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Abstract: Heritage documentation is implemented by digitally recording historical artifacts for the
conservation and protection of these cultural heritage objects. As efficient spatial data acquisition
tools, laser scanners have been widely used to collect highly accurate three-dimensional (3D) point
clouds without damaging the original structure and the environment. To ensure the integrity and
quality of the collected data, field inspection (i.e., on-spot checking the data quality) should be carried
out to determine the need for additional measurements (i.e., extra laser scanning for areas with quality
issues such as data missing and quality degradation). To facilitate inspection of all collected point
clouds, especially checking the quality issues in overlaps between adjacent scans, all scans should
be registered together. Thus, a point cloud registration method that is able to register scans fast
and robustly is required. To fulfill the aim, this study proposes an efficient probabilistic registration
for free-form cultural heritage objects by integrating the proposed principal direction descriptor
and curve constraints. We developed a novel shape descriptor based on a local frame of principal
directions. Within the frame, its density and distance feature images were generated to describe
the shape of the local surface. We then embedded the descriptor into a probabilistic framework to
reject ambiguous matches. Spatial curves were integrated as constraints to delimit the solution space.
Finally, a multi-view registration was used to refine the position and orientation of each scan for the
field inspection. Comprehensive experiments show that the proposed method was able to perform
well in terms of rotation error, translation error, robustness, and runtime and outperformed some
commonly used approaches.

Keywords: cultural heritage objects; shape descriptor; probabilistic registration; curve constraints;
field inspection

1. Introduction

Precise documentation of cultural heritage objects is essential for their protection and scientific
studies during the restoration and renovation process. To meet the requirements for these applications,
highly accurate 3D surface information is required [1]. Lots of measurement systems and technologies
are used to collect the information [2–5]. Among them, laser scanner is an efficient tool to collect
accurate 3D point clouds, widely used for cultural heritage objects without damaging their original
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structure and the environment [6–9]. When scanning complex objects, optical constraints, such as
self-occlusion, field of view (FOV), and depth of field (DOF), bring difficulties to scanning work.
These constraints may result in various data quality issues (e.g., data missing, resolution variations,
excessive outliers). To ensure the data quality and save on labor costs, field inspection (i.e., on-spot
checking the data quality) is often carried out to determine the need for extra scanning [10]. To facilitate
inspection of all collected point clouds, especially checking the quality issues in overlaps between
adjacent point clouds, all point clouds should be registered together. Thus, a fast and robust registration
method is needed that would transform different scans (each scan has one point cloud) into the same
coordinate system.

In this study, we propose a novel registration method tailored for field inspection by embedding
the principal direction descriptor and curve constraints into the probabilistic framework. The main
contributions are as follows: (1) We present a fast and discriminative descriptor to reject incorrect
matches, ensuring a global optimum. Compared to local frames of commonly used eigenvectors,
the proposed local frame, based on principal directions, introduces fewer distortions and is particularly
suitable for cultural heritage objects with severely curved surfaces. (2) The proposed pairwise
registration is designed on a probabilistic framework, which exploits the advantages in terms of
good generality, high accuracy, and strong robustness. (3) We embedded curve constraints into the
probabilistic framework, which constrains the solution space effectively, leading to faster convergence
and higher registration accuracy.

The scope of this work covers the fields of feature descriptor and point cloud registration.
These aspects are reviewed as follows. In past decades, feature descriptors have been extensively
studied. The descriptors were firstly and widely used in 2D images. This category includes 2D
point descriptors such as FAST, BRISK (an extension of the FAST algorithm), 2D Scale-Invariant
Feature Transform (SIFT) descriptor, and 2D blob descriptors such as ASIFT (the descriptor which
considers the affinity), Speeded Up Robust Features (SURF) and CenSurE (center-surround filers) [11,12].
Besides, Chen et al. proposed a simple and robust 2D Weber Local Descriptor (WLD) descriptor.
For a given image, two components: differential excitation and orientation are used to construct a
concatenated WLD histogram [13]. In the field of 3D point cloud, many researchers construct a local
reference frame to describe the geometric information of local surface. Inside this category, the most
popular descriptors include signature-based [14], spin image-based [15], shape context-based [16],
and Tensor-based descriptors [17]. Moreover, lots of descriptors use statistics or histograms to describe
the characteristics of local surface. Examples include the Fast Point Feature Histograms (FPFH) [18],
Signature of Histograms of Orientations (SHOT) [19]. Furthermore, many descriptors use dimension
reduction to enhance computational efficiency. Examples include principal component analysis
(PCA)-based [20] descriptors, binary string-based descriptors [21], and covariance matrix-based
descriptors [22]. The above descriptors have demonstrated their superior performance in specific
applications. However, most existing feature descriptors still suffer from either low descriptiveness
or efficiency. Therefore, an efficient and robust descriptor specifically designed for field inspection
is required.

Many automatic registration methods have been developed for 3D laser scanning point clouds.
These methods can roughly be classified into two categories based on the involved information,
i.e., image-integrated methods and laser point-based methods [23]. Image-integrated methods
incorporate attribute information (e.g., color, intensity, reflectance, temperature) from images into 3D
laser points to match the correspondences. Therefore, the relation between the images and the 3D
laser points is needed. Generally, a calibration procedure between the camera and the laser scanner is
implemented to build this relation [24–28]. For example, Park et al. [29] introduced a virtual camera to
locally parametrize the 3D point clouds and extend a photometric objective to aligning color images
to point clouds. Akca et al. [30] built the relation between intensity images and 3D laser points
manually and proposed an extension of the Generalized Gauss-Markoff model to simultaneously
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match the surface geometry and intensity information. Although image-integrated methods perform
well, they are susceptible to the degradation of images (e.g., distortion, illumination).

The laser point-based methods can be further divided into coarse registration and fine registration
according to the registration errors. The aim of coarse registration is to estimate an initial transformation
between two point clouds. Most coarse registration methods are based on geometric primitives
(e.g., feature point, linear and planar feature). In this category, the feature point-based methods
are more popular due to their flexibility and broad applicability. Generally, they use 3D detectors
(e.g., 3D Harris [31], 3D SIFT [32], 3D SURF [33], curvature and curvature change-based [34,35],
heat kernel signature (HKS)-based [36], local surface patches (LSP)-based [37], and Laplace Beltrami
scale space (LBSS)-based [38] detectors) to extract key points from the original point clouds, and use
the above 3D descriptors to measure the similarity to determine the correspondences. For example,
Hussnain et al. used an adaptive variant of Harris-operator to detect corner points and used LATCH
binary descriptor to describe them. Finally, the relative Euclidean-distance and angles between sets of
points were exploited to match them [39]. Petricek et al. [40] proposed two types of detectors based on
the covariance matrix of points and normal respectively. They computed the saliency based on the
eigenvalues to extract key-points, and constructed the descriptor based on local reference frames to
determine the correspondences for registration. He et al. [41] estimated the curvature of each point
based on its eigenvalues to extract key-points. Then Tsallis entropy of spin image and the reflection
intensity of laser sensor were combined to match key points to realize the registration. There are many
detector and descriptor-based methods proposed to register TLS point clouds. For instance, Dong et al.
calculated a local descriptor—binary shape context (BSC)—and a global descriptor—vector of locally
aggregated descriptor (VLAD)—to describe the local and global characteristics of each point. Then an
adjacent graph is formed to register multiple point clouds iteratively [42]. Bueno et al. calculated
an eigenvector-based descriptor that describes the linear, planar and scattered characteristics of local
surface. The change of curvature is another point descriptor used. These two 3D descriptors are used
to detect key points and then a 4 Points Congruent Sets registration is performed [43]. Many methods
have been used to register cultural heritage. For example, Shanoer et al. realized the registration
by the manual selection of at least three corresponding points [44]. Tournas et al. proposed a target
point-based registration for cultural heritage documentation. These methods have better accuracy,
but they are labor intensive and time consuming [45]. In contrast, without any targets, Shao et al. used
Super4PCS (i.e., randomly selecting four coplanar points and matching all the 4-point configurations
with similar geometric properties) algorithm to realize coarse registration [46]. Bae et al. proposed
to use the change of geometric curvature and approximate normal vector to search for possible
corresponding points for registration. This method was applied for deformation monitoring of large
Buddha [47]. These methods work well for specific applications, but for the filed inspection, a more
stable and efficient registration method is still required.

Linear and planar feature-based methods have also attracted interest from researchers [48]. Among
this category, canny edge detection [49,50], Hough transform [51,52], line segment detector [53] were
extended to detect linear features in 3D point clouds. For example, Date et al. [54] used straight lines
to register point clouds for bridges. They extracted horizontal and vertical lines based on planar
regions and used two pairs of nonparallel lines to solve the transformation. Similarly, Cui et al. [55]
applied linear features to register the panoramic images and LiDAR point clouds collected by a mobile
mapping system (MMS). Moreover, many methods have been proposed to detect planar features.
For instance, Vosselman and Dijkman used a 3D version of the Hough transform to extract roof
planes for 3D reconstruction [56]. Vosselman et al. proposed to group neighborhood points that
share the same property (e.g., surface normal) to detect smooth surfaces from scan line datasets and
improved the surfaces by extending the split-and-merge method in image [57]. Pu and Vosselman
proposed knowledge-based feature constraints to detect linear and planar features of building façade
(e.g., walls, doors, roofs) from laser point clouds. Then concave polygons were fitted to reconstruct these
components [58]. Khoshelham [59] used a normalization algorithm to fit planes. A closed-form solution
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based on point-plane correspondences was proposed to determine the transformation. Similar works
can also be found in [60,61]. Linear and planar feature-based methods perform well for urban and
industrial scenes with lots of regular structures but operate poorly for free-form objects with less
line/plane features.

Most recently, deep learning-based methods have been extensively explored. These techniques
learn high-level feature information from a large volume of data for registration. For example,
Zhang et al. [62] divided the point clouds into regular grids and used a 3D convolution network to extract
features for matching. Pujol-Miró et al. [63] proposed a multiview-based method, which generates
multiple views from different angles using a single point cloud. Image convolutional neural networks
have been used to determine the correspondences between views. PointNet [64] and PointNet++ [65]
are pioneering methods that directly process unordered point clouds. T-Net and different feeding orders
have also been proposed to make the process transform-invariant. Similarly, researchers have proposed
PPFNet [66], PointNetLK [67], and CorsNet [68] for point cloud registration. Other commonly used
methods include the random sample consensus (RANSAC) [69], the lifting optimization method [70],
the branch-and-bound (BnB)-based method [71], and the simultaneous localization and mapping
(SLAM) method [72].

Within the category of coarse registration methods, the probabilistic registration method is a
well-known and promising approach. Different from the traditional one-to-one matching strategy,
one-to-many matching patterns are allowed. More combinations of correspondences are considered
to improve the flexibility and robustness of the technique. Most of the previous studies were based
on the Expectation-Maximization (EM) algorithm. For example, Evangelidis et al. [73] proposed a
joint registration of multiple point clouds (JR-MPC). They used a Gaussian mixture model (GMM)
to describe the distribution of one point cloud and assigned points from the other point cloud to
the GMM. The EM algorithm was then used to estimate both the GMM and the transformation
parameters. Myronenko et al. [74] introduced the coherent point drift (CPD) algorithm for the point
cloud registration, using GMM centroids to describe one point cloud and fitting it to the other point
cloud by maximizing a likelihood function. The use of the CPD algorithm was able to generate
accurate and robust results. The variants of CPD include the automatic estimation of outliers [75] and
computational efficiency improvements [76].

After the initial transformation, fine registration can then be used to further refine the
transformation. The iterative closest point (ICP) algorithm [77,78] is a well-known fine registration
method that matches correspondence by searching the nearest point and solves the transformation
parameters by minimizing the distance errors iteratively. Because the original ICP algorithm has many
limitations, many variants have been proposed, mainly focusing on improving computational expense,
correspondence establishment, and robustness [79,80]. The normal distribution transform (NDT)
algorithm is another widely used fine registration method. It was first used for robotic localization
in 2D space before it was extended into 3D space [81]. NDT uses multiple Gaussian distributions
to describe different point clouds and estimate the transformation parameters by maximizing the
similarity between Gaussian distributions. The variants of NDT mainly improve the computational
time and the convergence basin [82,83].

2. Materials and Methods

2.1. Processing Pipeline of Digital Documentation

To better show the research content of this article. The whole processing pipeline of our digital
documental is shown in Figure 1. The pipeline consists of the following steps, namely planning of
scanning, preparation of protective measures, measures for scanning preparation, field inspection,
accurate registration, accurate modeling and digital documentation.
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Figure 1. Processing pipeline of digital documentation (orange box shows the research content of this article).

(1) Planning of scanning. In this step, the number of stations and the scanning area of each station
were planned. Take the data acquisition in Mogao Grottoes for example, the following steps were
employed. (a) Take photos covering the operation area. According to the characteristics of the scene,
a scanning order was determined (as Figure 2 shows). (b) For each Buddha, its shape and surroundings
were taken into account to determine the number of stations and the scanning area of each station.
Generally, for the Buddha with complex shape, more stations were planned to ensure the data quality,
and vise verse. Moreover, the space needed for the target net and its fixed support should also be taken
into account. (c) To facilitate recording and operation, the planned stations were named after the parts
of body (as Figure 3 shows).
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(2) Preparation of protective measures. For the effective protection of cultural heritage objects,
many necessary facilities (e.g., glass fender, air monitor, protective blanket) were prepared
and distributed.

(3) Measures for scanning preparation. This step prepares the facilities (e.g., power unit, lighting
equipment, work shelf) for scanning operation. For each station, a special target net was made for
scanning, which should be close to the shape of scanning area. To protect the historical artifacts,
the target nets were not allowed to touch them. Thus, a fixed support used for hanging and fixing
them is needed and designed for each station (as Figure 4 shows).
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(4) Field inspection. To ensure the data quality and save on labor costs, this step uses a rapid
registration for field inspection to determine the need for extra scanning. Even though detailed plans
were designed in advance, long hours of scanning and limited working space challenge the data
collector’s endurance, energy and concentration. In this case, signal loss, target net movement and
resolution variations caused by manual errors are difficult to avoid, which will further lead to data
degradation issues. Therefore, field inspection is required in the practical applications.

(5) Accurate post-registration in interior work. In this step, data preprocessing (e.g., noise removal,
down sampling, duplicates removal) is carried out. Then a manual registration and a fine registration
is used to get high accurate alignment (submillimeter level) for accurate modeling.

(6) Accurate modeling. Based on the accurate alignment, this step is used to construct tin-based
meshes, which includes many model optimization procedures (e.g., holes filling, bridging, rendering by
normal vectors, nails removal).

(7) Digital documentation. This step stores the original data, data acquisition diary, accurate 3D
models, description files, and the final report.

2.2. Experimental Point Cloud Datasets and Work Flow

The proposed method was used on scan data from the Mo Kao Grotto at Dunhuang and Wuwei
museum in evaluating its performance. All the point clouds were collected using HandySCAN 3D
(a hand-held scanner from Creaform, Lévis, Quebec, Canada). Before scanning, a target net was set up
to help position the laser beam cross of each moment. Adjacent scans had different overlaps and initial
positions. Scans over the General from the Mo Kao Grotto and the Buddha from the Wuwei museum
were used for field inspection. We collected the General data in July 2012 and the Buddha data in
October 2014. Six scans were set up for each, and 0.67 and 1.44 million points were collected separately.
The average point density for the General was about 1.0 mm, and 0.8 mm for the Buddha. The General
was 1.6 m in height and 0.9 m in width, while the Buddha in Wuwei museum was 1.4 m in height and
1.2 m in width. The illustration of the scanned point clouds for the General and the Buddha is shown
in Figure 5.



ISPRS Int. J. Geo-Inf. 2020, 9, 759 7 of 23

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 6 of 24 

 

(4) Field inspection. To ensure the data quality and save on labor costs, this step uses a rapid 
registration for field inspection to determine the need for extra scanning. Even though detailed plans 
were designed in advance, long hours of scanning and limited working space challenge the data 
collector’s endurance, energy and concentration. In this case, signal loss, target net movement and 
resolution variations caused by manual errors are difficult to avoid, which will further lead to data 
degradation issues. Therefore, field inspection is required in the practical applications. 

(5) Accurate post-registration in interior work. In this step, data preprocessing (e.g., noise 
removal, down sampling, duplicates removal) is carried out. Then a manual registration and a fine 
registration is used to get high accurate alignment (submillimeter level) for accurate modeling. 

(6) Accurate modeling. Based on the accurate alignment, this step is used to construct tin-based 
meshes, which includes many model optimization procedures (e.g., holes filling, bridging, rendering 
by normal vectors, nails removal). 

(7) Digital documentation. This step stores the original data, data acquisition diary, accurate 3D 
models, description files, and the final report. 

 
Figure 4. Design of the target net and fixed support. 

2.2. Experimental Point Cloud Datasets and Work Flow 

 
(a) (b) 

Figure 5. Illustration of General and Buddha data. (a) General data in Mo Kao Grotto (b) Buddha data 
from the Wuwei museum. 
Figure 5. Illustration of General and Buddha data. (a) General data in Mo Kao Grotto (b) Buddha data
from the Wuwei museum.

The proposed method mainly includes three parts: the descriptor construction and similarity
measurement, the construction of probabilistic framework encoding curve constraints, and the
multi-view adjustment method and inspection. The workflow is shown in Figure 6.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 7 of 24 

 

 
Figure 6. The workflow of the proposed method. 

The proposed method was used on scan data from the Mo Kao Grotto at Dunhuang and Wuwei 
museum in evaluating its performance. All the point clouds were collected using HandySCAN 3D (a 
hand-held scanner from Creaform, Lévis, Quebec, Canada). Before scanning, a target net was set up 
to help position the laser beam cross of each moment. Adjacent scans had different overlaps and 
initial positions. Scans over the General from the Mo Kao Grotto and the Buddha from the Wuwei 
museum were used for field inspection. We collected the General data in July 2012 and the Buddha 
data in October 2014. Six scans were set up for each, and 0.67 and 1.44 million points were collected 
separately. The average point density for the General was about 1.0 mm, and 0.8 mm for the Buddha. 
The General was 1.6 m in height and 0.9 m in width, while the Buddha in Wuwei museum was 1.4 m 
in height and 1.2 m in width. The illustration of the scanned point clouds for the General and the 
Buddha is shown in Figure 5. 

The proposed method mainly includes three parts: the descriptor construction and similarity 
measurement, the construction of probabilistic framework encoding curve constraints, and the multi-
view adjustment method and inspection. The workflow is shown in Figure 6. 

2.3. Problem Formulation 

To obtain the complete data of cultural heritage objects for field inspection, pairwise registration 
was employed as a fundamental kernel problem. To make the method easy to understand, we 
formulate the general problem of pairwise registration as follows, given two overlapping point 
clouds P and Q. Assume there are M correspondences between them given by 

( ) ( ){ }, | 1, 2,...,i iC p q i M= ∈ , where ( ),i ip q  denotes one correspondence. The expression to estimate 

the rigid transformation parameters R and T is as follows: 

( )( ) ( ) ( ) ( )2

1
, arg min , , . .

M

i i i i i i
i

R T Tr p q p q s t q R p Tθ θ
=

= − ∀ = ⋅ +  (1) 

where ( )Tr ⋅ denotes the transformation; ( )R θ is a 3 3× rotation matrix; and, T is a 3 1× translation 
vector. To estimate the transformation parameters, this study constructed an objective function that 
encodes the candidate correspondences assigned by the matching probability matrix between P and 
Q: 

( ) ( ), arg max , |R T Q R T C=  (2) 

The transformation parameters and covariance are solved in an iterative way within a 
probabilistic framework. 

2.4. Principal Direction Descriptor of Local Surface 

Correspondence establishment between different scans is a precondition of registration. 
Considering the requirements for field inspection, a fast and robust 3D descriptor tailored for cultural 
heritage objects (e.g., a free-form object like Buddha) is needed. This section introduces the proposed 
principal direction descriptor of the local surface. 

Figure 6. The workflow of the proposed method.

2.3. Problem Formulation

To obtain the complete data of cultural heritage objects for field inspection, pairwise registration
was employed as a fundamental kernel problem. To make the method easy to understand, we formulate
the general problem of pairwise registration as follows, given two overlapping point clouds P and Q.
Assume there are M correspondences between them given by C =

{
(pi, qi)

∣∣∣i, (1, 2, . . . , M)
}
, where (pi, qi)

denotes one correspondence. The expression to estimate the rigid transformation parameters R and T
is as follows:

(R(θ), T) = arg min
M∑

i=1

‖Tr(pi) − qi‖
2, ∀(pi, qi) s.t. qi = R(θ) · pi + T (1)

where Tr(·) denotes the transformation; R(θ) is a 3 × 3 rotation matrix; and, T is a 3 × 1 translation
vector. To estimate the transformation parameters, this study constructed an objective function that
encodes the candidate correspondences assigned by the matching probability matrix between P and Q:

(R, T) = arg maxQ(R, T|C) (2)

The transformation parameters and covariance are solved in an iterative way within a
probabilistic framework.



ISPRS Int. J. Geo-Inf. 2020, 9, 759 8 of 23

2.4. Principal Direction Descriptor of Local Surface

Correspondence establishment between different scans is a precondition of registration.
Considering the requirements for field inspection, a fast and robust 3D descriptor tailored for
cultural heritage objects (e.g., a free-form object like Buddha) is needed. This section introduces the
proposed principal direction descriptor of the local surface.

2.4.1. Construction of Local Frame

Curvature quantifies curvedness and indicates the undulation of the surface, which is important in
various applications (e.g., shape analysis, object recognition, anisotropic texture mapping). Curvature is
characterized by two perpendicular principal directions (i.e., maximum and minimum principal
directions), encoding abundant geometric information of the local surface. These geometric data are
intrinsic properties that are invariant to rigid body transformation. Along the principal directions,
the surface bends the most. These characteristics make them suitable as the local frame for the
descriptors. However, the complex estimation algorithm limits their application.

The principal directions indicate the courses with the steepest and slowest surface change within
the local surface. Instead of using complex parametric quadratic surface fitting, we propose a fast
and simple estimation method. Assume that p0 is one point from the point cloud, NP indicates its

neighborhood point set with N neighbors within a radius r, and pi is one of the neighbors. Let −−→n0 be
the normal vector of p0, estimated by the principal components analysis (PCA) algorithm, and the
direction is unified by the consistent propagation algorithm. To ensure robustness, the point density
and distance of each neighbor are also considered. Tp is the tangent plane of p0. The maximum
principal direction is estimated as:

−−−−→
ψu =

N∑
i=1

wdi ·wsi ·
−−−−→

p0p′i

N∑
i=1

wdi ·wsi

(3)

Here,
−−−−→

p0p′i is the projected unit vector from p0 to pi within Tp, which can be written as:

−−−−→
p0p′i =

−−−−→p0pi −

(
−−−−→p0pi ·

−−→n0

)
·
−−→n0∣∣∣∣∣−−−−→p0pi −

(
−−−−→p0pi ·

−−→n0

)
·
−−→n0

∣∣∣∣∣ (4)

wdi is the weight of point density of pi, wsi is the weight of slope of pi, written as:

wdi =

 Ni∏
j=1
‖pi − p j‖


1

Ni

wsi = exp
(
λ · VDi

HDi

)
, VDi =

∣∣∣∣∣−−−−→p0pi ·
−−→n0

∣∣∣∣∣, HDi =

∣∣∣∣∣−−−−→p0pi −

(
−−−−→p0pi ·

−−→n0

)
·
−−→n0

∣∣∣∣∣
(5)

Here, Ni is the number of neighborhood points of pi within radius r. The point density weight
implies that the sparser neighborhood point set is, the larger the weight, and vice versa. HDi is the L2

norm of the projection of −−→p0pi onto Tp. VDi is the L2 norm of the projection of −−→p0pi onto −−→n0 . λ is the
coefficient that balances the point density weight and the slope weight (suggest λ = 0.5). wsi implies
that the steeper the value of pi, the larger the weight, and vice versa.

The minimum principal direction is estimated as:

−−→
ψv =

−−→
ψu ×

−−→n0 (6)
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Here × is the cross product. Then, a local frame, with
−−→
ψu ,
−−→
ψv as u and v axis and pi as the origin,

is constructed.

2.4.2. Generation of Descriptor Images and Similarity Measurement

To improve the efficiency of probabilistic registration, a sampling method [84] is used to sample
each scan to about 2000 points. For each sampled point, its neighborhood points of raw point cloud
(about 400 points are suggested) is used to generate the descriptor images: density and distance
feature images. We transform the neighborhood point set of pi into the local frame to obtain their local
coordinates, written as:

ui =
[
−−→p0pi −

(
−−→p0pi ·

−−→n0

)
·
−−→n0

]
·
−−→
ψu

vi =
[
−−→p0pi −

(
−−→p0pi ·

−−→n0

)
·
−−→n0

]
·
−−→
ψv

(7)

These transformed points are divided into M ×M grids (M = 27 is suggested). To better describe
the shape of local surface, the size of each grid is set about the mean point span. Each grid records the
projection distance (from the neighbor to the tangent plane) of each neighbor and the number of points
falling within. Next, we calculate the distance and density features of each grid to form shape images.
To reduce the noise sensitivity, only points whose distance is within three times the Root Mean Square
Error (RMSE) are kept. The distance feature f dis tan ce

gridi
is the mean distance within this grid, and the

density feature f density
gridi

is the number of qualified points. We calculate the gray values of the density
image and the distance image as:

Gdensity
gridi

=
255

[
f density
gridi

−min(density)
]

max(density)−min(density)

Gdis tan ce
gridi

=
255

[
f dis tan ce
gridi

−min(dis tan ce)
]

max(dis tan ce)−min(dis tan ce)

(8)

Here, max(density) and min(density) are the maximum and minimum density values,
while max(dis tan ce) and min(dis tan ce) are the maximum and minimum distance values from all
grids, as shown in Figure 7.
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Figure 7. Illustration of Principal direction descriptor, (a,d) show the correspondences from two
adjacent point clouds, (b,e) are the constructed local frames, (c,f) are the density image and distance
feature image.

For the two density images a and b, the similarity Sdensity(a, b) between them is measured according
to the correlation coefficient. A similar procedure is used for the similarity between two distance
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images Sdis tan ce(a, b). The final similarity between the two descriptors is calculated by combining
the similarities:

S(a, b) = λSdensity(i, j) + γSdis tan ce(i, j), s.t. λ+ γ = 1.0 (9)

Here, λ and γ are the weights that balance the density term and the distance term (suggest:
λ = 0.3).

2.5. Spatial Curves Extraction from a Free-Form Object

Spatial curves are common and important geometric primitives in free-form artifact objects
(e.g., Buddha). To improve robustness, our developed method [23] was used to extract spatial
curves. In the algorithm, curvature and several geometric constraints are combined to extract
complete and accurate curves. A brief diagram is shown in Figure 8, illustrating how we made our
method self-contained.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 10 of 24 
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whereθ represents the transformation, and 2δ is the covariance controlling the motion of each 
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estimates the transformation parameters and uses Bayes’ theorem to calculate the posterior matching 
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Figure 8. Schematic diagram of curve extraction. (a) cluster classification; (b) curves extraction from
clusters; (c) source point cloud; (d) classified clusters; (e) curves extracted.

2.6. Improved Pairwise Probabilistic Registration

Probabilistic registration treats the registration problem as a GMM’s (Gaussian Mixture
Model) probability density estimation problem. Based on the original probabilistic framework of
registration [74], this section embeds the principal direction descriptor into the posterior matching
probability and integrates the curve constraints to improve performance. To make the discussion
concise, we only present the improvements in this section.

2.6.1. Probabilistic Registration Based on Principal Direction Descriptor

Take one point cloud Y3×M as the centroid of the component of a GMM, and the other point cloud
X3×N is assumed to be generated by these components. For each point pair, a matching probability
is assigned. If the two-point clouds are optimally aligned, the sum of the probabilities should be
maximum. Registration can be realized by minimizing the objective function, written as:

Q(θ, δ2) =
1

2δ2

N∑
n=1

M∑
m=1

Pold(m
∣∣∣xn) ‖xn − Tr(ym)‖

2 +
NPD

2
log δ2 (10)

where θ represents the transformation, and δ2 is the covariance controlling the motion of each iteration.
These variables are unknowns that will be determined by the EM algorithm. E-step estimates the
transformation parameters and uses Bayes’ theorem to calculate the posterior matching probability,
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while M-step maximizes the lower bound of Equation 10 to estimate θ and δ2. Tr(·) indicates the
transformation of the current iteration. Np is the summation of matching probability P entries, D = 3 is
the dimension of a 3D point. Pold(m

∣∣∣xn) is the posterior probability that indicates the correspondence
determination. We embed the principal direction descriptor in the posterior matching probability as:

Pold(m/xn) =
exp[ρ(xn, ym)]

M∑
k=1

exp[ρ(xn, yk)] + (2πσ2)
D
2 M

N
w

1−w

(11)

Here, the Euclidean distance and the similarity of the descriptor are combined to calculate the ρ(xn, ym),
written as:

ρ(xn, ym) = −
1

2δ2 ‖xn − Tr(ym)‖
2 + w1·S(m, n) (12)

where w1 is the weight coefficient that balances the Euclidean distance term and the descriptor term,
and w indicates the amount of noise and outliers (w = 0.2 is suggested). All posterior probabilities form
a M×N matching probability matrix P. The E-step and M-step are iterated to obtain the unknowns.

2.6.2. Spatial Curve Constraints

This section embeds the curve constraints into the probabilistic framework to further improve
the robustness and effectiveness. Assume that a candidate matching pair is xn and ym. If only one of
them (xn or ym) belongs to a spatial curve, the matching probability is determined by considering the
Euclidean distance (shown in Equation 13). If both of them belong to a spatial curve, the similarity of
neighborhood distribution is also considered within the matching probability and is written as:

ρ(xn, ym) =


−

1
2δ2 ‖xn − Tr(ym)‖

2, i f xn or ym is curve point

−
1

2δ2 ‖xn − Tr(ym)‖
2 + w1 · S(m, n) + w2 ·Q(m, n), i f both xn and ym are curve points

(13)
Here, S(m, n) represents the similarity between two descriptors of xn and ym, and Q(m, n) is the

integrated similarity of curve points within three neighborhood scales. If this candidate matching pair
(xn and ym) are true correspondence, this term will be large. w1 and w2 are the weight coefficients that
balance the three terms in Equation (13). If neither xn and ym are curve points, we can calculate their
probability according to Equation (11). Equation (13) implies that if this candidate matching pair (xn

and ym) are not true correspondence, their matching probability will be low, and vice versa. Q(m, n) is
written as:

Q(m, n) =

N1∑
i=1

ρ
(
xi, y j

)
3N1

+

N2∑
i=1

ρ
(
xi, y j

)
3N2

+

N3∑
i=1

ρ
(
xi, y j

)
3N3

(14)

Here, N1, N2, and N3 are the number of curve points from three scales (with different neighborhood
radii); xi is one neighborhood curve point of xn; and, yj is its nearest point after the current transformation.

We then calculate ρ
(
xi, y j

)
according to Equation (12). Equation (14) demonstrates that for one true

correspondence, their neighborhood curve points should also be similar within three scales (as shown
in Figure 9). This correspondence would be given a large matching probability.
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Figure 9. Schematic diagram of curve constraints: red circles indicate neighborhood areas of three
scales from two point clouds.

2.7. Multi-Scan Registration and Field Inspection

Based on the pairwise registration results, we constructed an undirected graph to describe the
topology between scans. Each node indicates one scan, while the edge connecting two nodes indicates
the two scans with overlap. For one pair of scans S1 and S2, we determined each point’s (in S1) nearest
point in S2 to calculate the overlapping ratio. For example, if the overlapping ratio between S1 and S2

is 30%, which is larger than the 5% threshold, a new edge is generated to connect them. The weight of
this edge is given by the overlapping ratio. A graph was constructed based on all scans. We then used
the adjustment method in [85] to refine the position of each scan.

After obtaining a complete point cloud of one artifact object, field inspection was carried out to
determine if there are places with missing or quality degraded data. Extra scanning work was executed
based on the inspection results. An image of actual fieldwork activity and the software interface for
inspection are shown in Figure 10.
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Figure 10. Illustration of fieldwork and software interface of inspection, (a) on-site scanning, (b) field
inspection (red box denotes the detected area with issues).

3. Results

To demonstrate the performance of the proposed method, we carried out experiments based on
the datasets introduced in Section 2. The implementation details of the experiments are described in
this section.
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3.1. Correspondence Establishment

For a probabilistic registration method, the transformation solved after the first iteration is
important. Good first transformation can efficiently reduce the solution space and improve registration
efficiency. Otherwise, it requires more iterations and easily falls into a local minimum. To determine a
good first transformation, well matched correspondences should be input for the first iteration. For this
purpose, we developed a matching mechanism that combines the descriptor-based matching strategy
and curve constraint based rejection scheme for the suppression of incorrect matches. To demonstrate
the matched correspondences for the first iteration, we selected the top 2000 pairs of correspondences
based on the matching probability matrix. According to the number of incorrect correspondences,
40 matches were randomly selected and are shown in Figure 11.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 13 of 24 
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As shown in Figure 11, incorrect ratios of matches from the first iteration were measured at 18.5%,
20%, 21.4%, and 15.8%. For a probabilistic method, this amount of incorrect matches is considered
acceptable, which means a good transformation can be obtained. Moreover, these experimental data
represent the common appearances of free-form cultural heritage, some even have obvious curved
surface (i.e., Figure 11c). The mean incorrect ratios of matches is controlled within 20%, this is because
the local frame of the principal direction descriptor is suitable for describing the local geometric
properties. These results demonstrate the distinctiveness and descriptiveness of the proposed descriptor
and the effectiveness of the matching mechanism. Note that during the iterations, the transformed
point clouds gradually shift towards the correct position, and more and more correct correspondences
can be matched.

3.2. Registration Results

To improve the effectiveness of registration, we used the Geomagic Studio software (Geomagic,
Chapelhill, NC, USA) to sample each scan uniformly to a 3.0 mm average point density (about
6000 points). The registration accuracy of the General and the Buddha data is shown in Figure 12.
The color is rendered using the distance from one point in the target point cloud to its nearest
point of the transformed template point cloud in the overlap areas. To qualitatively demonstrate
the registration errors, the results of manual registration were used to evaluate the registration
accuracy. Manual registration was performed by manually selecting the corresponding points from
the adjacent scans, followed by the ICP refinement. Table 1 provides the evaluation results of the
registration performance.
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Table 1. Evaluation of registration results.

Datasets Methods Scans Overlap (%) Sampled Points
of Scans

Mean
(mm)

Std.
(mm) Iterations Runtime

(s)

General data

Pairwise
method

1&2 21 3532/6946 0.52 0.23 6 43.5
2&3 42 6946/5942 0.56 0.34 7 59.3
3&4 65 5942/6234 0.51 0.31 8 57.4
4&5 41 6234/7213 0.48 0.12 6 61.9
5&6 46 7213/5268 1.21 0.78 7 55.5

Multi-view
method / / / 0.38 0.27 / 27.5

Buddha data

Pairwise
method

2&1 42 6138/4282 0.23 0.11 6 43.2
2&4 37 6138/6021 1.83 1.20 8 47.4
2&5 23 6138/4827 1.56 1.03 7 44.2
2&7 51 6138/4903 2.43 1.67 5 29.6
2&8 52 6138/4109 0.51 0.32 5 31.7

Multi-view
method / / / 0.69 0.53 / 23.5

These scans have different overlaps, varying levels of noise, and different initial positions and
orientations. Figure 12 and Table 1 indicate that all the pairs of scans do not fall into local convergence
and are registered successfully. Column Std. from Table 1 shows that their mean registration errors are
within 2.0 mm, demonstrating a good distribution of registration errors. Although several scans have
few curves (for example, General data scan 3&4, and 4&5 in Figure 7a) or limited overlaps (for example,
21% for General scan 1&2, and 23% for Buddha scan 2&5), they were still able to get good results
(about 0.5 mm mean error for the General data and about 1.5 mm mean error for Buddha data). The
above results suggest that the proposed method has good stability. By statistical analysis, considering
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the actual size of cultural heritage object (about 1.5 m in height and 1.0m in width), the mean errors
and std. values are sufficient for the application of field inspection.

Note that the scan 5&6 for the General and scan 2&7 for the Buddha have relatively large errors
(1.21 and 2.43 mm, respectively), which were probably caused by repetitive structures resulting
in ambiguous correspondences and affecting registration accuracy. The registration errors of the
multi-view method are 0.38 mm and 0.69 mm, demonstrating the method’s effectiveness. In addition,
Table 1 shows that the number of iterations needed for convergence is within 10, and the runtime is
about 1 minute for each pair of scans. These results suggest that our approach method provides a very
fast and efficient technique that is tailored and suitable for field inspection.

3.3. Field Inspection Result

To ensure the reliability of the inspection, we performed a multi-view method to further refine
the position of each scan. Figure 13 shows the generated images for the General and the Buddha
after undergoing the multi-view method. The red circles indicate the problem places identified by
inspection. As shown in the figure, many geometric details (e.g., defects) have been preserved well.
Through field inspection, we are able to identify the places with missing data (for example, areas A and
B in General data, and areas C and D in Buddha data) and those with poor quality (for example, area E
in Buddha data). To satisfy the requirements for high accurate heritage documentation, these areas
would require extra field scanning.
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4. Discussion

4.1. Pairwise Registration Comparison

To further evaluate the method’s performance, we compared the proposed method to other
pairwise registration methods, including the popular RANSAC method [69], the BnB method [71],
and the LM method (lifting method) [70]. The codes can be obtained from the link (https://github.com/

ZhipengCai/Demo---Practical-optimal-registration-of-terrestrial-LiDAR-scan-pairs). The following
parameters of the compared methods are tuned to get best performance. Specifically, in RANSAC
method, the probability of searching a valid sample set is 0.98; In BnB method, 300×300×300 grids are
used for 3D Distance Transform (DT) computation, and the convergence threshold is set to 0.01; In LM
method, the annealing rate is set to 1.2. The transformation parameters of manual registration were
used to evaluate the proposed method. To ensure the reliability, manual registration was performed

https://github.com/ZhipengCai/Demo---Practical-optimal-registration-of-terrestrial-LiDAR-scan-pairs
https://github.com/ZhipengCai/Demo---Practical-optimal-registration-of-terrestrial-LiDAR-scan-pairs


ISPRS Int. J. Geo-Inf. 2020, 9, 759 16 of 23

by carefully selecting some corresponding points from adjacent scans, and the registration result was
further refined by the ICP method. The rotation and translation errors were calculated by the deviations
from the transformation parameters of manual registration using: ∆A =

√
∆ϕ2 + ∆ω2 + ∆γ2 and

∆T =
√

∆T2
x + ∆T2

y + ∆T2
z . Figure 14 shows the translation and rotation errors and the runtime for

each method. The experiments were implemented on a computer with 16 GB RAM and an Intel Core
i7-6700HQ @2.60 GHz CPU.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 17 of 24 
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As shown in Figure 14a,b, the proposed method performed the best. LM method had a competitive
performance both in rotation and translation estimation. This is because LM is also a softassign-based
optimization method, but our method is specialized for the free-form cultural heritage objects
that geometric properties and curve constraints are combined efficiently, leading to a better result.
The RANSAC method could sometimes generate better results than the proposed method (for example,
in scan 2&4 for the Buddha data in Figure 14a; in scan 2&3 and 4&5 for the General data in Figure 14b).
This result was probably dependent on the randomly selected primitives. The BnB method had the
worst performance. Given that the BnB method’s main advantage is obtaining global optimization in
a large solution space, the tested scans had small initial positions and orientations, which are more
suited for the proposed method. Figure 14c shows that the LM method performs the best among
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the compared methods, and the proposed approach performed competitively. The runtime for the
RANSAC method was not stable (for example, scan 2&4, 2&7 of Buddha data needs the least runtime).
In conclusion, the proposed method is efficient both in accuracy and in runtime.

4.2. Evaluation of Robustness Performance

To test the robustness of the proposed method comprehensively, we simulated various datasets
for testing. The pairwise registration results are shown in Figure 15. Figure 15a shows the registration
with different amounts of noise (8%, 4%, and 2% Gaussian noise are added to the original point clouds).
Figure 15b shows the registration for different overlaps (i.e., 30%, 55%, and 80%) of the original point
clouds. Figure 15c shows the registration results on objects with few curves.
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As shown in Figure 15, the point clouds for all the situations were registered successfully. Figure 15a
shows the proposed method is robust to noise and outliers. Although the middle column gets relatively
poor results (i.e., about 2.0 mm), the point clouds can still be aligned together. Figure 15b shows the
proposed method performs robustly for different overlap ratios. However, for the 30% overlap ratio
(the left column in Figure 15a), the proposed method generated comparatively poor results, indicating
that the overlap value can affect the method’s accuracy. In Figure 15c, the method performs well,
indicating that the accuracy and robustness of the method are not dependent on the curves. The curves
can be used to improve efficiency but do not affect robustness. Considering the results, the method
shows good robustness, as it is able to exploit the advantages of the probabilistic method.

4.3. Ablation Study

To directly show the contributions of the proposed method, an ablation study was implemented,
consisting of two components: the descriptor ablation and the curve constraint ablation. Descriptor ablation
is used to check the role of the proposed descriptor by removing the principal direction descriptor
from the method and preserving the Euclidean term and the curve constraint term. For the curve
constraint ablation, the role of the curve constraints is tested by removing them. Three pairs of scans
were randomly selected from the General and the Buddha data for testing. The translation and rotation
errors were then calculated based on the true value of the transformation, as discussed in Section 4.1.
The results of the ablation study are shown in Figure 16.
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As shown in Figure 16, the results indicate that the descriptor and the curve constraints contribute
significantly to the effectiveness and registration accuracy. Specifically, without the descriptor term,
the method would result in considerably larger registration errors (almost three times than the proposed
method) and would require more time (almost twice than the proposed method). For scans 2&4 and
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2&5 of the Buddha data in Figure 16a,b, even the correct convergence cannot be ensured, which could
suggest that the descriptor rejects much of the incorrect matches, thereby avoiding local convergence
and improving efficiency. On the other hand, without the curve constraints, the registration errors
are similar to the proposed method. However, the runtime needed for convergence is significantly
increased. This suggests that the curve constraints efficiently limit the solution space, leading to much
faster convergence. In conclusion, the above experiments demonstrate that the descriptor and curve
constraints improve the accuracy, robustness, and effectiveness of the alignment.

5. Conclusions and Future Work

Heritage documentation, aimed at the conservation and protection of invaluable cultural heritage
objects, is implemented by recording historical monuments and artifacts in digital forms. As a commonly
used approach, laser scanning is able to collect highly accurate 3D data without damaging these
historical artifacts. During data collection, inspection is important in order to check the integrity and
quality of the scanned data. To fulfill this aim, this paper proposed a fast and robust probabilistic
registration by combining shape descriptor and curve constraints for free-form objects (e.g., Buddha)
and validated its performance using real-world artifact datasets. Comprehensive experiments showed
that the proposed method performed well in terms of robustness and runtime and outperformed
commonly used approaches. Although the method was able to provide satisfactory results, it still had
difficulty for ambiguous objects with repetitive structures, which led to incorrect correspondences
and transformation.

For future work, we are planning to design a more robust shape descriptor with good
descriptiveness particularly suited for large-scale heritage monuments. We are also planning on
improving the probabilistic framework to make it more general and scientific and extend its usefulness
to other applications (e.g., train track matching, oil tank deformation monitoring, or reconstruction of
cultural heritage). Color information can also be used in combination with our probabilistic method to
improve its performance in the future research.
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