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ABSTRACT： 28 

Removal of bromate (BrO3
−) has gained increasing attention in drinking water treatment process. 29 

Photocatalysis technology is an effective strategy for bromate removal. During the photocatalytic 30 

reduction of bromate process, the photo-generated electrons are reductive species toward bromate 31 

reduction and photo-generated holes responsible for water oxidation. In this study, the monoclinic 32 

bismuth vanadate (BiVO4) single crystal was developed as a visible photocatalyst for the effective 33 

removal of bromate. The as-synthesized BiVO4 photocatalyst with optimized {010} and {110} facets 34 

ratio could achieve almost 100% removal efficiency of BrO3
− driven by visible light with a 35 

first-order kinetic constant of 0.0368 min−1. As demonstrated by the electron scavenger experiment 36 

and density functional theory (DFT) calculations, the exposed facets of BiVO4 should account for the 37 

high photocatalytic reduction efficiency. Under visible light illumination, the photo-generated 38 

electron and holes were spatially transferred to {010} facets and {110} facets, respectively. The 39 

BiVO4 single crystal photocatalyst may serve as an attractive photocatalyst by virtue of its response 40 

to the visible light, spatially charge transfer and separation as well as high photocatalytic activity, 41 

which will make the removal of BrO3
− in water much easier, more economical and more sustainable. 42 

Keywords: bromate; bismuth vanadate; photocatalysis; crystal engineering 43 

 44 
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INTRODUCTION 52 

Bromate (BrO3
−) originated from the chlorination or ozonation process in bromide-containing water 53 

has attracted the attention of many researchers (Bouland et al., 2005; Chen et al., 2016; Parker et al., 54 

2014, Zhu et al., ). The drinking water standard of BrO3
− in the European Union and the U.S. 55 

Environmental Protection Agency is less than 10 μg/L (Shen et al., 2017; Weinberg et al., 2003; Wu 56 

et al., 2013). To overcome this obstacle, considerable progress has been made regarding the 57 

transformation of BrO3
− to Br− by using various technologies, such as electrochemical reductive 58 

treatment (Xie and Shang, 2007), zero-valent iron (Wang et al., 2009; Zhang et al., 2015) and 59 

FeOOH catalytic reduction (Nie et al., 2014). Although these already established technologies can 60 

remove BrO3
− effectively, they may suffer from various problems such as high cost, operational 61 

complexity, as well as the potential secondary pollution risk induced by metal leaching (Ayoubi-Feiz 62 

et al., 2015; Lin et al., 2016; Noguchi et al., 2003).  63 

Recently, photocatalysis process was regarded as a superior technology to remove BrO3
− (Noguchi 64 

et al., 2002). Compared with the conventional removal methods mentioned above, photocatalysis 65 

shows fascinating potential for bromate removal systems due to its high efficiency, low-cost and 66 

environmental benignity (Ayoubi-Feiz et al., 2015; Lin et al., 2016; Noguchi et al., 2003). As the 67 

widely used photocatalyst, TiO2 based photocatalysts had been extensively employed in bromate 68 

removal by UV-light driven photocatalysis, whereas the efficient conversion of BrO3
− to Br− was 69 

contributed to the photo-generated electrons at conduction band (CB) (Li et al., 2016; Liu et al., 2016; 70 

Zhang et al., 2005).  71 

However, the photocatalytic systems based on TiO2-photocatalysis still suffer from some problems 72 

for bromate removal: (i) The wide bandgap (Eg = 3.2 eV) of TiO2 can only be responsively under UV 73 

light irradiation (UV, 3% ratio of solar light). This may cause inconvenience in practical applications 74 

(Perry et al., 2009; Williams et al., 2008; Yang et al., 2020a; Yang et al., 2020b). (ii) The reducing 75 

agent in the photocatalytic system is photo-generated electrons. It is important to improve the 76 
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quantum efficiency of photoelectrons to participate in the bromate reduction reaction (Pan and Zhu, 77 

2010; Wang et al., 2020a; Yang et al., 2019; Zhu et al., 2020c; Wang et al., 2020b; Wang et al., 2019). 78 

(iii) As a redox couple in the reaction depends on generated-electrons and holes, the photocatalytic 79 

reduction half-reaction is interdependent to the oxidation half-reaction mediated by photo-generated 80 

holes at the valence band (VB). Therefore, there is a growing interest in developing high overall 81 

efficiency visible light driving photocatalysts (Zhang et al., 2019; Zhu et al., 2019; Zhu et al., 82 

2020a).  83 

In the BrO3
− reduction system, BrO3

− acts as an electron acceptor, and the reduction reaction (1 e− 84 

process) is not considered as a limiting step for the overall photocatalytic redox reaction. On the 85 

other hand, the oxidation of water (4 e− process) is observed as a bottleneck or the rate-determining 86 

step (Zhu et al., 2020b). Based on the above-mentioned points, the premise for effective BrO3
− 87 

reduction is to find a visible photocatalyst with high reductive activity, high selectivity and water 88 

oxidation ability. 89 

Monoclinic BiVO4 has been widely used in photocatalysis or photoelectrochemical process for the 90 

water oxidation to produce oxygen due to its efficient and active visible light photocatalytic 91 

properties (Nakabayashi et al., 2017; Saison et al., 2015). Therefore, the oxidation reaction would not 92 

hamper the reductive half-reaction (bromate reduction reaction). On the premise that BiVO4 can 93 

efficiently oxidize water, the major water oxidation products are oxygen rather than hydroxyl 94 

radicals (Nakabayashi et al., 2017; Saison et al., 2015). This can mitigate the problem of the 95 

re-oxidation of bromine ions by hydroxyl radicals. Recent associated studies on the preparation of 96 

single crystal BiVO4 photocatalysts have shown that photo-generated carriers could be transferred to 97 

different exposed crystal facets (Li et al., 2013; Zhu et al., 2017), the reduction and oxidation 98 

reactions were spatially separated with a high reaction extent. Learned from these experiences, the 99 

reduction surface (photo-generated electron rich surface) of BiVO4 can be made by the crystal facet 100 

engineering, thus improving the quantum efficiency of photo-generated electrons involved in the 101 
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bromate reduction reaction.  102 

Herein, three kinds of BiVO4 crystals (BVO-a, b and c) with different exposed facets were 103 

prepared and applied to the photocatalytic reduction of bromate under visible light. Additionally, the 104 

structure and morphology of BiVO4 single crystals were characterized using X-ray diffraction (XRD) 105 

and field emission scanning electron microscopy (FESEM). Furthermore, the BrO3
− reduction 106 

performance was evaluated by calculating the conversion of BrO3
− to Br−. Lastly, the optical 107 

properties and electron configuration were estimated using density functional theory (DFT), and the 108 

bandgap, band position, and effective electron mass were also taken into consideration. The possible 109 

photocatalytic reduction mechanisms of BrO3
− by BiVO4 crystals were proposed. 110 

EXPERIMENTAL SECTION 111 

Synthesis of the photocatalyst. BiVO4 powders were prepared by liquid-solid state reaction. 5 112 

mmol of V2O5 and 10 mmol of Bi(NO3)3·5H2O were added in 60 mL of DI water. The precursor 113 

solution was stirred until a yellow solution was formed. The pH of the solution was regulated to 1.0, 114 

0.5 and 0.1 by ammonia solution or dilute nitric acid solution, and then the solution was vigorously 115 

stirred at room temperature for 5 days. The obtained BiVO4 powder was separated by centrifugation, 116 

washed with DI water and dried at 60 °C. Moreover, the obtained BiVO4 powders synthesized at 117 

different pH values of 1.0, 0.5 and 0.1 were labeled as BiVO4-a, BiVO4-b and BiVO4-c. 118 

Characterization. The powder X-ray diffraction (XRD) characterization was conducted on an 119 

X-ray diffractometer (Bruker D8 Adv., Germany). The crystalline phase and morphology of the 120 

as-prepared BiVO4 samples were characterized by an X-ray diffractometer (Bruker D8 Adv., 121 

Germany) and afield emission scanning electron microscope (FESEM, Type-4800, Hitachi, Japan), 122 

respectively. A spectrophotometer (Type-UV2550, Shimadzu, Japan) recorded the UV−vis diffuse 123 

reflectance spectroscopy (DRS) of the powders. The photoelectrochemical measurements were 124 

conducted using a CHI760E electrochemical workstation. The photocurrent measurements were 125 

carried out under visible light irradiation (300 W Xenon lamp). 126 
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Theoretical Calculations. The optimization of the unit cell of monoclinic scheelite BiVO4 was 127 

performed using the CASTEP code with the projector augmented wave (PAW) pseudopotentials (Liu 128 

et al., 2017), and the parameter was set according to the reference (Long et al., 2008). The angle b of 129 

monoclinic scheelite BiVO4 was set to 134.9° for simplification, the detailed parameters can be 130 

found in Table S1. The stable crystal configuration of the bulk and the cleavage surface with the 131 

optimized lowest energy are shown in Figure S1. 132 

Experimental Setup and Procedures. The BrO3
− ions removal performance was tested according 133 

to the previous method reported by our team (Liu et al., 2019). Both BrO3
− and Br− ions were 134 

determined by an ion chromatograph analyzer (LC-10A, Shimadzu, Japan). 135 

RESULTS AND DISCUSSION 136 

Characterization of BiVO4 Photocatalysts. The XRD patterns of three types of as-synthesized 137 

BiVO4 photocatalysts are presented in Figure 1A. All diffraction patterns of samples (BiVO4-a, b and 138 

c) showed sharp diffraction peaks and all typical peaks were attributed to monoclinic scheelite 139 

BiVO4 crystal phase (JCPDS No. 14-0688, space group: C2/c), evidently suggesting that the BiVO4 140 

photocatalysts have high crystallinity (Liu et al., 2014). Considering the phenomenon that the (121) 141 

peak was the highest peak for separated BiVO4-a, b and c, the (121) peak was selected as the 142 

benchmark to evaluate the possible exposed surface in BiVO4 crystal qualitatively, i.e., the intensity 143 

ratios of the diffraction peak of (040) and (110) compared with (121). The intensityof (040) 144 

diffraction peak followed the order of BiVO4-a > BiVO4-b > BiVO4-c, while that of (110) diffraction 145 

peak showed a reverse order, i.e., BiVO4-c > BiVO4-b > BiVO4-a. However, the intensity of (110) 146 

diffraction peak of BiVO4-c was stronger than that of BiVO4-b and a (BiVO4-c > BiVO4-b > 147 

BiVO4-a). According to Wang’s study, this intensity difference in XRD pattern indicated that the 148 

(040) diffraction peak was the dominant peak for BiVO4-a, and that for BiVO4-c was (110) (Wang et 149 

al., 2011). The FESEM image of BiVO4-a exhibited a sheet-like geometry with a length of 1.5 μm, 150 

width of 400-nm, and thickness of 150-nm, respectively (Figure 1B). The BiVO4-b sample exhibited 151 
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a polyhedral box shape (Figure 1C) with an average size of about 1.5 μm. In addition, the BiVO4-c 152 

with an octahedral shape of about 2 μ m was observed in Figure1D. To further identify the exposed 153 

crystal faces, the corresponding HRTEM image for BiVO4-a is given in Figure 1E.  154 

The corresponding selected area electron diffraction (SAED) pattern in Figure 1F (inset picture) is 155 

taken from the sheet-like BiVO4-a sample (Figure 1E), revealing the growth orientation in 156 

accordance with the results of XRD measurements. As determined by XRD result, and with different 157 

b axis orientations for different sheets, the d spacings measured from SAED (zone axis [010]) were 158 

2.61 Å, which agreed well with the lattice spacings of (200) monoclinic BiVO4 (Wang et al., 2011). 159 

The growth direction was along the (040) facet, i.e., {010} crystal planes; therefore, the sheet-like 160 

BiVO4-a growed along the b axis as seen in the HRTEM images (Figure 1F). Based on these 161 

analyses and calculations, a simple schematic illustration of the exposed crystal surface is presented 162 

in the insets in Figure 1B, C and D according to the XRD and HRTEM analysis. The XPS spectra of 163 

Bi 4f, V 2p and O 1s are illustrated in Figure S2. The Bi 4f consisted of two peaks at the binding 164 

energy of 156.3 and 161.5 eV, while the V 2p spectra showed two peaks of 514.0 eV and 521.7 eV, 165 

respectively. Moreover, the O 1s spectra was detected at the binding energy of 527.1 eV.   166 

 167 

Figure 1 (A-F) 168 

 169 

Photocatalytic Reduction of BrO3
− by BiVO4 Photocatalysts. The feasibility of photocatalytic 170 

reduction of BrO3
− using BiVO4 photocatalysts under visible light irradiation irradiation were 171 

examined by photocatalytic experiment. No BrO3
− reduction was observed in the absence of 172 

photocatalysts, which excluded the direct visible light driven photolysis of BrO3
− reduction. As 173 

illustrated in Figure 2A, the concentration of BrO3
− decreased from initial 1000 to 0 μg L−1 (below 174 

the detection limit) for BiVO4-b after 150 minutes of reaction, which exhibited almost 100% BrO3
− 175 

removal efficiency. However, BiVO4-a and BiVO4-c reduced the initial BrO3
− concentration (1000 176 
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μg L−1) to 130 and 230 μg L−1, respectively. The BrO3
− removal performance can be well indexed to 177 

the first-order reaction k = 0.0368 min−1 for BiVO4-b (Figure 2B), which was 2.08 and 3.94 times 178 

higher than that of BiVO4-a (0.0177 min−1) and BiVO4-c (0.0094 min−1), respectively. (Table S2). 179 

These results demonstrated that the BiVO4-b sample showed superior photocatalytic bromate 180 

removal performance than that of BiVO4-a and -c samples which might be benefited from the facet 181 

effect of BiVO4 crystal. Moreover, the stability of the BiVO4 photocatalysts was also evaluated and 182 

the result can be seen in Figure S3. during the recycling process, the photocatalytic performance of 183 

BiVO4 was with high stability, amount to 3% activity loss after five-cycles. During the recycling 184 

process, the photocatalytic performance of BiVO4 was of high stability with the activity loss 185 

amounting to 3% activity loss after five-cycles  186 

 187 

Figure 2 (A and B) 188 

 189 

Mechanisms Insight. To further understand the BrO3
− reduction mechanism by BiVO4 190 

photocatalyst, the electron scavenger experiments were implemented by adding S2O8
2− (Romão et al., 191 

2015). As a typical electron scavenger, the degradation performance of BrO3
− was decreased 192 

obviously after the introduction of S2O8
2− (Figure S4 and Table S3). Notably, the bromate removal 193 

nearly disappeared when 5 mmol of K2S2O8 was added. Thus, it could be concluded that the 194 

photo-generated electrons were the reactive species during the BrO3
− photocatalytic reduction 195 

process. 196 

As we know, for semiconductor photocatalysis, the optical properties are directly related to the 197 

intrinsic electron configuration and thus influence the photocatalytic performance. Figure 3A shows 198 

the DRS spectra of BiVO4 samples with different exposed surfaces. The adsorption properties of the 199 

obtained three types of BiVO4 were all typical visible light-driven photocatalysts with an absorption 200 

edge at approximately 536 nm (Eg = 2.31 eV), which was in line with the previous report (Su et al., 201 
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2011). The DFT calculation regarding optical properties was conducted to better understand the 202 

relationship of light absorption with exposed surface. As shown in Figure 3B, there was no obvious 203 

difference in the absorption threshold for polycrystal, {010} and {110} facets BiVO4, respectively, 204 

which was in accordance with the DRS results. Based on the above DRS and DFT calculation results, 205 

it can be concluded that the optical properties of BiVO4 samples may not be the major reasons for the 206 

great difference in the photocatalytic removal of bromate. 207 

 208 

Figure 3 (A and B)  209 

 210 

                             
2
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Furthermore, the theoretical positions of energy band position of BiVO4 at pH = pHpzc were 213 

calculated using the following conventional eqn. 1 and 2 (Xu and Schoonen, 2000). Ee is the free 214 

electron energy (4.5 V), Eg is the measured band gap. By substituting these absolute 215 

electronegativities of Bi, V and O to eqn. 1 and 2, the EVB of 2.80 V and ECB of 0.49 V (SHE) were 216 

obtained (Cooper et al., 2014). Although the valence band position of BiVO4 was suitable for 217 

hydroxyl radicals generation, according to the previous literature, BiVO4 was generally considered as 218 

a highly efficient photocatalyst for water oxidation to produce oxygen rather than hydroxyl radicals, 219 

thus making the reduction of BrO3
− more efficient towards Br− conversion (Nakabayashi et al., 2017; 220 

Saison et al., 2015). 221 

As shown in Figure S1, VO4
3− was a stretched tetrahedron. In the stretched BiO8 dodecahedron, Bi 222 

atoms were surrounded by 8 O atoms, and the four bond lengths were different (2.467, 2.466, 2.471, 223 

and 2.528 Å) (Stoltzfus et al., 2007; Yang et al., 2013). As we know, the dipole moments played an 224 

important role in photocatalysis, especially on the effective separation of carriers. A big dipole 225 
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moment always means a high driving force makes efficient photo-generated carriers transfer (Li et al., 226 

2014). In this regard, the absolute numerical value of dipole moment is calculated to be 0.79 and 227 

0.68 D on {010} and {110} facets, respectively. The larger dipole moment of the BiO polyhedrons 228 

for {010} facet demonstrates greater distortion of the {110} surface layer, hence leading to a larger 229 

internal polarization which is conducive to the charge separation and higher activity for the 230 

photocatalytic reduction of BrO3
−. 231 

 232 

Table 1 233 

 234 

To further understand the electronic configuration of the two exposed crystal facets, the band 235 

structure of BiVO4 is plotted in Figure 4A. Considering the symmetry of the monoclinic system, the 236 

path selected from the Brillouin zone was along Z → G→ Y → A → B → D → E → C. The DFT 237 

calculated Eg for BiVO4 was 2.12 eV, close to the experimental value (2.31 eV). The highest band 238 

energy level and lowest energy level were located at different K-points, which indicated the typical 239 

indirect band gap property. Furthermore, we can calculate the effective carrier masses of {010} and 240 

{110} facets based on the curvatures of the bands in the corresponding directions by fitting parabolic 241 

functions to the conduction band minimum (CBM) and valence band maximum (VBM) of BiVO4. 242 

According to the Eq. (3) (Li et al., 2014), the effective electron masses can be estimated, where k is 243 

the wave vector, and Ek is the energy corresponding to the wave vector k.  244 

                                
1

2

2
2* )( 

dk

Ed
hm k                             (3) 245 

The calculated results are summarized in Table 1.The effective electron masses were approximately 246 

0.13 m0 and 0.30 m0, and the effective hole masses are estimated to be approximately 0.18 m0 and 247 

0.57 m0 for {010} and {110} surfaces, respectively. In the photocatalytic process, lower effective 248 

mass means higher drift velocity, and the photo-generated hole/electron pairs could be transfered to 249 

the surface of photocatalyst (Li et al., 2014). Therefore, the effective electron mass of {010} was 250 
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0.13 m0, obviously lower than that of {110} facets making it favorable for the photocatalytic bromate 251 

reduction process.  252 

 253 

Figure 4 (A and B) 254 

 255 

According to the dipole moment and charge transport calculation, the presence of {010} facet 256 

exposed BiVO4 was beneficial for the charge separation. As revealed from the photocurrent of 257 

BiVO4-a, BiVO4-b and BiVO4-c in Figure 4B, BiVO4-b possessed a much higher photocurrent than 258 

BiVO4-a and BiVO4-c. The intense photocurrent generally means a higher hole/electron pairs 259 

separation efficiency (Li et al.). As shown in Figure 4B, the BiVO4-b sample with {010} facet 260 

exposed maintained a high separation efficiency of hole/electron pairs, which was in well agreement 261 

with the result of dipole moment calculations. 262 

The intrinsic reason for the separation of photo-generated carriers on the {010} and {110} of 263 

BiVO4 crystal facets was evaluated by the DFT calculation method (Pan et al., 2011). Figure 5A 264 

shows the density of states (DOS) calculation results (where Fermi energy was set as 0 eV).We can 265 

ascertain the conduction band edge and valence band edge from Figure 5A, where the conduction 266 

band edge for {110} facets was 1.33 eV, and that for {010} was 2.15 eV. Thus, the energy differences 267 

for conduction bands (ΔCB) between {010} and {110} facets was about 0.82 eV. Similarly, we could 268 

calculate the ΔVB by analyzing the DOS curves and the result is about 0.20 eV between {010} and 269 

{110} facets. The existed difference well demonstrated that the transfer trend of photo-generated 270 

electron was from {110} to {010} facets in the thermodynamic view. Within this context, the 271 

electrons were accumulated on {010} facets, whereas the holes were enriched on {110} facets. Based 272 

on the calculated results obtained in Figure 5A, the schematic diagram of spatial photo-generated 273 

carriers separation between {110} and {010} facets is schematic shown in Figure 5B. Furthermore, 274 

the Work function (W) calculation results are shown in Figure 5C and 5D. The W of {010} and {110} 275 
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facets was 6.2 eV and 4.5 eV, respectively. The W value of {010} facets is obvious bigger than that 276 

of {110} facets, which makes the {010} facets have a higher electron capture ability (Gao et al., 277 

2011). The results were in line with the density of state (DOS) analysis, where the photo-generated 278 

electrons were separated spatially with the photo-generated holes during photocatalytic process to 279 

form electron-rich {010} facets and hole-rich {110} facets. 280 

 281 

Figure 5 (A, B, C and D) 282 

 283 

For a practical photocatalytic reaction, reduction reactions were accompanied by oxidation 284 

reactions. To achieve a high photocatalytic efficiency (in this study, is photocatalytic reduction of 285 

bromate),  high oxidation reactions involved by photo-generated holes must be considered. To 286 

clarify the mechanism deeply, the test of BiVO4 photocatalyst utilized in water oxidation under 287 

visible light irradiation of O2 evolution with BrO3
− as electron sacrificial agent (NaBrO3, 0.1 mol L−1) 288 

was conducted, and the photocatalytic O2 evolution performance is shown in Table S4. As shown in 289 

Table S4, the BiVO4-b exhibited the highest oxygen production with the rate of 11.70 μmol h−1, and 290 

the order of oxygen production rate was BiVO4-b (11.70 μmol h−1) >> BiVO4-a (2.30 μmol h−1) > 291 

BiVO4-c (1.50 μmol h−1). The results evidently confirmed that the BiVO4-b showed the highest water 292 

oxidation, as an overall reaction, the photo-reduction performance was correlated with the oxidation 293 

ability. Therefore, the BiVO4-b sample with an optimized exposure ratio of the {010} and {110} 294 

surfaces exhibited the highest photocatalytic bromate reduction activity. The conceivable intrinsic 295 

mechanisms are schematically showed in Figure 6. Under the irradiation of visible light, 296 

photo-generated carriers were separated toward different surfaces for the polyhedral box shape 297 

BiVO4 photocatalyst, i.e., the photo-generated electrons (thermodynamic potential of 0.49 V, SHE) 298 

and photo-generated holes (2.80 V, SHE) were transferred to different facets of BiVO4 crystal. As 299 

shown in Figure 6, the {010} facets were the electron-rich surfaces, whereas the holes were 300 
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accumulated on the {110} surfaces. The electron with a redox potential of 0.49 V was a robust 301 

reductive for bromate reduction (BrO3
− + 6H+ + 6e− → Br− + 3H2O, E⊖ = 1.423 V). And 302 

photo-generated hole with a high redox potential of 2.80 V could decompose H2O to produce oxygen 303 

efficiently (2H2O – 4e− → O2 + 4H+, E⊖ = 1.23 V). In this manner, BrO3
− could be regarded as the 304 

electron acceptor and in-situ reduced at {010} facets, while the water oxidation reaction was 305 

occurred at {110} surfaces to produce O2. The photo-generated electron-hole pairs were spatially 306 

separated, and the oxidation and reduction reactions occurred at different crystal facets; thus, a high 307 

bromate reduction efficiency and selectivity on BiVO4 single crystal with optimized {010} and {110} 308 

ratio could be achieved. Besides, a systemic comparison with conventional photocatalyst of TiO2, 309 

traditional bulk BiVO4 or Bi2MoO6 documented from literatureis summarized in Table S5. The 310 

BiVO4-b sample with active exposed facets ratio could remove almost 100% of BrO3
−, whose kinetic 311 

constant was significantly higher than that of other conventional photocatalysts.  312 

 313 

Figure 6  314 

 315 

Conclusions. To achieve efficient removal of BrO3
−, we herein developed single crystal 316 

photocatalysts BiVO4 with different exposed facets. The {010} facets are exposed electron-rich 317 

surfaces with a higher dipole moment and a lower effective masse of electrons/holes, which is more 318 

favorable for the photocatalytic bromate reduction reaction. Under visible light illumination, the 319 

photo-generated reductive electrons and oxidative photo-generated holes are spatially transported to 320 

{010} and {110} facets, respectively. During the bromate photocatalytic removal process, water acts 321 

as an electron donor, thus avoiding the risk of secondary pollution, making the BrO3
− removal of 322 

high efficiency. This investigation provides a simple and effective strategy for enhanced degradation 323 

of bromate without complicated preparation procedure, which makes the bromate removal more 324 

efficient and sustainable, and also gives a guideline for the development of single crystal 325 
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photocatalyst for bromate photocatalytic reduction. 326 
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Table 1 Summary of the effective masses 

 {010}/m0 {110}/m0 

mh
* 0.18 0.57 

me
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Figure 1 XRD patterns of (A) BiVO4 samples, SEM pictures of (B) BiVO4-a, (C) 

BiVO4-b, (D) BiVO4-c, (E) TEM and HRTEM (F) pictures of BiVO4-a. 
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Figure 2 Time course of (A) photocatalytic reduction of BrO3
− by BiVO4 

photocatalysts under visible light irradiation at pH 7.1±0.4, (B) the corresponding 

kinetics rate constants derived from A.  
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Figure 3 (A) The experimental diffuse reflectance spectra of BiVO4 samples, (B) 

calculated absorption coefficient of polycrstal BiVO4, {010} and {110} facets exposed 

BiVO4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 100 200 300 400 500 600

 

 

A
b

s
o

rb
a

n
c
e

 (
a

.u
.)

Wavelength (nm)

 Polycrystal

 {010} facets

 {110} facets

BA

400 450 500 550 600 650

 

 

A
b
s
o
rb

a
n

c
e

 (
a
.u

.)

Wavelength (nm)

 BiVO
4
-a

 BiVO
4
-b

 BiVO
4
-c



 
Figure 4 The band structure (A) of BiVO4 crystal and (B) photocurrent-time curve of 

BiVO4 samples. 
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Figure 5 (A) The differences of the energy levels in conduction bands (ΔCB) for {010} 

and {110} facets, (B) the scheme of carrier separation between {010} and {110} facets, 

(C) the workfunction (W) of {010} surface and (D) {110} surface. 
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Figure 6 Schematic illustration of photocatalytic reduction of BrO3

− by BiVO4-b. 
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