tf ), represented by Gdes. (b) It shows the influence of driver arm inertia (Jarm) on torque and position controller bandwidth using their defined
control laws. Torque controller bandwidth (12Hz) is almost independent of Jarm variation, but the bandwidth varies noticeably in position controller (from
10Hz to 4Hz without and with maximum Jarm respectively). (c) Coupled or contact stability is defined for the loop transfer function (24). The respective
admittance phase margin variation as a function of driver arm stiffness (carm) is shown here for Jarm = 0 (dashed lines) and Jarm 6= 0 (solid lines).

driver/human-in-the-loop. The instability of haptic manipula-
tors is often termed as contact instability, see [23], [24]. The
environment stiffness is primarily defined by the driver arm
inertia, Jarm, and muscular arm stiffness (or co-contraction),
carm. The effect of Jarm variation marginally influences the
torque controller bandwidth (refer Fig. 4(b)), inner- and
outer-loop phase margins. Secondly, the effect of carm vari-
ation is understood by coupling the driver arm’s intrinsic
stiffness and damping (G−1

arm = carm + karms) with closed-
loop steering admittance, θs(s)/Marm(s). Equation (24) is the
resulting loop transfer function. Following the above men-
tioned design approach and satisfying the constraints ensure
positive real closed-loop admittance. This is a necessary and
sufficient stability condition (for a stable LTI plant) coupled
to a stable and passive environment [23]. Fig. 4(c) exhibits
the effect of carm variation on admittance phase margin.
Higher driver arm inertia and stiffness results in decreasing
phase margin. But the admittance poles still remain in LHP
for the root locus plot ensuring coupled stability.

Ld = G−1
arm

∣∣∣∣ θs(s)
Marm(s)

∣∣∣∣
closed

(24)

Using the same control law, the controller stability was
maintained during experiments (for both hands-off and
rigidly coupled hands-on). With driver excitation, the ref-
erence tracking of torsion bar torque to motor angle and
angular velocity is significantly improved as compared to
the open loop architecture, refer Fig. 6(a) and (b). Because
the reference haptic feedback function stays close to unity
within the steering excitation range as shown in Fig. 6(c).

D. Position Control

The closed-loop position controller requires reference
in (7) as the higher level control. The lower level control
as shown in Fig. 3(c) acts as an angular position error feed-
back. The reference motor angle, θmot,re f (s) = Gre f Mtb(s),
is requested to the lower level control. The control ob-
jective is same as before to improve reference tracking.

Considering (2) and postion feedback function as GFb,θ , the
motor torque request, reference haptic feedback and tracking
transfer functions become as follows respectively.

Mmot(s) = GFb,θ (θmot,re f (s)−θmot(s)) (25)

θmot(s)
θmot,re f (s)

=
1−Gre f GFb,θ

Gre f ((Jmots2 +bmots)−GFb,θ )
(26)

θmot(s)
Mtb(s)

=
1−Gre f GFb,θ

(Jmots2 +bmots)−GFb,θ
(27)

The position feedback control law is derived using torque
control, GFb,M =Ki,M/s+Kp,M , similar to [18]. For a similar
performance as torque controller (in terms of reference
tracking), the respective closed-loop characteristic equations
are compared Gchar,M

!
= Gchar,θ , where Gchar,M = 1+ Lo,M .

The result is shown in (28). Using (17) and GFb,M , the
position feedback control transfer function can be written
as (29). The feedback gains (Kd2,θ ,Kd,θ ,Kp,θ and Ki,θ ) are
selected independent of reference parameters to have fast
inner loop response with a desired stability margin. The
derived position feedback control law consists of higher order
derivatives to manipulate the haptic feedback. For a similar
haptic performance theoretically (as in torque control), here
the control objective is to minimize the error in motor
angular position, velocity and acceleration simultaneously. In
torque control the higher level control (8) requires filtering,
whereas the filtering is done in the position feedback con-
trol (for derivative and double-derivative terms). For a fair
comparison, the same filter is used in both. The closed-loop
LTI system remains fully reachable and observable (with
torsion bar torque on the outer loop) without any pole/zero
cancellations.

GFb,θ =−GFb,MG−1
re f (28)

GFb,θ =−(Kd2,θ s2 +Kd,θ s+Kp,θ +Ki,θ/s) (29)

The inner loop is a position controller which is de-
veloped at first to minimize the control error in motor
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angle based on (29). The controller development is inspired
from [25], [18]. For a simplified explanation, consider (2)
as the plant model with infinitively stiff torsion bar such
that the plant transfer function becomes θmot(s)/Mmot(s) =
−1/(Jsyss2 +bsyss), where Jsys = Jarm + Js + Jmot and bsys =
bs+bmot . Given feedback control function, GFb,θ , the closed-
loop reference and disturbance transfer functions are (30)
and (31) respectively.

θmot(s)
θmot,re f (s)

=
−GFb,θ

Jsyss2 +bsyss−GFb,θ
(30)

θmot(s)
Mdist(s)

=
−1

Jsyss2 +bsyss−GFb,θ
(31)

The required controller bandwidth and damping are
achieved using the proportional and derivative gains, Kp,θ
and Kd,θ respectively. Assuming GFb,θ = −(Kd,θ s/(1 +
Tf s) + Kp,θ ), the resulting loop gain, L( jω), is shown
in (32). For {Kd,θ ,Tf } = 0, increasing Kp,θ results in
higher bandwidth (ωin =

√
Kp,θ/Jsys) but the damping (Din =

bsys/2Jsysωin) reduces which ultimately affects the phase
margin. Improvement in phase margin is attained by increas-
ing Kd,θ . With Tf = 5ms, the effect of Kp,θ and Kd,θ variation
on controller bandwidth and phase margin can be seen in
Fig. 5 for two load cases, with and without Jarm. The influ-
ence of arm inertia variation noticeably alters the controller
performance and phase margin. For instance if Kp,θ = 30 and
Kd,θ = 2, with higher system inertia the bandwidth and phase
margin reduces by 7Hz and 10◦ respectively. Moreover, the
integral gain, Ki,θ , is required to minimize the steady state
error and attenuate external load torque disturbances [25].
For a step torque disturbance, ∆Mdist (at t = 0), the integrated
position error can be reduced with higher Ki,θ as shown
in (33) by applying the final value theorem on (31). However
increasing Ki,θ also reduces the gain and phase margin.
Finally the system inertia, Jsys, is compensated by the double-
derivative gain, Kd2,θ . This is proved by using the initial
value theorem on (30) which consequently results in (34).
The quantification of the feedback gains is explained next
under the stability analysis.

L( jω) =
Kp,θ + jω(Kp,θ Tf +Kd,θ )

−(bsysTf + Jsys)ω2 + jω(bsys− JsysTf ω2)
(32)

lim
t→∞

∫ t

0
∆θmotdt = lim

s→0

1
s

∆θmot(s)
Mdist(s)

∆Mdist =
−∆Mdist

Ki,θ
(33)

∆θmot = lim
s→∞

∆θmot(s)
∆θmot,re f (s)

∆θmot,re f =
∆θmot,re f

1+ Jsys
Kd2,θ

(34)

The first step is to derive the inner loop stability criteria
using (35) as the loop transfer function. The control law
does not include the filter as simplification. As a necessary
and sufficient stability condition, the constraint (36) must
be satisfied. This result has been verified numerically and
holds true for a stiff torsion bar. With decreasing ctb, Ki,θ
upper bound increases marginally. Equation (21) in torque
control highlights that both Ki,M and Kp,M can be increased

Fig. 5. The effect of position feedback control gains (Kp,θ and Kd,θ )
on (a) bandwidth and (b) loop gain phase margin are shown. The figures
have been generated for {Ki,θ ,Kd2,θ} = 0 and Tf = 5ms. Increasing Kp,θ
ensures higher bandwidth but lower phase margin, whereas Kd,θ improves
phase margin. Also, the bandwidth and phase margin reduces significantly
with increasing driver arm inertia.

simultaneously (due to parabolic relation) to achieve track-
ing performance and compensate system inertia. Whereas
in position control, the respective gains (Ki,θ and Kd2,θ )
fulfilling the same objectives exhibit hyperbolic relation for
given Kp,θ and Kd,θ . This is a key fundamental difference
between the two approaches in terms of stability and perfor-
mance. The feedback gains are chosen to provide 42◦ phase
margin for (35) and approximately 5Hz position controller
bandwidth with driver arm inertia. For the same controller
gains without arm inertia, the phase margin and bandwidth
are 75◦ and 10Hz respectively. The effect of Jarm variation
on controller bandwidth can be seen in Fig. 4(b).

Lin,θ = GFb,θ

∣∣∣∣ θmot(s)
Mmot(s)

∣∣∣∣
plant

(35)

Ki,θ <

[
bs +bmot +Kd,θ

Js + Jarm + Jmot +Kd2,θ

]
Kp,θ (36)

Including the higher level control for stability evaluation
requires the overall loop transfer function as shown in (37).
The dependency on feedback gain Kd2,θ is limited since
it would amplify the noise in angular acceleration error
signal. Therefore the outer loop stability constraint is derived
for the next higher order derivative, Kd,θ . Considering a
stiff torsion bar (ctb → ∞ and ktb = 0), the outer loop is
stable if Jre f ≥ Jmot , ∀ Kd,θ > 0 as a sufficient condition
for no loop gain encirclements of −1. This valid condition
has been proved in [26]. However with known limited
values of ctb and ktb, the quadratic constraint (38) on Kd,θ
must be satisfied as a necessary and sufficient stability
condition for LHP closed-loop poles of the characteristic
equation. The derivation includes reasonable assumptions,
{cre f ,bre f ,bs,bmot ,Ki,θ ,Kp,θ ,Kd2,θ} = 0. The desired Kd,θ
bounds depend primarily on torsion bar parameters and
inertia values. Equation (38) can also hold for Jre f < Jmot for
a certain Kd,θ range. This constraint is especially important
for systems with indirect servo motor coupling because then
the effective motor inertia on the torsion bar output shaft
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Fig. 6. Post-processed measurement data for performance evaluation. Frequency response of torsion bar torque to (a) feedback motor angle and (b) angular
velocity with driver as an excitation source (open loop, torque and position control architectures). (c) Frequency response of reference haptic feedback
function exhibiting the relation of reference to actual control variable. The closed-loop controllers offer a better response as compared to the open loop
method as evident from reference tracking, especially in motor angular velocity response at higher frequencies (> 2Hz).

increases incredibly, for example in EPAS system. For the
given higher level control Jre f >> Jmot , so the outer loop
remains stable ∀ Kd,θ > 0. But the inner loop constraint (36)
creates a lower bound on Kd,θ to ensure controller stability
for given Ki,θ ,Kp,θ and Kd2,θ . The selected controller gains
with reference parameters provide 75◦ phase margin for (37).

Lo,θ = GFb,θ

[∣∣∣∣ θmot(s)
Mmot(s)

∣∣∣∣
plant
−Gre f

∣∣∣∣ Mtb(s)
Mmot(s)

∣∣∣∣
plant

]
(37)

K2
d,θ +

[ (1− Jmot
Jre f

) ctb
ktb

1
Js+Jarm

+ 1
Jre f

+ ktb

(
1+

Jmot

Js + Jarm

)]
Kd,θ+

ctb

( Jmot
Js+Jarm

+1
)2

1
Js+Jarm

+ 1
Jre f

> 0

(38)

Lastly, the coupled haptic controller stability is evaluated.
The effect of Jarm variation, as shown earlier in Fig. 4(b),
significantly changes the controller bandwidth and subse-
quently inner- and outer-loop phase margins. The effect of
muscle co-contraction, carm, variation on closed-loop steering
admittance can be seen in Fig. 4(c). Contact stability is
maintained since the phase margin of the loop transfer
function (24) is positive. It implies positive real steering
admittance, as the closed-loop poles remain in LHP.

The practical implementation of the designed control law
ensured stability during experiments (both hands-off and
rigidly coupled hands-on). Reference tracking of torsion bar
torque to motor angle and angular velocity is improved
as compared to the open loop, but inferior to the torque
control approach as shown in Fig. 6(a) and (b) respectively.
The position controller bandwidth is very much dependent
on the driver arm inertia. Therefore, the reference haptic
feedback function starts to deviate at higher frequencies
(within excitation range), refer Fig. 6(c). As a result the

tracking performance is somewhat compromised. Moreover,
if an estimated torque signal for the higher level control is
available, then this approach could be preferred by removing
the torque sensor since the inner loop stability is roughly
independent of it.

IV. CONCLUSIONS

This paper has presented a quantified comparison between
the open and closed-loop haptic feedback control methods for
Steer-by-Wire (SbW) systems. Although the open loop archi-
tecture is straightforward, but it lacks tracking performance at
higher steering excitation frequencies due to feedback motor
impedance. With a closed-loop solution, torque or position
control, the effect of motor dynamics is compensated as
shown in the experimental results.

In torque control, higher controller bandwidth is achieved
as compared to position control. Because the closed-loop
stability and performance are less sensitive to the driver
arm inertia in torque control; whereas they reduce more
rapidly with increasing inertia in position control. The haptic
feedback control objectives are reference tracking and inertia
compensation. Using classical control theory and linear sta-
bility analysis, it is proved that the two responsible feedback
controller gains (corresponding to their respective objectives)
show parabolic and hyperbolic constraint for torque and
position control respectively. Also, torque control requires
filtering for the reference generator which subsequently
limits the reference tracking performance. On the contrary,
filtering required for the position feedback control limits the
controller performance (or bandwidth) and stability. For the
controller design, the stability criteria have been derived and
followed ensuring contact/coupled stability with the driver
irrespective of the muscle co-contraction level. Finally, the
experimental results corroborate the theoretical findings and
stability criteria. The results show a comparable reference
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tracking for torque and position control methods within
driver’s steering excitation range.

The authors intend to improve the position controller
performance by compensating the driver arm inertia in the
future. Also, the estimation and inclusion of the external road
feedback in different haptic feedback control strategies will
be further studied.

ACKNOWLEDGMENT

The authors would like to thank Professor Bengt Jacobson
from Chalmers University of Technology and Pontus Carls-
son, David Dahlgren and Joakim Norrby from Volvo Car
Corporation for insightful discussions.

REFERENCES

[1] D. Gualino and I. J. Adounkpe, “Force-feedback system design for
the steer-by-wire: optimisation and performance evaluation,” in Proc.
IEEE Intelligent Transp. Syst. Conf., Toronto, Canada, pp. 181-187,
Sep. 2006.

[2] E. Mehdizadeh, M. Kabganian, and R. Kazemi, “A new force feedback
for steer-by-wire vehicles via virtual vehicle concept,” in Proc. 50th
IEEE Conf. Dec. & Cont. & Eur. Cont. Conf., Orlando, USA, pp.
2281-2286, Dec. 2011.
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