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”The time will shortly come when the release of the complete sequence of a novel organism
will no longer be a matter for excitement. The time will even come when students in biology
will have difficulty in imagining that, in the obscure past, there were organisms not yet fully
sequenced! How could geneticists do their work then? How could they understand what they
were doing to the parts when they were missing the whole?”

—Bernard Dujon
The yeast genome project: what did we learn?

(1996)
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Summary
We, humans, have an ancient microscopic companion: yeasts. These microbial organisms
have helped shape our evolution, our civilizations, and our sciences. The evolutionary
event that enabled yeasts to produce alcohol more than 100 million years ago was fol-
lowed with adaptations throughout the animal kingdom to tolerate it. Our realisation
that yeast could be used to produce bread, beer, and wine quickly enabled us to fuel the
high, caloric need of many civilizations. An international dispute nearly two centuries ago
about the biological nature of yeast in alcohol production, ultimately led to the founding
of microbiology and the various medicinal benefits from its practice. And today, yeasts
are the ‘Swiss Army knives of biotechnology’, as they are often engineered to produced
cheaper therapeutics and alternative energy sources.

Although an ancient companion, we have only begun to truly understand yeasts and
their biotechnological capabilities, largely due to a new scientific instrument: genome
sequencing technology. Analogous to an ‘algorithmic microscope’, genome sequencing
technology is enabling us to generate large amounts of data about the genetic composi-
tion and diversity of yeasts. But it comes with a challenge: these (ever-growing) datasets
are complex. So how do we properly analyse them? How do we consider the complex
evolutionary histories encoded in the genomes of yeasts and other microbes alike? What
new biology could we learn?

The research presented in this thesis aims to provide a better understanding in the
genomes of yeasts through the development and application of computational algorithms.
More specifically, it focuses on two yeast species—Saccharomyces cerevisiae and Saccha-
romyces pastorianus—which are used in various industrial and academic institutions, ei-
ther for the production of bread and alcoholic beverages, or for their genetic engineering
capabilities.

I present completely new genomes for a Saccharomyces cerevisiae and a Saccharomyces
pastorianus strain. They contain previously uncharacterized genes, and warrant caution
in their unaccounted ability to mutate. Additionally, the genomes help test two competing
theories on their evolutionary origins. I also present a visualization technique to study the
evolutionary history of Saccharomyces genomes, and an algorithm to infer their parental
origins. Addressing computational challenges when analysing microbial genomes, I also
introduce a graph-based algorithm for comparing diverse genomes using a gene-centric
approach.

Finally, I present a novel interactive University-level course for educating microbiol-
ogists in computational biology, helping train a new generation of scientists to navigate
the world of (genomic) data.

With this thesis I have tried to stimulate your curiosity, not only in yeasts, genomics,
and bioinformatics, but also in the benefits and consequences of studying the microscopic
world.
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Samenvatting
Wij mensen hebben een oeroude microscopisch kleine metgezel: gist. Deze microbiële
organismen hebben bijgedragen aan het vormen van onze evolutie, onze beschavingen en
onze wetenschappen. De evolutionaire gebeurtenis waardoor gist meer dan 100 miljoen
jaar geleden alcohol kon produceren, werd gevolgd door aanpassingen door het dierenrijk
om het te tolereren. Ons besef dat gist kan worden gebruikt om brood, bier en wijn te
produceren, stelde ons al snel in staat de hoge, calorische behoefte van veel beschavin-
gen te voeden. Een internationaal geschil bijna twee eeuwen geleden over de biologische
aard van gist bij de productie van alcohol leidde uiteindelijk tot de oprichting van micro-
biologie en de verschillende medicinale voordelen van de praktijk. En tegenwoordig zijn
gisten de ‘Zwitserse zakmes van de biotechnologie’, omdat ze vaak worden ontworpen om
goedkopere therapieën en alternatieve energiebronnen te produceren.

Hoewel het een oude metgezel is, zijn we gisten en hun biotechnologische mogelijk-
heden grotendeels pas echt gaan begrijpen dankzij een nieuw wetenschappelijk instru-
ment: genoomsequentie-technologie. Analoog aan een ‘algoritmische microscoop’ stelt
de genoomsequentie-technologie ons in staat om grote hoeveelheden data te genereren
over de genetische samenstelling en diversiteit van gisten. Maar dit stelt ons voor een uit-
daging: deze (steeds groter wordende) datasets zijn complex. Dus hoe analyseren we ze
goed? Hoe beschouwen we de complexe evolutionaire geschiedenissen die zijn gecodeerd
in de genomen van zowel gisten als andere microben? Welke nieuwe biologie kunnen we
leren?

Het onderzoek dat in dit proefschrift wordt gepresenteerd, heeft tot doel een beter
begrip te bieden van de genomen van gisten door de ontwikkeling en toepassing van com-
putationele algoritmen. Meer specifiek richt het zich op twee soorten gist—Saccharomyces
cerevisiae en Saccharomyces pastorianus—die worden gebruikt in verschillende industriële
en academische instellingen, hetzij voor de productie van brood en alcoholische dranken,
hetzij vanwege de mogelijkheid tot genetische manipulatie.

Ik presenteer volledig nieuwe genomen voor een Saccharomyces cerevisiae en een Sac-
charomyces pastorianus-stam. Ze bevatten voorheen niet-gekarakteriseerde genen en ver-
dienen voorzichtigheid wat betreft hun onverklaarde vermogen om te muteren. Boven-
dien helpen de genomen twee concurrerende theorieën over hun evolutionaire oorsprong
te testen. Ik presenteer ook een visualisatietechniek om de evolutionaire geschiedenis van
Saccharomyces-genomen te bestuderen, en een algoritme om hun ouderlijke oorsprong af
te leiden. Om computationele uitdagingen aan te pakken bij het analyseren vanmicrobiële
genomen, introduceer ik ook een op grafieken gebaseerd algoritme voor het vergelijken
van diverse genomen met behulp van een gencentrische benadering.

Ten slotte presenteer ik een nieuwe interactieve cursus op universitair niveau voor het
opleiden van microbiologen in computationele biologie, waarmee een nieuwe generatie
wetenschappers kan worden opgeleid om door de wereld van (genomische) gegevens te
navigeren.
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Met dit proefschrift heb ik geprobeerd je nieuwsgierigheid te prikkelen, niet alleen
naar gisten, genomica en bioinformatica, maar ook naar de voordelen en gevolgen van
het bestuderen van de microscopische wereld.



0
1

Preface
The topic of beer—and alcohol in general—often carries a comical connotation. However,
its history and influence in human civilization is of no laughing matter. Beer can be traced
back ∼14,000 years ago, and has then integrated as a global cultural staple. Today, it is a
billion-dollar industry, while being one of the world’s most abused drugs.

But this thesis is not exactly about beer. Instead, it centers around the organisms that
made beer possible, yeast. Specifically, Saccharomyces yeast. As we will shortly see, it is
these organisms that brought alcohol into the animal kingdom, influenced our evolution,
and propelled the field of microbiology.

Despite more than a century-worth of scientific research, we have only recently un-
ravelled the global diversity of Saccharomyces yeasts, enriching our grand pursuit of us-
ing these organisms in industrial applications. These insights have been driven largely by
rapid innovations in genome sequencing technologies, which provide deeper understanding
about the genomes and evolution of Saccharomyces yeast. However, the data generated
by these technologies, and its subsequent biological interpretations, are complex.

This thesis focuses on the development and application of bioinformatic algorithms
that aid in our understanding of the genomes of Saccharomyces yeasts. Specifically, se-
quence analysis and comparative genomics of Saccharomyces genomes.

But before diving into the world of bioinformatics (and themain contents of the thesis),
I wanted to expand on the influential role that yeasts have played in our modern lives. As
such, this Preface provides an overview of the history of alcohol in the animal
kingdom and human society, serving as an appreciative and educational take on
the historical influence of yeasts.

So to start, let me tell you a story about an outdoor wine bar, for chimpanzees.



0
2 Preface

0.1 A brief history of beer
There is a magical tree found in the western coast of Africa. They are called, Rafia palm
trees, and are at the center of an ancient ritual practiced by many of the locals. For this
ritual, you must cut a hole through a Rafia palm tree (either through the main trunk, or
one of the branches) and use a small container to collect the milky-like sap that starts to
ooze out. The sap is usually sweet with a coconut-like taste, which you can drink right
away. But instead of drinking it, leave the container open and return again in a few hours,
for this is when the magic happens: the sap turns alcoholic.

Depending on your patience, the sap, now known as palm wine, can have an alcohol
content of 3.1-6.9% [1]. If you know your Belgium-Dutch beers, the alcohol content by
volume (ABV) ranges from lager-lemon version of an Amstel Radler (3.0% ABV) to a West-
malle Dubbel (7.0% ABV). In other words, the ABV in the sap ranges from a typical ”weak”
to a ”strong” beer. But do make sure to eventually collect the container, or else unlikely
group of visitors will call ”dibs” on the palm wine: chimpanzees.

0.1.1 A taste for alcohol
From 1995 to 2012, a group of researchers followed a community of chimpanzees in Bossou,
Guinea, whose territory overlapped with palm trees that were frequently ”tapped” by lo-
cals to produce palm wine [1]. To their surprise, they found that the chimps had a natural
taste for the alcoholic beverage. Throughout the 17 years, the researchers managed to
characterize 20 different drinking sessions where sub-groups of chimpanzees would visit
tapped palm trees and drink from the containers. Sometimes it was a lonely individual,
such as on February 5, 2004, when a male chimpanzee drank 1.57 litres of palm wine by
himself in a period of 17 minutes [1] (roughly equal to three pints at your local bar). Other
times it was a party, such as on July 22, 2004, where a total of eight different chimpanzees
(three males and five females) drank together for an unknown quantity [1]. And occasion-
ally, it was the usual suspects, when a trio of chimpanzees routinely visited the containers
together [1]. Although there were no breathalyzers around, some chimpanzees appeared
to be intoxicated after their drinking sessions [1].

Although not exactly a wine bar for chimps, the pre-tapped palm wine containers
ultimately functioned as one. And as comical as these observations may sound, they do
raise two important questions: what is themagic behind palmwine? And is there a natural
preference for alcohol in the animal kingdom?

We now know that it’s not exactly magic that transforms sap into its alcoholic version:
instead, the transformation is made possible by a group of microbial organisms known as
yeast. Yeast (specifically from a group of organisms known as Saccharomyces) are fungi
that are about 5-10x smaller than the width of a human hair, and can be found all over the
world, especially in areas harbouring sugary foods such as fruits. In the case of sap from
Rafia palm trees in Bossou, wild yeast on the trees, in the air, and/or on the containers left
over from previous batches, mediate chemical reactions to convert sugar into ethanol (al-
cohol). Yeast thus produce the alcohol content in the palm wine, whose strength depends
on the amount of sugars in the sap and the duration in which the yeast can mediate the
chemical reactions.

Interestingly, this special ability to convert sugars into ethanol—termed, alcohol fer-
mentation—seems to be largely unique to yeast [2, 3]. In other words, alcohol fermentation
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is a unique ability that has (so far) only been found in a minor fraction of the ∼10,000 mi-
crobial species characterized thus far [4]. However, there are some bacteria with fermen-
tation capabilities. The bacteria, Zymomonas mobilis, can also convert sugar into ethanol
[5]. In fact, this bacterium contributes (in minor quantities) to the alcohol content in palm
wine, as well as tequila and the ancient Mexican drink, pulque, which are similarly fer-
mented from the sugary sap of agave plants [5]. Overall, it’s an appreciative realization:
the thousands of beers, wines, sakes, whiskeys, bourbons, vodka, gins, and other alcoholic
beverages are all largely dependent on the alcoholic fermentation capabilities of only a few
microbes.

So how did they gain this special ability?
One hypothesis proposes that alcohol fermentation originally functioned as a compet-

itive mechanism. Glucose (sugar), which can be derived from carbohydrate foods, is the
main energy source for many animals and microbes. After breaking down glucose into
a chemical called, pyruvate, organism can derive a large source of energy by digesting
pyruvate through aerobic respiration, a chain of additional chemical reactions that require
oxygen. However, when oxygen is not present, pyruvate can be digested through an al-
ternative chain of chemical reactions termed, anaerobic respiration. Although the exact
details of its evolution are still unclear, early ancestors of modern-day yeast evolved to
have alcohol fermentation as an anaerobic system as late as ~125 million years ago [3, 6].
In other words, whenever oxygen was absent, yeast could derive energy by using pyru-
vate to produce ethanol. Other organisms such as some bacteria and animal muscle cells
also possess an anaerobic system called, lactic acid fermentation, where pyruvate can be
used to produce lactic acid. You likely already experienced lactic acid fermentation: lactic
acid itself is produced by the bacteria Lactobacillus and Streptococcus are used to process
milk into cheese and yogurt, while muscle soreness during/after an exercise session can
be attributed to the build-up of lactic acid produced by muscle cells.

Importantly, both lactic acid and ethanol are toxic to many organisms. Lactic acid—
as the name implies—is acidic, creating an ionic imbalance in the environment that can
denature many crucial proteins in cells. Similarly, ethanol is also toxic, as once absorbed
by a cell, it can chemically react and damage DNA and proteins. Thus, yeast and some
bacteria have a competitive advantage as they can kill other organisms in their nearby
surroundings, reducing competition for space and resources. But this competitive edge
comes at a cost: the amount of energy that can be derived from anaerobic respiration is
19x lower than that of aerobic respiration [3]. So from an energy perspective, it’s much
more preferable to use aerobic respiration than anaerobic. However, yeast managed to
find a way to do both.

About 125 million years ago, fruits began to evolve from plants, resulting in an abun-
dant source of sugary nutrients to not only animals, but also to microbes [6]. It is around
this time that three different lineages of yeast independently evolved the so-called, Crab-
tree effect: the ability to perform both aerobic and anaerobic respiration [3, 6]. More
specifically, yeasts would normally derive energy via oxygen, but when there were high
concentrations of sugars, they could switch to alcohol fermentation and release ethanol
into the environment, giving them a huge competitive advantage for resource and nutri-
ents. As such, yeasts were now able to ”ferment” sugary foods like sap, nectar, and fruits
with alcoholic content. But the toxicity of alcohol did not stop other organisms from in-
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dulging on these newly fermented resources.
As a wise man once said, “Life…uhm…finds a way” ¹. And indeed, in nature we find

organisms that have evolved systems to handle the toxic properties of ethanol, enabling
them to make use of the sugary nutrients in alcoholic foods. One of the best examples are
fruit bats, which frequently feed on fermented fruits. A study in 2010 found that fruit bats
often fly with a blood alcohol content (BAC) of more than 0.3%, without any observable
issues [7]. To put it in perspective, the legal BAC limit for automobile drivers in many
European countries is 0.05%; in the USA it is 0.08%. This means that bats are flying under
the influence at more than 4-6 times the capabilities of humans. Another example are Tree
shrews, which constantly feed on fermented nectar from flowers. A study in 2008 found
that the amount of alcohol ingested in tree shrews is equivalent to an average adult female
drinking 9 glasses of wine in a period of 12 hours [8].

Yes, humans are not the only alcoholics in the animal kingdom.

But from an evolutionary perspective, it shouldn’t be much of a surprise: two organ-
isms whose diet primarily depend on fermented foods have the capability to ingest high
amounts of alcohol. But primates (including humans) have diverse diets and are not de-
pendent on alcoholic foods. So why—and how—did we develop an affinity to purposely
seek out alcohol, sometimes in excess amounts?

Most explanations regarding our natural taste for alcohol remain speculative. But the
logic is similar to fruit bats and tree shrews: early primates likely came across (overly-
)ripped fruits that were fermented, and the ability to process ethanol allowed them to
include these foods into their diets. Indeed, a study in 2015 showed that the last common
ancestor of human, apes, and primates harboured a functional version of the gene, alcohol
dehydrogenase [9], which is one of the main genes that allows us to process ethanol into
a less toxic form. The researchers managed to do this by comparing the DNA sequence of
alcohol dehydrogenase genes across different apes and monkeys, and attempted to trace
back all the mutations that occurred throughout its evolution, until it converged into a
single ancestral version. This ancestral version dated back around 50 million years ago,
about the same time as the last common ancestors between humans, apes, and primates
[9]. By inserting this ancestral version into a bacterium, they were able to express its
protein and measured its ability to process ethanol. Functionally, it wasn’t that great at
processing alcohol, but it did its job [9].

Now, the drunken monkey hypothesis suggests that evolution favoured early hominid
species that were attracted to ethanol [10]. Although still debated, it argues that alcohol
may have provided survival advantages by serving as: a proxy to find fruits; acted as
stimulants to our appetite increasing out caloric intake; and encouraged more social be-
haviour. But ∼10 million years ago, the version of the alcohol dehydrogenase gene in the
last common ancestor of humans and the great apes underwent a series of mutations that
made it 40x more efficient at processing ethanol [9]. In other words, this ancient hominid
species in which human and apes evolved from, were now able to process alcohol at much
larger quantities. Consequently, this also meant that chimpanzees and gorillas were able
to ingest alcohol in comparable levels to humans.

¹Dr. Ian Malcom, Jurassic Park
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Which brings me back to the significance of the Bossuou chimpanzees drinking palm
wine: it was the first time that great apes (other than humans) were deliberately observed
and quantified to drink alcohol in the wild. Of course, it would’ve been more impressive if
the chimpanzees themselves were the ones tapping the Rafia palm trees of palm wine, so
we do have to acknowledge that their drinking affinity is a direct consequence of human
involvement. Furthermore, it’s unclear whether the chimpanzees sought out palm wine
for pure enjoyment, or if it served as a ”fall-back” food due to limited resources. However,
green monkeys in the island of Saint Kitts in the Caribbean Sea have been observed to
constantly sip on cocktails of tourists. But whatever their reason may be, these studies do
show that apes similarly have a natural affinity towards alcohol.

Which brings me to a particular type of alcohol that humans have become very fond
of: beer.

0.2 The evolution of beer
Perhaps it was due to our early experiences with fermented fruits, and the way alcohol
made us feel. Or perhaps it is indeed hard-wired in our genetics. Regardless of the reason,
humans love alcohol. And evident from the trillions of litres of beer annually consumed
around the world [11], humans particularly love beer. So, between ∼10 million years ago
and present day, where and how did beer originate?

Well, this question is knotted to an ancient riddle:

Which came first: bread, or beer?

Cereals (such wheat, grains, oats, legumes, and barley) are historically—and continue
to be—a major food staple in human civilization. Importantly, cereals are the precursors
for making bread and beer. In fact, both bread and beer are based on the same principle:
extract sugars from the seeds of cereals to allow yeast to digest them into ethanol and CO₂.

Seeds are portable starting kits with all the necessary nutrients to germinate a plant.
Within these nutrients are starches: large chains of glucose that are chemically linked
together. Additionally, seeds also contain two proteins, alpha and beta amylase enzymes
which can break down starches into different types of sugars [12]. Both of these enzymes
become active when the seed is ready to germinate, and harbour different functionalities:
alpha amylase randomly cleave starch molecules, producing a mixture of sugars such as
glucose, maltose, and maltotriose; while beta amylase progressively cleave (or nibble) from
the ends of the starch molecules, producing mostly maltose [12]. As such, bread dough
and wort—a soupy mixture of water and mashed cereals used as the starting ingredients to
brew beer—are largely made up of this sugary mixture, enabling yeast to produce ethanol
and CO₂.

Indeed, modern-day yeast (especially Saccharomyces cerevisiae) have been specifically
adapted for different types of breads and beers. For example, the appropriate yeast strain
in bread-making depends on the dough being fermented, such as lean, sweet, and frozen
dough [13]. Themain fermentable sugar in lean dough is maltose, since the sugar composi-
tion primarily originates from the cereals used when making the dough [13]. Lean dough
thus requires yeast to not only properly utilize maltose to produce CO₂ and make dough
rise, but also avoid a lagging phase that some yeast experience when breaking down the
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sugar, which leads to a drop of CO₂ production during the first hour of fermentation [13].
In contrast, sweet dough (as the name implies) has additional sugars, where up to 30% of
sugars added is sucrose. This creates a high osmotic pressure for yeast (a pressure induced
by the difference in the internal and external sugar concentrations) which can decrease
yeast’s fermentation ability [13]. As it turns out, some yeast can tolerate higher osmotic
pressure, enabling them to better ferment sweet dough [13].

Similarly, many beer strains are better able utilize maltose and maltotriose, as these
two sugars make up more than 50% of the sugars in wort [12]. Wine and cider yeast have
been adapted to better utilize fructose during fermentation, since fructose is the main
sugar in fruits (such as grapes and apples) [14]. Furthermore, wines usually start with
higher concentrations of sugar, consequently leading to much more ethanol production.
As such, wine yeast have higher tolerance to ethanol than beer yeast [15].

Nevertheless, bread, beer, and wine yeast are generally all the same species, and can
be substituted for one-another when making either food. Sure, the end-product may not
be ”optimal” (such as the presence of ”odd flavours” and low-quality beer/bread), but for
yeast, as long as sugars are present, they can produce ethanol and CO₂.

So, when early humans first began to harvest wild cereals, did they originally do so to
make bread, or beer?

The birth of agriculture is generally credited to theNatufians, a group of hunter-gathers
that transitioned to farmingmore than ∼14,000 years ago in the Near East (aroundmodern-
day Israel, Jordan, Palestine, and Syria) [16–19]. Archaeological evidence show that Natu-
fians were among the first to harvest wild cereals to produce food, including bread and
an ancient version of beer [16–19]. In fact, the ancestors of modern-day wheat and barley
has been linked to the Near East [20, 21]. As such, some researchers believe that Natufians
first harvested wheat for bread making, and after some serendipitous events, discovered
that they could use the same cereal ingredients to brew beer [18]. However, researchers
in 2018 came across stone mortars in a Natufian graveyard with chemical traces of an-
cient beer dating back more than ∼13,000 years ago [20]. Specifically, they found high
traces of small cereal compounds such as starch granules, phytoliths, and fibres, suggest-
ing that Natufians used these mortars to crush cereals [20]. But the altered morphology
of the cereal compounds highly resembled the morphology induced via alcohol fermen-
tation, suggesting that Natufians were actually using these mortars to brew ancient beer
[20]. Furthermore, the researchers showed that it’s quite simple to make beer using the
stone mortars: mix cereals with water, mash them, and let wild yeast ferment the gruel-
like mixture into an ancient version of beer [20]. The simplicity for ancient beer thus
raised questions on whether Natufians first invented beer, and later stumbled upon bread
making.

The notion that beer predates bread is not new, as Dr. Robert Braidwood nearly 70
years ago first proposed the beer hypothesis: beer brewing was discovered first, and that
our love for it motivated us to domesticate cereals, later leading to bread production [22].
However, it remains unclear which of the two came first, as a separate group of researchers
in 2018 similarly came across traces of ancient bread making dating back around the same
time as the ancient beer residues in the stone mortars in Natufian territory [18]; further
complicating the bread or beer riddle.
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Regardless of the order, the invention of beer is credited to the Natufians (at least the
first archaeological instance of it). And since then, the evolution of beer (and alcohol
beverages in general) was likely shaped by the combinations of independent discoveries
of fermentation, along with movements of human populations.

What was well documented was the love for beer in ancient Sumer (around modern-
day Iraq and Kuwait) and ancient Egypt, roughly 6,000 to 3,000 years ago. Sumerians loved
beer, making it a central commodity in their economy [23]. One of the oldest writing-
tablets ever recovered is a ~5,000 year-old Sumarian ‘beer payslip’ recovered in modern-
day Uruk, Iraq, documenting beer rations paid to workers [24]. In Sumerian mythology,
there was Ninkasi, the ancient goddess of beer. And to celebrate her, they had a poem
called, The Hymn of Ninkasi, describing not only her origins from a sacred lake, but also
outlining a Sumerian recipe for beer, via the combination of local cereals with honey [25].
In fact, this outline covers the three basic steps of modern-day beer-brewing: malting,
mashing, and fermentation. Furthermore, archaeological text shows that there were at
least 19 different types of beers that the Sumerians brewed: eight from wheat, eight from
barley, and three made from mixture of the two [26].

Ancient Egyptians were also major beer drinkers, likely influenced by their Sumerian
neighbours. In their mythology, human existence is, in part, credited to beer: after a re-
grettable decision by the Egyptian god, Ra, to summon the goddess warrior, Sekhmet, to
destroy humanity, he tricks Sekhmet into drinking large quantities of beer, who drunk-
enly falls asleep to later wake up as the goddess, Hathor, who was ultimately kinder to
humanity [27, 28]. This event was commemorated by the ancient Egyptians as the Festival
of Drunkenness, where Egyptians would ’re-enact; Hathor by drinking large amounts of
beer (and wine) until they fell asleep [28]. In brewing practice, Egyptian and Sumerian dif-
fered: it’s suggested that ancient Egyptians first baked bread in low temperatures (which
in hindsight, allowed yeast cells to survive in the bread), crumbled it and added it to water
vessels, where the yeast would then ferment remaining sugars [29]. The resulting pale,
yellow beverage was referred to as bouza [29].

Around the same time, (Northern) Europeans were enjoying sweet versions of ancient
beer. Potteries from Scotland, including the Isle of Arran and Rhum, have been found
to contain traces of mashed cereals along with honey and meadowsweet (a type of herb),
dating ~4,000-5,000 years ago [30]. In Egtved, Denmark, a wooden bucket was discovered
at the graveyard of a woman dating back around ~3,000 years ago, which similarly con-
tained traces of mashed cereals along with honey and berries [30, 31]. The chemical traces
of these archaeological artefacts suggest a practice of ancient beer in these regions, which
appear to be sweet and fruity, either precursors or paralleling mead (fermented honey),
which was a common alcoholic beverage drank by Vikings and Germanic tribes ².

Sadly, beer fell out of fashion in the Greek and Roman empires. Instead, wine dom-
inated various regions in Europe during this time [30, 31]. Much of the negative views
on beer originated from pseudo-scientific beliefs. In ancient Greece, wine was described
as a ’hot’ and ’dry’ beverage; contrast to beer which was ’cold’ and ’wet’ [30]. A the
same time, Greek physicians believed that males were naturally ’hotter’ and ’dryer’ than
females [32]—likely influenced from Hippocrates’ work of the four humors of the human

²Max Nelson has a fantastic in-depth historical take of beer in ancient Europe [30]. Many of the points in this
sub-section are thus summaries of his work.
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body [33]. Thus, wine was viewed as amasculine drink, contrast to beer whichwas viewed
as feminine [30]. Furthermore, Theophrastus—the successor of the famous philosopher,
Aristotle—believed that beer fermentation was due to the spoilage of cereals, as opposed
to wine fermentation which was a ”natural” transition from grapes [30].

Importantly, Gallic andGermanic tribes—whowere constantly atwarwith the Romans—
continued their practiced of beer brewing, despite the wine-influence of their Roman
neighbours. Particularly, the Southern Gales (around modern-day France) brewed two
main types of beer: korma (barley beer) and cervisia (wheat beer) [30]. Although different
versions existed for both, such as those with honey, Southern Gales viewed wheat beer as
superior to barley beer. Indeed, the Romans referred to these ’barbaric drinks’ using the
same Gallic name, though different variants of the names existed, such as cervesa [30]. It
is also no coincidence that the yeast species commonly used for beer and break making is
named, Saccharomyces cerevisiae, a Latin form of this Gallic word. Southern Gales, as well
as Celtiberians and Lusitanians of the Iberian Peninsula in modern-day Spain and Portu-
gal, natively brewed their own versions of barley and wheat beer, termed, celia, caelia,
and cerea—but they ultimately integrated wine into their culture after being conquered
by the Roman Empire roughly ∼2,000 years ago[30]. The exception were the Northern
Gales (around modern-day Belgium) who Julius Ceasar noted to be ’the bravest of their
tribes’, largely due to their rejection of Roman luxuries, which they believe made soldiers
effeminate [30].

But the influence of beer on ancient empires was not restricted to the ’old world’.

First excavated in 1989, Cerro Baul—a 600-meter-high promontory in Southern Peru—
was a political outpost by the Wari Empire, who reigned the region ~1,000-1,500 years ago
[34, 35]. The site likely mediated political talks from their Southern rivals, the Tiwanaku.
Interestingly, this political outpost housed one of the largest ancient breweries discovered:
a 500 square-meter facility that brewed different variants of chicha, a South American beer
made of maize and pepper berries [34, 35]. The facility had all the necessary infrastructure
to brew large quantities of beer, housing specialized rooms for grinding, boiling, ferment-
ing, and storing. Remarkably, several vessels in the fermentation roomwere found to hold
up to a 150 L of liquid, with one possibly holding 1,000 L [34, 35]. It is estimated that the
facility could produce up to 1,800 L of chicha per batch (that is about 5,455 standard bot-
tles of beer). Ultimately, this large brewing facility reflected the political mindset of the
Wari Empire, which held large (drunken) festivals to commemorate political agreements
[34, 35].

After the fall of the Roman Empire, and into the Medieval Europe (about ∼1,500 years
ago), a series of events ultimately changed beer into the alcoholic drink that we love (and
hate) today.

The first, was the European-wide adoption of beer brewing by Christian monasteries.
This was largely due to (sequential) work from Gildas the Wise and St. Columban, who
established formalmonostatic rules in Ireland and Britain that not only advocated for clean
and sanitized brewing practices, but also regulated the amount of beers monks could drink
[30]. For example, Gildas would have monks stand still for three hours at night reciting
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more than twenty-eight psalms if they were caught drunk [30]. St. Columban punished
monks who spilled beer by having them recite 12 psalms; or for more severe spills, would
have themonks go sober (no drinking anything but water) for a number of days equivalent
to ”the amount of alcohol spilled” [30]. It is also during this time where we start to see
incidents of beer miracles by various monks and saints, ranging from unlimited beer, to
spontaneous fermentation, and the equivalent of a beer exorcist.

It was not until the reign of King Louis the Pious of France when beer brewing was offi-
cially regulated throughout all Christian monasteries in Europe [30]. King Louis the Pious
followed the footsteps of Charles the Great, who fortified beer brewing and wine making
in his estates throughout France around 1,200 years ago [30]. These regulations forced
Christian monasteries to reflect Louis’ modern standards, such as the St. Gall monastery
in modern-day Switzerland which was renovated to house three different brewing rooms
for monks, special guests, and travelers such as pilgrims [30]. Nevertheless, this official
regulation ultimately encouragedmonks to experiment with brewing recipes. And it’s dur-
ing this time when we start to see the integration of a major modern-day beer ingredient:
hops.

As previously discussed, ancient brewers have historically used various ingredients to
flavour their beer, including honey, berries, and herbs. But none were as revolutionary
as the additive ingredient of the herb called hops. Hops are ”climbing plants” that can
grow 10 meters high with three main species: H. lupulus, H. japonicus, and H. yunnanensis
[36]. Although their origins are linked to East Asia, hops have naturally grown throughout
Europe [36]. Importantly, the female flowers (which are cone-shaped) harbour bitter acids
and floral aromas that famously give beer it’s ’bitter” taste. These flowers are universally
used inmodern-day beers, integrating awide range of additional flavours compare to ”hop-
less” beer [36]. It is therefore no surprise why the integration of hops in beer brewing in
Medieval Europe become so popular.

The first mentioning of hops in beer is found in written laws in the St. Peter and St.
Stephen monasteries at Corbie, France, during the reign of King Louis the Pious, when
it appears to have already been a routine practice [30] Soon after, various monasteries in
France quickly adapted hops into their own brewing recipes, and although the mentioning
of this practice appears in Germany a few decades later, it is likely German brewers were
already using hops, given the existence of ”hop-gardens” in Hallertau, Germany, around
1,300 years ago [37].

Finally, a new approach for beer brewing was invented, ultimately sealing the two
major classes of beers that we see today. Historically, beer brewing was carried out by
yeast that would float to the top after fermentation, thus known as top-fermenting yeast,
or ale yeast [2]. But around 700 years ago in Bavaria, Germany, a new species of yeast was
discovered that instead sunk to the bottom after fermentation, thereby known as bottom-
fermenting yeast, or lager yeast [2, 38]. Interestingly, lager yeast can ferment at much
colder temperatures, between 5-15C, as opposed to ale yeast which required warmer tem-
peratures between 17-22C [2, 38]. As such, the colder temperatures allowed lager beers
to last throughout the winters. Lager yeast are also much more genetically complex than
their ale counterparts, but I will discuss this in the later chapters.

The popularity of lager beers in Germany found its way to various breweries through-
out world, especially in 19ᵗʰ century [2]. As such, there are two major classes of beers that
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we see today: ale and lagers, discretized by the type of yeast used during brewing (top or
bottom-fermenting). Sure, beer recipes have changed in the past few hundred years, evi-
dent by the various Indian Pale Ales, Porters, Stouts, Ambers, Triples, Sours, Hefeweizens,
and Pilsners. But in the end, the nature of their brewing is centered by the capabilities—or
more accurately, biology—of the yeast used.

0.3 Yeast: man’s best microbial friend
Universally, dogs are known as man’s best friend due to their historical support through
hunting, guarding, civil duties, and companionship. But if the past two sections have
taught us anything, is that there is a clear contender to this title: yeasts.

As already discussed, yeasts (and their alcohol-fermenting capabilities) have played
major roles throughout the development of human civilization, and arguably, shaped the
evolution of our species. But despite the long, complex history of their use to make alcohol
and bread, yeasts were never really seen as living organisms until much recently.

Ancient brewers knew that yeasts were a critical ingredient in the fermentation pro-
cess. For example, around the emergence of lager-beer brewing in the 14ᵗʰ century,Hefners
(or Yeasters) in Nuremberg, Germany, were responsible for harvesting and stocking yeast
[2]. In Olaus Magnus’, History of the Northern Peoples, written in 1555 on Swedish culture,
Olaus refers to the practice of re-pitching, that is, recycling yeast from previous beer brew-
ing batches to brew the next one [39]. However, it wasn’t until the 17ᵗʰ century when the
idea of living microbial organisms was first scientifically proposed.

In 1674, Antoni van Leeuwenhoek—aDutchman from the city of Delft,TheNetherlands—
began to peak at the microscopic world through an early version of a microscope [40, 41].
Initially, it was a simple idea: craft together a glass-lense on a metal apparatus, and use
it to amplify objects on the other side [40–42]. Fairly, his microscopes were not entirely
novel as several scientists before him had similar ideas, including Hans Lippershey, Hans
Janssen, and Zacharias Janssen, who are credited for the invention and use of the first mi-
croscope [42]. More knowingly, Robert Hooke published his famous work, Micrographia,
nine years before, where he described his observations of various objects up-close such as
a needle, a flea, and various seeds using his self-craftedmicroscopes [43]. Likely, Leeuwen-
hoek was inspired from the work of these individuals, especially from Hooke [41]. How-
ever, Leeuwenhoek’s microscopes had one big advantage: their magnification capabilities
were immensely powerful, even in today standards.

We nowknow that Leeuwenhoek’smicroscopesmagnified from 30-200x [44, 45], enough
to distinguish individual structures of 0.7𝜇m in thickness [45] (to put in perspective, the
width of a strand of a human hair is 17-181𝜇m in thickness). The magnification power of
his microscopes thus enabled him to make an important observation: there was an entire
microscopic world filled with organisms which he called, little animals [46]. These little
animals were found in a wide range of substances including canal and rain water. Impor-
tantly, he was the first to describe yeasts under the microscope, regarding them as small
“globules” [47]. His observations were first met with great skepticism, especially from
Robert Hooke who claimed that he could not recreate his observations [41] (likely due
the lack of magnification power obtained in his microscopes). Although Hooke ultimately
was able to validate some of Leeuwenhoek’s findings [41], it took nearly 200 years to solve
the nature of these little animals.
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Independent observations byTheodor Schwann and Charles Cagniard de la Tour in the
late 1830s showed that yeast were actually living organisms, acknowledging observations
by Leeuwenhoek nearly two centuries later [48, 49]. Although yeast were known to be
a key ingredient in alcohol fermentation, fermentation was thought to be driven purely
by a chemical process through the reaction of oxygen and decaying matter, which was
heavily supported by the German chemist, Justus Leibig [50]. Until the observations by
Schwann and Cagniard, yeast were regarded as either natural by-products or catalyst of
the chemical reaction [50].

Both Schwann and Cagniard—with the aid of more advanced microscopes—observed
that yeast were actually, “small spherical or oval globules” that decomposed sugars into
alcohol [48, 49, 51]. As they appeared to reproduce, they ”were not merely a simple chem-
ical or organic substance”, proposing instead that yeast were living organisms [48, 49, 51].
Liebig quickly responded with satirical illustration of yeast reproducing and converting
sugar to alcohol [50]—ironically, this illustration was probably the most accurate “model”
of alcohol fermentation at the time. He instead proposed that yeast were merely decom-
posing and were reacting with oxygen [50].

Famously, Louis Pasteur showed that yeast reproduced and created alcohol even with-
out the presence of oxygen nor the organic compounds that Liebig suggested were decom-
posing into alcohol [52]. Subsequent work by Pasteur and Robert Koch ultimately high-
lighted role of microbes in infectious diseases including cholera, anthrax, and rabies [53].
But, above all else, they showed that microbial organisms—whether friend or foe—could
be controlled, exemplified by their pioneering work on acquired immunity via vaccines
[51].

What started out as an international debate about the exact role of yeast during alco-
hol fermentation, ultimately led the field of microbiology, revolutionizing medicine, food
production, and human well-being. For example, throughout the past century, there has
been large investments in studying microbes that may benefit our society. Aside from
alcohol fermentation via yeast, a large part of these investments has aimed at harvesting
enzymes, which are small, organic compounds that perform specific chemical reactions.
Enzymes are produced by most organisms and are generally adapted to the environment
that the host organism lives in. As such, enzymes enable microbial organisms to live in
diverse environments while making use of different nutritional sources. For example, the
bacteria, Deinococcus radiodurans, can withstand the highest dose of radiation known to
date at 5,000 Gys radiation (to put it in perspective, 5 Gys of radiation is considered lethal
to humans), thanks in part to various specialized enzymes that repair damages induced
by high radiation [54]. Another example is the bacteria, Nitrosomonas europaea, with the
unique ability to use ammonia as its main energy source by chemically oxidizing it to
nitrate (which is also an important step required for sanitizing waste water) [55].

As such, microbes are generally ”screened” for enzymes thatmay have beneficial chem-
ical properties in industrial applications. Proteases, for example, are enzymes that can
break proteins into smaller pieces. Protease from a bacteria, Bacillus licheniformis, were
used to remove residue stains in fabric in the first protease-containing laundry detergent
in 1956 [56]. Since then, proteases are key ingredients in standard laundry detergents
[57]. Alternatively, proteases from a similar bacterial species, Bacillus subtilis, have been
harvested to digest proteins in milk to help create ”curd effect” during cheese production
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[56, 58]. Although proteases make up of more than 60% of the global enzyme market,
there are also a variety of others enzymes such as lipases (breaks down fats; an indus-
trial example is cocoa butter production), cellulases (breaks down plant matter; olive oil
extraction), and lactase (breaks down sugars in milk; supplemented to people who are
lactose-intolerant), all which have been derived from microbial organisms. But it’s not
only alcohol and enzymes that make microbial organisms interesting to study.

Understanding the medical implications of microbes have vastly improved our per-
sonal health and wellbeing. One example was the discovery of antibiotics in the early 20ᵗʰ
century. As it turns out, microbes constantly fight with each other for space and resources
[59]. One effective tactic that they use is to produce chemical compounds called, antibi-
otics, which can be toxic tomicrobes as they can disrupt essential functions necessary for a
microbe to live [59]. By producing antibiotics and dispersing them in the surrounding envi-
ronment, a microbe can effectively reduce nearby competition [59], similar to how yeast
can reduce competition to nearby resources with alcohol fermentation. Sir Alexander
Fleming—aWWI physician who later became heavily interested in microbiology—studied
a species of mould called Penicillium in the late 1920’s [60]. These species of mould can be
found in a variety of damp environments like soil, and commonly cause food spoilage [61].
As noted by several scientist before him, species of Penicilliumwere known to have antimi-
crobial properties, that is, able to kill microbes in the surrounding environment [62, 63].
However, Fleming managed to formally describe the antibiotic produced by this mould,
called penicillin, and proposed its potential use to treat a variety of infectious diseases
[60]. Particularly, he showed that they were effective in killing the microbes responsi-
ble for causing anthrax, cholera, diphtheria, and typhoid [60] which were common at the
time.

With the help of Howard Florey and Ernest Chain from Oxford University, they were
able to develop amethod tomass produce penicillin [62], and it was introduce in the 1940’s
to treat wounded soldiers during WWII, ultimately sparking the ”Era of Antibiotics” [64].
Although it is difficult to estimate the total number of lives saved by penicillin alone, Allied
powers knew about the strategic importance of this antibiotic [65], saving between 12-15%
of Allied forces in WWII [66]. In the USA alone, the government invested in 171 different
companies to mass produce penicillin [67].

The city of Delft, The Netherlands (hometown of Antoni van Leeuwenhoek), also
played an important role in the production of penicillin. The company Nederlandsche Gist
en Spiritusfabriek, or NG&SF for short, secretly produced penicillin amid occupation of
German forces during the 1940’s [68]. This was largely due to the Dutch biodiversity in-
stitution, Centraalbureau voor Schimmelcultures, or CBS for short, which maintained the
largest collection of fungal samples (interesting fact: samples from this institution often
contain the prefix ”CBS” in their names, which is the origin of microbe studied in chapter
4). Alexander Fleming sent the penicillin-producing sample of mould to CBS [68], but
German forces (who occupied The Netherlands at the time) also knew about the strategic
importance of penicillin [65] and demanded a sample of the mould [68]. In response, CBS
purposely sent the wrong fungal sample to avoid penicillin-use by German forces. NG&SF
thus avoided suspicion by constantly offering gin to the local appointed German officers
while producing penicillin underground in milk bottles [68].

Since then, various different antibiotics were discovered, especially during the 1950-
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1970s which is widely deemed as the “Golden Era of Antibiotics” [63]. And today, we can
effectively treat various infectious diseases that would’ve been regarded as “deadly” 100
years ago [63]. Unfortunately, microbial pathogens are beginning to acquire resistance
to our antibiotics, making some infections challenging to treat. Indeed, acquired drug-
resistance in microbes is seen as one of the major challenges for society in the next coming
decades [69].

Now, this story started out with yeast and its ability to produce alcohol. And despite
our long-lived recreational love for both, they continue to be headline-news in microbial
research. It wasn’t until the late 1990s when an international community of more than
600 scientists from around the world came together to determine the complete genomic se-
quence of S. cerevisiae, a first for eukaryotic organisms [70]. The study revealed a genome
of 12 million DNA letters (or nucleotides) containing about 6,000 genes spread out across
16 chromosomes [70]. Importantly, unlocking the genetic code of S. cerevisiae had a pow-
erful implications: could we re-write its genome and genetically engineer its capabilities
for the benefit of human society?

Throughout the past two-decades, researchers have been able to use yeast as “bio-
logical swiss-army knifes”, engineering them for wide variety of important industrial
applications. In the fight against climate change, various scientists are attempting to
engineer yeast with specialized biological pathways in order to breakdown renewable
plant biomass and produce biofuels as alternative energy sources [71]. In the promise
for cheaper and safer therapeutics, researchers have engineered the complete biological
pathway in yeast to naturally to produce opioids, which are commonly used for pain man-
agement in (human) patients [72]. Similarly, the complete biological pathway for produc-
ing cannabinoids—which are also used for pain management—has also been engineered
in yeast [72].

Excitingly, with the rapid progression of genome sequencing technology, we are only
beginning to understand the vast genetic diversity of yeast throughout the world [73].
Coupledwith promising and integrative genetic engineering technologies, such as CRISPR
[74], the engineering capabilities and general strives that yeast can provide to the scientific
community is undoubtedly powerful.
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1
Introduction

Yeasts have played an influential roles in human history, shaping our societies, sciences,
and (bio)technological capabilities¹. Deservedly, the genome of Saccharomyces cerevisiae—
commonly referred to as baker’s yeast—was the first eukaryotic genome to be sequenced
and assembled, thanks to an international consortium ofmore thanX’s institutions through-
out the 1990s. But as scientists have quickly learned, genomes from individual members
in a species are not identical, especially in yeasts.

Yeasts have undergone a complex evolution, thanks in part to human domestication.
This is particularly evident in industrial yeasts, which were not only been subjected to
external environmental pressures (such as those found in fermentation systems and biore-
actors), but often (purposely) ”mixed” with other yeast populations. As such, industrial
yeasts are often aneuploid (e.g. multiples copies of the individual chromosomes, not al-
ways with the same number) and hybrids (chromosomes from different yeast species in
the same nucleus). The genome of a single yeast is thus hardly a representation of the true
genomic landscape that exists in its species.

To add to the complexity, traditional bioinformatics algorithms don’t farewell when
analysing aneuploid and hybrid genomes. Aneuploidy is a known hallmark challenge in
de novo assembly that leads to fragmented genomes, especially those with high sequence
variation. And the hybrid-nature challenges our ability to trace their complete evolution-
ary histories. Although recent progression in long-read sequencing technologies provides
various opportunities to overcome these challenges, the data alone is not enough.

This introduction gives an algorithmic overview of fundamental bioinformatics meth-
ods surrounding sequence analysis, de novo genome assembly, and comparative genomics.
It then transitions to the modern methods aiming to leverage both short and long-read se-
quencing data—inspirations to the contributions of this thesis. Finally, it concludes with
an overview of the contents presented in the rest of this thesis and the bioinformatic chal-
lenges addressed. An overview of this introduction is shown in Figure 1.1.

¹There is a whole story about this in the Prelude if you haven’t read it yet
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Figure 1.1: Overview of methods and algorithms described in this introduction.
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1.1 In the era of long-read genomic data
Today, we have amassed something that many researchers in the 1950s were only begin-
ning to imagine [75]: genome sequencing data. More accurately, A LOT of sequencing
data. In 2015 (at the start of my PhD), the European Bioinformatic Institute housed nearly
10¹⁵ bytes of genomic data (10¹² bytes which were microbial) [76]. To put in perspective,
that’s a total of 1.36 million meters of DNA if you were to construct a physical chain it
into one giant chemical chain. In fact, genomic data is regarded as a ”four-headed-beast”
as data generation, storage, accessibility, and analysis rivals that to other “big data” indus-
tries, such as NASA, YouTube, and Twitter [77].

This explosion of genomic data is due to rapid progression of genome sequencing tech-
nologies. The first generation of sequencing technologies (although slow and expensive)
helped generate the first set of ”complete” or ”early-drafts” genomes, such as bacterio-
phage 𝜙X174 in 1977 [78], S. cerevisiae yeast in 1996 [70], and the human genome in 2001
[79]. These first genomes provided an invaluable genetic platform that helped researchers
better understand the role of genetics in phenotypes (e.g. physical attributes and dis-
eases), whether it be humans, livestock, or microbes. The introduction of next-generation
sequencing technology (first demonstrated in mid-2000s [80]) enabled researchers to se-
quence hundreds to thousands of genomes of any organism at a much cheaper price, un-
raveling unprecedented information about genomic diversity. More recently, the introduc-
tion of third-generation sequencing technology overcomes limitations of its predecessors
by decoding larger molecules of DNA, enabling analysis of longer, contiguous stretches
of genomic information [81]. Some of the main foci of these technologies have therefore
aimed at generating “complete” genomes reconstructions for organisms that were previ-
ously studied or recently discovered [81].

Due to technological limitations, sequencing technologies have only been able to deci-
pher or sequence (small) substrings of a chromosome at a time per genome, often equating
to algorithmic challenges when analysing genomic data. To better understand these algo-
rithmic challenges, I provide some general notations:

A DNA sequence can be represented a string, 𝑠, composed of four nucleotides, Σ =
{𝐴,𝐶,𝐺,𝑇 }, whose size is denoted by |𝑠|. Equivalently, a protein can also be represented as
a string but with 22 amino acids [82–84]:

Σ = {𝐴,𝐶,𝐷,𝐸,𝐹 ,𝐺,𝐻 , 𝐼 ,𝐾 ,𝐿,𝑀,𝑁 ,𝑂,𝑃,𝑄,𝑅,𝑆,𝑇 ,𝑈 ,𝑉 ,𝑊 ,𝑌 }
If a single chromosome can be represented as a single string, than the genome of an or-
ganism can be represented as a set of strings, 𝑆 = {𝑠1, 𝑠2, 𝑠3,⋯ , 𝑠𝑛}, where 𝑛, or equivalently
the set size |𝑆|, represents the total number of chromosomes, and the sum of the sizes of all
chromosomes, 𝑆𝑖𝑧𝑒(𝑆) =∑𝑛

𝑖=1 |𝑠𝑖 | is the genome size. For example, a human a genome with
23 chromosomes, |𝑆| = 23, has a genome size of 𝑆𝑖𝑧𝑒(𝑆) = 3.2 billion nucleotides. Similarly,
for yeast, |𝑆| = 16 chromosomes and a genome size of 𝑆𝑖𝑧𝑒(𝑆) = 12 million nucleotides.

Ultimately, genome sequencing technologies generate a set of reads, 𝑅 = {𝑟1, 𝑟2, 𝑟3,⋯ , 𝑟𝑚},
where each 𝑟𝑖 is a substring from some chromosome in 𝑆 with a sequencing error rate, 𝜖.
Generally, |𝑟𝑖 | << 𝑆𝑖𝑧𝑒(𝑆) even with recent technological innovations. As such, the algo-
rithmic challenge in analysing genomic data has thus largely centered in using 𝑅 to recon-
struct (an approximation of) the original genome(s), its gene-contents, and its evolutionary
relationship to other individuals or organisms.
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The growing complexity of the four-headed-beast has required sophisticated compu-
tational techniques in order to efficient manage and analyze genomic datasets. Conse-
quently, bioinformatics has rapidly evolved throughout the past few decades, adapting to
the progression, limitations, and ambitions of the genomic data produced by sequencing
technologies. Interestingly, although there is a plethora of bioinformatics methods pub-
lished every year—particularly those revolving sequence analysis—many describe tech-
niques based on prior established methods (as expected as they directly draw inspiration
from them), and some cases, can be regarded as “digital versions” of experimental tech-
niques published several decades before.

1.1.1 On the fundamentals of sequence alignment
Shortly after the sequencing of the first set of proteins in the 1950s researchers realized that
comparing protein and/or genomic sequences among different individuals or organisms
could provide insights about genetic diseases and evolutionary histories. It is therefore not
surprising that a major theme in bioinformatic research in the past 70 years has focused
on sequence alignment, an algorithmic scheme to comparing DNA or protein strings. It
is important to distinguish common terminology in this field: when I refer to sequence
alignment I am referring the algorithmic procedure to comparing two strings; not to be
confused with sequence mapping which I refer to as the algorithmic procedure to identify
the location of substring among a set of much larger strings (e.g. a set of chromosomes
representing a genome). Importantly, the introduction of long-read sequencing data has
required new methods for sequence alignment and mapping, all which use and extend
established methods first developed in the last quarter of the 20th century.

Score optimization via dynamic programming has traditionally been the main funda-
mental approach to sequence alignment. Starting with the Needleman-Wunsch algorithm
for global sequence alignment in 1970 [85], and the Smith-Waterman algorithm for local
sequence alignment in 1981 [86], these two methods have served as the core functional-
ity in most sequence mappers and aligners in the past few decades. And although the
dynamic programming paradigm for sequence alignment is consistently used by various
methods, they have been refined by a variety of techniques and timely-problems, such as
handling structural sequence variation which has resurfaced as a major theme genomic
research in the past few years.

Initially, sequence alignment used a single-gap value for both global and local sequence
alignment [85, 86]. For example, given two strings, 𝑎 and 𝑏, the dynamic programming
algorithm for aligning both strings globally and locally can be seen as finding a path in a
scoring matrix,𝑀 , that minimizes some score. Specifically, a𝑚 x 𝑛 scoring matrix (where
𝑚 and 𝑛 correspond to the size of the two strings) is first initialized such that 𝑀(𝑖,0) =
𝑀(0,𝑗) = 0. The scoring matrix is then filled through the following approach:

𝐺𝑙𝑜𝑏𝑎𝑙 ∶ 𝑀(𝑖,𝑗) = 𝑚𝑎𝑥
⎧
⎨
⎩

𝑀(𝑖−1,𝑗−1) + 𝑠𝑐𝑜𝑟𝑒(𝑎𝑖 , 𝑏𝑗),
𝑀(𝑖−1,𝑗) −𝑝,
𝑀(𝑖,𝑗−1) −𝑝

(1.1)
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𝐿𝑜𝑐𝑎𝑙 ∶ 𝑀(𝑖,𝑗) = 𝑚𝑎𝑥
⎧⎪
⎨⎪
⎩

𝑀(𝑖−1,𝑗−1) + 𝑠𝑐𝑜𝑟𝑒(𝑎𝑖 , 𝑏𝑗),
𝑀(𝑖−1,𝑗) −𝑝,
𝑀(𝑖,𝑗−1) −𝑝,
0

(1.2)

Where 𝑠𝑐𝑜𝑟𝑒(𝑎𝑖 , 𝑏𝑗) is a pre-defined constant integer whenever there is a matching
nucleotide, 𝑎𝑖 = 𝑏𝑗 , or a mismatching nucleotide, 𝑎𝑖 ≠ 𝑏𝑗 ; and 𝑝 is the gap-penalty penal-
izing insertion and deletions between the two strings, as 𝑀(𝑖−1,𝑗) or 𝑀(𝑖,𝑗−1). In both the
global and local alignment scheme, both 𝑚 and 𝑝 are constant through the entire align-
ment. However, it became clear that this design can create ambiguity when representing
and identifying structural variation.

Osamu Gotoh in 1982 [87] proposed the affine gap penalty technique to yield the align-
ment in the left (e.g. a single deletion event of two nucleotides more likely than a two
different deletion events). Specifically, the cost of a gap takes the form 𝑝 = 𝑒𝑘 + 𝑜, where
𝑒 is the cost of extending it, 𝑘 is the number of gaps introduced, and 𝑜 is the cost of open-
ing a gap; effectively reducing the time complexity from 𝑂(𝑎2𝑏) to 𝑂(𝑎𝑏) in comparison
to previous methods integrating multiple gaps. However, there can be multiple optimal
alignments and Gotoh is only guaranteed to find one as it only follows one of the potential
multiple paths in alignment matrix. As such, Stephen Altschul and Bruce Erickson in 1986
[88] provided and improved approach of the affine gap cost that enables the identification
of multiple optimal alignments while remaining 𝑂(𝑎𝑏). This was possible by using three
arrays representing the different possible paths an alignment can take: diagonally (as a
match) and horizontally and vertically, each representing a gap extension or gap opening
in respects to both sequence. By tracking the direction of each path, all optimal alignments
can be identified through joint traceback of the three matrices. This can be represented
as:

𝑀(𝑖,𝑗) = 𝑚𝑎𝑥
⎧
⎨
⎩

𝑀(𝑖−1,𝑗−1) + 𝑠𝑐𝑜𝑟𝑒(𝑎𝑖 , 𝑏𝑗),
𝐴(𝑖,𝑗),
𝐵(𝑖,𝑗)

𝐴(𝑖,𝑗) = 𝑚𝑎𝑥 {𝐴(𝑖−1,𝑗) −𝑘,
𝐴(𝑖−1,𝑗) − (𝑒 +𝑜)

𝐵(𝑖,𝑗) = 𝑚𝑎𝑥 {𝐵(𝑖,𝑗−1) −𝑘,𝐵(𝑖,𝑗−1) − (𝑒 +𝑜)

(1.3)

Later, Gotoh in 1990 [89] further improved the general goal of aligning sequences with
large structural variation by employing a two-piece affine gap penalty using a similar
technique to that of Altschul and Erickson to retain the algorithm in 𝑂(𝑎𝑏) while also
identifying all possible optimal alignments (described in more detail in section 1.1.3).

As will become more clearer in the later sections, long-read sequencing data enables
investigation of structural changes in a genome, such as large deletions and insertions.
However, they are plagued by high 𝜖 often comprised of smaller insertion and deletion
events. Adaptations of the single and two-piece affine gap penalties in modern sequence
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mappers have thus helped correct sequencing errors [90–92] and identifying true large
structural events in a genome [93, 94] (see section 1.1.3).

Other gap-scoring functions have been investigated, such as the concave gap-function
which takes the form, 𝑝 = 𝑒𝑙𝑛(𝑘)+𝑜, first introduced by Michael Waterman in 1984 [95]
and later optimized by Webb Miller and Eugene Myers in 1988 [96]. The rationale being
the size of indels were observed to exponentially grow, and thus needed to be modelled
logarithmically [95–97].

In parallel to the research above, researchers began to focus in optimizing the speed
of sequence alignment as enomic databases began to grow. For example, as opposed to
having a high resolution between the differences of two strings, the focus instead became
identifying target strings that have high similarity to a given query string (e.g. aligning
a newly sequenced gene across many existing genes). More specifically, similarity of two
strings, 𝑆𝑖𝑚(𝑞𝑢𝑒𝑟𝑦, 𝑡𝑎𝑟𝑔𝑒𝑡), measures the proportion of matching bases to total bases in
the alignment of query and target (this exact calculation varies through different scoring
schemes). John Wilbur and David Lipman in 1982 [98] proposed an efficient method to
search some given query string across a database of many target strings of variable lengths.
They highlighted the observation that the alignment of two strings high similarities will
harbour high-scoring alignment paths in the scoring matrix 𝑀 . However, identifying the
optimal alignment via a dynamic programming scheme is computationally expensive and
significantly slows down any searching algorithm that directly employs this technique.

Instead, Wilbur and Lipman introduced the concept of 𝑘𝑚𝑒𝑟 matches (or k-tuples
as presented in the paper [99]) as a mean to quickly compute an approximate global-
alignment between the query and target strings without needing to compute the expen-
sive alignment scoring matrix. The set of 𝑘-sized kmers for a string s of size 𝑛 can be
regarded as all 𝑘-sized prefixes of 𝑠. If 𝑠𝑢𝑏𝑠(𝑠,0,3) yields the first three characters of s, then
𝐾𝑚𝑒𝑟𝑠(𝑠,𝑘) = {𝑠𝑢𝑏𝑠(𝑠,0,𝑘), 𝑠𝑢𝑏𝑠(𝑠,1,1+𝑘), 𝑠𝑢𝑏𝑠(𝑠,2,2+𝑘),…, 𝑠𝑢𝑏𝑠(𝑠,𝑛−𝑘,𝑛)} = {𝑘1, 𝑘2, 𝑘3,…,𝑘(𝑛−
𝑘 +1)}. Wilbur and Lipman utilize a single one-dimensional array for a given query string
of length 𝑛 −𝑘 where each element in the array represents a kmer in the query storing a
list of starting positions of that kmer in the query sequence [99]. For a given target se-
quence, the respective location of kmer matches—that is, kmers in both 𝐾𝑚𝑒𝑟𝑠(𝑞𝑢𝑒𝑟𝑦,𝑘)
and 𝐾𝑚𝑒𝑟𝑠(𝑡𝑎𝑟𝑔𝑒𝑡,𝑘)—can be identified using the one-dimensional array. The array can
then be used to identify and cluster consecutive kmer matches, which would appear as
a high-scoring local alignment paths in the scoring matrix. Within each cluster of kmer
matches, they infer sequence similarity by positively scoring the number of matching or-
dered kmers penalized by size differences between kmer matches [99]. The similarity of
the query and target strings can thus be approximated based on the number and score of
high-scoring paths. As discussed in the later sections, k-mer matching (also known as k-
mer seeding) became an imperative step in long-read (and whole-genome) mapping and
alignment, as well as probabilistic ”alignment-free” methods, later discussed in section
1.1.5.

Wilbur and Lipman subsequently improved their method with the introduction of
FASTP in 1985 [98] which was meant to rapidly compare protein sequences to contin-
uously growing databases such as the NBRF protein database. Using a similar scheme
as their method in 1982, they improved the high-scoring diagonal search by integrating
amino acid substitution matrix (e.g. PAM250) to increase sensitivity of finding homology
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between distant proteins sequences. In other words, as opposed to having a constant pos-
itive score for any matching charactering the 𝑀(𝑖,𝑗), the score depends on the correspond-
ing value in the given substitution matrix specifying how the two amino acids should be
scored based on the likelihood of the two mutating into each other. Additionally, they also
introduced the use of a ”banded” Needleman-Wunsch algorithm to compute an alignment
only for a narrow path in the scoring matrix by restricting the values of 𝑖 and 𝑗 within
a proximity of the high scoring diagonal [98]. They further improved FASTP by intro-
ducing FASTA [100] which not only improved sensitivity when searching for sequences
in a database, but also enabled queries of DNA sequences. The major difference is that
FASTA additionally enables the calculation of an approximate global alignment by link-
ing high scoring diagonals and computing a banded global alignment restricted through
linked diagonals.

In 1990, Stephen Altschul along with David Lipman, Warren Gish, Webb Miller, and
Eugene Myers proposed an improved search method, BLAST [101], was based on prior
work of the FASTA method through three main steps. Similar to FASTA/FASTP, the first
step aimed at extracting kmers and their high scoring neighbours, that is, a kmer a long
with variants of that kmer that differ by no more than d nucleotides, increasing the sen-
sitivity of identifying kmer match between the two strings. For each kmer match, it is
extended in both directions, positively scoring matches and penalizing mismatches, up
until a (local-)maxima is reached (referred to as maximal scoring pairs). It’s analogous to
finding high-scoring diagonals as done in FASTP/FASTA, but it is based on the extension
of individual kmer matches as opposed to first identifying high scoring clusters of kmer
matches and linking/extending those to other clusters [101]. Importantly, base-level ex-
tension uses a X-drop metric to stop an extension at the point where the score for 𝑀(𝑖,𝑗)
drops below some threshold [101]. This is particularly useful when two sequences share
common substrings, but their respective ends are not similar. As we will see in the next
few sections, the fundamentals of these techniques are used to not only rapidly map and
align long-read sequencing data, but to efficiently compare pan-genomes (e.g. the gene
content of microbial populations), which have exponentially increased throughout the
past decade.

At the turn of the new millennium, the ”complete” whole genomes were being con-
structed, including human and variousmicrobes such as the yeast Saccharomyces cerevisiae
[70] and the bacterial pathogen Staphylococcus aureus [102]. As such, there were efforts
to develop methods that would enable whole-genome alignments, as opposed to local-
sequence alignment across large sequence databases. More specifically, whole-genome
alignment can be seen a form of semi-global sequence alignment for the entire genome,
but it becomes increasingly challengingwhenwe consider structural variations and homol-
ogous sequences, which are pronounced features in many (microbial) genomes. A detailed
review of whole-genome alignment methods has been recently published [103]. However,
to better understand the downstream computational challenges that arose from long-read
sequencing more than a decade later, I provide quick summary of two specific methods
during early development of whole-genome aligners: kmer matching and chaining.

The same logic utilized by FASTA/FASTP and BLAST applies when performing whole-
genome alignment: it is muchmore efficient to identify and compute sequence alignments
through kmer matches, often referred to as anchors or seeds, as opposed through a brute-
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force search across the entire genome. This is particularly important when we consider
that two genomes may have shared evolutionary sequences but are located in different
regions in their respective genomes due to evolutionary events such as horizontal gene
transfer.

MUMmer was one the first whole-genome aligners and is still widely used today [104].
The underlining key to this method is the use of suffix trees, which represent all suffixes in a
genome and their locations in a tree data structure. Unlike kmers, suffixes in the suffix tree
are not restricted to a specific size, but can vary in length. By constructing a suffix tree for
two given genomes, maximal unique matches (MUMs)—longest possible sub-sequences
that are shared by both genomes and occur only once—can be quickly identified and
serve as anchors for potential alignments between the two genomes [104]. The 𝑀𝑈𝑀𝑠 =
{𝑘1, 𝑘2, 𝑘3,⋯ ,𝑘𝑛} are then subjected to a chaining algorithm to find collinear regions be-
tween two genomes [104]. In MUMmer, the chains are computed via the longest increas-
ing sub-sequence algorithm, such that the starting positions of each 𝑘𝑚𝑒𝑟𝑠𝑡𝑎𝑟𝑡(𝑘𝑖) in the
two genomes are respectively ordered, 𝑠𝑡𝑎𝑟𝑡(𝑘1) < 𝑠𝑡𝑎𝑟𝑡(𝑘2) < 𝑠𝑡𝑎𝑟𝑡(𝑘3),⋯,< 𝑠𝑡𝑎𝑟𝑡(𝑘𝑛),
leading to collinear regions that can later undergo more sensitive sequence alignment to
an “extend” step at each anchor [104]. In fact, chaining of biological sequences was already
being discussed by David Sankoff in 1972 [105]. And as described in much more detail in
the next section, recent (long-read) aligners propose different approaches for computing
alignment chains, such a heuristic-scoring metrics based on the coverage of the reference
[93, 103], and formulation as the 0-1 knapsack problem [94].

The purpose of suffix trees is effectively the same as kmer hashing, an alternative ap-
proach to finding matching kmers or anchors. In short, a hash function applied to a string
yields an integer value regarded as the hash value, 𝐻(𝑠) = ℎ, where h is uniformly dis-
tributed between a fixed range based on the corresponding computer architecture (e.g. 32
or 64 bits). Applying 𝐻(𝑠) across all 𝐾𝑚𝑒𝑟𝑠(𝑠,𝑘) in a sequence or genome yields a col-
lection of hash-values. Matching kmers between two genomes or sequences can thus be
identified via the intersection of integers between the two collections. As we will also
see in the next few sections, various techniques have been developed to ease the applica-
tion hash functions on genomic sequences, such as the (𝑤 −𝑘)−𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟𝑠 proposed by
Michael Roberts et al. which only retains the “smallest” kmer of length 𝑘 in a window size
𝑤 [106], and recent dimensionality-reduction techniques to significantly reduce the total
number of kmers required to store and compare [107]. Additionally, hash representation
of sequences and genomes is widely used in long-read mapping and alignment, as well
as recent genomic streaming algorithms aiming quickly compare thousands of (microbial)
genomes (see section 1.1.5).

Overall, the strategy of anchor-finding and chaining is employed in various other
whole-genome aligners, although each method uses different strategies that compute and
refine anchors in order to address homologous sequences and structural variation [103].
As previously mentioned, this is in essence the same logic used by sequence aligners in
the 1990s, such as FASTA/FASTP and BLAST. And not surprisingly, it is also the same
logic employed by sequence aligners aiming to make use of sequencing data produced by
the so-called “next-generation sequencing data” [81, 108]. To be fair, the problem was
much different when introduced in the mid 2000s, since the goal of aligning two (com-
plete) whole genomes differs to that of aligning millions of “short-reads” (e.g. less than
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a few hundred nucleotides) to a single high-quality “reference” genome [108]. But it is
still a problem of sequence mapping and alignment. Uniquely, the sheer magnitude of the
data generated by these new sequencing technologies required new compression and in-
dexing techniques, such as the Burrows-Wheeler transform and FM-index to quickly and
efficiently map and align millions of reads [108]. Similarly, there are in-depth reviews of
sequence mappers and aligners for next-generation sequencing data [108].

Nevertheless, when third-generation sequencing was introduced, the relatively large
read-lengths, high-error rates, and high-throughput of the data generated required a new
generation of sequence mappers and aligners, making use of ideas proposed throughout
the several decades before.

1.1.2 De novo genome assembly: the early days
In parallel to research in sequence alignment, there were also major contributions to
the problem of de novo genome assembly. Recall that sequencing technologies output a
set of reads 𝑅 = {𝑟1, 𝑟2, 𝑟3,⋯ , 𝑟𝑚}, with some error rate 𝜖 and average read-length 𝑙 rep-
resenting a collection of substrings from a genome of one or more chromosomes (or
strings), 𝑆 = {𝑠1, 𝑠2, 𝑠3,⋯ , 𝑠𝑛}. More specifically, given a high concentration of the same
DNA molecule(s) (e.g. chromosomes), each molecule is sequenced up to some size, typ-
ically 𝑙. This is because sequencing technologies have been historically limited to pro-
ducing read-lengths that are significantly smaller than their respective genomes [81, 109],
e.g. 𝑙 << 𝑆𝑖𝑧𝑒(𝑆). However, with enough sequencing data (e.g. high number of DNA
molecules), reads will begin to overlap as the number of reads starting from the same po-
sition in a chromosome follows a Poisson distribution [110, 111]—the average number of
reads per position is referred to as the genome 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒. Therefore, in de novo genome
assembly, the goal is to identify overlapping substrings in 𝑅 and reconstruct them to an as-
sembly, 𝑆′, representing (an approximation of) the original chromosomal strings in 𝑆. Not
surprisingly, de novo genome assembly methods have historically reflected the strengths
and limitations of sequencing technologies of their times. But from an algorithmic perspec-
tive, they have largely concentrated on two main approaches: overlap-layout-consensus
and de Bruijn graphs.

The first de novo genome assemblers were proposed in 1979-1980, in conjunction with
the first set of whole-genome sequencing data. As demonstrated by Fred Sanger via the
shotgun sequencing method [112], early whole-genome sequencing data yielded reads of
200-300 nucleotides [112], formatted in gel-based pictures. As a result, Thomas Gingeras
et al. [113] and Rodger Staden [114, 115] proposed the first algorithms which identified
read-overlaps through exact substring matching on these gel-based pictures. The overlaps
were ordered andmerged, generating a contiguous consensus sequences [116], termed con-
tigs[115]. In essence, these were the first set of algorithms following the overlap-layout-
consensus paradigm which is one of the two main paradigms used today in de novo assem-
bly algorithms.

More rigorous, came the algorithms proposed by Hannu Peltolta et al. [117] and John
Kacecioglu and Eugene Myers [118] which generalized the overlap-layout-consensus ap-
proach [116]. In short, de novo genome assembly was viewed as the shortest common
superstring problem, aiming to identify the shortest possible string, 𝑆′, that can be recon-
structed from 𝑅 such that each read aligns to substring of 𝑆′ with an error rate of 𝜖 [116].
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This problem could be solved by constructing an overlap graph [119, 120], 𝐺 = (𝑉 ,𝐸),
where 𝐸 is a set of edges created between two reads, 𝑟1 and 𝑟2, if the suffix of 𝑟1 over-
lapped with the prefix of 𝑟2, denoted as 𝑟1 → 𝑟2, with the overlap size denoted as length
𝑙𝑒𝑛𝑔𝑡ℎ(𝑟1 → 𝑟2). The vertex set 𝑉 is thus the unaligned substrings in each overlap (e.g.
the unaligned suffix of 𝑟1 and unaligned prefix of 𝑟2). In theory, a ranking of the edges
by their size and computing a Hamiltonian path—a path in the graph that visits a node
exactly once—could solve the shortest common substring problem, where contigs could
be inferred by the concatenation of the initial suffix and downstream prefixes of the path,
followed by a consensus sequence generation to correct for sequencing errors [116]. How-
ever, technical and biological challenges made this problem much more difficult.

One challenge is to accurately construct the overlap graph. An overlap graph could
be accurately constructed from whole-genome sequencing data by constraining the graph
to pairs of reads where the probability of overlapping by chance was significantly small
[109, 116]. For example, a pairwise sequence alignments of all reads combinewith a heuris-
tic filter, could generate edges where 𝑟1 → 𝑟2 is unlikely to occur by chance [109, 116].
However, sequencing errors (the incorrect interpretation of the DNA sequence by the se-
quencing technology in a read) could complicate the heuristic assessment of the signif-
icance of an overlap [81, 109, 116]. For the first two generations of sequencing tech-
nologies, sequencing errors were known ahead of time (early sequencing technologies
in the 1980s and 1990s ranged from 2-5% [81, 109, 116]) and could thus be incorporated
into the heuristics, such as assuring that respective overlap sequences of each read have
𝑆𝑖𝑚(𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑜𝑓 𝑟1, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑜𝑓 𝑟2) ≤ 2−5%. Chimeric reads (resulting from an incorrect phys-
ical joining of two non-neighbouring DNA molecules during sequencing preparations)
would lead to incorrect biological overlaps [81, 109, 116]. Since the chimeric reads were
generally random (e.g. subregions in the genome that were erroneously joined were ran-
dom), true chimeric overlaps could be identified in the graph as the expected number of
reads overlapping a chimeric junction << to the average coverage of true biological junc-
tions (given that the genome coverage is high enough) [121, 122]. As discussed in the later
sections, various types of techniques and heuristics are employed to carefully construct
the overlap graph, since long-read sequencing data harbour error rates much larger than
the first generations of sequencing technologies and their laboratory preparations often
yield some fraction of chimeric reads [81, 109].

Ultimately, sequences in genomes are not random, and the most prominent biological
challenge (which still plagues all de novo genome assemblers today) are genomic repeats
[81, 109, 116]. Genomic repeats induce false overlaps between reads, complicating the
overlap graph and the generation of (large) contigs. There is a simple solution to resolving
repeat-induced overlaps: use only reads that are large enough to span all repeat sequences
in the genome and anchor to unique flanking regions in the genome [81, 109, 116]. How-
ever, this is an intractable solution as repeats can range from a few tens to several hundreds
of thousands of nucleotides (depending on the organism), much less than the even themost
recent sequencing technologies [81, 109, 116]. Repeats could still be assembled, but their
sequence were often incorrectly compressed to a much smaller size. Some repeat-induced
overlaps could be removed from the overlap graph by looking at sequence variation in
their overlaps, as true biological repeats were not always exact duplicate copies [109, 116].
In other words, overlaps originating from distinct repeat regions may have lower similar-



1.1 In the era of long-read genomic data

1

25

ity than overlaps of the same repeat region, which could be used to filter out false overlaps.
But this approach largely depends on the divergence of the repeat sequence and error rate
of the sequencing technology [109, 116]. Nevertheless, these early methods were suffi-
cient to assemble small microbial genomes, such as viruses (e.g. bacteriophage lambda
has a genome 50 Kbp) which often harboured minimal repeat content [81, 109, 116].

The development of paired-end sequencing data in 1990s provided ”long-range” infor-
mation useful in de novo assembly [123, 124]. Unlike the traditional shotgun sequencing
approach which only sequenced one end of a DNA molecule, paired-end sequencing se-
quenced both ends [81, 109, 116, 123, 124]. Since the resulting reads originated from the
same molecule, one can infer ”long-range” information in the assembly, limited to the
fragment size of the input DNA molecules. For example, although 10 Kbp DNA fragment
yields only two reads each of 700 bp, the fragment may span a large repeat of several thou-
sand nucleotides in size. The overlap-layout-consensus approach will likely lead to two
separate contigs as it fails to assemble a repeat much larger than the read-lengths in the
read set [81, 109, 116, 123, 124]. But an alignment of the reads to the contigs would show
each read aligning to one end of each contig, providing ordering and orientation informa-
tion of the contigs [81, 109, 116, 123, 124]. As such, the paired-end information was often
use to generate an order and oriented version of all contigs in the assembly, often referred
to as scaffolds [81, 109, 116, 123, 124].

With further developments in sequencing technology including higher sequencing
throughput and longer reads (e.g. 1Mbp of sequences with average read-length of 700
bp and error rate of 2% [81, 109, 116]), researchers embarked on sequencing and assem-
bling much larger genomes with higher repeat contents, such as those of yeast, fruit flies,
and humans. In conjunction with the Drosophila-genome project, Celera Genomics (a pri-
vate company at center of in first human genome sequencing project), which was spear-
headed by Eugene Myers, developed an assembler aiming to automate all steps in a de
novo assembly process [125]. The hierarchical procedure took four steps: a priori filtering
of repeats, followed by an automated pipeline consisting of pairwise read-alignments, con-
tig assembly, and scaffold generation [125]. Due to the inherent challenges of repetitive
sequences, Myers et al. exploited known repetitive sequences (e.g. ribosomal DNA) that
had been already curated for Drosophila from prior genome characterizations by “trim-
ming” substrings in reads that aligned to the repetitive sequences, facilitating an accurate
construction of the overlap graph [125]. Consequently, repeat sequences (even collapse
versions) could not be assembled. A pairwise alignment of these trimmed reads enabled
the construction of the overlap graph, and contigs could be identified via a “unitigger”
which identified all maximal paths in the overlap graph without a conflicting edge to an-
other path. The paired-end information of the reads was then used to orient and order
contigs into a scaffold [125].

Given the challenges that repetitive sequences imposed on the overlap-layout consen-
sus approach, Eugene Myers alternatively proposed the string-graph representation for de
novo assembly [120, 126] . In this approach, the goal was to construct an overlap graph
with consistent genome coverage, as biological and technical challenges often created low
and high-coverage sub-graphs (e.g. chimeras, contaminants, and repeats). This so called,
string graph, could be heuristically achieved by first constructing an overlap graph and
performing a transitive reduction, that is, the removal of edges that are redundantly rep-
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resented by a longer path (e.g. the edge 𝑟1 → 𝑟2. can be transitively reduced to edge
𝑟1 → 𝑟3 → 𝑟2) [120, 126]. The reduction can simplify the overlap graph into sub-graphs
with nodes harbouring a single incoming and outgoing edge, and thus compressed into
a compound edge. The resulting graph is thus the string graph representation [120, 126].
Repeat sequences would still be compressed into a single compound edge, but a contig
could be more accurately generating via a traversal that reflected the local coverage of
each compound edge [120, 126].

Importantly, the most computationally demanding step was computing pairwise se-
quence alignment for all reads in 𝑅, even after parallelisation [125]. The number of pair-
wise alignments is quadratic, requiring |𝑅|2 comparisons. And with sequence alignment
running at a worst case of 𝑂(𝑀𝑁), de novo assembly an overlap-layout-consensus ap-
proach could become computationally expensive with higher sequencing throughput (e.g.
more reads) and longer reads. As we will see, recent de novo assemblers for long-read se-
quencing data use specialized sequence aligners that can quickly approximate 𝑆𝑖𝑚(𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑟1, 𝑟2)),
significantly reducing the runtime of an overlap-layout-consensus approach for de novo
assembly.

However, it was the de Bruijn graph approach—which was first ”genomically” dis-
cussed by Pavel Pevzner [127]—that would dominate algorithmic efforts in de novo genome
assembly throughout the past two decades. By the mid-2000’s a next generation sequenc-
ing (NGS) would begin to fundamentally change biological research, as researchers could
now sequence sequence billion of single or paired-end reads in single experiment, enabling
much higher throughput (and hence coverage) of genomes, with easier laboratory prepa-
rations, lower costs, and lower error rates (e.g. 𝜖 < 1%) [81, 109, 128]. A major limitation
were its relatively “short-reads”, as their read-lengths ranged from an initial 36 bp, to now
maximum of 300 [81, 109]. Given the quadratic runtime in the pairwise alignment of the
overlap-layout-consensus, and the inherently “small” maximum read-overlap in NGS data,
the de Bruijn graph assembly approach became widely adopted due it’s relatively easier
computational resource tractability [109, 116].

In short, in a de Bruijn graph, 𝐷𝐵(𝑅,𝑘) = (𝑉 ,𝐸), the vertex set contains all 𝑘 −1 kmers,
𝐾𝑚𝑒𝑟𝑠(𝑟𝑖 , 𝑘 − 1), for every read, 𝑟𝑖 , in 𝑅. The edge set encodes all 𝐾𝑚𝑒𝑟𝑠(𝑟𝑖 , 𝑘) and their
corresponding edges, 𝑒𝑖 , connecting two vertices, 𝑣𝑎 →𝑣𝑏 , if 𝑣𝑎 matches the 𝑘 −1 prefix of
𝑒𝑖 and 𝑣𝑏 matches the 𝑘 −1 suffix of 𝑣𝑎 [116, 129–132]. The de Bruijn graph can be thought
as a special case of a string-graph under a fixed k-1 sequence overlap [116]. In theory, by
“balancing” every node to have the same in/out degree, Euler’s theorem can be applied
to identify all Eulerian cycle(s), that is, a path where every edge is visited exactly once
[116, 129–132], corresponding to contig(s) of the sequenced genome. Computationally, it
is more tractable to compute Eularian cycles in a de Bruijn graph as it’s run-time is roughly
proportional to the total number of edges [116, 129–132]. Additionally, de Bruijn graphs
avoid the costly pairwise alignment step, which often leads to to scalability challenges in
the overlap-layout-consensus approach [81, 109, 128].

But much like the overlap and string graph, de Bruijn graph assemblers also required
heuristics to resolve technical and biological challenges. Similarly, chimeric reads, se-
quencing errors, and biological contaminants would lead to erroneous nodes and paths
such as bubbles and tips [116, 129–132]. With some heuristics, these errors could be re-
moved by filtering edges and nodes with low-coverage [116, 129–132]. The paired-end
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information of reads could also be used to identify erroneous paths [110, 123–126]. Im-
portantly, the size of 𝑘was extremely influential, as 𝑘 needs to be large enough to rep-
resent significant overlap of sequences, but small enough to mitigate sequencing errors
[116, 129–132]. Inevitably, repeat-induced overlaps still posed major challenges leading
to compressed repeat sequences and small contigs [81, 109, 128].

Regardless of the approach, de novo genome assembly largely assumed a haploid genome,
that is, a single copy for each chromosome. In reality, various organisms—especially
higher eukaryotes—are non-haploids with two or more copies per chromosome. Genetic
variation within multiple copies of the same genome can lead to differences in gene ex-
pression and function. As such, the exact sequence per chromosome copy, termed hap-
lotypes, can provide insightful information about the genetic basis behind an organism’s
phenotypes [133] and serve as detailed markers for breeding programs of livestock, im-
provements of crops, and (industrial) microbial strain engineering [134–136]. Similarly,
multiple copies of the same gene can lead to higher expression levels, given that all copies
are functional [137]. As discussed in the later chapters, favourable industrial characteris-
tics that make some Saccharomyces yeast more robust in producing beer, wines and other
alcohols originate in their non-haploid nature [137]. Assembling these types of genomes
are therefore industrially important [137, 138].

Unfortunately, non-haplid genomes are challenging to assemble de novowithNGS data.
In short, heterozygous sequences (which increases the complexity of a de Bruijn graph due
to an increase of alternate paths) and fluctuations in coverage (which can lead to a shorten
a Eularian cycle) generate to more fragmented assemblies [137, 139–141]. And although
some heterozygous variation can be identified and characterized, the limited read-lengths
of NGS data is insufficient to completely infer haplotypes and proper ordering of contigs
into scaffolds [137, 139–141]. Microbial studies—such as those studying Saccharomyces
yeast—often opt to sequence only haploid strains as it simplifies the de novo genome as-
sembly process [142].

Ultimately, the quality of de novo genome assemblies from NGS data never really came
close to that of established high-quality reference genomes. Which is why genomic proj-
ects often used a reference-genome-based strategy: sequence hundreds to thousands of
individual genomes via NGS, align reads to an established reference genome, and infer
sequence variation by identifying differences between a sequenced genome and the estab-
lished reference. This strategy dominated the genomics field throughout the past decade.
Indeed, computational efforts focused on optimizing algorithms for (reference-genome)
sequence mapping and variant calling. But with advancements in third-generation se-
quencing promising to overcome the limitations of NGS, “old” algorithmic challenges in
sequence alignment, de novo genome assembly, and whole-genome alignments became a
central research topic.

1.1.3 Long-read sequence mapping and alignment
In the past few years, third-generation sequencing has once again resurfaced various al-
gorithmic challenges in sequence alignment, mapping, and de novo genome assembly. An
immediate advantage of long-reads is its ability to overcome the size limitations of NGS
data and generate more complete de novo genome assemblies [143–147]. Additionally,
long-reads also provide significant advantages when following a reference-genome-based
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strategy, with their ability to more reliably identify structural variations [81, 148, 149]. In
the case of mapping long-reads to a reference, this requires consistent representations of
breakpoints to accurately call structural variations [81, 93, 94, 148, 149]. The same prob-
lem is similarly seen when mapping and aligning RNA third-generation sequencing data,
as mRNA molecules can structurally vary due to exon and intron skipping and retention
[93, 94, 150]. For de novo assembly applications, pairwise alignments of long-reads are
huge bottle-neck due to the computational resources that they demand [151–153]. As such,
efficient aligners are needed to perform this crucial step in overlap-layout-consensus for
de novo assembly, while dealing with deletion and insertions errors that have historically
plagued all third-generation sequencing technologies [81]. Ultimately, long-read sequenc-
ing has also provided more complete assemblies of (microbial) genomes, motivating us to
investigate proteomes and pan-genomes often requiring pairwise alignment of large sets
of proteins to identify (novel) gene-families.

Algorithm 1 General long-read sequence alignment
1: procedure Long-read alignment(R,S) ▷ R: long-read set; S: target-sequence set

2: 𝐾 ← Extract kmers from S using
⎧
⎨
⎩

(𝑤 −𝑘)−𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟𝑠
𝑔𝑎𝑝𝑝𝑒𝑑 𝑞 −𝑔𝑟𝑎𝑚𝑠
𝑚𝑎𝑥 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

3: for 𝑟 ∈ 𝑅 do
4: 𝐻 ← Identify anchors (e.g. kmer hits)

5: 𝐶 ← Compute chain(s) using

⎧⎪
⎨⎪
⎩

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑓 𝑓 𝑠𝑒𝑡𝑠
𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔
𝑙𝑜𝑛𝑔𝑒𝑠𝑡 − 𝑐𝑜𝑚𝑚𝑜𝑛 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔
𝑚𝑎𝑥 −𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑢𝑏𝑠𝑒𝑡

6: 𝐴← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑏𝑎𝑠𝑒 − 𝑙𝑒𝑣𝑒𝑙 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
7: return 𝐴 or 𝐶
8: end for
9: end procedure

Nevertheless, there have been a variety of different novel or re-purposed methods for
sequence mapping and alignment over the past decade to address the computational chal-
lenges imposed by third-generation sequencing. In this sub-section, I provide an overview
of a subset of these methods, particularly the most recent and (currently) widely adopted
ones. More specifically, Minimap2 [93] and Graphmap2 [94] employ adaptations of the
techniques described in section 1.1.1 to efficiently map and align large datasets of third-
generation sequencing technologies, while handling (large) structural variation. NGLMR
[149] aims to address heterozygous structural variation in diploid genomes by carefully
curating breakpoint signals in long-read alignments. While MMseqs2 [154] focuses on an
indirect consequence of next-generation and third-generation sequencing data: scaling
the clustering of homologous genes in thousands of microbial genomes. Despite the dif-
ferent heuristics and approaches that they employ, they can be generalized in Algorithm
1, where lines 4 and 6 correspond to a combination of one or more of the listed procedures.
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Minimap2

Minimap2 [93] (a successor to minimap [155]) maps and aligns long-reads via traditional
kmer-based anchoring, as first done by Wilbur in Lipman in 1982 and later adapted in
many whole-genome aligners and second-generation read mappers. However, minimap2
uses the concept of minimizers, the smallest kmers in some defined windows throughout
an entire sequence, inspired from Michael Roberts in 2004 [106]. More specifically, mini-
mizers for a collection of kmers, 𝐾 = 𝐾𝑚𝑒𝑟𝑠(𝑠,𝑘) for a window size, w, can be computed
as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟𝑠(𝐾,𝑤) =
⎧⎪
⎨⎪
⎩

𝑚𝑖𝑛{𝐻 ′(𝑘1),𝐻 ′(𝑘2),⋯,𝐻 ′(𝑘𝑤)},
𝑚𝑖𝑛{𝐻 ′(𝑘2),𝐻 ′(𝑘3),⋯,𝐻 ′(𝑘𝑤+1)},
⋯ ,
𝑚𝑖𝑛{𝐻 ′(𝑘|𝐾 |−𝑤),𝐻 ′(𝑘|𝐾 |−𝑤+1),⋯,𝐻 ′(𝑘|𝐾 |)}

⎫⎪
⎬⎪
⎭

(1.4)

Where 𝐻 ′(𝑘𝑖) is either hash value of the smallest lexicographic string between 𝑘𝑖 and
it’s reverse complement, 𝑘𝑖 , or the smallest hash value between 𝑘𝑖 and 𝑘𝑖 . The motivation
being that storing all kmers in a reference genome could demand high computational
resources. Instead, 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟(𝐾,𝑤) stores only a fraction of them, and therefore, kmer
matches, or anchors, between a long-read and the reference only requires identification
of subset of kmers, termed minimizer-hits.

The minimizer-hits are then curated by finding an optimal set of candidate anchors
that represent an optimal collinear region between the two sequences, a re-current prob-
lem in both whole-genome and approximate sequence alignment. In the first version,
minimap, which was simply designed to perform pairwise alignments, an alignment was
approximated via a simple 1D-clustering of anchors to only determine whether to reads
overlapped with each other [155]. Since minimap2 also aims to perform base-level align-
ments, it first approximates an alignment by chaining anchors and penalizing the chains
with would-be indels based on the size difference between pairs of anchors, similarly em-
ployed by the FASTP/FASTA method of Wilbur and Lipman [99]. As such, minimap and
minimap2 approximates bothmapping of long-reads to a reference and pairwise alignment
,consequently speeding up both procedures since it avoids costly base-level alignment.

When base-level alignment is needed, the approximated segments can be subjected to
a semi-global alignment via a two-piece affine gap penalty consisting of two different gap-
opening and extension parameters corresponding for short and long indels—an adaptation
of prior work from 1980-1990 [87–89, 95]. Specifically:
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𝑀(𝑖,𝑗) = 𝑚𝑎𝑥

⎧⎪⎪
⎨⎪⎪
⎩

𝑀(𝑖−1,𝑗−1) + 𝑠𝑐𝑜𝑟𝑒(𝑎𝑖 , 𝑏𝑗),
𝐴(𝑖−1,𝑗),
𝐵(𝑖,𝑗−1),
𝐴′
(𝑖−1,𝑗),

𝐵′(𝑖,𝑗−1)
𝐴(𝑖,𝑗) = 𝑚𝑎𝑥{𝑀(𝑖−1,𝑗) −𝑜,𝐴(𝑖−1,𝑗)} − 𝑒
𝐵(𝑖,𝑗) = 𝑚𝑎𝑥{𝑀(𝑖,𝑗−1) −𝑜,𝐵(𝑖,𝑗−1)} − 𝑒
𝐴′
(𝑖,𝑗) = 𝑚𝑎𝑥{𝑀(𝑖−1,𝑗) −𝑜′,𝐴′

(𝑖−1,𝑗)} − 𝑒′
𝐵′(𝑖,𝑗) = 𝑚𝑎𝑥{𝑀(𝑖,𝑗−1) −𝑜′,𝐵′(𝑖,𝑗−1)} − 𝑒′

(1.5)

Much like the affine-gap penalty allows one to identify large-indels by finding an opti-
mal alignment path across three search spaces (e.g. 𝑀(𝑖,𝑗),𝐴(𝑖,𝑗),𝐵(𝑖,𝑗)) the two-piece affine
gap penalty has two additional search spaces, 𝐴′

(𝑖+1,𝑗) and 𝐵′(𝑖,𝑗+1), utilizing different gap
extension and gap opening penalties, 𝑒′, and 𝑜′, respectively. The additional search spaces
allows an alignment to model a large structural event initially as a small insertion or dele-
tion with additional mismatches (where the alignment score is maximum), but later the
penalty becomes less costly due to the number of gaps leading to an alignment whose
maximum score lies within the additional two search spaces. This enables minimap2 to
search for much larger indels without over-penalizing them, and indeed, enables one to
search for intron and exon retention/skipping events in the alignment of RNA sequences.
Furthermore, it also enables detection of smaller indels either due to true variation or
sequencing errors. The boundaries of the initial approximated segments are also extend
outwards using the Z-drop score, similar to BLAST’s X-drop score.

Graphmap2
Graphmap2 [94], the successor to Graphmap [156], is also a long-read sequence mapper
and aligner that fundamentally uses different approaches compared to minimap2. Both
version rely on kmer matches, but are identified based on gapped q-grams, where each
kmer is represented with multiple versions by altering pre-defined fixed positions. This
technique is similar to that employed by Altschul et al. [101], aiming to increase the
sensitivity of kmer matches by accounting for sequencing errors and biological variation.
Similar to minimap2, the location of a sequence to a reference is then approximated by
identifying kmer hits, but uses a 2D-space projection to a cartesian space to cluster and
find collinear regions [156]. Anchors are then calculated via an edge-extended de Bruijn
graph data structure and subjecting the approximated regions to a linear-walk in the graph.
More specifically, a variant of the de Bruijn graph, 𝐷𝐵(𝑠𝑖 , 𝑘), is constructed for some chro-
mosomal string in the reference, where for each vertex, 𝑠𝑖 , a directed edge is added to
𝑑 downstream vertices based on the starting position of 𝑠𝑖 . Each vertex is also given a
unique identifier, to prevent merging identical vertices preserving long-range context of
𝑠𝑖 . As such, the anchors can be “mapped” to this graph data structure and an ordered
walk through the graph can yield a noise-filtered set of anchors despite the high error pro-
files of long-reads (hence, the ability to traverse to up to 𝑑 downstream kmers). Finally,
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the resulting anchors between the read and the reference are curated by a variant of the
longest-common sub-sequence algorithm which uses a flexible 𝑘-size string [156].

At this point, Graphmap and Graphmap2 diverge: in both-cases, another round of
anchor filtering is performed. In Graphmap, this is done via linear regression, while
Graphmap2 formulates it and solves it via the well-known 0-1 knapsack problem. With
the resulting anchors, Graphmap performs base-level alignment is using some variant of a
bit-vector-based alignment (introduced by Myers) with or without the affine-gap penalty.
Graphmap2 performs an affine or two-piece affine-gap penalty using the same library as
that implemented by minimap2.

NGLMR
At the end of section 1.2.2, I mentioned the challenge of assembling non-haploid genomes.
Although long-reads do provide an opportunity to generate haplotype-resolved de novo
assemblers (which I discussed in more detail in section 1.1.4), inference of heterozygous
structural variants is possible via careful partitioning of long-reads alignments in a refer-
ence.

The sequence mapper, NGLMR, was specifically designed to identify (heterozygous)
structural variations [149]. Effectively, it breaks reads into smaller non-overlapping sub-
sequences of a few hundred nucleotides (similar size to short reads), separately aligns them,
and joins them together to identify positional breakpoints of structural variants. More
specifically, the number of k-mer hits for a corresponding non-overlapping sub-sequence
are computed via exact hashing, and candidate sub-sequences are only considered if the
number of hits passes a threshold. These candidate sub-sequences undergo a base-level
alignment and are considered (large) anchors if their similarity passes an additional thresh-
old, which are then curated and chained by solving the longest increasing sub-sequence
problem. At this point, the approach is similar BLAST’s method to finding high-scoring
segment pairs [101]. Additionally, NGLMR performs a final base-level alignment of an-
chors via a heuristic version of a Smith-Waterman alignment using concave gap-scoring
penalty—similar to that of Waterman, Miller, and Myers [95, 96]. It also takes note of the
distance between anchors in the read and the reference, since differences in their respec-
tive distances would indicate the presence of a structural variation.

MMseqs2
Third-generation sequencing technologies have further accelerated the growth of avail-
able whole-genome datasets of microbial organisms. As such, one particular topic in com-
putational microbiology is pan-genomes—the variability and conservation of genes and
gene-families in various microbial species. This often requires de novo identification of
gene-families via a familiar problem: pairwise-alignments. Unlike long-read sequences,
sequence variation between proteins are assumed to be only true evolutionary variation.
And the definition of gene-families often employs a clustering-scheme based on respective
sequence similarities. Thus, both fast and highly sensitive local and or global alignments
are required.

MMseqs2 [154] utilizes a variety of algorithmic tricks to efficiently compute pairwise
alignments and cluster billions of protein sequences in linear time. The Linclust-module
of MMseqs2 also uses a kmer-based anchoring, but unlike in DNA space where there can
be 4𝑘 total kmers for some size of 𝑘, in protein space there are (21𝑘 total kmers [157].
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To reduce the search space, they reduce the number of amino acids to 13 by merging
certain amino acids based onminimummutual information of prior established likelihoods
between amino acid substitutions (e.g. BLOSUM62 matrix). The search space if further
reduced by only taking 𝑚 smallest protein kmers as opposed to all kmers. Using these
reduced profiles, MMseqs2 effectively identifies sequences with matching kmer hits by
sorting the kmer hash-table on kmer value. For each kmer group, the largest protein
is chosen as the center sequence and it used to “recruit” other proteins to that center
based on the position of the k-mer hits in their respective diagonals. These initial clusters
are then curated by progressively more sensitive alignments including hamming distance,
un-gapped alignment, and Smith-Waterman alignment. As such, the Linclust-module of
MMseqs2 can cluster large protein sets by quickly identifying “draft clusters” and curating
each cluster by more sensitive alignments within those clusters [154].

From software to hardware
A running theme in all these methods, is that direct and sensitive sequence alignment
is computationally costly and needs to be avoided as much as possible if one wants to
efficiently compare millions to billions of sequences. Aside from the various methods
employed to reduce the number of required direct alignment operations, there has been
a variety of both software and hardware algorithmic implementations for speeding-up
sequence alignment. For example, all of the methods above use various optimization pro-
cedures such a banded global-alignment utilized by Wilbur and Lipman in 1985 [98], bit-
vector implementation presented by Eugene Myers in 1999 [158], and some form of (im-
proved) single-instruction, multiple data (SIMD) instructions to parallelize the dynamic
programming procedure during the alignment [159]. There has also been efforts to of-
fload sequence alignment to specialized hardware, such as FPGAs [160]. Alternatively,
there are methods that completely avoid direct sequence alignment and only use approxi-
mations of them. These methods not only also scale to millions of (long-read) sequences,
but also to millions of whole-genomes, further discussed in the next two sections, and are
discussed in greater detailed in section 1.1.5.

1.1.4 Long-read de novo genome assembly
Third-generation sequencing entails that individual reads can span repetitive sequences in
a genome yielding more complete assemblies [81, 109, 116]. This advantage has thus resur-
faced interest in developing improved de novo assembly methods utilizing both overlap-
layout-consensus and de Bruijn graph paradigms [109, 116]. Ultimately, the challenges
imposed by third-generation sequencing are not entirely new: error rates, chimeric reads,
and (large) repetitive sequences are still problematic. To some extent, the methods men-
tioned in the previous section facilitate handling of (high) sequencing errors, chimeric
reads, and pairwise alignments bottle-neck. However, recent de novo assemblers employ
new techniques to better construct the assembly graph (e.g. final string graph or de Bruijn
graph), further discussed in this subsection.

The hierarchical genome assembly process (HGAP) in 2013 was among the first long-
read only de novo genome assemblers, particularly designed for assembling sequencing
data from Pacific Bioscience (PacBio) sequencers [122]. In short, HGAP followed the Celera
Genomics de novo assembly scheme of error correction, assembly, and consensus. First,



1.1 In the era of long-read genomic data

1

33

HGAP took the longest reads up to some defined coverage and referred this subset as seed
reads. All other reads were aligned to the seed reads to generate a consensus sequence
via multiple-sequence alignment. This step not only corrected sequencing errors, but also
discarded chimeric reads based on inconsistencies in coverage information. The corrected
reads were then assembled using an existing overlap-layout-consensus assembler, such
the Celera Genomics assembler, widely used in early genome sequencing projects such as
Drasophilia [125] and humans [161]. Finally, remaining errors in the assembled contigs
were ”polished” by aligning all reads back to the assembly and generating a consensus
sequences using a hidden Markov model from raw measurements (e.g. fluorescence and
pulse information) stored during DNA sequencing via PacBio instruments.

Despite its clear advantages, third-generation sequencing in the first half of this decade
was relatively more expensive than short-read sequencing (e.g. Illumina) [81, 109]. As
such, a more economic strategy for de novo assembly was to sequence genomes in high-
coverage with short-reads and complement the assembly with low-coverage long-read
data [81, 109]. More specifically, hybrid de novo assemblers, such as HybridSPades, incor-
porated long-read information in an attempt to resolve complex subgraphs in the de Bruijn
graph [162]. As previously discussed, a de Bruijn graph of short-reads (e.g. Illumina data)
inherently harbours complex subgraphs due to repeat content and sequence heterozygos-
ity, yielding less contiguous assemblies. However, by aligning long-reads to the de Bruijn
graph via kmer seeding, the complex subgraphs could be disentangled by following only
those supported by the long-reads, facilitating more accurate and contiguous assemblies.
More specifically, HybridSPades first builds a de Bruijn graph from short-read data, and
curates it to remove sequencing errors and artifacts, as well as low-supported nodes and
edges [162]. Each long-read is then represented as a path in the de Bruijn graph based on
valid path traversals of kmer matches [162]. Paths in the de Bruijn graph can therefore
iteratively be traversed until no long-read consistently supports the traversal, resulting in
a contig. Although this strategy could yield more contiguous assembly, it was still lim-
ited to the complexity of the de Bruijn graph, and thus repeat sequences and sequence
heterozygosity were still challenging to resolve [162].

In the past few years, long-read-only de novo assembly became more affordable due
to rapid developments in third-generation sequencing technologies, including increase in
throughput and read-lengths, and lower error rates [81, 109]. Not surprisingly, many of
the assemblers adapted to these improved third-generation sequencers use similar hierar-
chical strategies as Celera Genomics and HGAP, with a particular focus on reducing the
computational bottleneck in pairwise sequence alignment for constructing an ”error-free”
overlap-graph.

Canu—an ”updated” version of the Celera Genomics assembler—uses a variety of spe-
cialized pairwise sequence aligners along with internal heuristics (such as kmer frequency
and read-coverage) to filter erroneous overlaps in the overlap-graph [151]. Canu uses
MHAP [153] which avoids costly base-level sequence alignment by instead comparing
kmer set-representations of reads using MinHash algorithm [163], discussed in more de-
tail in section 1.1.5. In particular, it employs the tf-idf weight term frequency [164] to
discriminate between repeat-induce and copy-number-induced overlaps, such as the case
of microbes with high-copy number plasmids and/or non-haploid organisms [151]. Canu
iteratively corrects reads via consensus and trimming and uses these reads to identify valid
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overlaps within a defined number of standard deviations of the global-error rate (e.g. the
sequence divergence of two overlapping reads is higher the median sequence divergence
of all overlaps) and coverage of a read (e.g. non-chimeric reads). The remaining overlaps
and corresponding reads are then used to construct a best overlap graph, which is a greedy
approach to the overlap graph using only the longest overlaps for each read as a means
to reduce memory requirements [151, 165]. It then generates a candidate set of contigs
by identifying non-conflicting paths in the best overlap graph by greedily ranking reads
based on ”reachability” (e.g. number of other reads reachable to it) and using the rank-
ings to guide the traversals [151, 165]. Although “bubbles” may arise due to sequence and
structural heterozygosity in the corresponding genome, only the longest path is retained
[151, 165]. The resulting contigs are finally curated by ”breaking” sequence if there are
evidence of unresolved repeats or branching.

Despite its robustness and accuracy, Canu suffers from high runtime and computa-
tional tractability, such as > 100 GB of memory and several weeks of wall-clock even after
parallelization when assembling a human genome [147, 152, 166][. This is largely due to
its precise read and kmer indexing as well as iterative error correction modules [147, 151].
Alternatively,miniasm—a companion to the long-read sequence aligner,minimap andmin-
imap2, discussed in the previous section—reduces the runtime and computational require-
ments by avoiding error-correction [155]. It uses an optimized pairwise sequence aligned
to generate the overlap graph (minimap and minimap2 as described in section 1.1.3) to
quickly identify non-chimeric overlaps with sufficient overlap length and constructs a
variant of the string graph where the vertex set are reads [155]. The difference here is that
base-level accuracy of the assembly reflects that to the error-rate of the input sequencing
data, as reads are not error-corrected (except for trimming), and contigs are generated
by representing only one path after collapsing ”small-enough” bubbles. Despite of this,
miniasm still achieves contiguous assemblies compared to Canu with fewer resources and
shorter run-times [155, 167]. As such, methods such as RACON and Pilon have been used
to provide high base-level accuracy from miniasm assemblies [91, 167, 168].

Aside from an overlap-layout-consensus approach, there have also been methods uti-
lizing de Bruijn graphs long-read de novo assembly [121, 169]. Particularly, the ABruijn
assembler is an adapted version of the HybridSPades assembler. Unlike a de Bruijn graph,
the edges set for ABruijn graph describe the positional offset of the starting locations of
two nodes [121]. Thus, two 𝑘-1 nodes can be connected despite not being adjacent with
each other in a string. An ABruijn graph can therefore be constructed from the long-read
data set by choosing a k-mer length. 𝑘, and frequency threshold, 𝑡 , that maximize the num-
ber of unique kmers [121]. Similar to HaybridSPades, by representing each long-read as a
path in theABruijn graph, contigs can be generated through an iterative traversal until the
long-reads no longer consistently support it [121]. A similar approach can then be used
to correct errors and generate consensus sequence for the resulting contigs [121]. The
advantage of the ABruijn graph is that it does not require pairwise read-alignments of the
long-read dataset, significantly speeding up the time and computational resources needed
to construct an assembly [121, 147, 152, 166]. However, resolution of repeat sequences are
still limited to read-length [121], and the sensitivity of the assembly as a whole is heavily
depends consistent unique kmers throughout the long-read dataset [121], which can be
negatively influenced by the error prone nature of current third generation sequencing
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technologies [81, 109].
As previously discussed, organisms with non-haploid genomes can harbour variation

within the same chromosome copy. As such, the genomes of these organisms have been
historically challenging to assemble as most assemblers generate a haploid representation
from the string-graph [137, 139–141]. Analogous to repetitive sequences, heterozygous
variants in the graph—encoded as ”bubbles”—can in theory be disentangled and assign to
one of the chromosome copies, given that there are reads long-enough to bridge across
the bubbles and anchor to unambiguous sequences. In fact, with sufficient length, long
reads can span across stretches of variation and traverse through unique paths across the
bubbles.

FALCON-UNZIP (in conjunction with FALCON assembler) aims to exploit the topolog-
ical features of heterozygous structural variants in the graph to provide de novo haplotype
resolution [170]. As with all overlap-layout-consensus assemblers, both use a hierarchi-
cal approach of error-correction, contig assembly, and consensus sequence generation
[122, 125, 151, 165]. However, careful heuristics are used to identify and separate hap-
lotypes. When constructing the string graph, FALCON-UNZIP tries to identify signals of
heterozygous events, particularly simple paths (a subgraph starting at a unique source and
sink node with no internal branching—and compound paths (a set of overlapping simple
paths, but also with a unique source and sink node). By virtually “linearizing” compound
and simple paths, contigs can be generated through a non-conflicting path finder, as pre-
viously mentioned [122, 125, 151, 155, 165], but the contigs retain their heterozygous in-
formation. For each compound or simple path in a contig, FALCON-UNZIP returns to the
original overlaps used to construct the string graph and partitions them to block-phase
identifiers, representing groups of reads supporting some specific path in the assumed
heterozygous-induced bubbles. It then reconstructs a string graph for that contig ignor-
ing overlaps of reads with conflicting block-phase identifiers and identifies linear paths
which correspond to different haplotype-resolved sequences. Despite these improvements,
haplotype-resolved genomes for organisms with more than two chromosome copies re-
main challenging to resolve beyond diploid genome configuration [135, 138, 149, 170–172].

Nevertheless, third-generation sequencing technologies are enabling assemblies of
higher quality than those obtained via NGS data alone. Although third-generation se-
quencing at the moment is relatively more expensive than NGS, one can imagine comple-
menting the architectural information of a one more long-read genome assemblies with
population information of hundreds to thousands of individuals using (existing) short-read
sequencing data. Ultimately, the price of third-generation sequencing should drop in the
next coming years to a level comparable to NGS. This will enable large collections of high-
quality assemblies, opening novel opportunities to compare whole genomes together in
their entirety, as opposed to relying on a single reference genome. Indeed, these ideas are
currently being discussed in the bioinformatics community [173, 174].

Ultimately, third-generation sequencing adds to the ever increasing mountain of avail-
able genomic data. As such, a variety of ”approximate” methods have been developed for
comparing and mining genomic information in both long and short-read datasets. These
methods optimize for speed at the cost of optimal solutions, as they primarily aim to scale
from hundreds to thousands of genomes. In the next section, I provide an overview of
these ”approximate” or genomic-streaming methods.
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1.1.5 Genomic fingerprints
Thefirst instance of so-called ”approximate” methods can be seen a few years before the in-
troduction dynamic programming for sequence alignment. Between the 1960-1970, efforts
to establish computational methods to compare sequences emphasized the importance of
statistical statements on whether two sequences were significantly related (e.g. homol-
ogy). Walter Fitch in 1966 devised a method to determine the similarity of two protein
sequences and its statistically significance based on pairwise-distances between every pos-
sible k-mer in each sequence [175]. More specifically, the distance between two k-mers
was defined as the number of single nucleotide DNA changes needed to transform one
k-mer into the other (keep in mind that this was only made possible due breakthroughs
in unlocking the genetic code between DNA codons and amino acids). Based on a null
distribution that would be generated from the pairwise distances of randomly generated
sequences of similar length, Fitch could test whether the observed and null distributions
were indeed significantly differently [175]. In other words, Fitch’s method derived both
similarity score and homology significance based purely on k-mer content. Fifty years
later, computing similarities using only k-mer content-information has become particu-
larly popular when analysing large datasets of long-read sequences and/or genomes due
to scalability promises.

MHAP, for example, is an aligner designed to perform the critical pairwise alignment
step in de novo assembly [153]. Rather than employing direct sequence alignment, it in-
stead uses the MinHash algorithm, first proposed as an approximate but fast way to com-
pare documents and websites in the world-wide web [163]. This algorithm has been the
basis for a variety of genomic-streaming models, so I provide a quick overview of it:

The idea of MinHash is to not compare documents in their entirety, but to compare
only their ”fingerprints”. More specifically, let two sets, 𝑆𝑒𝑡(𝐴) and 𝑆𝑒𝑡(𝐵) represent the
set of words found in each document, 𝐴 and 𝐵, respectively. The overall similarity of the
two documents can approximated via the Jaccard Index, 𝐽 𝐼 (𝐴,𝐵) = |𝑆𝑒𝑡(𝐴)∩𝑆𝑒𝑡(𝐵)|

|𝑆𝑒𝑡(𝐴)∪𝑆𝑒𝑡(𝐵)| [163]. In
other words, comparing the fraction of shared words over total words from the two set can
approximate the overall similarity of𝐴 and 𝐵. Logically, documents can have thousands of
words, and so the memory and time requirements are linearly dependent on the document
sizes. This may not be a problem if you are only comparing a small number of documents,
but in the world-wide web, with million-to-billions of websites, a naïve-implantation will
not scale. Instead, Andrei Broder proposed the idea of MinHash: hashing every word
with 𝑛 hash-functions, 𝐻1,𝐻2,⋯ ,𝐻𝑛 , and computing the Jaccard Index as the number of
instances where the smallest hash for each 𝐻𝑖 of the two documents are equal, greatly
reducing the memory and time requirements since generally 𝑛 << |𝑆𝑒𝑡(𝐴)|, |𝑆𝑒𝑡(𝐵)|. Alter-
natively (and more relevant in genomics), one can use a single hash-function and obtain
the n-smallest hashes between two documents—referred to as the bottom-sketch. These
bottom-sketches act as ”fingerprints” of the original documents, whose size are signifi-
cantly smaller than the size of the original set of words. However, the similarity of the
documents can still be approximated via a Jaccard-Index of their sketch-representations,
where the accuracy is bounded by the size of sketch [163].

It’s not hard to see how MinHash can be applied to genomics: sequences and genomes
(e.g. documents) can be represented by their kmer content (e.g. words). Recall that
𝐻 ′(𝑘𝑖) = 𝐻(𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡{𝑘𝑖 , 𝑘𝑖}), represent the hash-value of the lexicographic-smallest se-
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quence between kmer 𝑘𝑖 and it s reverse-complement 𝑘𝑖 , or the smallest hash-value of
the two. The bottom-sketch for a set of sequences, 𝑆, a kmer size, 𝑘, and a sketch-size,
𝑙, can be constructed by taking the 𝑙 smallest hash values from the set of all k-mers in a
genome, denoted as 𝐵𝑜𝑡𝑡𝑜𝑚𝑆𝑘𝑒𝑡𝑐ℎ(𝑆,𝑘, 𝑙).

Indeed, MHAP exploits this property by representing each long-read with its bottom-
sketch and approximating their sequence similarity via the corresponding Jaccard Index
[163], avoiding costly base-level sequence alignment.

Around the same time, Huan Fan et al. in 2015 proposed a statistical foundation to
make the Jaccard Index of kmer sets more biologically relevant [176]. The main aim of the
method was to obtain biologically-relevant distances between genomes that can be used
for phylogenetic reconstruction, without needing to perform (whole-genome) sequence
alignments. Aside from the high computational cost of whole-genome alignment, de novo
assemblies are inherently an incomplete representation for non-haploid genomes, as pre-
viously discussed in section 1.1.2 and 1.1.4. Therefore the original sequencing dataset (e.g.
𝑅) can bemore informative than its corresponding assembly. Similar toMHAP, the authors
compute the (exact) Jaccard-Index of two kmer sets, although their interpretation differed.
If 𝑆𝑒𝑡(𝐺1) and 𝑆𝑒𝑡(𝐺2) represent the kmer sets for genomes 𝐺1 and 𝐺2, respectively, then
𝐽 𝐼 (𝑆𝑒𝑡(𝐺1),𝑆𝑒𝑡(𝐺2)) ≈ 𝑒−𝑘𝜖 [176]; the right-hand of the equation being the probability that
no kmer undergoes a mutation under a Poisson-distribution, where 𝜖 here serves as the
average sequence divergence of the two genomes (analagous to the original definition of
the error-rate of two sequences). Therefore, the average sequence divergence between
genomes can be estimated, 𝜖 ≈ −1

𝑘 𝐽 𝐼 (𝑆𝑒𝑡(𝐺1),𝑆𝑒𝑡(𝐺2)) [176]. Importantly, this assumes
that genome size of 𝐺1 and 𝐺2 are equal, in other words, do not account for indels events
which decrease/increase their respective kmer-set sizes. Therefore, Fan et al. addressed
indels by replacing |𝑆𝑒𝑡(𝐺1) ∪ 𝑆𝑒𝑡(𝐺2)| with the largest of the two. Ambitiously, Fan et al.
computed the exact Jaccard-Index of all k-mers observed in the collection of sequencing
datasets being analyzed, making it computationally expensive to scale for more than a
dozen genomes [176].

A more scalable version of the method proposed by Fan et al. was adopted by Ondov
et al. in 2016 [177]. Instead of representing a genome or read-set with all correspond-
ing kmers, their method, MASH, uses their corresponding bottom-sketches to estimate
𝜖, while basing the Jaccard-Index on the average size of two genomes, thus leading to
a slightly different approximation, 𝜖 ≈ −1

𝑘 𝑙𝑛 2𝑗
1+𝑗 , where 𝑗 is the Jaccard-Index using the

bottom-sketches of 𝐺1 and 𝐺2. Since then, there has been a variety of different sketching
algorithms and applications utilizing different algorithmic techniques such as count-min
sketches for k-mer frequency estimations, hyper-log log for the number of distinct num-
ber kmers in a genome, adaptations of bitsets for fast sequence searching [178], all which
are further discussed in a recent review [107].

Despite the recent development of sketching algorithms in genomics, the idea of ge-
nomic ”fingerprints” draws parallels to landmark experimental studies dating back many
decades before.

In 1977, Carl Woese and George Fox used a method embodying the same principles
behind genome comparison via k-mer sets [179]. Notably, this methodwas used to provide
the first evidence of a separate domain of living organisms: archaea. At the time, it was
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generally accepted that two eukaryotes and bacteria were the two kingdoms of life, largely
driven by observed differences in their cell organization such as the presence/absence of
a nucleus [179]. Although some bacterial specimens were phenotypically different from
bacteria, such as methanogens containing unique enzymes that produce methane, they
were generally regarded as a sub-group of bacteria [179].

Woese and Fox in 1977 argued that one cannot simply compare organisms by the
morphology/organization of a cell, and since evolutionary history recorded itself in the
genomes of organisms, true evolutionary relationship is better inferred by analyzing genomes
[179]. At the time, DNA sequencing technology was still in its early stage, as Frederick
Sanger and Alan Coulson were beginning to pioneer early version of first generation se-
quencing technology in 1975 [180]. So rather than (impossibly) sequencing the entire
genome of various microbial organisms, Woese and Fox instead focused on sequencing
the 16s ribosomal gene in a set of bacteria, eukaryotes and methanogens specimens, since
the 16s gene was observed to be present in all bacteria and eukaryotes (in eukaryotes, the
equivalent is 18s). Importantly, they did not aim to reconstruct the entire 16s gene, but
instead generate ”fingerprints” from each specimen such that they can then be compared.

More specifically, Woese and Fox isolated 16s (18s) RNA from the different organisms
and subjected them to an T1 RNase, which digested RNA molecules at every guanosine
nucleotide, effectively generating kmers of various sizes. The resulting sub-sequences
were then sequenced, represented each organism as the set of sub-sequences from the
RNase digestion, and clustered them using a similarity score resembling the Jaccard Index,
𝑆(𝑎,𝑏) = 2𝑁𝐴𝐵

𝑁𝐴+𝑁𝐵
[179], where 𝑁𝐴 and 𝑁𝐵 are the number of sequences in organisms 𝐴

and 𝐵, respectively, and 𝑁𝐴𝐵 the number of sequences shared between 𝐴 and 𝐵. The
experiment showed that not only did bacteria and eukaryotes clustered separately, but
that the methanogens formed their own cluster equally distant to eukaryotes and bacteria.
As such, Woese and Fox proposed that methanogens form their own domain, which they
regarded as textitarchae [179]; a view that is ultimately supported today.

An additional example of the application of early genomic ”fingerprints” can be found
nearly three decades before Woese and Fox. In 1950, Pehr Edman developed the first
sequencing technique designed for protein sequencing [181]. Famously known as Edman
degradation, a given protein was chemically ”degraded” into smaller fragments of a few
amino acids using phenyl isothiocyanate, allowing one to ”cleave” proteins by lowering
the PH [181]. The fragments can then be individually analyzed via paper chromatography
to determine their amino acid order and composition [181, 182]. The first set proteins
were thus sequenced in the 1950s, including multiple protein-chains in insulin [182–184]
and ”healthy” and sickle-cell versions of human haemoglobin [185, 186]. It also during
this decade when James Watson and Francis Crick in 1953 published their famous paper
on the double-helix nature of DNA, providing an explanation to how DNA can store and
pass genetic information across generations [187]. Shortly after, Francis Crick’s famous
lecture and publication,On protein synthesis, in 1957 and 1958, respectively, postulated that
DNA was responsible for the synthesis of proteins, which he believed was mediated by an
unknown molecular mechanism (which we now as translation) [75, 188]. He postulated
the central dogma of molecular biology on how information, irreversibly, flowed fromDNA
to proteins, and foresaw that by comparing DNA and protein sequences, one could unravel
both the evolutionary history and molecular basis for the phenotype of an organism [75,
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188].
As such, ideas behind the relevance genomic sequence comparison were beginning to

take form. This was particularly re-enforced by Vernon Ingram in 1956-1957, when he
provided evidence that variation in the sequence composition of the haemoglobin protein
was linked to sickle-cell disease, illustrating one of the first concrete connections between
molecular biology and human disease [185, 186, 189]. At the time, Ingram was not able to
directly sequence haemoglobin and analyse its sequence composition, and thus, could not
compare the sequence composition of the protein. Instead, in his 1956 study, he cleverly
compared the proteins by constructing what he called an experimental ”fingerprint” of
the normal and sickle-cell-versions haemoglobin [185]. He did this by separately break-
ing down the two proteins into fragments (which, similar to Woese and Fox, serve as
k-mers of various sizes), and running them on a two-dimensional electrophoresis gel, al-
lowing separations of the fragments based on the charged-properties of their amino acid
composition [185]. The resulting image (which can be obtained via paper chromatogra-
phy) served as a fingerprint of the proteins [185]. For normal and sickle-cell haemoglobin,
he found that their fingerprints were nearly identical with the exception of one fragment
[185]. Encouraged by these results, Ingram sequence the both versions haemoglobin pro-
teins in the following year and showed that that they differed by a single position, where
a glutamic acid was replaced by a valine [186], and thus illustrating how simple changes
in a genome can give rise to human diseases [186].

1.1.6 Microbial pan-genomes
As noted multiple times throughout the past few sections, long-read sequencing data pro-
vides a feasible way to obtain complete microbial genomes. As such, investigations of mi-
crobial pan-genomes—that is, the collective genomic sequences, gene-content, and struc-
tural organization in a microbial population—become particularly interesting, since mi-
crobes routinely shed an integrate new genomic sequences. On one end of the spectrum,
there are microbes with little pan-genome variation due to the nature of their isolated
habitats [190, 191]. On the extreme end, two strains from the ”species” can share as little
as 10% of their genomic content, resulting in large variations in their pan-genomes [192];
ultimately highlighting (philosophical) issues on the discretisation and definition of mi-
crobial species. Nevertheless, comparing the genomes of multiple microbes is naturally a
computational task, and the methods behind them are often developed in context of some
specific biological and/or evolutionary question.

One such example is FAST-ANI [193], which employs the MASH-map method under-
the-hood. The main goal of this method is to quickly calculate average-nucleotide iden-
tities (ANI) across large collections of microbial genomes—a metric often used to assess
evolutionary distances and species boundaries based on whole-genome data (e.g. de novo
assemblies). Computationally, it requires identification of homologous regions/genes be-
tween genomes and calculating their average similarity, which is ultimately a two-step
pairwise whole-genome/sequence alignment. Traditionally, the calculations are based on
direct sequence alignment, which as already discussed, is computationally costly and de-
manding to scale. As such FAST-ANI approximates the ANI metric between two genomes
by fragmenting one to non-overlapping sub-sequences of a few thousand base-pairs (anal-
ogous to generating long-read-versions of a genome) and mapping them using MASH-
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map [193]. A general ANI score between two genomes can thus be calculated by heuris-
tically binning the alignments onto a genome and averaging their sequence similarities.
Although an approximation, it enable comparison of more than 90,000 bacterial genomes,
and with this large sample size, it suggesting a species boundary between genomes with
an ANI of 83-95% [193].

On a more specific application, several methods have aimed to automate the construc-
tion of a pan-genomes by identifying all gene-families in a collection of genomes and not-
ing their conservation and variation. Roary [194], BPGA [195], Panseq [196], PanGP [197],
PanOCT [198] , PGAP [199], and ITEP [200] are all computational frameworks that aims to
do just that: they perform pairwise-gene alignments using some version of their favourite
sequence aligner, and (iteratively) cluster the genes based on sequence similarity to iden-
tify conserved and variable gene families. In principle they aim to facilitate more concrete
down-stream analysis, such as evolutionary inference on gene-content, gene-family en-
richment, and gene-family exclusivity.

An example of a concrete down-stream analysis based on a defined pan-genome is
Scoary, which aims to perform genome-wide associations (GWAS) on the presence/ab-
sence of gene families [201]. Potentially, GWAS can reveal how the acquisition of one or
more new gene-families in a population leads to a new phenotype, such as acquired drug-
resistance. As such, Scoary processes the gene-families of a population of genomes and
performs a first-pass Fisher’s exact test to identify candidate genes that are significantly
associated with sub-groups of genomes that share a common phenotype. These are then
further analyzed by accounting for the population structure based on a phylogenetic tree
and computing a test-statistic based on the distribution of gene-families across the tree.
However, these analyses are only based on presence/absence of “similar” genes, and do
not discern potential sequence variations that may drive alternate protein functions.
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1.2 An overview of this thesis
I started this introductions by discussing how yeast (and it alcoholic by-products) influ-
enced human evolution, modern societies, and the biological sciences. I then transitioned
into a semi-historical overview of bioinformatics algorithms, focusing on sequence anal-
ysis, de novo assembly, and comparative genomics in the era of long-read sequencing. So
how do the these topics relate to the academic work of this thesis?

1.2.1 The case of the missing MAL gene
Despite more than a century worth of scientific research, we are still actively understand-
ing the global genomic diversity Saccharomyces species. But this has not stopped efforts in
genetically engineering yeast for industrial applications. One particular industrial yeast is
CEN.PK113-7D: a strain that can thrive in industrial conditions, originating from various
genetic crossings of other S. cerevisiae strains in the 1990s [141, 202–205]. Despite only
having a haploid genome, it wasn’t until the 2010-2012, when the first de novo assemblies
were produced [141, 206]. Aside from issues regarding the fragmented and incomplete
quality of the assemblies, Nijkamp et al. pointed out one particular inconsistency in the
results: experimentally, the industrial-relevant gene, the MAL locus (which enables yeast
to process specific sugars), highlighted four distinct copies in the genome ofCEN.PK113-7D
[141]. However, computational results showed only three. Nijkamp et al. argued the in-
consistency in the copy-number of this loci was due to a collapse repeat (see section 1.1.2),
and that the additional copy indeed existed somewhere in the genome of CEN.PK113-7D.

In chapter 2, I sequenced and assembled the genome of CEN.PK113-7D using novel
long-read sequencing technology, unraveling an unexpected lesson in microbial genome
evolution.

1.2.2 Tracing genome mosaicism in microbial genomes
As alluded in the previous section, Saccharomyces species often undergo natural crossings
and hybridization events with other yeasts, ultimately increasing their genetic diversity
and phenotypic attributes. As such, strain engineering efforts often employ a form to
artificial crossing and hybridization with other (selected) yeast strains, as was the case
for CEN.PK113-7D. Regardless on whether the events are natural or artificial, both ulti-
mately lead to integration of new alleles and sequences, resulting in mosaic genomes, that
is, genomes with multiple evolutionary origins.

At the end of chapter 2, we performed a simple computational analysis for identifying
the global origins of various subsequences CEN.PK113-7D, ignoring contextual informa-
tion throughout a chromosome [207].

In chapter 3, I developed a kmer-based method aiming to systematically trace the ori-
gins of a (mosaic) genome across all chromosomes, guided by (large) collections of avail-
able sequencing datasets of Saccharomyces genomes.

1.2.3 Where do lager-yeast originate?
Natural and artificial crossings make Saccharomyces species particularly challenging to
study from an evolutionary perspective. One example is S. pastorianus: a species derived
from a natural crossing of S. cerevisiae and S. eubayanus, which gave rise to lager-beer
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brewing. Despite its overwhelming popularity in the alcoholic world, the exact origins of S.
pastorianus are unclear, but it boils down to two proposed hypothesis: (1) the species arose
from a single hybridization event between S. cerevisiae and S. eubayanus, or (2), the species
arose from multiple hybridization events between S. cerevisiae and S. eubayanus [208]. To
make this question even more challenging, the genomes of S. pastorianus are aneuploid:
each chromosome has a non-uniform distribution fo chromosome copies, ranging from 0
to more than 5 [137, 209]. Various studies have employed whole-genome sequencing to
better understand their genomic landscape and evolutionary history, but the aneuploid
nature of their genomes leads to highly fragmented assemblies complicating down stream
analysis [137, 208, 210, 211].

In chapter 4, I sequenced a strain of S. pastorianus using long-read sequencing tech-
nology, allowing us to obtain the most complete de novo assembly of this species [212] (at
least when it was first published). Using the method developed in chapter 4, we computa-
tionally tested the competing hypothesis of their evolutionary origins.

1.2.4 A streaming algorithm to infer species-composition in Saccha-
romyces genomes

Rapid improvements in whole-genome sequencing technologies is enabling scientists to
discover (natural) Saccharomyces hybrid-genomes. It is therefore not difficult to foresee
screening campaigns by industrial and academic institutionswho aim to unravel the global
genomic diversity of these yeasts.

In chapter 5, I developed an alignment-free streaming algorithm to infer hybrid-species
composition in Saccharomyces genomes. The algorithm quickly identifies the presence of
one or more species from the Saccharomyces sensu strictu and approximates their relative
genomic contribution, facilitating downstream genomic characterizations and evolution-
ary analysis.

1.2.5 How can one compare 𝑛 diverse microbial genome assemblies?
Throughout this thesis, I frequently discuss how long-read sequencing enables more com-
plete reconstructions of microbial genomes. The previous chapters focused on down-
stream analysis in a single de novo assembly. But what if one wants to analyse multiple
microbial genomes?

In chapter 6, I focused in the computational task of comparing genome architectures—
that is, the order and arrangement of genes in a genome—across different microbial popu-
lations. Long-read assemblies enable us to identify differences and similarities in local and
global operon structures, as well as high-level structural variation. As such, I developed
a method that represents a collection of genomes as a gene-based multi-directed graph,
enabling simultaneous comparison of microbial proteomes with little to extreme genomic
diversity [213].

1.2.6 Can we better educate microbiologists in bioinformatics?
Finally, the introduction of this thesis focused on selected origins of microbiology (e.g.
yeasts and alcohol) and bioinformatics (e.g. sequence analysis and comparative genomics).
Together, these two topics can serve as a powerful starting point to train the next genera-
tion of scientists.
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In this chapter, I implemented a novel curriculum to educate Bachelor-level microbiol-
ogists with cutting-edge advancements in bioinformatics [214]. As is the running theme of
this thesis, the curriculum focused on long-reads and comparative genomics. Specifically,
students used their existing laboratory techniques to sequence novel bacterial organisms
using long-read sequencing technologies. Through the data that they personally generate,
we interactively taught fundamental topics of algorithms in bioinformatics, and how they
can be utilized to better understand microbiology.
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Nanopore sequencing enables

near-complete de novo assembly of
Saccharomyces cerevisiae reference

strain CEN.PK113-7D
The haploid Saccharomyces cerevisiae strain CEN.PK113-7D is a popular model system for
metabolic engineering and systems biology research. Current genome assemblies are based
on short-read sequencing data scaffolded based on homology to strain S288C. However, these
assemblies contain large sequence gaps, particularly in subtelomeric regions, and the assump-
tion of perfect homology to S288C for scaffolding introduces bias. In this study, we obtained a
near-complete genome assembly of CEN.PK113-7D using only Oxford Nanopore Technology’s
MinION sequencing platform. Fifteen of the 16 chromosomes, the mitochondrial genome and
the 2-𝜇m plasmid are assembled in single contigs and all but one chromosome starts or ends
in a telomere repeat. This improved genome assembly contains 770 Kbp of added sequence
containing 248 gene annotations in comparison to the previous assembly of CEN.PK113-7D.
Many of these genes encode functions determining fitness in specific growth conditions and
are therefore highly relevant for various industrial applications. Furthermore, we discovered
a translocation between chromosomes III and VIII that caused misidentification of a MAL lo-
cus in the previous CEN.PK113-7D assembly. This study demonstrates the power of long-read
sequencing by providing a high-quality reference assembly and annotation of CEN.PK113-7D
and places a caveat on assumed genome stability of microorganisms.

2.1 Introduction
Whole genome sequencing (WGS) reveals important genetic information of an organism
that can be linked to specific phenotypes and enable genetic engineering approaches [215]
[216]. Short-read sequencing has become the standard method for WGS in the past years

This chapter has been published in FEMS Yeast Research [207]



2

46
2 Nanopore sequencing enables near-complete de novo assembly of Saccharomyces cerevisiae reference

strain CEN.PK113-7D

due to its low cost, high-sequencing accuracy and high output of sequence reads. In most
cases, the obtained read data is used to reassemble the sequenced genome either by de
novo assembly or by mapping the reads to a previously assembled closely related genome.
However, the sequence reads obtained are relatively short: between 35 and 1000 bp [217].
This poses challenges as genomes have long stretches of repetitive sequences of several
thousand nucleotides in length and can only be characterised if a read spans the repeti-
tive region and has a unique fit to the flanking ends [218]. As a result, de novo genome
assembly based on short-read technologies ‘break’ at repetitive regions preventing recon-
struction of whole chromosomes. The resulting assembly consists of dozens to hundreds of
sequence fragments, commonly referred to as contigs. These contigs are then either anal-
ysed independently or ordered and joined together adjacently based on their alignment
to a closely related reference genome. However, reference-based joining of contigs into
so-called scaffolds is based on the assumption that the genetic structure of the sequenced
strain is identical to that of the reference genome—potentially concealing existing genetic
variation.

Previous genome assemblies of the Saccharomyces cerevisiae strain CEN.PK113-7D
have been based on homology with the fully assembled reference genome of S. cerevisiae
strain S288C [141, 219]. CEN.PK113-7D is a haploid strain used as a model organism
in biotechnology-related research and systems biology because of its convenient growth
characteristics, its robustness under industrially relevant conditions and its excellent ge-
netic accessibility [141, 202, 220, 221]. CEN.PK113-7D was sequenced using a combination
of 454 and Illumina short-read libraries, and a draft genome was assembled consisting of
over 700 contigs [141]. After scaffolding usingMAIA [222] and linking based on homology
with the genome of S288C, it was possible to reconstruct all 16 chromosomes. However,
there were large sequence gaps within chromosomes and the subtelomeric regions were
left unassembled, both of which could contain relevant open reading frames (ORFs) [141].
Assuming homology to S288C, more than 90% of missing sequence was located in repet-
itive regions corresponding mostly to subtelomeric regions and Ty-elements. These re-
gions are genetically unstable as repeated sequences promote recombination events [223];
therefore, the assumption of homology with S288C could be unjustified. Ty-elements are
present across the genome: repetitive sequences with varying length (on average ∼6 Kbp)
resulting from introgressions of viral DNA [224]. Subtelomeric regions are segments to-
wards the end of chromosomes consisting of highly repetitive elements making them no-
toriously challenging to reconstruct using only short-read sequencing data [225]. While
Ty-elements are likely to have limited impact on gene expression, subtelomeric regions
harbour various so-called subtelomeric genes. Several gene families are present mostly
in subtelomeric regions and typically have functions determining the cell’s interaction
with its environment, such as nutrient uptake [226–228], sugar utilisation [229] and in-
hibitor tolerance [230]. Many of these subtelomeric gene families therefore contribute
to the adaptation of industrial strains to the specific environment they are used in. For
example, the RTM and SUC gene families are relevant for bioethanol production as they in-
crease inhibitor tolerance in molasses and utilisation of extracellular sucrose, respectively
[226, 230]. Similarly, MAL genes enable utilisation of maltose and maltotriose and FLO
genes enable calcium-dependent flocculation, both of which are crucial for the beer brew-
ing industry [231–233](Teunissen and Steensma 1995; Lodolo et al.2008; Brown, Murray
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and Verstrepen 2010). As is the case for Ty-elements, subtelomeric regions are unstable
due to repetitive sequences and homology to various regions of the genome, which is likely
to cause diversity across strains [141, 223, 233]. Characterising and accurately localising
subtelomeric gene families is thus crucial for associating strain performance to specific
genomic features and for targeted engineering approaches for strain improvement [225].

In contrast to short-read technologies, single-molecule sequencing technologies can
output sequence reads of several thousand nucleotides in length. Recent developments
of long-read sequencing technologies have decreased the cost and increased the accuracy
and output, yielding near-complete assemblies of diverse yeast strains [234, 235]. For
example, de novo assembly of a biofuel production S. cerevisiae strain using PacBio reads
produced a genome assembly consisting of 25 chromosomal contigs scaffolded into 16
chromosomes. This assembly revealed 92 new genes relative to S288C amongst which
28 previously uncharacterised and unnamed genes. Interestingly, many of these genes
had functions linked to stress tolerance and carbon metabolism that are functions critical
to the strains industrial application [234]. In addition, rapid technological advances in
nanopore sequencing have matured as a competitive long-read sequencing technology
and the first yeast genomes assembled using nanopore reads are appearing [234–238]. For
example, Istace et al. sequenced 21 wild S. cerevisiae isolates and their genome assemblies
ranged between 18 and 105 contigs enabling the detection of 29 translocations and four
inversions relative to the chromosome structure of reference S288C. In addition, large
variations were found in several difficult to sequence subtelomeric genes such as CUP1,
which was correlated to large differences in copper tolerance [237]. Nanopore sequencing
has thus proven to be a potent technology for characterising yeast.

In this study, we sequenced CEN.PK113-7D using Oxford Nanopore Technology’s
(ONT) MinION sequencing platform. This nanopore de novo assembly was compared
to the previous short-read assembly of CEN.PK113-7D [141] with particular attention for
previously, poorly assembled subtelomeric regions and for structural variation potentially
concealed due to the assumption of homology to S288C.

2.2 Materials and Methods
2.2.1 Yeast strains
The Saccharomyces cerevisiae strain ‘CEN.PK113-7D Frankfurt’ (MATaMAL2-8c)was kindly
provided by Dr P. Kötter in 2016 [141, 205]. It was plated on solid YPD (containing 10 g/l
yeast extract, 20 g/l peptone and 20 g/l glucose) upon arrival, and a single colony was
grown once until stationary phase in liquid YPD medium and 1 mL aliquots with 30%
glycerol were stored at -80℃ since. The previously sequenced CEN.PK113-7D sample was
renamed ‘CEN.PK113-7D Delft’ [141]. It was obtained from the same source in 2001 and
1 mL aliquots with 30% glycerol were stored at -80℃ with minimal propagation since (no
more than three cultures on YPD as described above).

2.2.2 Yeast cultivation and genomic DNA extraction
Yeast cultureswere incubated in 500-mL shake flasks containing 100mL liquid YPDmedium
at 30°on an orbital shaker set at 200 rpm until the strains reached stationary phase with
an OD660 between 12 and 20. Genomic DNA of CEN.PK113-7D Delft and CEN.PK113-7D
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Frankfurt for WGS was isolated using the Qiagen 100/G kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions and quantified using a Qubit®Fluorometer
2.0 (ThermoFisher Scientific, Waltham, MA, USA).

2.2.3 Short-read Illumina sequencing
Genomic DNA of CEN.PK113-7D Frankfurt was sequenced on a HiSeq2500 sequencer (Il-
lumina, San Diego, CA) with 150 bp paired-end reads using PCR-free library preparation
by Novogene Bioinformatics Technology Co., Ltd (Yuen Long, Hong Kong). All Illumina
sequencing data are available at NCBI (https://www.ncbi.nlm.nih.gov/) under the bio-
project accession number PRJNA393501

2.2.4 MinION sequencing
MinION genomic libraries were prepared using either nanopore Sequencing Kit SQK-
MAP006 (2D-ligation for R7.3 chemistry), SQK-RAD001 (Rapid library prep kit for R9
chemistry), or SQK-MAP007 (2D-ligation for R9 chemistries) (Oxford Nanopore Technolo-
gies, Oxford, UK). Two separate libraries of SQK-MAP006 and one library of SQK-RAD001
were used to sequence CEN.PK113-7D Delft. Only one SQK-MAP007 library was used
to sequence CEN.PK113-7D Frankfurt. With the exception of the SQK-RAD001 library,
all libraries used 2-3 𝜇g of genomic DNA fragmented in a Covaris g-tube (Covaris) with
the ‘8—10 kbp fragments’ settings according to manufacturer’s instructions. The SQK-
RAD001 library used 200 ng of unsheared genomic DNA. Libraries for SQK-MAP006 and
SQK-MAP007 were constructed following the manufacturer’s instructions with the excep-
tion of using 0.4× concentration of AMPure XP Beads (Beckman Coulter Inc., Brea, CA,
USA) and 80% EtOH during the ‘End Repair/dA-tailing module’ step. The SQK-RAD001
library was constructed following the manufacturer’s instructions. Prior to sequencing,
flow cell quality was assessed by running the MinKNOW platform QC (Oxford Nanopore
Technology). All flow cells were primed with priming buffer and the libraries were loaded
following the manufacturer’s instructions. The mixture was then loaded into the flow
cells for sequencing. The SQK-MAP006 library of CEN.PK113-7D Delft was sequenced
twice on a R7.3 chemistry flow cell (FLO-MIN103), and the SQK-RAD001 library was se-
quenced on a R9 chemistry flow cell (FLO-MIN105)—all for 48 h. The SQK-MAP007 li-
brary for CEN.PK113-7D Frankfurt was sequenced for 48 h on a R9 chemistry flow cell
(FLO-MIN104). Reads from all sequencing runs were uploaded and base-called using Met-
richor desktop agent (https://metrichor.com/s/). The error rate of nanopore reads in
the CEN.PK113-7D Frankfurt and Delft was determined by aligning them to the final
CEN.PK113-7D assembly (see section below) using Graphmap (Sović et al.2016) and calcu-
lating mismatches based on the CIGAR strings of reads with a mapping quality of at least
1 and no more than 500 nt of soft/hard clipping on each end of the alignment to avoid
erroneous read alignments due to repetitive regions (i.e. paralogous genes, genes with
copy number variation). All nanopore sequencing data are available at NCBI under the
bioproject accession number PRJNA393501.

2.2.5 De novo genome assembly
FASTA and FASTQ files were extracted from base-called FAST5 files using Poretools (ver-
sion 0.6.0) [239](Loman and Quinlan 2014). Raw nanopore reads were filtered for lambda

https://www.ncbi.nlm.nih.gov/
https://metrichor.com/s/
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DNA by aligning to the Enterobacteria phage lambda reference genome (RefSeq assembly
accession: GCF_000840245.1) using Graphmap [156](Sović et al.2016) with −𝑛𝑜 −𝑒𝑛𝑑2𝑒𝑛𝑑
parameter and retaining only unmappeds reads using Samtools [240](Li et al.2009). All
reads obtained from the Delft and the Frankfurt CEN.PK113-7D stock cultures were as-
sembled de novo using Canu (version 1.3) [151] with −𝑔𝑒𝑛𝑜𝑚𝑒𝑠𝑖𝑧𝑒 set to 12 Mbp. The as-
semblies were aligned using the MUMmer tool package: Nucmer with the −𝑚𝑎𝑥𝑚𝑎𝑡𝑐ℎ pa-
rameter and filtered for the best one-to-one alignment usingDelta-filter [241]. The genome
assemblies were visualised using Mummerplot [241] with the −𝑓 𝑎𝑡 parameter. Gene an-
notations were performed usingMAKER2 annotation pipeline (version 2.31.9) using SNAP
(version 2013-11-29) and Augustus (version 3.2.3) as ab initio gene predictors [242]. S288C
EST and protein sequences were obtained from SGD (Saccharomyces Genome Database,
http://www.yeastgenome.org/) and were aligned using BLASTX (BLAST version 2.2.28+)
[243]. Translated protein sequence of the final gene model was aligned using BLASTP to
S288C protein Swiss-Prot database. Custom made Perl scripts were used to map system-
atic names to the annotated gene names. Telomere repeat sequences (TEL07R of size 7306
bp and TEL07L of size 781 bp) from the manually curated and complete reference genome
for S. cerevisiae S288C RefSeq assembly accession: GCA_000146045.2 obtained from SGD
were aligned to the assembly as a proxy to assess completeness of each assembled chromo-
some. SGIDs for TEL07R and TEL07L are S000028960 and S000028887, respectively. The
Tablet genome browser [244] was used to visualise nanopore reads aligned to the nanopore
de novo assemblies. Short assembly errors in the Frankfurt assembly were corrected with
Nanopolish (version 0.5.0) using default parameters [245] Two contigs, corresponding to
chromosome XII, were manually scaffolded based on homology to S288C. To obtain the
2-𝜇mnative plasmid in CEN.PK113-7D, we aligned S288C’s native plasmid to the ‘unassem-
bled’ contigs file provided by Canu [151] and obtained the best aligned contig in terms of
size and sequence similarity. Duplicated regions due to assembly difficulties in closing
circular genomes were identified with Nucmer and manually corrected. BWA-mem Li2010
was used to align Illumina reads to the scaffolded CEN.PK113-7D Frankfurt assembly using
default parameters. Pilon [91] was then used to further correct assembly errors by align-
ing Illumina reads to the scaffolded Frankfurt assembly using correction of only SNPs and
short indels (−𝑓 𝑖𝑥 bases parameter) using only reads with a minimum mapping quality
of 20 (−𝑚𝑖𝑛𝑚𝑞 20 parameter). Polishing with structural variant correction in addition to
SNP and short indel correction was benchmarked, but not applied to the final assembly
(see Additional File 1, Supporting Information in [207]).

2.2.6 Analysis of added information in the CEN.PK113-7D nanopore
assembly

Gained and lost sequence information in the nanopore assembly of CEN.PK113-7D was
determined by comparing it to the previous short-read assembly [141]. Contigs of at
least 1 Kbp of short-read assembly were aligned to the nanopore CEN.PK113-7D Frank-
furt assembly using the MUMmer tool package [241] using −𝑠ℎ𝑜𝑤 − 𝑐𝑜𝑜𝑟𝑑𝑠 to extract
alignment coordinates. For multimapped contigs, overlapping alignments of the same
contig were collapsed and the largest alignment length as determined by Nucmer was
used. Unaligned coordinates in the nanopore assembly were extracted and considered
as added sequence. Added genes were retrieved by extracting the gene annotations in

http://www.yeastgenome.org/
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these unaligned regions from the annotated nanopore genome; mitochondria and 2-𝜇m
plasmid genes were excluded for the lost sequence, unaligned sequences were obtained
by aligning the contigs of the nanopore assembly to the short-read contigs of at least 1
kb using the same procedure as described above. Lost genes were retrieved by aligning
the unaligned sequences to the short-read CEN.PK113-7D assembly with BLASTN (ver-
sion 2.2.31 +) [243] and retrieving gene annotations. BLASTN was used to align DNA se-
quences of YHRCTy1-1, YDRCTy2-1, YILWTy3-1, YHLWTy4-1 and YCLWTy5-1 (obtained
from the Saccharomyces Genome Database; SGIDs: S000007006, S000006862, S000007020,
S000006991 and S000006831, respectively) as proxies for the location of two known groups
of Ty-elements in S. cerevisiae, Metaviridae and Pseudoviridae [224], in the CEN.PK113-7D
Frankfurt assembly. Non-redundant locations with at least a 2 Kbp alignment and an e-
value of 0.0 as determined by BLASTN were then manually inspected.

2.2.7 Comparison of theCEN.PK113-7Dassembly to the S288Cgenome
The nanopore assembly of CEN.PK113-7D and the reference genome of S288C (Accession
number GCA_000146045.2) were annotated using the MAKER2 pipeline described in the
previous subsection 2.2.5. For each genome, a list of gene names per chromosome was
constructed and compared strictly on their names to identify genes names absent in the
corresponding chromosome in the other genome. The ORFs of genes identified as absent
in either genome were aligned using BLASTN (version 2.2.31 +) to the total set of ORFs
of the other genome and matches with an alignment length of half the query and with a
sequence identity of at least 95% were listed. If one of the unique genes aligned to an ORF
on the same chromosome, it was manually inspected to check if it was truly absent in the
other genome. Merged ORFs and misannotations were not considered in further analysis.
These alignments were also used to identify copies and homologues of the genes identified
as truly absent in the other genome.

Gene ontology analysis was performed using the Gene Ontology term finder of SGD
using the list of unique genes as the query set and all annotated genes as the background
set of genes for each genome (Additional File 2A and 2C, Supporting Information). The
ORFs of genes identified as present in S288C but absent in CEN.PK113-7D in previously
made lists [141, 246] were obtained from SGD. The ORFs were aligned both ways to ORFs
from SGD identified as unique to S288C in this study using BLASTN. Genes with align-
ments of at least half the query length and with a sequence identity of at least 95% were
interpreted as confirmed by the other data set. In order to analyse the origin of genes
identified as unique to S288C, these ORFs were aligned using BLASTN to 481 genome as-
semblies of various S. cerevisiae strains obtained from NCBI (Additional File 3, Supporting
Information) and alignments of at least 50% of the query were considered. The top align-
ments were selected based on the highest sequence ID and only one alignment per strain
was counted per gene.

2.2.8 Chromosome translocation analysis
Reads supporting the original and translocated genomic architectures of chromosomes III
and VIII were identified via read alignment of raw nanopore reads. First, the translocation
breakpoints coordinateswere calculated based onwhole-genome alignment of CEN.PK113-
7D Delft assembly to S288C with MUMmer. A modified version of S288C was created con-
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taining the normal architectures of all 16 chromosomes and the mitochondrial genome
plus the translocated architecture of chromosomes III-VIII and VIII-III. The first nearest
unique flanking genes at each breakpoint were determined using BLASTN (version 2.2.31
+ ) in reference to both S288C and the Delft CEN.PK113-7D nanopore assembly. Raw
nanopore reads from CEN.PK113-7D Delft and Frankfurt were aligned to the modified
version of S288C, and nanopore reads that spanned the translocation breakpoints as well
as the unique flanking sequences were extracted. Supporting reads were validated by re-
aligning them to the modified version of S288C using BLASTN.

2.3 Results
2.3.1 Sequencing on a single nanoporeflowcell enables near-complete

genome assembly
To obtain a complete chromosome level de novo assembly of Saccharomyces cerevisiae
CENPK113-7D, we performed long-read sequencing on the ONT MinION platform. A
fresh sample of CEN.PK113-7Dwas obtained from the original distributer Dr P. Kötter (fur-
ther referred to as ‘CEN.PK113-7D Frankfurt’), cultured in a single batch on YPD medium,
and genomic DNA was extracted. CEN.PK113-7D Frankfurt was sequenced on a single
R9 (FLO-MIN104) chemistry flow cell using the 2D ligation kit for the DNA libraries pro-
ducing more than 49× coverage of the genome with an average read-length distribution
of 10.0 Kbp (Fig. S1, Supporting Information) and an estimated error rate of 10% (Fig. S2,
Supporting Information). We used Canu [151] to produce high-quality de novo assemblies
using only nanopore data. Before correcting for misassemblies, the assembly contained a
total of 21 contigs with an N50 of 756 Kbp (Table S1, Supporting Information). This rep-
resented a 19-fold reduction in the number of contigs and a 15-fold increase of the N50
in comparison to the short-read-only assembly of the first CEN.PK113-7D draft genome
version [141] (Table 6.1).

Table 2.1: Comparison of 454/Illumina and nanopore de novo assemblies of CEN.PK113-7D. Summary
of de novo assembly metrics of CEN.PK113-7D Delft and CEN.PK113-7D Frankfurt. For the short-read assembly,
only contigs of at least 1 Kbp are shown [141]. The nanopore assembly of CEN.PK113-7D Delft is uncorrected
for misassemblies while CEN.PK113-7D Frankfurt was corrected for misassemblies.

Delft Delft Frankfurt
Data Short-reads Nanopore Nanopore

Contigs (≥ 1 Kbp) 414 24 20
Largest contig 0.210 Mbp 1.08 Mbp 1.50 Mbp
Smallest Contig 0.001 Mbp 0.013 Mbp 0.085 Mbp

N50 0.048 Mbp 0.736 Mbp 0.912 Mbp
Total assembly size 11.4 Mbp 11.9 Mbp 12.1 Mbp

Most chromosomes of the nanopore de novo assembly are single contigs and are flanked
by telomere repeats. Genome completeness was determined by alignment to the manually
curated reference genome of the strain S288CRefSeq assembly accession: GCA_000146045.2
(see Table S2, Supporting Information in [207]). The two largest yeast chromosomes, IV
and XII, were each split into two separate contigs, and two additional contigs (31 and
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38 Kbp in length) corresponded to unplaced subtelomeric fragments. In particular, the
assembly for chromosome XII was interrupted in the RDN1 locus—a repetitive region con-
sisting of gene encoding ribosomal RNA estimated to be more than 1 Mbp long (Venema
and Tollervey 1999). Since no reads were long enough to span this region, the contigs
were joined with a gap.

Manual curation resolved chromosome III, chromosome IV and themitochondrial genome.
Chromosome IV was fragmented into two contigs at a locus of 11.5 Kbp containing two
Ty-elements in S288C (coordinates 981 171-992 642). Interestingly, the end of the first
contig and the start of the second contig had 8.8 Kbp of overlap (corresponding to the
two Ty-elements) and one read spanned the repetitive Ty-elements and aligned to unique
genes on the left and right flanks (EXG2 and DIN7, respectively). We therefore joined the
contigs without missing sequence resulting in a complete assembly of chromosome IV.
For chromosome III, the last ∼27 Kbp contained multiple telomeric caps next to each other.
The last ∼10 Kbp had little to no coverage when re-aligning raw nanopore reads to the
assembly (Fig. S3, Supporting Information). The coordinates for the first telomeric cap
were identified, and the remaining sequence downstream was removed resulting in a final
contig of size of 347 Kbp. The original contig corresponding to the mitochondrial genome
had a size of 104 Kbp and contained a nearly identical ∼20 Kbp overlap corresponding to
start of the S. cerevisiae mitochondrial genome (i.e. origin of replication) (Fig. S4, Sup-
porting Information). This is a common artefact as assembly algorithms generally have
difficulties reconstructing and closing circular genomes [234, 247] The coordinates of the
overlaps were determined with Nucmer [241] and manually joined resulting to a final size
of 86 616 bp.

Overall, the final CEN.PK113-7D Frankfurt assembly contained 15 chromosome con-
tigs, 1 chromosome scaffold, the complete mitochondrial contig, the complete 2-𝜇m plas-
mid and two unplaced telomeric fragments, adding up to a total of 12.1 Mbp (Table 6.1
and Table S3, Supporting Information in [207]). Of the 16 chromosomes, 11 were assem-
bled up until both telomeric caps, 4 were missing one of the telomere repeats and only
chromosome X was missing both telomere repeats. Based on homology with S288C, the
missing sequence was estimated not to exceed 12 kbp for each missing (sub)telomeric re-
gion. Furthermore, we found a total of 46 retrotransposons Ty-elements: 44 were from
the Pseudoviridae group (30 Ty1, 12 Ty2, 1 Ty4 and 1 Ty5) and 2 from Metaviridae group
(Ty3). The annotated nanopore assembly of CEN.PK113-7D Frankfurt is available at NCBI
under the bioproject accession number PRJNA393501.

2.3.2 Comparison of thenanopore and short-read assemblies ofCEN.PK113-
7D

We compared the nanopore assembly of CEN.PK113-7D to a previously published version
to quantify the improvements over the current state of the art [141]. Alignment of the con-
tigs of the short-read assembly to the nanopore assembly revealed 770 Kbp of previously
unassembled sequence, including the previously unassembled mitochondrial genome (Ad-
ditional file 4A, Supporting Information in [207]). This gained sequence was relatively
spread out over the genome (see Figure 2.1 A and B) and contained as much as 284 chro-
mosomal gene annotations (Additional file 4B in [207]). Interestingly, 69 out of 284 genes
had paralogues, corresponding to a fraction almost twice as high as the 13% found in the
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Figure 2.1: Overview of gained and lost sequence and genes in the CEN.PK113-7D Frankfurt nanopore
assembly relative to the short-read CEN.PK113-7D assembly and to the genome of S288C. The two
unplaced subtelomeric contigs and the mitochondrial DNA were not included in this figure. (A) Chromosomal
location of sequence assembled in the nanopore assembly which was not assembled using short-read data. The
16 chromosome contigs of the nanopore assembly are shown. Chromosome XII has a gap at the RDN1 locus, a
region estimated to contain more than 1 Mbp worth of repetitive sequence [247]. Centromeres are indicated by
black ovals, gained sequence relative to the short-read assembly is indicated by black marks and 46 identified
retrotransposon Ty-elements are indicated by blue marks. The size of all chromosomes andmarks is proportional
to their corresponding sequence size. In total, 611 Kbp of sequence was added within the chromosomal contigs.
(B) Relative chromosome position of sequences and genes assembled on chromosome contigs of the nanopore
assembly which were not assembled using short-read data. The positions of added sequence and genes were
normalised to the total chromosome size. The number of genes (red) and the amount of sequence (cyan) over all
chromosomes are shown per 10th of the relative chromosome size. (C) Relative chromosome position of gene
presence differences between S288C and CEN.PK113-7D. The positions of the 45 genes identified as unique to
CEN.PK113-7D and of the 44 genes identified as unique to S288C were normalised to the total chromosome size.
The number of genes unique to CEN.PK113-7D (red) and to S288C (purple) are shown per 10th of the relative
chromosome position.
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whole genome of S288C [248]. Gene ontology analysis revealed an enrichment in the bio-
logical process of cell aggregation (𝑝 = 9.30𝑥10−4); in the molecular functions of mannose
binding (𝑝 = 3.90𝑥10−4) and glucosidase activity (𝑝 = 7.49𝑥10−3); and in the cellular com-
ponents of the cell wall (𝑝 = 3.41𝑥10−7) and the cell periphery component (𝑝 = 5.81𝑥10−5).
Some newly assembled genes are involved in central carbon metabolism, such as PDC5. In
addition, many of the added genes are known to be relevant in industrial applications in-
cluding hexose transporters such as HXT genes and sugar polymer hydrolases such as IMA
and MALx2 genes; several genes relevant for cellular metal homeostasis, such as CUP1-2
(linked to copper ion tolerance) and FIT1 (linked to iron ion retention); genes relevant for
nitrogen metabolism in medium rich or poor in specific amino acids, including amino acid
transporters such as VBA5, amino acid catabolism genes such as ASP3-4 and LEU2 and
amino-acid limitation response genes such as many PAU genes; several FLO genes that
are responsible for calcium-dependent flocculation; and various genes linked to different
environmental stress responses, such as HSP genes increasing heat shock tolerance and
RIM101 increasing tolerance to high pH.

To evaluate whether previously assembled sequences were missing in the nanopore
assembly, we aligned the nanopore contigs to the short-read assembly [141]. Less than
6 Kbp of sequence of the short-read assembly was not present in the nanopore assembly,
distributed over 13 contigs (Additional file 4C in [207]). Only two ORFs were missing: the
genes BIO1 and BIO6 (Additional file 4D in [207]). Alignment of BIO1 and BIO6 sequences
to the nanopore assembly showed that the right end of the chromosome I contig contains
the first ∼500 nt of BIO1. While BIO1 and BIO6 were present in the nanopore sequences,
they are absent in the final assembly likely due to the lack of long-enough reads to resolve
the repetitive nature of this subtelomeric region.

Overall, an additional 770 Kbp sequence containing 284 genes was gained, while 6 Kbp
sequence containing two genes was not captured compared to the previous assembly. In
addition, the reduction from over 700 to only 20 contigs clearly showed that the nanopore
assembly is much less fragmented than the short-read assembly (Table 6.1).

2.3.3 Comparison of the nanopore assembly of CEN.PK113-7D to
S288C

To identify unique and shared genes between CEN.PK113-7D and S288C, we compared an-
notations made using the same method for both genomes (Additional Files 2A and 2C in
[207]). We identified a total of 45 genes unique to CEN.PK113-7D and 44 genes unique to
S288C (Additional Files 2B and 2D [207]). Genes located in regions that had no assembled
counterpart in the other genome were excluded: 20 for S288C and 27 for CEN.PK113-7D.
Interestingly, the genes unique to either strain and genes present on different chromo-
somes were found mostly in the outer 10% of the chromosomes, indicating that the sub-
telomeric regions harbour most of the genetic differences between CEN.PK113-7D and
S288C (Fig. 1C).

In order to validate the genes identified as unique to S288C, we compared them to
genes identified as absent in CEN.PK113-7D in previous studies (Additional file 2D in [207],
Table 2). A total of 25 genes of S288C were identified as absent in CEN.PK113-7D by array
comparative genomic hybridisation analysis [246], and 21 genes were identified as absent
in CEN.PK113-7D based on short-read WGS [141]. Of these genes, 19 and 10 respectively
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were identified as genes in S288C by our annotation pipeline and could be compared to
the genes we identified as unique to S288C. While 19 of these 29 genes were also absent
in the nanopore assembly, the remaining 10 genes were fully assembled and annotated,
indicating they were erroneously identified as missing (Table 2).

Table 2.2: Presence in the nanopore assembly of genes identified as absent in CEN.PK113-7D in previ-
ous research. For genes identified as absent in CEN.PK113-7D in two previous studies, the absence or presence
in the nanopore assembly of CEN.PK113-7D is shown. A total of 25 genes were identified previously by aCGH
[246] and 21 genes were identified by short-read genome assembly [141]. Genes that were not annotated by
MAKER2 in S288C could not be analysed. Genes with an alignment to genes identified as missing in the nanopore
assembly of at least 50% of the query length and 95% sequence identity were confirmed as being absent, while
those without such an alignment were identified as present. The presence of these genes was verified manually,
which revealed the misanotation of YPL277C as YOR389W.

Not analysed Absent in assem-
bly

Present in assem-
bly

Daran-
Lapujade et
al.

YAL064C-A,
YAL066W, YAR047C,
YHL046W-A,
YIL058W, YOL013W-
A

YAL065C, YAL067C,
YBR093C, YCR018C,
YCR105W, YCR106W,
YDR038C, YDR039C,
YHL047C, YHL048W,
YNR070W, YNR071C
and YNR074C

YAL069W, YDR036C,
YDR037W, YJL165C,
YNR004W, and
YPL277C (misanno-
tated as YOR389W )

Nijkamp et al. Q0140, YDR543C,
YDR544C, YDR545W,
YIL046W-A,
YLR154C-H,
YLR156C-A,
YLR157C-C,
YLR159C-A,
YOR029W and
YOR082C

YBR093C, YCR040W,
YCR041W, YDR038C,
YDR039C and
YDR040C

YDR036C, YHL008C,
YHR056C and
YLR055C

In order to determine if the genes unique to S288C have homologues elsewhere in
the genome of CEN.PK113-7D or if they are truly unique, we aligned the ORFs of the 44
genes identified as unique in S288C to the ORFs in the nanopore CEN.PK113-7D assem-
bly. A total of 26 genes were completely absent in the CEN.PK113-7D assembly, while the
remaining 18 genes aligned to between 1 and 20 ORFs each in the genome of CEN.PK113-
7D with more than 95% sequence identity, indicating they may have close homologues
or additional copies in S288C (Additional file 2D in [207]). Gene ontology analysis re-
vealed no enrichment in biological process, molecular functions or cell components of the
26 genes without homologues in CEN.PK113-7D. Five genes without homologues were
labelled as putative. However, there were many genes encoding proteins relevant for fit-
ness under specific industrial conditions, such as PHO5 that is part of the response to
phosphate scarcity, COS3 linked to salt tolerance, ADH7 linked to acetaldehyde tolerance,
RDS1 linked to resistance to cycloheximide, PDR18 linked to ethanol tolerance and HXT17
that is involved in hexitol uptake (Additional file 2D in [207]). In addition, we confirmed
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the complete absence of ENA2 and ENA5 in CEN.PK113-7D that are responsible for lithium
sensitivity of CEN.PK113-7D [249].

In contrast, to determine if the genes unique to CEN.PK113-7D had homologues else-
where in the genome of S288C or if they were truly unique, we aligned the ORFs of the 45
genes identified as unique in CEN.PK113-7D to the ORFs of S288C. A set of 16 genes were
completely absent in S288C, while the remaining 29 aligned to between 1 and 16 ORFs each
in the genome of S288C with more than 95% sequence (Additional File 2D) in [207]. Gene
ontology analysis revealed no enrichment in biological processes, molecular functions or
cell components of the 16 genes unique to CEN.PK113-7D without homologues. However,
among the genes without homologues, a total of 13 were labelled as putative. The presence
of an additional copy of IMA1, MAL31 and MAL32 on chromosome III was in line with
the presence of the MAL2 locus that was absent in S288C. Interestingly, the sequence of
MAL13, which belongs to this locus, was divergent enough from other MAL-gene activa-
tors not to be identified as homologue. Additionally, when performing the same analysis
on the 27 genes on the two unplaced contigs of the CEN.PK113-7D assembly, 7 of them
did not align to any gene of S288C with more than 95% sequence identity, indicating that
these unplaced telomeric regions were highly unique to CEN.PK113-7D.

Since the genome of CEN.PK113-7D contained 45 ORFs that were absent in S288C, we
investigated their origin by aligning them against all available S. cerevisiae nucleotide data
at NCBI (Additional File 3 in [207]). For each ORF, we reported the strains to which they
aligned with the highest sequence identity and the sequence identity relative to S288C
in Additional File 2B in [207]. For most genes, several strains aligned equally well with
the same sequence identity. For 13 ORFs, S288C is among the best matches, indicating
these ORFs may come from duplications in the S288C genome. However, S288C was
not among the best matches for 32 ORFs. In these, laboratory strain ‘SK1’ was among
the best matches nine times, the west African wine isolate ‘DBVPG6044’ appeared eight
times, laboratory strain ‘W303’ appeared seven times, the Belgian beer strain ‘beer080’
appeared three times and the Brazilian bioethanol strain ‘bioethanol005’ appeared three
times. Interestingly, some grouped unique genes were most related to specific strains. For
example, the unique genes identified on the left subtelomeric regions of chromosome XVI
(YBL109W, YHR216W and YOR392) and of chromosome VIII (YJL225C and YOL161W) ex-
hibited the highest similarity to DBVPG6044. Similarly, the right end of the subtelomeric
region of chromosome III (YPL283W-A and YPR202) and of chromosome XI (YPL283W-A
and YLR466W) were most closely related to W303.

Interestingly, the nanopore assembly revealed a duplication of LEU2, a gene involved
in synthesis of leucine that can be used as an auxotrophymarker. In the complete reference
genome of S. cerevisiae S288C, both LEU2 andNFS1 are unique, neighbouring genes located
on chromosome III. However, gene annotations of the assemblies and raw nanopore reads
supported additional copies of LEU2 and NFS1 in CEN.PK113-7D located on chromosome
VII (Figure 2.2). The additional copy contained the complete LEU2 sequence but only
∼0.5 kb of the 5′ end of NFS1. In CEN.PK113-7D and S288C, the LEU2 and NFS1 loci in
chromosome III were located adjacent to Ty-elements. Two such Ty-elements were also
found flanking the additional LEU2 and NFS1 loci in chromosome VII (Figure 2.2). It is
likely that the duplication was the result of a translocation based on homology of the
Ty-elements that resulted in local copy number increase during its strain development
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Figure 2.2: LEU2 and NFS1 duplication in chromosome VII of CEN.PK113–7D. The nanopore assembly
contains a duplication of LEU2 and part of NFS1 in CEN.PK113–7D. In S288C, the two genes are located in
chromosome III next to a Ty element. In CEN.PK113-7D, the two genes are present in chromosome III and in
chromosome VII. The duplication appears to be mediated by Ty-elements. Note that the additional copy in chro-
mosome VII is present in between two Ty-elements and contains only the first ∼500 bp of NFS1. The duplication
is supported by long-read data that span across the LEU2, NFS1, the two Ty-elements and the neighbouring
flanking genes (not shown).
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Figure 2.3: Overview of chromosome structure heterogeneity in CEN.PK113-7D Delft for CHRIII and
CHRVIII that led to the misidentification of a fourth MAL locus in a previous short-read assembly
study of the genome of CEN.PK113-7D. Nanopore reads support the presence of two chromosome architec-
tures: the normal chromosomes III and VIII (left panel) and translocated chromosomes III-VIII and VIII-III (right
panel). The translocation occurred in Ty-elements, large repetitive sequences known to mediate chromosomal
translocations in Saccharomyces species [250]. Long reads are required to diagnose the chromosome architec-
ture via sequencing: the repetitive region between KCC4 and NFS1 in chromosome III exceeds 15 Kbp, while
the region between SPO13 and MIP6 in chromosome VIII is only 1.4 Kbp long. For the translocated architecture,
the region from NFS1 to MIP6 in chromosome III-VIII exceeds 16 Kbp and the distance from SPO13 to KCC4 in
chromosome VIII–III is nearly 10 Kbp.

program (Entian and Kötter 2007).

2.3.4 Long-read sequencing data reveals chromosome structure het-
erogeneity in CEN.PK113-7D Delft

CEN.PK113-7D has three confirmed MAL loci encoding genes for the uptake and hydrol-
ysis of maltose: MAL1 on chromosome VIII, MAL2 on chromosome III and MAL3 on
chromosome II (Additional file 2A in [207]). A fourth MAL locus was identified in pre-
vious research on chromosome XI based on contour-clamped homogeneous electric field
electrophoresis (CHEF) and Southern blotting with a probe for MAL loci [141]. How-
ever, the nanopore assembly revealed no additional MAL locus despite the complete as-
sembly of chromosome XI. The CEN.PK113-7D stock in which the fourth MAL locus
was obtained from Dr P. Kötter in 2001 and stored at -80°since (further referred to as
‘CEN.PK113-7D Delft’). In order to investigate the presence of the potential MAL locus,
we sequenced CEN.PK113-7D Delft using nanopore MinION sequencing. Two R7.3 flow
cells (FLO-MIN103) produced 55× coverage with an average read-length distribution of
8.5 Kbp and an R9 flow cell (FLO-MIN103) produced 47× coverage with an average read-
length distribution of 3.2 Kbp (Fig. S1 in [207]). The error rate was estimated to be 13 (Fig.
S4 [207]) after aligning the raw nanopore reads to the CEN.PK113-7D Frankfurt assembly.
These reads were assembled into 24 contigs with an N50 of 736 Kbp (Table S1 in [207]).

Alignment of the assembly of CEN.PK113-7D Delft to the Frankfurt assembly showed
evidence of a translocation between chromosomes III and VIII (Fig. S5, Supporting In-
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formation [207]). The assembly thus suggested the presence of two new chromosomes:
chromosomes III-VIII of size 680 Kbp and chromosome VIII-III of size 217 Kbp (Fig. 3).
The translocation occurred between Ty-element YCLWTy2-1 on chromosome III and long-
terminal repeats YHRCdelta5-7 on chromosomeVIII.These repetitive regionswere flanked
by unique genes KCC4 and NFS1 on chromosome III and SPO13 and MIP6 on chromo-
some VIII (Fig. 3). Nanopore reads spanning the whole translocated or non-translocated
sequence anchored in the unique genes flanking them were extracted for CEN.PK113-7D
Delft and Frankfurt. A total of eight reads fromCEN.PK113-7DDelft supported the translo-
cated chromosome III-VIII architecture (largest read was 39 Kbp) and one 19 Kbp read sup-
ported the normal chromosome III architecture. For CEN.PK113-7D Frankfurt, we found
only one read of size 23 Kbp that supported the normal chromosome III architecture but
we found no reads that supported the translocated architectures. These data suggested
that CEN.PK113-7D Delft was in fact a heterogeneous population containing cells with re-
combined chromosomes III and VIII and cells with original chromosomes III and VIII. As a
result, in addition to the MAL2 locus on chromosome III, CEN.PK113-7D Delft harboured
a MAL2 locus on recombined chromosome III-VIII. As the size of recombined chromo-
some III-VIII was close to chromosome XI, the MAL2 locus on chromosome III-VIII led to
misidentification of a MAL4 locus on chromosome XI [141]. By repeating the CHEF gel
and Southern blotting for MAL loci on several CEN.PK113-7D stocks, the MAL2 on the
translocated chromosomes III-VIII was shown to be present only in CEN.PK113-7D Delft,
demonstrating that therewas indeed chromosome structure heterogeneity (Additional File
5 in [207]).

2.4 Discussion
In this study, we obtained a near-complete genome assembly of Saccharomyces cerevisiae
strain CEN.PK113-7D using only a single R9 flow cell on ONT’s MinION sequencing plat-
form. Fifteen of the 16 chromosomes as well as the mitochondrial genome and the 2-𝜇m
plasmid were assembled in single, mostly telomere-to-telomere, contigs. This genome as-
sembly is remarkably unfragmented, even when compared with other S. cerevisiae assem-
blies made with several nanopore technology flow cells, in which 18 to 105 chromosomal
contigs were obtained [234, 237]. Despite the long-read lengths obtained by nanopore se-
quencing, the ribosomal DNA locus in chromosome XII could not be completely resolved.
In practice, this would require reads exceeding 1 Mb in length, which current technology
cannot yet deliver.

The obtained nanopore assembly is of vastly superior quality to the previous short-
read-only assembly of CEN.PK113-7D that was fragmented into over 700 contigs [141]. In
addition to the lesser fragmentation, the addition of 770 Kbp of previously unassembled
sequence led to the identification and accurate placement of 284 additional ORFs spread
out over the genome. These newly assembled genes showed overrepresentation for cell
wall and cell periphery compartmentalisation and relate to functions such as sugar util-
isation, amino acid uptake, metal ion metabolism, flocculation and tolerance to various
stresses. While many of these genes were already present in the short-read assembly of
CEN.PK113-7D, copy number was shown to be an important factor determining the adap-
tation of strains to specific growth conditions [233]. The added genes may therefore be
very relevant for the specific physiology of CEN.PK113-7D under different industrial con-



2

60
2 Nanopore sequencing enables near-complete de novo assembly of Saccharomyces cerevisiae reference

strain CEN.PK113-7D

ditions [233]. The ability of nanopore sequencing to distinguish genes with various similar
copies is crucial in S. cerevisiae as homologues are frequent particularly in subtelomeric
regions, and paralogues are widespread due to a whole genome duplication in its evolu-
tionary history [248]. Besides the added sequence, 6 Kbp of sequence of the short-read
assembly was not present in the nanopore assembly, mostly consisting of small unplaced
contigs. Notably the absence of BIO1 and BIO6 in the assembly was unexpected, as it
constituted a marked difference between CEN.PK113-7D and many other strains that en-
ables biotin prototrophy [251]. Both genes were present in the nanopore reads, but were
unassembled likely due to the lack of reads long enough to resolve this subtelomeric re-
gion (a fragment of BIO1 is located at the right end of chromosome I). Targeted long-read
sequencing in known gaps of a draft assembly followed by manual curation could provide
an interesting tool to obtain complete genome assemblies [252]. Alternatively, a more
complete assembly could be obtained by maximising read length. The importance of read
length is illustrated by the higher fragmentation of the CEN.PK113-7D Delft assembly
compared to the Frankfurt one, which was based on reads with lower length distribution
despite higher coverage and similar error rate (Table 6.1, Figs S1 and S5 in [207]). Read-
length distribution in nanopore sequencing is highly influenced by the DNA extraction
method and library preparation (Fig. S1 in [207]). The mitochondrial genome was com-
pletely assembled, which is not always possible with nanopore sequencing [234, 235, 237].
Even with identical DNA extraction and assembly methods, the mitochondrial genome
cannot always be assembled, as illustrated by its absence in the assembly of CEN.PK113-
7D Delft. Overall, the gained sequence in the nanopore assembly far outweighs the lost se-
quence relative to the previous assembly, and the reduction in number of contigs presents
an important advantage.

The use of long-read sequencing enabled the discovery of a translocation between chro-
mosomes III and VIII, which led to the misidentification of a fourth MAL locus on chro-
mosome XI of CEN.PK113-7D [141]. Identification of this translocation required reads
to span at least 12 Kbp due to the large repetitive elements surrounding the transloca-
tion breakpoints, explaining why it was previously undetected. While the translocation
did not disrupt any coding sequence and is unlikely to cause phenotypical changes [253],
there may be decreased spore viability upon mating with other CEN.PK strains. Our abil-
ity to detect structural heterogeneity within a culture shows that nanopore sequencing
could also be valuable in detecting structural variation within a genome between differ-
ent chromosome copies, which occurs frequently in aneuploid yeast genomes [209]. These
results highlight the importance of minimal propagation of laboratory microorganisms to
warrant genome stability and avoid heterogeneity that could at worst have an impact on
phenotype and interpretation of experimental results.

The nanopore assembly of CEN.PK113-7D constitutes a vast improvement of its refer-
ence genome that should facilitate its use as a model organism. The elucidation of various
homologue and paralogue genes is particularly relevant as CEN.PK113-7D is commonly
used as a model for industrial S. cerevisiae applications for which gene copy number fre-
quently plays an important role [209, 233]. Using the nanopore assembly as a reference
for short-read sequencing of strains derived from CEN.PK113-7D will yield more com-
plete and more accurate lists of SNPs and other mutations, facilitating the identification
of causal mutations in laboratory evolution or mutagenesis experiments. Therefore, the



2.4 Discussion

2

61

new assembly should accelerate elucidation of the genetic basis underlying the fitness of
S. cerevisiae in various environmental conditions, as well as the discovery of new strain
improvement strategies for industrial applications [254].
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3
Alpaca: a kmer-based approach for
investigating mosaic structures in

microbial genomes
Microbial genomes are often mosaic: different regions can possess different evolutionary ori-
gins due to genetic recombination. Similarly, genome mosaicism can also arise from hy-
bridization events frommultiple species. The recent feasibility to assemblingmicrobial genomes
completely paired with existing sequencing datasets of large microbial populations enables
researchers to investigate the potentially rich evolutionary history of a microbe at a much
higher resolution. Here, I present Alpaca: a method that aims to investigate mosaicism using
kmer similarity of large sequencing datasets. It does so by partitioning a given (complete)
genome assembly into various sub-regions and comparing their similarity across a popula-
tion of known genomes. The result is a high-resolution map of an entire genome and the most
similar scoring clades across the given population.

3.1 Introduction
The ever-increasing availability of genomic data is enabling researchers to obtain novel in-
sights about the genetic diversity and evolutionary history of various organisms [255, 256].
This is particularly important for microbes as they can originate fromwidely-diverse popu-
lations due lateral exchange of genetic information and hybridization of multiple genomes
[137, 208, 209]. For example, horizontal gene transfer can lead to the introgression of novel
sequences in nuclear chromosomes, aiding the adaptation for certain environments [255].
The resulting genome may thus be mosaic, meaning that different genomic segments may
possess different evolutionary origins [257]. Genome hybridization—the joining of two
or more genomes from different strains/species—can also lead to mosaic structures due
to recombination of homologous segments followed by selection of those segments with
fitness advantages [258]. As such, the genome of an individual microbe may be the result
of a rich history of genetic adaptations after coming in contact with different populations
This chapter has been published in bioArxiv [213] and a component of BMC Genomics [212]
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[255–258]. In other words, there can be multiple origins for the genetic content in a single
genome.

We are currently at a crossroads of sequencing data-types. Long-read sequencing tech-
nologies (such as PacBio and Oxford Nanopore) are enabling researchers to de novo assem-
ble complete individual microbial chromosomes, providing better insights in genome orga-
nization [146, 207, 259, 260]. Despite these advantages, the bulk of sequencing data is still
stored as short-reads, requiring continue use them in population-wide studies [73, 261].
Our understanding of the mosaic structures in microbial population can thus benefit from
a combination of both data-types, such as the structural basis provided by complete micro-
bial genome assemblies from long-reads, along with the population diversity information
in short-reads.

Here, I present Alpaca, a stand-alone method for investigating mosaic structures in
high-quality microbial genome assemblies.

3.2 Method overview
The goal of Alpaca is to characterize mosaic structures in a (microbial) genome assembly.
This is done by noting the change in similarity of local sequences throughout individual
chromosomes relative to a given phylogenetic tree. Below we provide a detailed descrip-
tion of the foundations and implementation of Alpaca.

3.2.1 Alpaca foundations
A (microbial) genomewith multiple evolutionary origins requires careful evaluation when
compared to a reference population. Let 𝑅 be the genome assembly of a microbial strain
with only one chromosome. Given a set of evolutionarily similar genomes, 𝑆 = {𝑆1, 𝑆2, 𝑆3,⋯ ,𝑆𝑛},
the evolutionary history of 𝑅 can be inferred by constructing a phylogenetic tree and
placing 𝑅 in the context of all members in 𝑆. This requires a similarity calculation be-
tween any two genomes, traditionally done through multiple sequence alignments of core
gene(s), whole-genome alignment, or whole-genome single-nucleotide polymorphisms
[137, 208, 262–265]. However, if 𝑅 formed through a recombination of two or more
genomes in 𝑆, then the calculated similarities will fail to properly describe the multiple
evolutionary origins of 𝑅 since each calculation is either a global or local similarity.

The characterization of all local sequences in 𝑅 could alternatively provide a better
insight in its evolutionary history relative to the genomes in 𝑆. We can partition 𝑅 as
an ordered collection of subsequences, 𝑅𝑝 = {𝑟1, 𝑟2, 𝑟3,⋯ , 𝑟𝑏}. Each partition, 𝑟𝑗 , where 1 ≤
𝑗 ≤ 𝑏, may be individual genes throughout 𝑅, where 𝑏 is the total number of genes in the
genome. Alternatively, 𝑅𝑝 can represent non-overlapping sequences of length, 𝑙, such that
𝑏 = ⌈ |𝑅|𝑙 ⌉, and the concatenation of all subsequences in 𝑅𝑝 would result in 𝑅. Calculating a
local sequence similarity between each 𝑟𝑗 and some genome in 𝑆, 𝑆𝑖 , would thus describe
changes in sequence similarity throughout 𝑅 relative to 𝑆𝑖 . More specifically, let 𝑆𝑝𝑖 be the
partitioned version of 𝑆𝑖 , such that 𝑆𝑝𝑖 = {𝑠1, 𝑠2, 𝑠3,⋯ , 𝑠𝑏}, and the sequences 𝑟𝑗 and 𝑠𝑗 are
orthologous pairs (note that 𝑠𝑗 can be an empty sequence if 𝑟𝑗 is unique to 𝑅). The function
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑅𝑝 , 𝑆𝑝𝑖 , 𝑗) calculates the sequence similarity between 𝑟𝑗 and 𝑠𝑗 . Applying the
similarity function through all 𝑏 partitions would lead to a vector of similarity scores,
which can be used to trace the change in sequence similarity throughout 𝑅 relative to 𝑆𝑖 .
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The partitioning strategy described above can help pinpoint instances of mosaic struc-
tures in 𝑅. Let 𝑀𝑎𝑥𝑆𝑖𝑚(𝑟𝑗 , 𝑆) be a function that returns a genome in 𝑆 that yields the
highest observed sequence similarity for a given 𝑟𝑗 . If 𝑅 has a linear evolutionary history
(e.g. no recombination with other genomes), then the 𝑀𝑎𝑥𝑆𝑖𝑚 function will virtually
always yield the same genome. In other words, the most similar genome throughout the
subsequences in 𝑅 will not change. More pragmatically, if a phylogenetic tree exists for all
genomes in 𝑆, then𝑀𝑎𝑥𝑆𝑖𝑚 will point to a specific evolutionary clade or lineage (e.g. the
most similar clade or lineage does not change throughout the subsequences in 𝑅). How-
ever, if 𝑅 does harbour mosaic structures, one would expect 𝑀𝑎𝑥𝑆𝑖𝑚 to yield different
genomes from 𝑆, which would be particularly notable if those genomes consists of mem-
bers from distant clades or lineages. A careful evaluation of the similarity vector can thus
pinpoint neighbouring genes or subsequences that may derive from different evolutionary
origins.

Although the partitioning strategy can theoretically help pinpoint instances of mosaic
structures in 𝑅, it is not clear how to calculate𝑀𝑎𝑥𝑆𝑖𝑚(𝑟𝑗 , 𝑆), especially if 𝑆 is a collection
of short-read datasets. One approach is to perform a de novo genome assembly for each 𝑆𝑖 ,
and partition it in such a way that a local sequence alignment can be perform to calculate
the similarity against each 𝑟𝑗 . However, this becomes problematic if 𝑆𝑖 is a non-haploid
genome and contains heterozygous alleles. As such, a de novo genome assembly will only
result in a consensus representation without complete representation of all alleles present
in 𝑆𝑖 [137, 208, 212]. Consequently, the 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 function will yield erroneous sequence
similarities of the orthologous pairs as it will fail to capture the heterozygous alleles. The
same holds true if 𝑅 is a non-haploid genome, as standard long-read assemblers generally
yield consensus representations [212, 260]. A different approach is to identify variants
by aligning reads from an 𝑆𝑖 to each 𝑟𝑗 . Although heterozygous single-nucleotide poly-
morphisms can be described, heterozygous structural variants are difficult to identify and
represent, especially in short-read data [266]. Thus, the 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 function will still re-
main erroneous.

A calculation that considers heterozygous alleles between two orthologous pairs can
provide a more accurate calculation for the 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 function. This can be done by
considering all reads in both 𝑟𝑗 and 𝑠𝑗 , and not just their consensus representations. For
example, if the original reads used to construct 𝑅 were aligned back to the assembly, then
all (partial) reads aligning to each 𝑟𝑗 can be collected. From this set, all unique k-mers of
length, 𝑘, can be identified. This procedure would thus construct a k-mer set containing
all unique k-mers identified during the assembly of the sequence of 𝑟𝑗—implicitly captur-
ing all alleles including potential heterozygous structural variants. Formally, let 𝑅𝑝 now
represent an ordered collection of sets where each 𝑟𝑗 is a k-mer. Similarly re-defining 𝑆𝑝𝑖 ,
𝑟𝑗 and 𝑠𝑗 are now the k-mer sets of the original orthologous sequences. The sequence
similarity function, 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑅𝑝 , 𝑆𝑝𝑖 , 𝑗), can be re-defined through the Jaccard-Index,
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑅𝑝 , 𝑆𝑝𝑖 , 𝑗) = |𝑟𝑗∩𝑠𝑗 |

|𝑟𝑗∪𝑠𝑗 |
. Alternatively, a more biological metric closely following av-

erage nucleotide identity can be calculated using theMASH-distance, 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑅𝑝 , 𝑆𝑝𝑖 , 𝑗) =
1 − −1

𝑘 𝑙𝑛 2𝑗
1+𝑗 , where 𝑗 is the Jaccard-Index of 𝑟𝑗 and 𝑠𝑗 [177]. A vector of similarity scores

describing the change in sequence similarity in 𝑅 relative to some 𝑆𝑖 that accounts for
heterozygous alleles can thus be be obtained despite each 𝑆𝑖 being a short-read dataset.
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Although the genome partitioning produced described above assumes genomes with
only a single chromosome, it is easier to adapt it for multi-chromosome organisms (e.g
eukaryotic microbes). In this case, 𝑅 and each 𝑆𝑖 would consists of one or more chromoso-
mal sequences. Their partitioned versions, 𝑅𝑝 and 𝑆𝑝𝑖 , would be two-dimensional where
each chromosome would contain an ordered collection of partitioned subsequences. The
𝑀𝑎𝑥𝑆𝑖𝑚(𝑟𝑗 , 𝑆) would need be performed per chromosomal sequence as different chromo-
somes in the same nucleus can have different evolutionary histories.

In the next section, we describe how the partitioning strategy described above was
implemented in a stand-alone method, 𝐴𝑙𝑝𝑎𝑐𝑎, that provides a custom visualization for
the results.

3.2.2 Alpaca implementation
Alpaca will perform the partitioning procedure and similarity calculations described in
the previous section through three major steps: (i) partitioning and storing a reference
genome as a database, (ii) scoring the similarity of each sub-region for every sample in a
given population, and (iii) a summary of all sub-regions with their top-scoring sample(s);
ultimately providing insights about the potential mosaic structures in the given reference
genome. The required inputs are a reference genome along with the original read-set used
to construct it (representing to 𝑅 in as described in the previous section), a collection of
BAM-formatted files representing read-alignments to the provided reference from some
collection of genomes (representing 𝑆), and a phylogenetic tree of the collection.

We provide a user-friendly, command-line implementation of these steps along with
high-resolution and informative visualizations. Alpaca is written in the Scala program-
ming language (https://www.scala-lang.org/) and packaged with a stand-alone binary dis-
tribution. Alpaca greatly benefits from parallelization (i.e. availability of multiple CPUs
and multiple chromosome sequences) as it is implemented under a functional paradigm.
We describe the major features of Alpaca below.

Alpaca database: genome partitioning of sub-regions
The first step is to create an Alpaca database for a given reference genome. The input
is a FASTA-formatted assembly, a sorted BAM file of the native read alignments to the
assembly (i.e. the same reads used to create the assembly). Alpacawill then iterate through
each FASTA-entry and create non-overlapping sub-regions. Following the definitions in
section 3.2.1, this corresponds to constructing the ordered collection of partitions, 𝑅𝑝 , for
each chromosome. By default, non-overlapping sub-regions of 2000 bp are created. Kmers
(default size of 21) are then extracted for each sub-region in each chromosome, sampling
from both the assembly and read-alignments independently using the htsjdk library. To
minimize erroneous kmers, users can specify a minimum kmer count, or allow Alpaca
to automatically detect the threshold based on alignment coverage. The output is a sub-
directory describing all sub-regions and their corresponding kmer-sets.

Target comparison: computing sub-region similarity
The next step is to compute the similarity of all sub-regions in the reference genome
against a target genome. The input is the path to the Alpaca database of the reference
genome (see above), read alignments to the reference-genome’s assembly as a sorted BAM
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file, and the expected genome size of the target genome. Alpaca will then iterate through
all sub-regions in the database and construct kmer-sets for the target genome. In other
words, it will construct the ordered collection, 𝑆𝑝𝑖 , where each 𝑠𝑗 is derived by sampling
from the provided BAM file. The sequence similarity for each orthologous pair (corre-
sponding to 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑅𝑝 , 𝑆𝑝𝑖 , 𝑗)) is calculated via the Jaccard-Index as described in sec-
tion section 3.2.1

The output is a tab-delimited file containing the coordinate of every sub-region in the
database and the similarity score.

Population summary: ranking top-scoring samples
Comparing the sub-region similarities against a set of target genomes can provide insights
for potential mosaic structures in the reference genome. The final step is thus to summa-
rize every similarity score by ranking and retaining the top scoring target sample(s) for
each sub-region. The input is the path to the Alpaca database of the subject genome and a
tab-delimited file listing the path of the target comparison outputs from the previous step
(see above). Alpaca will then iterate through each sub-region and retain the top-scoring
targets. Note that there may be multiple top-scoring samples since different samples may
possess the same similarity score. Alpaca will only retain the scores of sub-regions pos-
sessing a (configurable) number of top-scoring samples. The remaining samples have their
similarity value set to zero, i.e. no similarity, to mitigate ambiguous sub-regions.The out-
put is a tab-delimited file of every sub-region along with its top-scoring sample(s).

Alpaca layout: visualizing mosaic genomes
If the used target population possesses labels (i.e. lineages, clades or species), then a high-
resolution visualization for interpreting mosaic structures can be created (see Figure 3.1A).
Using the population summary file, Alpaca will iterate through each chromosome and
draw it as a sequence of rectangles representing individual sub-regions across the chro-
mosome (see Figure 3.1A).The color of each sub-region represents the corresponding label
of the top-scoring sample(s). Note that there can be multiple colors for each sub-region,
whose proportions are based on the number of labels in the top-scoring samples. The cor-
responding proportion of a color for each sub-region is computed as the similarity score
multiplied by the proportion of samples belonging to each label. To display unexplained
similarity (i.e. sub-regions that are ambiguous or have low-scoring similarities), is drawn
as white.

The resulting visualization (SVG-formatted) displays every sub-region and the corre-
sponding similarity to assigned lineages or species, enabling users to identify instances of
mosaic structures.

Tree-tracing: similarity across population-structures
The Alpaca-layout visualization is in context of lineages or species and therefore does not
provide information about sub-region similarity to individual samples or sub-populations.
If a (phylogenetic) tree in Newick-format ( describing the population structure of different
lineages or species) is provided, Alpacawill traverse the tree and hierarchically display the
frequency of top-scoring samples and their corresponding (sub-) clades (see Figure 3.1B).
Starting at the root-node, Alpaca will traverse through the tree and draw each branch with
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Figure 3.1: Summary visualizations of the mosaic profiles of the S. cerevisiae strain, CEN.PK113-7D,
using 155 S. cerevisiae strains from Gallone et al. (A) Alpaca-layout figure: each rectangle is a chromo-
some from the assembly which is composed of a sequence of smaller rectangles (sub-regions) whose colors are
based on the lineages (see colored legend in 1B) from the top-scoring samples within that sub-region. (B) Tree-
tracing figure: the tree is a hierarchical clustering of the 155 strains and the width of the branches correspond
to the overall frequency for which a given strain was a top-scoring sample for any sub-region. The color of the
strain corresponds to the evolutionary lineage (Mixed, Beer2, Wine, Beer1, Asia, Mosaic/Unknown) as defined
by Gallone et al [15].

a thickness corre-sponding to the proportion of a current node’s children as top-scoring
samples over the total sum.
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3.3 Runtime and conclusion
We applied Alpaca to investigate potential mosaic profiles of the industrial S. cerevisiae
strain, CEN.PK113-7D [207]. In general, the database creation took ∼1.5 min with less
than 1 gb of ram requiring ∼57 mb of space with a single CPU using default parameters.
We aligned short-read Illumina data from 155 S. cerevisiae strains from Gallone et al. [15]
to the CEN.PK113-7D long-read assembly using BWA-mem [90] and computed genome
similarities with Alpaca using default parameters. On average, target comparisons took
∼2.5 hrs with less than 2 gb of ram on two CPUs. The results are summarized in Figure 3.1.
To conclude, Alpaca can provide further insights of microbial assemblies by characterizing
potential mosaic structures across sequencing datasets of microbial populations.
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4
Chromosome level assembly and

comparative genome analysis
confirm lager-brewing yeasts

originated from a single
hybridization

The lager brewing yeast, S. pastorianus, is a hybrid between S. cerevisiae and S. eubayanus
with extensive chromosome aneuploidy. S. pastorianus is subdivided into Group 1 and Group 2
strains, where Group 2 strains have higher copy number and a larger degree of heterozygosity
for S. cerevisiae chromosomes. As a result, Group 2 strains were hypothesized to have emerged
from a hybridization event distinct from Group 1 strains. Current genome assemblies of S.
pastorianus strains are incomplete and highly fragmented, limiting our ability to investigate
their evolutionary history.

To fill this gap, we generated a chromosome-level genome assembly of the S. pastorianus strain
CBS 1483 from Oxford Nanopore MinION DNA sequencing data and analysed the newly as-
sembled subtelomeric regions and chromosome heterozygosity. To analyse the evolutionary
history of S. pastorianus strains, we developed Alpaca: a method to compute sequence simi-
larity between genomes without assuming linear evolution. Alpaca revealed high similarities
between the S. cerevisiae subgenomes of Group 1 and 2 strains, and marked differences from
sequenced S. cerevisiae strains.

Our findings suggest that Group 1 and Group 2 strains originated from a single hybridization
involving a heterozygous S. cerevisiae strain, followed by different evolutionary trajectories.
The clear differences between both groups may originate from a population bottleneck caused
by the isolation of the first pure cultures. Alpaca provides a computationally inexpensive

This chapter has been published in BMC Genomics [212]
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method to analyse evolutionary relationships while considering non-linear evolution such
as horizontal gene transfer and sexual reproduction, providing a complementary viewpoint
beyond traditional phylogenetic approaches.

4.1 Introduction
The lager-brewing yeast Saccharomyces pastorianus is an interspecies hybrid between S.
cerevisiae and S. eubayanus. Lager brewing emerged in the late middle ages and was car-
ried out during winter months at temperatures between 8 and 15℃, followed by a pro-
longed maturation period referred to as lagering [2, 267]. While S. cerevisiae is a well-
studied species frequently used in biotechnological processes [268], S. eubayanus was only
discovered in 2011 and has thus far only been isolated from the wild [262]. Therefore, the
ancestral S. pastorianus hybrid likely emerged from a spontaneous hybridization between
an ale brewing S. cerevisiae yeast and a wild S. eubayanus contaminant, and took over lager
brewing due to increased fitness under these conditions [262, 269, 270]. Indeed, laboratory-
made S. cerevisiae x S. eubayanus hybrids demonstrated hybrid vigour by combining the
fermentative capacity and sugar utilisation of S. cerevisiae and the ability to grow at lower
temperatures of S. eubayanus [271, 272].

The genomes of S. pastorianus strains are highly aneuploid, containing 0 to 5 copies of
each chromosome [137, 208–211, 269]. Between 45 and 79 individual chromosomes were
found in individual S. pastorianus genomes, compared to a normal complement of 32 chro-
mosomes in euploid Saccharomyces hybrids. The degree of aneuploidy of S. pastorianus
is exceptional in the Saccharomyces genera, and likely evolved during its domestication
in the brewing environment [209]. Nevertheless, two groups can be distinguished based
on their genome organisation: Group 1 strains, which have approximately haploid S. cere-
visiae and diploid S. eubayanus chromosome complements; and Group 2 strains, which
have approximately diploid to tetraploid S. cerevisiae and diploid S. eubayanus chromo-
some complements [137, 208, 269, 273].

Group 1 and Group 2 strains in S. pastorianus were initially thought to have originated
from two different hybridization events. Some lager-specific genes from Group 2 strains
are absent in Group 1 strains, and the subtelomeric regions of Group 1 and Group 2 strains
differ substantially [274, 275]. Based on these differences, Group 1 and Group 2 strains
were hypothesized to have emerged from different independent hybridization events, in-
volving a haploid S. cerevisiae for Group 1 strains and a higher ploidy S. cerevisiae strain
for Group 2 strains [256, 269]. Indeed, crosses between S. cerevisiae and S. eubayanus
strains with varying ploidies could be made in the laboratory, all of which performed well
in the lager brewing process [276]. Comparative genome analysis between Group 1 and
Group 2 strains revealed that there were more synonymous nucleotide differences in the
S. cerevisiae subgenome than in the S. eubayanus subgenome [277]. As accumulation of
synonymous mutations was presumed to equally affect both genomes, the authors hy-
pothesized that Group 1 and 2 strains originated from two hybridizations, with a similar
S. eubayanus parent and different S. cerevisiae parents.

More recent studies now support that Group 1 and Group 2 strains originated from
the same hybridization event. Identical recombinations between the S. cerevisiae and S.
eubayanus subgenomes were found at the ZUO1, MAT, HSP82 and XRN1/KEM1 loci in
all analysed S. pastorianus strains [208, 210, 273], which did not emerge when such hy-
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brids were evolved under laboratory conditions [278]. These conserved recombinations
indicate that all S. pastorianus strains share a common S. cerevisiae x S. eubayanus hybrid
ancestor, and that the differences between Group 1 and Group 2 strains emerged subse-
quently. Sequence analysis of ten S. pastorianus genomes revealed that the S. cerevisiae
sub-genome in Group 1 strains is relatively homozygous, while Group 2 strains possess
heterozygous sub-regions [208]. Moreover, heterozygous nucleotide stretches in Group 2
strains were composed of sequences highly similar to Group 1 genomes and of sequences
from a different S. cerevisiae genome with a 0.5% lower sequence identity. As a result,
the authors formulated two hypotheses to explain the emergence of Group 1 and Group 2
strains from a shared ancestral hybrid: (i) the ancestral hybrid had a heterozygous S. cere-
visiae sub-genome, and Group 1 strains underwent a massive reduction of the S. cerevisiae
genome content while Group 2 did not, or (ii) the ancestral hybrid had a homozygous
Group 1-like genome and Group 2 strains were formed by a subsequent hybridization
event of such a Group 1-like strain with another S. cerevisiae strain, resulting in a mixed
S. cerevisiae genome content in Group 2 strains.

Since the exact S. cerevisiae and S. eubayanus ancestors of S. pastorianus are not avail-
able, the evolutionary history of S. pastorianus has so far been based on the sequence
analysis using available S. cerevisiae and S. eubayanus reference genomes [208, 269]. How-
ever, these reference genomes are not necessarily representative of the original parental
genomes of S. pastorianus. Although S. pastorianus genomes are available, they were se-
quenced with short-read sequencing technology [137, 208, 210, 211] preventing assembly
of large repetitive stretches of several thousand base pairs, such as TY-elements or par-
alogous genes often found in Saccharomyces genomes [224]. The resulting S. pastorianus
genomes assemblies are thus incomplete and fragmented into several hundred or thousand
contigs [137, 208, 210, 211].

Single-molecule sequencing technologies can output reads of several thousand base
pairs and span entire repetitive regions, enabling near complete chromosome-level genome
assemblies of Saccharomyces yeasts [207, 234, 235, 237, 260, 279]. In addition to the lesser
fragmentation, the assembly of regions containing repetitive sequences reveals large num-
bers of previously unassembled open reading frames, particularly in the sub-telomeric re-
gions of chromosomes [207, 234, 279]. Sub-telomeric regions are relatively unstable [223],
and therefore contain much of the genetic diversity between different strains [225, 233]. In
S. pastorianus, notable differences were found between the sub-telomeric regions of Group
1 and Group 2 strains [274, 275], which could be used to understand their origin. Moreover,
repetitive regions are enriched for genes with functions determining the cell’s interaction
with its environment, such as nutrient uptake, sugar utilization, inhibitor tolerance and
flocculation [228–231]. As a result, the completeness of sub-telomeric regions is critical for
understanding genetic variation and evolutionary relationships between strains, as well
as for understanding their performance in industrial applications [207, 225, 233].

Here, we used Oxford Nanopore MinION sequencing to obtain a chromosome-level
assembly of the Group 2 S. pastorianus strain CBS 1482 and analysed the importance of
new-found sequences relative to previous genome assemblies, with particular focus on
industrially-relevant subtelomeric gene families. As the CBS 1483 genome contains multi-
ple non-identical copies for many chromosomes, we analyse structural and sequence-level
heterozygosity using short- and long-read data. Moreover, we developed a method to in-
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vestigate the evolutionary origin of S. pastorianus strains relative to a large dataset of S.
cerevisiae and S. eubayanus genomes, including an isolate of the Heineken A-yeastR⃝ lin-
eage which was isolated by dr. Elion in 1886 and is still used in beer production today.

4.2 Methods
4.2.1 Yeast strains, cultivation techniques and genomic DNA extrac-

tion
Saccharomyces strains used in this study are indicated in Table 3. S. pastorianus strain CBS
1483, S. cerevisiae strain S288C and S. eubayanus strain CBS 12357 were obtained from the
Westerdijk Fungal Biodiversity Institute (http://www.westerdijkinstitute.nl/). S. eu-
bayanus strain CDFM21L.1 was provided by Prof. Feng-Yan Bai. An isolate from the S.
pastorianus Heineken A-yeastR⃝ lineage (Hei-A) was obtained from HEINEKEN Supply
Chain B.V., Zoeterwoude, The Netherlands. All strains were stored at -80℃ in 30% glyc-
erol (vol/vol). Yeast cultures were inoculated from frozen stocks into 500-mL shake flasks
containing 100 mL liquid YPD medium (containing 10g L-1 yeast extract, 20g L-1 peptone
and 20g L-1 glucose) and incubated at 12℃ on an orbital shaker set at 200 rpm until the
strains reached stationary phase with an OD660 between 12 and 20. Genomic DNA was
isolated using the Qiagen 100/G kit (Qiagen, Hilden, Germany) according to the manufac-
turer’s instructions and quantified using a QubitR⃝ Fluorometer 2.0 (ThermoFisher Scien-
tific, Waltham, MA).

Table 4.1: Saccharomyces strains used in this study. For strains of the reference dataset, please refer to their
original publication [15, 265].

Name Species Description Reference
CBS 1483 S. pastorianus Group 2 [137]
CBS 2156 S. pastorianus Group 2 [208]
WS 34/70 S. pastorianus Group 2 [211]

Heineken A-yeastR⃝ S. pastorianus Group 2 This study
CBS 1503 S. pastorianus Group 1 [208]
CBS 1513 S. pastorianus Group 1 [210]
CBS 1538 S. pastorianus Group 1 [208]
S288C S. cerevisiae Laboratory strain [70]

CEN.PK113-7D S. cerevisiae Laboratory strain [207]
CBS 7539 S. cerevisiae Ale brewing strain [73]
CBS 1463 S. cerevisiae Ale brewing strain [73]
A81062 S. cerevisiae Ale brewing strain [276]
CBS 1171 S. cerevisiae Ale brewing strain [73]
CBS 6308 S. cerevisiae Ale brewing strain [73]
CBS 1487 S. cerevisiae Ale brewing strain [73]
CBS 12357 S. eubayanus Patagonian Isolate [262]
CDFM21L.1 S. eubayanus Himalayan isolate [280]

http://www.westerdijkinstitute.nl/
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4.2.2 Short-read Illumina sequencing
Genomic DNA of CBS 1483 and CDFM21L.1 was sequenced on a HiSeq2500 sequencer
(Illumina, San Diego,CA) with 125 bp paired-end reads with an insert size of 550 bp using
PCR-free library preparation by Keygene(Wageningen, The Netherlands). Genomic DNA
of theHeineken A-yeastR⃝ isolate Hei-A was sequenced in house on a MiSeq sequencer
(Illumina) with 300 bp paired-end reads using PCR-free library preparation. All Illumina
sequencing (see Additional file 9: Table S1 in [212]) data are available at NCBI (https:
//www.ncbi.nlm.nih.gov/) under the bioproject accession number PRJNA522669.

4.2.3 Oxford nanopore minION sequencing and basecalling
A total of four long-read genomic libraries of CBS 1483were created using different chemistries
and flow cells: one library using 2D-ligation (Sequencing Kit SQK-MAP006)with a R7.3
chemistry flow cell (FLO-MIN103); two libraries using 2D-ligation (Sequencing Kit SQK-
NSK007) witht two R9 chemistry flow cells (FLO-MIN105); and one library using 1D-
ligation (Sequencing Kit SQK-LASK108) with a R9 chemistry flow cell (FLO-MIN106). All
libraries were constructed using the same settings as previously described [207] and reads
were uploaded and basecalled using the Metrichor desktop agent (https://metrichor.
com/s/). All sequencing data (see Additional file 9: Table S1 in [212]) are avail-able at NCBI
(https://www.ncbi.nlm.nih.gov/) under the BioProject accession number PRJNA522669.

4.2.4 De novo genome assembly
The genome of CBS 1483 was assembled de novo using only the long-read sequencing
data generated in thisstudy. The assembly was generated using Canu [151], polished us-
ing Pilon [91] and annotated using MAKER2[92], as previously described [24] with some
modifications: Pilon (version 1.22) was only used to polish sequencing errors in the long-
read-only de novo assembly, and Minimap2 [93] (version 2.7) was used as the long-read
aligner to identify potential mis-assemblies and heterozygous structural variants, which
were visualized using Ribbon [94]. The resulting assembly was manually curated: (i) a
contig of 24 Kbp comprised entirely of “TATATA” sequence was discarded; (ii) three con-
tigs of592, 465, and 95 Kbp (corresponding to the rDNA locus of the S. cerevisiae sub-
genome) and complete sequence up and downstream of this locus were joined with a
gap;(iii) four contigs corresponding to S. cerevisiae chromosome I (referred to asScI) were
joined without a gap intoa complete 208 Kbp chromosome assembly (Fig.2a); (iv) two con-
tigs corresponding toScXIV were joined with a gap (Fig.2d); and (v) 23 Kbp of overlapping
sequence from the mitochondrial contig corresponding to the origin of replication was
identified with Nucmer [95] and manually removed when circularizing the contig, lead-
ing to the complete a final size of 69 Kbp. The assembled genomes are available at NCBI
(https://www.ncbi.nlm.nih.gov/) under the bioproject accession number PRJNA522669.
Gene annotations are available in Additional file1 A.

4.2.5 Comparison between ONT-only and Illumina-only genome as-
sembly

Gained and lost sequence information in the long-read assembly of CBS 1483 was deter-
mined by comparing it to the previous short-read assembly [137], as previously described
[207] with the addition of using minimum added sequence length of 25 nt.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://metrichor.com/s/
https://metrichor.com/s/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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4.2.6 FLO gene analysis
We used Tandem Repeat Finder (version 4.09) [281] with recommended parameters to iden-
tify tandem repeat sequences in FLO1 (SGDID:S000000084), FLO5 (SGDID:S000001254),
FLO8 (SGDID:S000000911), FLO9 (SGDID:S000000059), FLO10 (SGDID:S000001810), and
FLO11 (SGDID:S000001458) of S. cerevisiae strain S288C [219] as well as in FLO1, FLO5,
FLO8, FLO9, FLO10 and FLO11 of S. eubayanus strain CBS 12357 [271]. The resulting tan-
dem repeat sequences were then used as proxies to characterize FLO genes in our assembly
of CBS 1483, in a previously generated assembly of S. cerevisiae strain CEN.PK113-7D [207]
and the Lg-FLO1 genes previously described in S. cerevisiae strain CMBSVM11 (GenBank
HM358276) and S. pastorianus strain KBY001 (GenBank D89860.1) [282, 283]. BLASTN
(version 2.2.31+) [243] was then used to align the tandem sequences to each FLO gene.
The alignments were further processed via an in-house script in the Scala programming
language to identify repeat clusters by requiring a minimum alignment coverage of 0.5
and a maximum gap between two repeats of 3x times the repeat sequence length. The
total number of copies was estimated by dividing the total size of the cluster by the repeat
sequence length.

4.2.7 Intra-chromosomal heterozygosity
Sequence variation was identified by aligning the short-read Illumina reads generated in
this study to the long-read-only assembly with BWA-mem [90] (version 0.7.12) and calling
variants with Pilon [91] using the −− 𝑓 𝑖𝑥“𝑏𝑎𝑠𝑒𝑠”, ”𝑙𝑜𝑐𝑎𝑙” and −−𝑑𝑖𝑝𝑙𝑜𝑖𝑑 parameters. To
restrict false positive calls, SNPs were disregarded within 10 Kbp of the ends of the chro-
mosomes, if minor alleles had a frequency below 15% allele frequency, and if the coverage
was below 3 reads.

Copy number variation for all chromosomeswere estimated by aligning all short-reads
to the ONT-only assembly. Reads were trimmed of adapter sequences and low-quality
bases with Trimmomatic [284] (version 0.36) and aligned with BWA-mem. The median
coverage was computed using a non-overlapping window of 100 nt, copy number was de-
termined by comparing the coverage to that of the chromosome with the smallest median
coverage. Additionally, copy number variation at the gene-level was also investigated
based on whether the coverage of an individual gene significantly deviated from the cov-
erage of the surrounding region. First, we defined contiguous chromosomal sub-regions
with fixed copy number (Table S2 in [212]). The mean and standard deviation of cover-
ages of these sub-regions were then computed using long-read-only alignments. Mean
coverages of every gene was then computed and an uncorrected Z-test was performed by
comparing a gene’s mean coverage and the corresponding mean and standard deviation
of the pre-defined sub-region that the gene overlapped with.

4.2.8 Similarity analysis and lineage tracing of S. pastorianus sub-
genomes using Alpaca

We developedAlpaca [213] to investigate non-linear ancestry of a reference genome based
on large sequencing datasets. Briefly, Alpaca partitions a reference genome into multi-
ple sub-regions, each reduced to a kmer set representation. Sequence similarities of the
sub-regions are then independently computed against the corresponding sub-regions in a
collection of target genomes. Non-linear ancestry can therefore be inferred by tracing the
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population origin of the most similar genome(s) in each sub-region. Detailed explanation
Alpaca can be found in our method description [213].

Alpaca (version 1.0) was applied to the long-read CBS 1483 genome assembly to in-
vestigate the similarity of sub-regions from both sub-genomes to previously defined pop-
ulation lineages. For partitioning the CBS 1483 genome into sub-regions, we used a kmer
size of 21 and a sub-region size of 2 Kbp and used the short-read Illumina data of CBS
1483 produced in this study to assure accurate kmer set construction. For investigating
mosaic structures in the S. cerevisiae subgenome, we used 157 brewing-related S. cere-
visiae genomes (project accession number PRJNA323691) which were subdivided in six
major lineages: Asia, Beer1, Beer2, Mixed, West-Africa, Wine and Mosaic Gallone2016.
For the S. eubayanus subgenome, we used 29 available genomes (project accession num-
ber PRJNA290017) which were subdivided in three major lineages: Admixed, Patagonia-A,
and Patagonia-B [265]. Raw-reads of all samples were trimmed Trimmomatic and filtered
reads were aligned to CBS 1483 genome using BWA-mem. Alpaca was also applied to
several Saccharomyces genomes to investigate evolutionary similarities and differences
between Group 1 and Group 2 S. pastorianus genomes. We used Group 1 strains CBS 1503,
CBS 1513, and CBS 1538, and Group 2 strains CBS 2156 and WS34/70 (project accession
number PRJDB4073) [208]. As a control, eight S. cerevisiae genomes were analysed: ale
strains CBS 7539, CBS 1463, CBS 1171, CBS 6308, and CBS 1487 (project accession number
PRJEB13017) [73] and A81062 (project accession number PRJNA408119) [276], and labo-
ratory strains CEN.PK113-7D (project accession number PRJNA393501) [207] and S288C
(project accession number PRJEB14774) [237]. Similarly, raw-reads for all strains were
trimmed with Trimmomatic and aligned to the long-read CBS 1483 genome assembly us-
ing BWA-mem. Partitioning of the additional S. pastorianus and S. cerevisiae genomes with
Alpaca was performed by deriving kmer sets from read-alignments only, assuring direct
one-to-one comparison of all sub-regions across all genomes. Kmer size of 21 and sub-
region size of 2 Kbp were used. The S. cerevisiae and S. eubayanus sequencing data were
used to identify potential mosaic structures in these genomes. Lastly, S. cerevisiae and S.
eubayanus strains were subdivided into subpopulations according to previously defined
lineages [15, 265]. MASH (version 2.1) [177] was then used to hierarchically cluster each
genome based on their MASH distance using kmer size of 21, sketch size of 1,000,000, and
minimum kmer frequency of 2. The resulting trees were used as population reference trees
for Alpaca [213].

4.3 Results
4.3.1 Near-complete haploid assembly of CBS 1483
We obtained 3.3 Gbp of whole genome sequencing data of the Saccharomyces pastorianus
strain CBS 1483 using 4 flow cells on Oxford Nanopore Technology’s MinION platform.
Based on a genome size of 46 Mbp accounting for all chromosome copy numbers, the com-
bined coverage was 72x with an average read length of 7 Kbp (Additional file 2: Figure S1
in [212]). We assembled the reads using Canu [151] and performed manual curation in-
volving circularization of the mitochondrial DNA, scaffolding of ScXII (chromosome XII
of the S. cerevisiae sub-genome) and resolution of assembly problems due to inter- and
intra-chromosomal structural heterozygosity in ScI and ScXIV (Figure 4.1). Assembly er-
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Table 4.2: Length and gaps of each assembled chromosome of the S. cerevisiae and S. eubayanus
subgenome in the de novo assembly of Group 2 S. pastorianus strain CBS 1483. The mitochondrial DNA
is not shown.

S. cerevisiae sub-genome S. eubayanus sub-genome
Contigs/Scaffold Size Gaps Contigs/Scaffold Size Gaps

ScI 208,794 0 SeI 183,365 0
ScII 812,290 0 SeII 1,284,912 0
ScIII 0 0 SeIII 311,639 0
ScIV 1,480,484 0 SeIV 995,872 0
ScV 590,259 0 SeV 580,717 0
ScVI 263,951 0 SeVI 268,897 0
ScVII 862,436 0 SeVII 1,048,199 0
ScVIII 547,874 0 SeVIII 813,607 0
ScIX 426,203 0 SeIX 413,986 0
ScX 772,632 0 SeX 698,708 0
ScXI 662,864 0 SeXI 658,371 0
ScXII 1,128,411 2 SeXII 1,043,408 0
ScXIII 872,991 0 SeXIII 966,749 0
ScXIV 783,474 0 SeXIV 765,784 1
ScXV 1,060,500 0 SeXV 754,183 0
ScXVI 926,828 0 SeXVI 788,293 0

Unplaced 36,198 0 Mitochondria 68,765 0

rors were corrected with Pilon [91]using paired-end Illumina reads with 159x coverage.
We obtained a final assembly of 29 chromosome contigs, 2 chromosome scaffolds, and the
complete mitochondrial contig leading to a total size of 23.0 Mbp (Figure 4.2 and Table 5.2).
The assembly was remarkably complete: of the 31 chromosomes (in CBS 1483 ScIII and
SeIII recombined into a chimeric SeIII-ScIII chromosome [137], 29 were in single contigs;
21 of the chromosomes contained both telomere caps; 8 contained one of the caps; and
2 were missing both caps. Some chromosomes contain sequence from both parental sub-
genomes due to recombinations; those chromosomes were named SeIII-ScIII, SeVII-ScVII,
ScX-SeX, SeX-ScX and SeXIII-ScXIII, in accordance with previous nomenclature [137]. An-
notation of the assembly resulted in the identification of 10,632 genes (Additional file 1a).
We determined chromosome copy number based on coverage analysis of short-read align-
ments to the genome assembly of CBS 1483 (Figure 4.2 and Additional file 3: Figure S2 in
[212]).

4.3.2 Comparison between Oxford nanopore minION and Illumina
assemblies

In order to compare our novel long-read assembly of CBS 1483 to the previous assembly
generated using short-read data, we aligned contigs of CBS 1483 from van den Broek et al.
[137] to our current long-read assembly, revealing a total 1.06 Mbp of added sequence. The
added sequence overlapped with 323 ORFs (Additional file 1b in [212]). Conversely, align-
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Figure 4.1: Structural heterozygosity within multiple copies of the S. cerevisiae chromosome I of CBS
1483. (A) Layout of S. cerevisiae chromosome I in the assembly graph. Paths 1 and 2 (blue text and arrows) repre-
sent alternative contigs in the right-end of the chromosome—the gene UIP3 is deleted in path 2. (B) Sequencing
coverage of long-read alignments of CBS 1483 in the right-end of chromosome I after joining path 1 and discard-
ing path 2. The location of the UIP3 gene is indicated. c Alignment overview of five raw long-reads supporting
the introgression of a ∼14 Kbp in chromosome I (pink colour) to a region at the right-end of chromosome XIV
(brown colour) in the S. cerevisiae sub-genome. The additional alignments (pink and orange) are alignments to
computationally confirmed Ty-2 repetitive elements. d Schematic representation of the two chromosome archi-
tectures of S. cerevisiae chromosome XIV (brown colour) due to translocation of an additional copy of the right
arm of chromosome I (salmon colour) to the left arm of chromosome XIV.
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ing the long-read assembly to the van den Broek et al. assembly revealed that only 14.9
Kbp of sequence were lost, affecting 15 ORFs (Additional file 1c in [212]). Gene ontology
analysis of the added genes showed enrichment of several biological processes, functions,
and components such as flocculation (𝑝 = 7.44𝑥10−3 as well as transporter activity for sev-
eral sugars including mannose, fructose and glucose (𝑝 ≤ 1.5𝑥10−5) (Additional file in 1d
in [212]). Among the added genes were various members of subtelomeric gene families
such as the FLO, SUC, MAL, HXT and IMA genes (Additional file 1e in [212]). Due to
their role in the brewing-relevant traits such as carbohydrate utilization and flocculation,
the complete assembly of subtelomeric gene families is crucial to capture different gene
versions and copy number effects.

The assembly of CBS 1483 contained 9 MAL transporters, which encode for the abil-
ity to import maltose and maltotriose [285–287], constituting 85% of fermentable sugar in
brewer’s wort [288]. The S. cerevisiae subgenome harboured ScMAL31 on ScII, ScMAL11
on ScVII and on SeVII-ScVII, and ScMAL41 on ScXI (Additional File 1B and 1E in [212]).
However, the ScMAL11 gene, also referred to as AGT1, was truncated, and there was no
ScMAL21 gene due to the complete absence of ScIII, as reported previously [137, 274].
In the S. eubayanus subgenome, MAL31-type transporter genes were found in SeII, SeV,
and SeXIII-ScXIII, corresponding to the location of the S. eubayanus transporter genes
SeMALT1, SeMALT2 and SeMALT3, respectively [271]. In addition, a MAL11-like trans-
porter was found on SeXV. Consistently with previous reports, no MTY1-like maltotriose
transporter was found in CBS 1483 [137]. Due to the absence of MTY1 and the trunca-
tion of ScMAL11, maltotriose utilisation is likely to rely on the SeMAL11 transporter in
CBS 1483. Indeed, a MAL11-like transporter was recently shown to confer maltotriose
utilisation in an S. eubayanus isolate from North Carolina [289].

The assembly also contained 14 FLO genes encoding flocculins which cause cell mass
sedimentation upon completion of sugar consumption [231, 290, 291]. The heavy floccula-
tion of S. pastorianus cells simplifies biomass separation at the end of the brewing process,
and resulted in their designation as bottom-fermenting yeast [292]. Flocculation is medi-
ated by flocculins: lectin-like cell wall proteins which effect cell-to-cell adhesion. In CBS
1483, we identified 12 flocculin genes, in addition to two FLO8 transcriptional activators
of flocculins (Additional File 1E). Flocculation intensity has been correlated to the length
of flocculin genes [293–295]. Specifically, increased length and number of tandem repeats
within the FLO genes caused increased flocculation [295, 296]. We therefore analysed tan-
dem repeats in S. cerevisiae, S. eubayanus and S. pastorianus genomes and found that most
FLO genes contain a distinct repeat pattern: two distinct, adjacent sequences each with
variable copy number (Table 4.3). The repeats in FLO1, FLO5, and FLO9 of the S. cerevisiae
strain S288C have the same repeats of 135 bp and 15 bp; while repeats are of 189 bp and 15
bp for FLO10 and of 132 bp and 45 bp for FLO11. The same repeat structures can be found
in the S. eubayanus strain CBS 12357 as FLO1, FLO5, and FLO9 contain repeats of 156 and
30 bp; although we were unable to find clear repeat patterns for FLO10 and FLO11 in this
genome. In S. pastorianus CBS 1483, the repeat lengths of FLO genes corresponded to the
subgenome they were localized in (Table 4.3). Compared to the non-flocculent S288C and
CBS 12357 strains, FLO genes were systematically shorter in CBS 1483, contrasting with
available theory [290–295, 295–298]. The intense flocculation phenotype of S. pastorianus
was previously attributed to a gene referred to as LgFLO1 [282, 297, 298]. However, align-
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Figure 4.2: Overview of the long-read-only de novo genome assembly of the S. pastorianus strain, CBS
1483. For each chromosome, all copies are represented as coloured rectangles. Genomic material originating
from S. cerevisiae (blue) and from S. eubayanus (red) are shown, and the position of the centromere is indicated
by the constricted position within each rectangle. Heterozygous SNP calls are represented as vertical, black lines
and are drawn with transparency to depict the density of SNP calls in a given region. Underlying chromosome
copy number data and the list of heterozygous SNPs is available in Additional file 3: Figure S2 and Additional
file 1 F in [212].
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Table 4.3: Tandem repeat analysis in FLO genes. We found seven repeat sequences when analysing floccula-
tion genes FLO1, FLO5, FLO9, FLO10, and FLO11 in S. cerevisiae (S288C) and S. eubayanus (CBS 12357) genomes.
These sequences are referred to as sequence A (135 nt), B (15 nt), C (189 nt), D (45 nt), E (132 nt), F (156 nt), and
G (30 nt). We used these sequences to analyse the copy numbers of each repeat within all FLO genes in our
long-read-only assembly of CBS 1483 using the long-read-only S288C assembly as a control. Their respective
copy numbers are shown below.

Species (Sub)genome Gene Gene size (nt) A B C D E F G
S. cerevisiae

S288C
FLO1 4614 18.0 9.4 - - - - -
FLO5 3228 8.0 9.6 - - - - -
FLO9 3969 13.0 8.3 - - - - -
FLO10 3510 - 3.8 4.4 - - - -
FLO11 4104 - - - 38.7 6.6 - -

S288C (long)
FLO1 4615 18.0 9.4 – – – – –
FLO5 3228 8.0 9.6 – – – – –
FLO9 3978 13.0 8.3 – – – – –
FLO10 3508 – 3.8 4.4 – – – –
FLO11 4104 – – – 38.7 6.6 – –

CBS 1483
FLO1 (ScVI) 1038 – – – – – – –
FLO5 (ScI) 2603 1 11.1 – – – – –
FLO9 (ScI) 2967 5 15.4 – – – – –

FLO11 (ScIX) 2787 – – – 14.1 5.6 – –
S. eubayanus

CBS 12357
FLO1 5517 – – – – – 24.7 2.8
FLO5 1325 – – – – – – –

FLO9 (SeI) 4752 – – – – – 8.3 45.9
FLO9 (SeVI) 3480 – – – – – – –
FLO9 (SeX) 4041 – – – – – 7.4 20.1
FLO9 (SeXII) 3321 – – – – – – 10.2
FLO10 (SeXI) 4128 – – – – – – –
FLO11 (SeIX) 4149 – – – – – – –

CBS 1483
FLO5 (SeI) 1945 – – – – – 4.9 2.8
FLO5 (SeI) 391 – – – – – – –
FLO5 (SeVI) 3765 – – – – – – –
FLO5 (SeXI) 2582 – – – – – 4.9 2.8
FLO9 (SeI) 2100 – – – – – 3.0 3.8

FLO9 (SeXII) 2892 – – – – – – 6.3
FLO10 (SeVI) 3378 – – – – – – –
FLO11 (SeIX) 3909 – – – – – – –

ment of previously published partial and complete LgFLO1 sequences did not confirm the
presence of a similar ORF in CBS 1483. Moreover, the annotated FLO genes had higher
identity with S. eubayanus and S. cerevisiae FLO genes, than with LgFLO1. Therefore, floc-
culation is likely to rely on one or several of the identified FLO genes from S. cerevisiae or
S. eubayanus subgenomes (Table 4.3).

4.3.3 Sequence heterogeneity in CBS 1483
As other Group 2 S. pastorianus strains, CBS 1483 displays heterozygosity between dif-
ferent copies of its S. cerevisiae subgenome [208]. We therefore systematically identified
heterozygous nucleotides in its genome and investigated the ORFs with allelic variation.
Using 159x coverage of paired-end Illumina library of CBS 1483, we found a total of 6,367
heterozygous SNPs across the genome (Additional File 1F in [212]). Although the het-
erozygous SNPs are present across the whole genome, they affect primarily the S. cere-
visiae sub-genome, with the majority clustered around centromeres (Figure 4.2). Of these
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positions, 58% were located within ORFs, resulting in 896 ORFs with allelic variation con-
sisting of 1 to 30 heterozygous nucleotides. A total of 685 ORFs showed heterozygosity
which would result in amino acid sequence changes, including 16 premature stop codons,
4 lost stop codons and 1566 amino acid substitutions (Additional File 1F [212]). Gene on-
tology analysis of the ORFs affected by heterozygous calls revealed no significant enrich-
ment in processes, functions of compartments. However, it should be noted that several
industrially-relevant genes encoded more than one protein version, such as: the BDH1
and BDH2 genes, encoding butane-diol dehydrogenases involved in reduction of the off
flavour compound diacetyl [299], the FLO5 and FLO9 genes encoding flocculins [298], and
the OAF1 gene encoding a regulator of ethyl-ester production pathway [300].

4.3.4 Structural heterogeneity in CBS 1483 chromosomes

We investigated whether information about structural heterogeneity between chromo-
some copies could be recovered despite the fact that current assembly algorithms reduce
genome assemblies to consensus sequences. Information about structural and sequence
variation between different chromosome haplotypes is not captured by consensus assem-
blies. However, raw read data contains information for each chromosome copy. To iden-
tify structural heterogeneity, we identified ORFs whose predicted copy number deviated
from that of the surrounding region in the chromosome based on read coverage analysis
(Figure S3 in [212]). We found 213 ORFs with deviating copy number (Additional File 1G
in [212]). While no enrichment was found by gene ontology analysis, many of these ORFs
are located in subtelomeric regions [225]. Nevertheless, a few regions contained adjacent
ORFs with deviating copy number, indicating larger structural variation between chromo-
some copies. For example, 21 consecutive ORFs in the right-end of the ScXV appear to
have been deleted in 2 of the 3 chromosome copies (Figure S3 in [212]). UIP3, one of the
genes with deviating copy number, was located on the right arm of chromosome ScI. This
region was previously identified as having an additional copy in CBS 1483, although it
could not be localized based on short read data [137]. The assembly graph showed two
possible structures for ScI, which were collapsed into a single contig in the final assembly
(Figure 4.1A). Sequence alignment, gene annotations and sequencing coverage indicated
two versions of the ScI contigs: one with and one without the gene UIP3 (Figure 4.1B).
Sequence alignments of raw-long-reads revealed five reads (from 20.6 to 36.7 Kbp) linking
the right arm of ScI to the left arm of ScXIV at position ∼561 Kbp (Figure 4.1C). This loca-
tion corresponded to a Ty-2 repetitive element; known to mediate recombination within
Saccharomyces genomes [224]. In addition to the increased coverage of the right arm of
ScI, the left arm of ScXIV showed decreased sequencing coverage up until the ∼561 Kbp
position. Together, these results suggest that the left arm of one copy of ScXIV was re-
placed with an additional copy of the right arm of ScI (Figure 4.1D). As no reads covered
both the recombination locus and the UIP3 locus, it remained unclear if UIP3 is present in
the ScI copy translocated to chromosome ScXIV. The resolution of two alternative chro-
mosome architectures of ScI and ScXIV illustrates the ability of long-read alignment to
resolve structural heterozygosity.
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4.3.5 Differences betweenGroup 1 and 2 genomes do not result from
separate ancestry

S. pastorianus strains can be subdivided into two separate groups—termed Group 1 and
Group 2—based on both phenotypic [301] and genomic features [208, 269]. However,
the ancestral origin of each group remains unclear. The two groups may have emerged
by independent hybridization events [277]. Alternatively, Group 1 and Group 2 strains
may originate from the same hybridization event, but Group 2 strains later hybridized
with a different S. cerevisiae strain [208]. In both cases, analysis of the provenance of
genomic material from Group 1 and Group 2 genomes could confirm the existence of sep-
arate hybridization events if different ancestries are identified. Pan-genomic analysis of S.
cerevisiae strains indicated that their evolution was largely non-linear, involving frequent
horizontal gene transfer and sexual backcrossing events [73]. Especially if the evolution-
ary ancestry of S. pastorianus involves admixture of different S. cerevisiae genomes [208],
approaches considering only linear evolution such as phylogenetic trees are insufficient
[302]. Complex, non-linear evolutionary relationships could be addressed with network
approaches [303]. However, such algorithms are not yet fully mature and would involve
extreme computational challenges [174, 304].

Therefore, we developed Alpaca: a simple and computationally inexpensive method
to investigate complex non-linear ancestry via comparison of sequencing datasets [213].
Alpaca is based on short-read alignment of a collection of strains to a partitioned reference
genome, in which the similarity of each partition to the collection of strains is indepen-
dently computed using kmer sets [213]. Reducing the alignments in each partition to kmer
sets prior to similarity analysis is computationally inexpensive. Phylogenetic relationships
are also not recalculated, but simply inferred from previously available information on the
population structure of the collection of strains [213]. The partitioning of the reference
genome enables the identification of strains with high similarity to different regions of
the genome, enabling the identification of ancestry resulting from non-linear evolution.
Moreover, since similarity analysis is based on read data, heterozygosity is taken into ac-
count.

We usedAlpaca to identify the most similar lineages for all non-overlapping 2 Kbp sub-
regions in the genome of the Group 2 S. pastorianus strain CBS 1483 using the reference
dataset of 157 S. cerevisiae [15] strains and 29 S. eubayanus [265]. We inferred population
structures for both reference datasets by using previously defined lineages of each strain
along with hierarchical clustering based on genome similarity using MASH [177]. For the
S. eubayanus subgenome, almost all sub-regions of CBS 1483 were most similar to strains
from the Patagonia B—Holartic lineage [265] (Figure 4.3). In fact, 68% of all sub-regions
were most similar to the Tibetan isolate CDFM21L.1 (65) and 27% to two highly-related
North-American isolates (Figure S4 in [212]), indicating a monophyletic ancestry of the S.
eubayanus genome. Analysis of S. pastorianus strains CBS 2156 and WS 34/70 (Group2),
and of CBS 1503, CBS 1513 and CBS 1538 (Group 1), indicated identical ancestry of their S.
eubayanus subgenomes (Figure S4 in [212]). Overall, we did not discern differences in the
S. eubayanus subgenomes of S. pastorianus strains, which seem to descend from a strain
of the Patagonia B—Holartic lineage and which is most closely related to the Himalayen
isolate CDFM21L.1.

In contrast, for the S. cerevisiae sub-genome of CBS 1483, the most similar S. cerevisiae
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Figure 4.3: Tree-tracing of the genome-scale similarity across the S. eubayanus (sub-)genomes of
Group 1 and 2 S. pastorianus strains, as determined using Alpaca. The frequency at which a genome
from the reference data set of 29 S. eubayanus genomes from Peris et al [265] was identified as most similar for a
sub-region of the CBS 1483 genome is depicted. The reference dataset is represented as a population tree, upon
which only lineages with similarity are indicated with a thickness proportional to the frequency at which they
were found as most similar (‘N’ being the total sum of the number of times all samples appeared as top-scoring).
The complete reference population tree (A), the genomes of Group 1 strains CBS 1503, CBS 1513 and CBS 1538
(B-D) and for the genomes of Group 2 strains CBS 1483, CBS 2156 and WS34/70 (E-G) are shown.
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Figure 4.4: Similarity profiles of the S. cerevisiae (sub-)genomes of various Saccharomyces strains, as
determined using Alpaca for chromosomes Sc II and IV. Each S. cerevisiae chromosome of the CBS
1483 assembly was partitioned in non-overlapping sub-regions of 2 Kbp. The colors represent the most
similar lineages based on kmer similarity of 157 S. cerevisiae strains from Gallone et al. [15]: Asia (blue), Beer1
(green), Beer2, (gold), Mixed (orange), West-Africa (purple), Wine (red). Mosaic strains are shown in black and
ambiguous or low-similarity sub-regions in white. Similarity patterns are shown for the Group 2 S. pastorianus
strains CBS 1483, CBS 2156, WS34/70 and Hei-A, for the Group 1 S. pastorianus strains CBS 1503, CBS 1513 and
CBS 1538, for S. cerevisiae ale-brewing strains CBS 7539, CBS 1463, A81062, CBS 1171, CBS 6308 and CBS 1483,
and for S. cerevisiae laboratory strains CEN.PK113-7D and S288C. Similarity profiles for all chromosomes in the
S. cerevisiae (sub-)genomes are shown in Figure S5 in [212].
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strains varied across the sub-regions of every chromosome (Figure 4.4 and S5 in [212]). No
strain of the reference dataset was most similar for more than 5% of sub-regions, suggest-
ing a high degree of admixture (Figure 5 4.4 and S6 [212]). However, 60% of sub-regions
were most similar to the Beer 1 lineage, 12%were most similar to theWine lineage and 10%
to the Beer 2 lineage [15]. In order to determine Alpaca’s ability to differentiate genomes
with different admixed ancestries, we analysed the genomes of 8 S. cerevisiae strains: six
ale-brewing strains and the laboratory strains CEN.PK113-7D and S288C. The strains CBS
7539, CBS 1463 and A81062 were identified as similar to the Beer 2 lineage, CBS 1171 and
CBS 6308 as similar to the Beer 1 lineage, CBS 1487 as similar to the Wine lineage, and
CEN.PK113-7D and S288C as similar to the mosaic laboratory strains (Figure 4.4 and S5
in [212]). In addition, the distribution of similarity over the S. cerevisiae population tree
differed per strain (Figure 4.5 and S6 in [212]). While no single strain was most simi-
lar for more than 8% of the sub-regions for CBS 1487 and CBS 6308, for CBS 7539 67% of
sub-regions were most similar to the strain beer002. As both beer002 and CBS 7539 are an-
notated as Bulgarian beer yeast [15, 283], this similarity likely reflects common origin. The
different similarity profiles of all S. cerevisiae strains indicate that Alpaca can differentiate
different ancestry by placement of genetic material within the S. cerevisiae population tree,
whether a genome has a linear monophyletic origin or a non-linear polyphyletic origin.

To identify possible differences in genome compositionswithin the S. cerevisiae subgenomes
of S. pastorianus, we analysed other Group 1 and 2 strains using Alpaca, including an iso-
late of the Heineken A-yeastR⃝ lineage (Hei-A), which was isolated in 1886 and represents
one of the earliest pure yeast cultures. Whole genome sequencing, alignment to the CBS
1483 assembly and sequencing coverage analysis revealed that the ploidy of the Hei-A
isolate corresponds to that of a Group 2 strain (Figure S7 in [212]). Analysis of Hei-A
and the other S. pastorianus Group 2 strains CBS 2156 and WS 34/70 using Alpaca yielded
almost identical patterns of similarity at the chromosome-level as CBS 1483 (Figure 4.4
and S5 in [212]). Moreover, similarity was distributed across the S. cerevisiae population
tree almost identically as in CBS 1483 (Figure 4.5 and S6 in [212]). The Group 1 S. pastori-
anus strains CBS 1503, CBS 1513 and CBS 1538 displayed different patterns of similarity
at the chromosome-level relative to Group 2 strains. While various chromosome regions
harboured almost identical similarity patterns, some regions differed significantly, such
as: ScI, the middle of ScIV, the left arm of ScV, ScVIII, the right arm of ScIX, ScX-SeX,
ScXI and ScXIII (Figure 4.4 and S5 in [212]). However, at the genome level, similarity was
distributed across the S. cerevisiae population tree almost identically as in Group 2 strains,
except for a slightly higher contribution of the Beer 2 andWine lineages, at the expense of
a lower contribution of the Beer 1 lineage (Figure 4.5 and S6 in [212]). The almost identical
distribution of all Group 1 and Group 2 strains over the S. cerevisiae population tree indi-
cate that they have the same S. cerevisiae ancestry. The spread of similarity across the S.
cerevisiae population tree advocates for an admixed, possibly heterozygous ancestry of the
S. cerevisiae subgenome of S. pastorianus. Furthermore, the different patterns of similarity
at the chromosome level between both groups are compatible with an initially heterozy-
gous S. cerevisiae subgenome which was subjected to independent loss of heterozygosity
events in each group, resulting in differential retention of each haplotype. The lower rel-
ative contribution of Beer 1 strains in Group 1 strains may be explained by the complete
absence of S. cerevisiae chromosomes with high similarity to Beer1 strains, such as ScV,
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ScXI and ScXv-ScXI.

4.4 Discussion
In this study, we used Oxford Nanopore Technology’s (ONT) MinION sequencing plat-
form to study the genome of CBS 1483, an alloaneuploid Group 2 S. pastorianus strain.
The presence of extensively aneuploid S. cerevisiae and S. eubayanus subgenomes sub-
stantially complicates analysis of S. pastorianus genomes [137]. We therefore explored
the ability of ONT sequencing to generate a reference genome in the presence of mul-
tiple non-identical chromosome copies, and investigated the extent to which structural
and sequence heterogeneity can be reconstructed. Despite its aneuploidy, we obtained a
chromosome-level genome haploid assembly of CBS 1483 in which 29 of the 31 chromo-
somes were assembled in a single contig. Comparably to assemblies of euploid Saccha-
romyces genomes [207, 234, 235, 237, 260, 271], ONT sequencing resulted in far lesser frag-
mentation and in the addition of considerable sequences compared to a short-read based
assembly of CBS 1483, notably in the subtelomeric regions [137]. The added sequences
enabled more complete identification of industrially-relevant subtelomeric genes such as
theMAL genes, responsible for maltose andmaltotriose utilisation [285–287], and the FLO
genes, responsible for flocculation [231, 290, 291]. Due to the instability of subtelomeric
regions [223, 225, 233], the lack of reference-based biases introduced by scaffolding allows
more certainty about chromosome structure [207]. Since subtelomeric genes encode vari-
ous industrially-relevant traits [228–231], their mapping enables further progress in strain
improvement of lager brewing yeasts. Combined with recently developed Cas9 gene edit-
ing tools for S. pastorianus [209], accurate localisation and sequence information about
subtelomeric genes is critical to investigate their contribution to brewing phenotypes by
enabling functional characterization [305].

Despite the presence of non-identical chromosome copies in CBS 1483, the genome
assembly only contained one contig per chromosome. While the assembly did not cap-
ture information about heterogeneity, mapping of short-read data enabled identification
of sequence heterozygosity across the whole genome. In previous work, two alternative
chromosome structures could be resolvedwithin a population of euploid S. cerevisiae strain
CEN.PK113-7D by alignment of long-reads [207]. Therefore, we evaluated the ability to
identify structural heterogeneity by aligning long-read data to the assembly. Indeed, long-
read alignments enabled the identification of two versions of chromosome ScI: with and
without an internal deletion of the gene UIP3. Furthermore, the length of long-reads en-
abled them to span a TY-element, revealing that one of the copies of the right arm of
ScI was translocated to the left arm of ScXIV. While the two alternative structures of ScI
constitute a first step towards the generation of chromosome copy haplotypes, long-reads
only enabled the hypothesis-based resolution of suspected heterogeneity. Assembly algo-
rithms which do not generate a single consensus sequence per chromosome are emerg-
ing [170, 306]. However, haplotyping is particularly difficult in aneuploid and polyploid
genomes due to copy number differences between chromosomes [306]. A further reduc-
tion of the relatively high error rate of long-reads, or the use of more accurate long-read
sequencing technologies, could simplify the generation of haplotype-level genome assem-
blies in the future by reducing noise [307].

We used the chromosome-level assembly of CBS 1483 to study the ancestry of S. pas-
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Figure 4.5: Tree-tracing of the genome-scale similarity across the S. cerevisiae (sub-)genomes of vari-
ous Saccharomyces strains, as determined using Alpaca. The frequency at which a genome from the refer-
ence data set of 157 S. cerevisiae strains from Gallone et al. [15] was identified as most similar for a sub-region
of the CBS 1483 genome is depicted. The reference dataset is represented as a population tree, upon which
only lineages with similarity are indicated with a thickness proportional to the frequency at which they were
found as most similar (‘N’ being the total sum of the number of times all samples appeared as top-scoring). The
genomes of S. pastorianus Group 1 strain CBS 1513 (A), of S. pastorianus Group 2 strain CBS 1483 (B), of S. cere-
visiae strain CBS 7539 and of S. cerevisiae strain CBS 1171 are shown. The tree-tracing figures of S. pastorianus
Group 1 strains CBS 1503 and CBS 1538, of S. pastorianus Group 2 strains CBS 2156, WS34/70 and Hei-A, and of
S. cerevisiae strains CBS 1463, A81062, CBS 6308, CBS 1487, CEN.PK113-7D and S288C are shown in Figure S6
in [212].
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torianus genomes. Due to the importance of non-linear evolution in the domestication
process of Saccharomyces strains [73], and to the admixed hybrid nature of S. pastorianus
[208, 265], we used the newly-developed method Alpaca to analyse the ancestry of CBS
1483 instead of classical phylogenetic approaches using reference datasets of S. cerevisiae
and S. eubayanus strains [15, 265]. All S. pastorianus genomes displayed identical distri-
bution of similarity across the reference S. eubayanus population tree, both at the chromo-
some and whole-genome level. All S. pastorianus genomes also showed identical distribu-
tion of similarity across the reference S. cerevisiae population tree at the whole genome
level; however, Group 1 and Group 2 strains displayed different similarity patterns at the
chromosome level. The absence of differences in the S. cerevisiae genome at the whole
genome level and recurrence of identical chromosomal break points between Group 1 and
2 strains discredit previous hypotheses of different independent hybridization events in
the evolution of Group 1 and 2 strains [208, 277]. Instead, these results are compatible with
the emergence of Group 1 and 2 strains from a single shared hybridization event between
a homozygous S. eubayanus genome closely related to the Tibetan isolate CDFM21L.1 and
an admixed heterozygous S. cerevisiae genome with a complex polyphyletic ancestry. Loss
of heterozygosity is frequently observed in Saccharomyces genomes [73, 308], and there-
fore likely to have affected both the genomes of Group 1 and 2 strains [208, 309, 310]. The
different chromosome-level similarity patterns in both groups likely emerged through dif-
ferent loss of heterozygosity events in Group 1 and 2 strains [309, 310]. In addition, the
lower S. cerevisiae chromosome content of Group 1 is consistent with observed loss of ge-
netic material from the least adapted parent during laboratory evolution of Saccharomyces
hybrids [311–315]. In this context, the lower S. cerevisiae genome content of Group 1
strains may have resulted from a rare and serendipitous event. For example, chromosome
loss has been observed due to unequal chromosome distribution from a sporulation event
of a allopolyploid Saccharomyces strain [315]. Such mutant may have been successful if
loss of S. cerevisiae chromosomes provided a selective advantage in the low-temperature
lager brewing environment [311, 311]. The loss of the S. cerevisiae subgenome may have
affected only Group 1 strains due to different brewing conditions during their domestica-
tion. However, the high conservation of similarity within Group 1 and Group 2 strains
indicate that the strains within each Group are closely related, indicating a strong popula-
tion bottleneck in their evolutionary history.

Such a bottleneck could have been caused by the isolation and propagation of a lim-
ited number S. pastorianus strains, which may have eventually resulted in the extinction
of other lineages. The first S. pastorianus strains isolated in 1883 by Hansen at the Carls-
berg brewery were all Group 1 strains [210, 316]. Due to the industry practice of adopting
brewing methods and brewing strains from successful breweries, Hansen’s Group 1 iso-
lates likely spread to other breweries as these adopted pure culture brewing [2]. Many
strains which were identified as Group 2 by whole genome sequencing were isolated in
the Netherlands [208, 269]: Elion isolated the Heineken A-yeastR⃝ in 1886 [317], CBS 1484
was isolated in 1925 from the Oranjeboom brewery [269], CBS 1483 was isolated in 1927
in a Heineken brewery [137], and CBS 1260, CBS 2156 and CBS 5832 were isolated from
unknown breweries in the Netherlands in 1937, 1955 and 1968, respectively [269, 318].
Analogously to the spread of Group 1 strains from Hansen’s isolate, Group 2 strains may
have spread from Elion’s isolate. Both Heineken and Carlsberg distributed their pure cul-
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ture yeast biomass to breweries over Europe and might therefore have functioned as an
evolutionary bottleneck by supplanting other lineages with their isolates [319, 320]. Over-
all, our results support that the differences between Group 1 and 2 strains emerged by
differential evolution after an initial shared hybridization event, and not by a different S.
eubayanus and/or S. cerevisiae ancestry.

Beyond its application in this study, we introduced Alpaca as a method to evaluate
non-linear evolutionary ancestry. The use of short-read alignments enables Alpaca to ac-
count for sequence heterozygosity when assessing similarity between two genomes and is
computationally inexpensive as they are reduced to kmer sets. Moreover,Alpaca leverages
previously determined phylogenetic relationships within the reference dataset of strains
to infer the evolutionary relationship of the reference genome to the dataset of strains.
Due to the presence of non-linear evolutionary processes in a wide range of organisms
[321, 322], the applicability of Alpaca extends far beyond the Saccharomyces genera. For
example, genetic introgressions from Homo neanderthalensis constitute about 1% of the
human genome [323]. Horizontal gene transfer is even relevant across different domains
of life: more than 20% of ORFs of the extremely thermophilic bacteria Thermotoga mar-
itima were more closely related to genomes of Archaea than to genomes of other Bacteria
[324]. Critically, horizontal gene transfer, backcrossing and hybridization have not only
played a prominent role in the domestication of Saccharomyces yeasts [73], but also in
other domesticated species such as cows, pigs, wheat and citrus fruits [325–328]. Overall,
Alpaca can significantly simplify the analysis of new genomes in a broad range of contexts
when reference phylogenies are already available.

4.5 Conclusion
With 29 of the 31 chromosomes assembled in single contigs and 323 previously unassem-
bled genes, the genome assembly of CBS 1483 presents the first chromosome-level as-
sembly of a S. pastorianus strain specifically, and of an alloaneuploid genome in general.
While the assembly only consisted of consensus sequences of all copies of each chromo-
some, sequence and structural heterozygosity could be recovered by alignment of short
and long-reads to the assembly, respectively. We developed Alpaca to investigate the an-
cestry of Group 1 and Group 2 S. pastorianus strains by computing similarity between
short-read data from S. pastorianus strains relative to large datasets of S. cerevisiae and S.
eubayanus strains. In contrast with the hypothesis of separate hybridization events, Group
1 and 2 strains shared similarity with the same reference S. cerevisiae and S. eubayanus
strains, indicating shared ancestry. Instead, differences between Group 1 and Group 2
strains could be attributed to different patterns of loss of heterozygosity subsequent to a
shared hybridization event between a homozygous S. eubayanus genome closely related
to the Tibetan isolate CDFM21L.1 and an admixed heterozygous S. cerevisiae genome with
a complex polyphyletic ancestry. We identified the Heineken A-yeastR⃝ isolate as a Group
2 strain. We hypothesize that the large differences between Group 1 and Group 2 strains
and the high similarity within Group 1 and 2 strains result from a strong population bot-
tleneck which occurred during the isolation of the first Group 1 and Group 2 strains, from
which all currently known S. pastorianus strains descend. Beyond its application in this
study, the ability of Alpaca to reveal non-linear ancestry without requiring heavy compu-
tations presents a promising alternative to phylogenetic network analysis to investigate
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horizontal gene transfer, backcrossing and hybridization.
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A streaming algorithm to infer

species composition in
Saccharomyces hybrid genomes

5.1 Introduction
Saccharomyces yeasts are central organisms in various industrial applications. Historically,
humans have used yeast for agricultural purposes, such as bread making and alcohol fer-
mentation [329–331]. In the past few decades, Saccharomyces yeasts have been adapted
for biotechnological purposes, such as the production of therapeutics and alternative en-
ergy sources [72, 332, 333]. We now know that yeasts used in industry typically fall under
the Saccharomyces sensu strictu genus made up of eight different species: S. arboricola, S.
cerevisiae, S. eubayanus, S. jurei, S. kudriavzevii, S. mikatae, S. paradoxus, and S. uvarum
[212, 256, 260, 263, 334–338]. The most notable is S. cerevisiae: a widely adopted model
organism actively used in various industrial processes. But other species—such as S. eu-
bayanus, S. kudriavzevii, and S. uvarum—are also actively used in wine, cider, and beer
fermentation [212, 256, 263, 335, 336, 339, 340].

Whole-genome sequencing (WGS) is providing extensive insights in the genomic di-
versity of the Saccharomyces sensu strictu genus. For example, a recent study of more than
1,000 global S. cerevisiae isolates has provided in-depth look into it’s evolutionary history,
specifically, a likely ”Out-of-China” evolutionary origin [73]. WGS projects sequencing
tens to hundreds of S. uvarum and S. eubayanus global isolates are similarly providing in-
sights in their respective evolutionary histories. [264, 265]. The latter species being only
recently isolated from Patagonia, Argentina, and proposed as an individual member of the
Saccharomyces sensu strictu genus in 2011 [262]. Similarly, S. jurei was also only recently
isolated in high altitudes in Southern France and proposed as a new species and member
in 2017 [336].

Additionally, WGS of Saccharomyces sensu strictu isolates have highlighted their non-
linear evolution, such as alcohol-fermenting-yeasts which can be (natural) hybrids of two
or more Saccharomyces species [212, 256, 263, 335]. Lager-beers are brewed with S. pasto-
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rianus strains—a natural hybrid harbouring the genomes of S. cerevisiae and S. eubayanus
in the same nucleus [212, 339]. Some ciders are brewed with S. bayanus—a natural triple
hybrid between S. cerevisiae, S. eubayanus, and S. uvarum [256, 341]. Similarly, some
wines are brewed with hybrids from different combinations of Saccharomyces species
[340, 342, 343]. In all cases, the genomic contribution from each of the corresponding
parental species varies, highlighting complex evolutionary histories and environmental
adaptations [208, 212, 263]. Furthermore, hybridization is not only reserved to combina-
tions of multiple species: many brewing strains are products of (artificial) crossing of dif-
ferent strains from the same species, leading to mosaic genomes and admixed populations
[15].

With the affordability of WGS, brewing industries and research institutions alike will
(or already are) sequencing large collections of yeast species, many of which could include
novel yeast strains and hybrids [210, 212, 263]. For example, the Westerdijk Fungal Biodi-
versity Institute (CBS-KNAW) houses the world largest collection of fungal specimens and
is known to house various Saccharomyces strains and hybrids. Determining the ancestral
origin and species composition of such isolates and Saccharomyces metagenomic commu-
nities is thus an immediate interest to the yeast reasearch community [208, 212, 263, 336,
344].

Various methods are used for determining the species composition and ancestral ori-
gins of Saccharomyces yeasts. Focusing on WGS, (whole-)genome comparisons provide
robust evolutionary analysis, either by reporting genome-similarity from whole-genome
alignments, or constructing phylogenetic trees from single-nucleotide variants of one or
more cores genes [137, 208, 262–265]. The recent feasibility of constructing near-complete
genome assemblies from long-read sequencing is also enabling in-depth look at complex
evolutionary histories due intra/inter-strain hybridization, as we previously reported [212,
213]. Although these approaches can provide high-resolution insights in the evolutionary
histories of yeast species, industrial yeasts are often aneuploid—that is, possess a variable
number of copies per chromosome—with heterozygous variation [137, 208, 212]. De novo
genome assemblies of such isolates can thus lead to fragmented assemblies and/or con-
sensus representations of one or more haplotypes, challenging traditional evolutionary
inference methods that assume a haploid-configuration [137, 208, 212].

An alternative approach for determining the species composition and ancestral origins
of Saccharomyces yeasts is via read-alignments to a reference genome. Coverage informa-
tion using a concatenated reference of more than one species can help assess the hybrid-
nature of an isolate [208, 263, 264], while a phylogenetic tree from single-nucleotide vari-
ants can be used to infer its evolutionary origins [15, 73, 264, 265]. Since the former ap-
proach leads to multi-mapping reads due to sequence homology between Saccharomyces
species, read-alignments must be curated to account only pre-defined unique-gene mark-
ers, and/or filtered via some criteria such as sequence-divergence [263, 264]. Additionally,
the aneuploid nature of industrial yeasts complicates phylogenetic-tree constructions as
it is not entirely clear how to account for sequence heterozygosity [345–349].

In either approach, the choice of a reference(s) is critical to properly assess the species
composition of a Saccharomyces hybrid genome, which circularly requires prior knowl-
edge of the evolutionary history of the genome. A method that can automatically as-
sess the global Saccharomyces species composition in a sequencing dataset without any
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prior known can circumvent computational challenges in analysing hybrid Saccharomyces
yeasts and facilitate in-depth downstream evolutionary analysis.

We thus developed Redwood2, a ”ready-to-run” alignment-free method to quickly as-
sess the species composition of an input WGS-dataset for a Saccharomyces isolate without
any pre-processing of the data. Our method is largely inspired by recent work on prob-
abilistic representations of genomes, and resembles the computational problem of clas-
sifying taxa in a metagenomic dataset. In short, we can represent a phylogenetic tree
of hundreds of available sequencing datasets from all eight species in the Saccharomyces
sensu strictu by utilizing genome sketches, sequence-bloom trees, and the HyperLogLog al-
gorithm. By adapting a k-mer based streaming-algorithm, we can quickly calculate signif-
icant containments of one or more nodes (e.g. species, lineages, and strains) from the tree
in given a WGS-dataset—all while considering the evolutionary relationships described in
the phylogenetic tree.

Wefirst generalize the problem of inferring the species composition of a hybrid genome
as the intersection of multiple sets of k-mer sequences, and extend it to account for hy-
bridizations of intra-/inter-species and lineage members. We then benchmark our method
on computationally simulated assemblies of single and hybrid Saccharomyces genomes
showcasing the sensitivity and accuracy of our method. Finally, we applied our method
on availableWGS-datasets of recently reported hybrid Saccharomyces isolates and validate
their reported evolutionary histories and hybridization events.

5.2 Methods
5.2.1 The set-containment problem in the context of possible hybridiza-

tion events from a phylogenetic tree
Consider a microbial genome represented as a set of k-mers, regarded as 𝑄. Now consider
the k-mer sets of two additional microbial samples, 𝐴 and 𝐵, where 𝐴∩𝐵 = ∅. Under the
scenario in which 𝑄 is a hybrid genome from a direct hybridization of 𝐴 and 𝐵, then 𝐴
and 𝐵 are subsets of 𝑄 (see Figure 5.1A). The genomic contribution of 𝐴 and 𝐵 in 𝑄 is
thus |𝐴∩𝑄|

|𝑄| = 0.5 and |𝐵∩𝑄|
|𝑄| = 0.5. Under the scenario of only a partial hybridization, one

would observe fractional genomic contributions (FGC): for example, a hybridization event
from 100% of genome A and 50% of genome B, will yields FGC’s of |𝐴∩𝑄|

|𝑄| = 0.667 and
|𝐵∩𝑄|
|𝑄| = 0.333.

The above calculations assume that the genomes of 𝐴 and 𝐵 share no sequence similar-
ity, which is pragmatically invalid when considering genomes from similar evolutionary
histories; for example, if 𝐴 and 𝐵 share a common ancestor (see Figure 5.1B). Therefore, if
𝐴 but not 𝐵 is contained in 𝑄, one would still expect to observe |𝐴 ∩ 𝐵| k-mers if testing
whether 𝐵 is contained in 𝑄. Thus, the FGC’s of 𝐴 and 𝐵 in 𝑄 needs to be corrected for
shared k-mers, for example, the number of unique k-mers in 𝐴 found in 𝑄 but not in 𝐵
divided by the number of unique k-mers found in 𝑄, or |𝐴∩𝑄|−|𝐴∩𝐵|

|𝑄∩(𝐴∪𝐵)| .

To generalize in the context of a tree, let 𝐹𝐺𝐶(𝑁 ) = Θ𝑈𝑁
Θ𝑅𝑁

, where Θ𝑈𝑁 is the number
of unique k-mers uniquely contained in node 𝑁 or any of its children, and Θ𝑅𝑁 is the



5

96 5 A streaming algorithm to infer species composition in Saccharomyces hybrid genomes

Figure 5.1: Genome sketches in hybrid-genomes and phylogenetic trees. (A) Sketch representations of
genomes 𝐴 and 𝐵, where blue dots represent k-mers unique to 𝐴, red dots indicates k-mers unique to 𝐵, and
purple dots represent k-mers shared by both genomes. A genome-hybridization event would yield genome 𝑄
with the illustrated sketch. (B) Phylogenetic tree containing genomes 𝐴 and 𝐵 along with genomes 𝐶 , 𝐷, and 𝐸.
Nodes 𝑃1, 𝑃2, 𝑃3, and 𝑃𝑅 are parent nodes. The dashed square highlights a sub-tree with 𝑃3 as the root, used as
a running example in 5.2.1 to illustrate Redwood2’s calculation for estimating the species composition of a node
in a phylogenetic tree.

total possible number of unique k-mers contained in 𝑁 after adjusting for shared k-mers
with other nodes that are not part of the sub-tree with 𝑁 as the root. Additionally, Θ𝑅𝑁 =
Θ𝑇𝑁 −Θ𝑆𝑁 , where Θ𝑇𝑁 is the total number of unique k-mers in a query genome (e.g. 𝑄)
that are also in the tree, and Θ𝑆𝑁 is the number unique k-mers that are shared with nodes
outside of the sub-tree of 𝑁 . Note that this implies that there is a sensitivity level: if
the 𝐴 and 𝐵 are nearly identical, then one cannot confidently differentiate whether the
containment observed in 𝑄 derives from one or both genomes. However, one can still
assess the contribution of the parent node, 𝑃1, representing (𝐴∪𝐵), in the containment in
𝑄; in this case, |𝑃∩𝑄||𝑃 | since 𝑃1 is the root node (see Figure 5.1B).

Now consider the sub-tree in Figure 5.1B with node 𝑃3 as the root (sub-tree highlighted
by the dashed rectangle). Although testing the containment of one of the leafs in query
genome, 𝑄, requires one to consider the other additional nodes, the FGC calculations re-
main the same. For example, testing the containment of node 𝐸 in 𝑄 still requires one to
account for the number of k-mers uniquely contained in 𝐸 and number of k-mers that are
shared with nodes outside the tree, such as 𝑃3, 𝐶 and 𝐷. Similarly, the probability used
when testing for the significance of the fractional genomic contribution only needs to be
adjusted to account for the evolutionary relationships in the other side of the tree. In the
running example, when testing for the significance for the fractional genomic contribu-
tion from 𝐸, then r is |𝐸∩𝐶∩𝐷|

|𝐴𝐸∪𝐶∪𝐷| . This calculation can recursively be computed across any
node in a binary tree, regardless of the size 5.1B.

Statistical significance in observing x-number of k-mers uniquely contained between
any node in 𝐶 can be tested via a Binomial distribution [177, 350]. First, to test whether
any node in the tree is significantly contained in 𝑄, we can compute 𝑃𝑟𝑜𝑏(𝑥𝑇 , 𝑛𝑇 , 𝑟𝑇 ) via
a binomial test, where 𝑛𝑇 is the total number of possible k-mers in the tree, 𝑟𝑇 is the
probability of a k-mer being contained in the tree, and 𝑥𝑇 is the number of k-mers in 𝑄
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observed in the tree [177, 350]. If this is significant, then we can test for the significance
of the fractional genomic contribution of a node in the tree in 𝑄 via the same calculation,
𝑃𝑟𝑜𝑏(𝑥𝑁 , 𝑛𝑁 , 𝑟𝑁 ), but here, 𝑛𝑁 is the total number of unique k-mers in the tree contained
in Q, 𝑟𝑁 is the probability of a k-mer being shared with any other node in the tree, and 𝑥𝑁
is the number of observed k-mers uniquely contained within testing node 𝑁 .

Although the calculations for fractional genomic contributions and statistical tests are
theoretically possible for large trees, they quickly become computationally infeasible: if
dealing with Saccharomyces genomes with a minimum genome-length of ~12 Mbp, a sin-
gle leaf-node will require at least 96 megabytes of memory (assuming k-mers are repre-
sented as 64-bit integers and no sequencing errors exist). If the k-mer sets of the leafs and
parent-nodes are jointly loaded into memory, the calculations will require more than one
gigabyte of memory for a tree of only 6 samples; requiring specialized computational in-
frastructure to make use of the genomic diversity in published WGS-datasets of hundreds
of Saccharomyces samples.

In the next section, we describe how the fractional genomic contribution and statis-
tical test calculations can be approximated with high sensitivity and accuracy by recent
probabilistic genome-representations.This approximation is implemented in a stand-alone
method called, Redwood2.

5.2.2 Approximate fractional genome contribution calculationswith
Redwood2

The calculations from the previous section can be approximated by adopting existing work
on probabilistic genome representations, which has extensively been discussed in a re-
cent review [107]. Ondov et al. [177] previously described the sketch-representation
of a genome: a (reduced) k-mer set enabling rapid approximate genome similarity and
containment calculations with reduced computational requirements. Other work has fol-
lowed utilizing sketch-representations: Brown et al. [351] combine genome-sketches and
sequence bloom trees (a tree storing a bloom-filter per node which themselves are prob-
abilistic sets with reduced computational requirements) to compute taxonomic classifica-
tions of genomes. Similarly, Breitwieser et al. [352] employ a HyperLogLog algorithm (a
probabilistic algorithm estimating the number of unique elements in a set with small mem-
ory footprint) to similarly compute taxonomic classifications from pre-classified reads in
WGS-datasets. Bradley et al. [178] utilize adaptations of all these representations to effi-
ciently search large collections of microbial genome sequences. In follow-up study, Ondov
et al. [350] proposed a streaming algorithm to compute significant containments of single
genomes within metagenomes using sketch-representations. Similarly, we can adapt all
these ideas (e.g. genome sketches, sequence bloom-trees, and theHyperLogLog algorithm)
to efficiently compute the fractional genomic containment and statistical test calculations
for species, lineages, and strains as discussed in the previous section.

The first challenge is to represent a large phylogenetic tree as a data structure that
enables efficient calculations of the fractional genomic contribution and statistical tests.
In essence, we can utilize a sequence-bloom tree such that each leaf is the k-mer set of
a genome stored as a bloom-filter with a specified false-positive rate, f, and a maximum
number of inserted elements, i. Each node is thus the union the bloom-filters of their
children. Much like in Brown et al. and Breitwieser et al., we can query k-mers in a given
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genome (or WGS-dataset) across the tree to calculate taxonomic classifications based on
the number of k-mers contained in each node [351, 352]. For scalability purposes, we can
instead store an s-size bottom-sketch in each leaf, leading to a sequence bloom-tree with
significantly reduced computational resources, at the expense of classification sensitivity
[350–352].

Algorithm 1 Computing values for Θ𝑈𝑁 and Θ𝑇𝑁 .
1: procedure Node counter(𝐿𝑖 , 𝑆,𝑇 ) ▷ 𝐿𝑖 : Array of bloom-filters for all leafs in tree; S:

set of read or contig-sequences; T: binary-tree datastructure
2: 𝐿𝑇 ← Union of all 𝐿𝑖
3: 𝐻𝑇 ← Initialize empty set of hashes
4: for 𝑠 ∈ 𝑆 do
5: for 𝑘,∈ 𝑠 do
6: h = hash(k)
7: if ℎ ∈ 𝐿𝑇 then
8: H.add(h)
9: end if

10: end for
11: end for
12: 𝑛_𝑐𝑜𝑢𝑛𝑡𝑠 ← Initialize empty counting hash-table
13: 𝑙𝑐𝑎_𝑐𝑜𝑢𝑛𝑡𝑠 ← Initialize empty counting hash-table
14: for ℎ ∈ 𝐻 do
15: 𝐿𝑠𝑢𝑏 ← sub-array of leaf IDs, where ℎ ∈ 𝐿𝑖
16: increment nodes in n_counts using 𝐿𝑠𝑢𝑏 and 𝑇
17: 𝑙𝑐𝑎_𝑛𝑜𝑑𝑒 ← find LCA of 𝐿𝑠𝑢𝑏 in 𝑇
18: increment 𝑙𝑐𝑎_𝑐𝑜𝑢𝑛𝑡𝑠[𝑙𝑐𝑎_𝑛𝑜𝑑𝑒]
19: end for
20: return n_counts and lca_counts
21: end procedure

Algorithm 1 describes how to compute the necessary values for Θ𝑈𝑁 and Θ𝑇𝑁 using
only a partial representation of the sequence bloom-tree mentioned above (represented as
𝑇 ). These two values are used for calculating the fractional genomic composition, 𝐹𝐺𝐶 ,
of a node in a phylogenetic tree (see section 5.2.1). Let 𝐿𝑖 be the collection of bloom-
filters from all leafs in the tree {𝐿𝑖 ∶ 𝑖 ∈ 𝐼 }|𝐼 = {1,2,3,⋯,𝑛}. Given the k-mer set for a
query genome, 𝐻𝑄 , let 𝐻𝑇 be a subset of k-mers, 𝐻𝑇 ⊆ 𝐻𝑈 , such that all k-mers, 𝑘𝑖 in 𝐻𝑇 ,
𝑘𝑖 ∈ 𝐿𝑖 . By computing 𝐻𝑇 (lines 4-11), Algorithm 1 can construct two hash-tables which
can then be used to derive Θ𝑈𝑁 and Θ𝑇𝑁 . More specifically, line 15 identifies all leafs that
contain a given k-mer, while line 16 performs a depth-first traversal in 𝑇 and increments
the counter in 𝑛_𝑐𝑜𝑢𝑛𝑡𝑠 whenever for all leafs in line 15 or any node parent of the leafs.
Line 17 identifies the lowest-common ancestor (LCA) of the leafs in line 15, and line 18
increments the counter in 𝑙𝑐𝑎_𝑛𝑜𝑑𝑒 for each LCA for each k-mer. As such, the hash-table
of 𝑛_𝑐𝑜𝑢𝑛𝑡𝑠 represents the total number k-mers contained in some node irrespective if
they appear else where in the tree, or in other words, Θ𝑇𝑁 , while 𝑙𝑐𝑎_𝑐𝑜𝑢𝑛𝑡𝑠 stores the
number of times a node was the LCA for some k-mer. For every node, 𝑁 in the tree, Θ𝑈𝑁
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can be calculated by aggregating the counts for all children of 𝑁 using the corresponding
values in 𝑙𝑐𝑎_𝑐𝑜𝑢𝑛𝑡𝑠.

Additionally, Θ𝑆𝑁 can be calculated by correcting for the total possible number of
unique k-mers appearing onlywithin the subtree of𝑁 . Let ℎ𝑐𝑎𝑟𝑑(𝑁 ) be the node-cardinality
of 𝑁 (that is, the unique number of k-mers in the node), which can be approximated using
the HyperLogLog algorithm [353]. More specifically, compute the cardinality for each leaf
using their respective bottom-sketches with the HyperLogLog algorithm, which stores an
array of maximum counts observed for some pre-defined array size [353]. Using a recur-
sive depth-first search, estimate node-cardinality for the remaining nodes (e.g. parents)
by merging the arrays (e.g. taking the maximum of the corresponding values). Given the
estimated node-cardinalities for all nodes in the tree, let 𝑁𝐴 and 𝑁𝐵 be two nodes (or leafs)
that have the same direct parent node, 𝑁𝑃 . The fraction of k-mers shared between 𝑁𝐴 and
𝑁𝐵 can be calculated as, 𝑠ℎ𝑎𝑟𝑒𝑑(𝑁𝑃 ) = ℎ𝑐𝑎𝑟𝑑(𝑁𝑃 )

ℎ𝑐𝑎𝑟𝑑(𝑁𝐴)+ℎ𝑐𝑎𝑟𝑑(𝑁𝐴)
. As such, the probability of a k-

mer in 𝑁 being shared with other nodes outside of the sub-tree with 𝑁 as the parent node,
𝑝𝑠ℎ𝑎𝑟𝑒𝑑𝑁 can be computed by summing the product of the shared fractions. For example,
using the tree in Figure 5.1B:

𝑝𝑠ℎ𝑎𝑟𝑒𝑑𝑁 = 𝑠ℎ𝑎𝑟𝑒𝑑(𝑁𝑃2) + 𝑠ℎ𝑎𝑟𝑒𝑑(𝑁𝑃2) ⋅ 𝑠ℎ𝑎𝑟𝑒𝑑(𝑁𝑃3)+
𝑠ℎ𝑎𝑟𝑒𝑑(𝑁𝑃2) ⋅ 𝑠ℎ𝑎𝑟𝑒𝑑(𝑁𝑃3) ⋅ 𝑠ℎ𝑎𝑟𝑒𝑑(𝑁𝑃𝑅 )

Therefore, 𝐹𝐺𝐶(𝑁 ) = Θ𝑈𝑁
|𝐻𝑇 |−(Θ𝑇𝑁 −Θ𝑆𝑁 +𝑝𝑠ℎ𝑎𝑟𝑒𝑑𝑁 ⋅(Θ𝑇𝑁 −Θ𝑆𝑁 ) .

Note that to test whether the calculated 𝐹𝐺𝐶(𝑁 ) for node 𝑁 is significant, we can use
𝑝𝑠ℎ𝑎𝑟𝑒𝑑𝑁 for the Binomial test (see Methods 5.2.1).

We implemented these approximations in our stand-alone method, Redwood2 Red-
wood2 is split into two-modules: (1) partial sequence-bloom tree construction and (2) k-
mer streaming from a query genome. The first module enables users to construct a custom-
made partial sequence-bloom tree of any given collection of genomes, as opposed to the
pre-built trees provided by this paper (see next sub-section). Briefly, the first module is
split into three sub-modules: (1.1) bottom-sketching, (1.2) bloom-filter transformation, and
(1.3) partial sequence-bloom tree construction. Sub-module 1.1 uses a native implementa-
tion of the bottom-sketching algorithm from Ondov et al. [350] to enable consistent use of
the same 64-bit hash-functions and lexicographic smallest k-mers throughout the rest of
the modules. In sub-module 1.2, the sketches are converted to bloom-filters with a speci-
fied false positive rate (0.01 by default). Sub-module 1.3 then uses the bottom-sketches and
bloom-filters to construct the partial sequence-bloom tree and calculate node-cardinalities
using the HyperLogLog algorithm using Algorithm 2—all stored in a single portable bi-
nary file. Note that this sub-module expects a binary phylogenetic tree in Newick format
to guide the construction of the partial sequence-bloom tree. Alternatively, a pairwise
distance matrix of all leafs can be provided to cluster them into a dendrogram which is
then used as the tree.

Finally, module 2 in Redwood2 streams all k-mers in a given query genome to calculate
the fractional genomic containments for all nodes in the tree, enabling one to identify
significant containments of species, lineages, and strains. This module uses an adaptation
of the streaming algorithm by Ondov et al. to identify significant containments of single
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genomes within metagenomes [350]. In short, we load all 𝐿𝑖 bloom-filters into memory
and store a hash-set to represent 𝑄𝑇 . As we stream k-mers from reads or sequences in a
given query genome in the same approach as done sub-module 1.1, we add k-mers to the
hash-set only if a k-mer is contained within any 𝐿𝑖 . After processing all reads or sequences
in the query genome, we can use algorithm 1 and its corresponding statistical tests to
calculate the fractional genomic containments of each node in the tree, summarized as a
tab-separated output.

Redwood2 is implemented in the Scala programming language making use of open-
source libraries for the bloom-filter and HyperLogLog algorithms.

5.2.3 Benchmarking Redwood2
A Saccharomyces sensu strictu genus tree was constructed from 195 previously published
genomes collected from multiple studies (see Table 6.1). We used de novo genome assem-
blies when available, and alternatively, WGS-Illumina datasets of at least 10x coverage af-
ter adapter and low-quality bases from raw-reads were trimmed with Trimmomatic [284].
Bottom-sketches were constructed for each genome using k-mer size of 21, sketch-size of
100,000, and false-positive rate of 1%; for WGS datasets, a minimum k-mer count of 3 or
5% of total coverage (which ever was higher) was used to remove erroneous k-mers (e.g.
for a sequencing dataset with 100x coverage, the minimum k-mer count would be set to 5).
The HyperLogLog algorithm for approximate node-cardinality was used using a standard
error-rate of 1% (corresponding to 14-bit precision value for the counting registers).

Simulated hybrids were constructed by concatenating reference genomes from differ-
ence Saccharomyces species. In each simulation, one genome was reduced to different-
random-relative-proportions while keeping the remaining genomes as is. The reductions
was done by an in-house script using the Scala programming language which takes all
contigs in an assembly, randomly permutes their order, and outputs contig-sequences un-
til the total number of bases is 𝑟 ⋅ 𝑔, where 𝑟 is the desired relative fraction of the original
genome and 𝑔 is the original genome-size. The expected fractional genomic contribution
for the species of one simulated hybrid is thus calculated as:

𝐸[𝐹𝐺𝐶(𝑁 )] = {
𝑟

(𝑛−1)+𝑟 , if 𝑁 = species reduced
1

(𝑛−1)+𝑟 , o.w.

Where 𝑁 is a species-node in the Saccharomyces sensu strictu genus tree and 𝑛 is the
total number of genomes in the simulated hybrids.

Eight previously published Saccharomyces hybrid-genomes were used to additionally
validate Redwood2 (see Table 5.2). De novo assemblies were used for S. cerevisiae x S. eu-
bayanus and S. cerevisiae x S. kudriavzevii (as they were available) and Illumina datasets
were used in the remaining hybrid-genomes after processing raw-reads as previously de-
scribed.
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Table 5.1: Genomes used to construct the Saccharomyces sensu strictu tree. The genomes are a mixture
of read-sets and de novo assemblies based on the available sequencing information. For the same reasons, only
a limited number of genomes for each species were used.

Species Strains Reference
S. arboricola

H-6 [338]
Total 1

S. cerevisiae
Total 165 [15]

S. eubayanus [265]
yHRVM107 [265]
yHKS212 [265]
yHCT104 [265]
yHCT63 [265]

f yHDPN422 [265]
yHKS509 [265]
yHKS211 [265]
yHCT101 [265]
yHCT61 [265]
yHCT72 [265]

yHDPN424 [265]
yHKS210 [265]
yHDPN421 [265]
yHCT99 [265]

yHRVM108 [265]
CBS12357 [265]
yHDPN423 [265]
yHCT96 [265]
Total 18 [265]

S. jurei
SacJureiUoM1 [336]

Total 1
S.kudriavzevii

CR85 [337]
SKCA111 [337]
Total 2

S. mikatae
IFO1815 [354]
Total 1

S. paradoxus
CBS432 [260]
N44 [260]

UWOPS919171 [260]
UFRJ50816 [260]

Total 5
S. uvarum

CBS7001 [355]
yHCT77 [264]

CRUB1994 [264]
CRUB1776 [264]
CRUB1990 [264]
CRUB1989 [264]
CRUB1987 [264]
DBVPG7787 [264]
CRUB1988 [264]
CRUB1984 [264]

GM14 [264]
CRUB1993 [264]
CRUB1991 [264]
yHCT78 [264]
Total 14
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Table 5.2: Published Saccharomyces hybrid-genomes used to benchmark Redwood2. The set of eight
strains are a diverse collection of Saccharomyces hybrids described in their respective studies as either beer,
wine, or cider fermenting isolates. These genomes were used to benchmark Redwood2’s capability in inferring
species composition in real-world hybrids.

Hybrid Strain Reference Data-type
S. cerevisiae x S. eubayanus

WE34_70 [208] De novo assembly
CBS1538 [208] De novo assembly
CBS1483 [212] De novo assembly

S. cerevisiae x S. eubayanus x S. uvarum
NCAIM676 [264] Illumina reads

S. cerevisiae x S. kudriavzevii
VIN7 [340] De novo assembly
HA1836 [356] De novo assembly

S. cerevisiae x S. kudriavzevii x S. uvarum
CID1 [264] Illumina reads
CBS2834 [264] Illumina reads

S. cerevisiae x S. uvarum
Muri [263] Illumina reads

5.3 Results and discussion
We developed Redwood2 to estimate the global Saccharomyces species composition in a de
novo assembly or whole-genome sequencing dataset, facilitating downstream evolution-
ary analysis of hybrid Saccharomyces genomes. This computational problem is inherently
the same as inferring the presence and abundance of taxa (e.g. species, genus, and family
content) in a metagenomic dataset. One popular approach is to derive k-mers from large
large public databases of microbial genomes in conjunction with inferred phylogenetic re-
lationships to enable taxonomic classifications [357]. Our proposed method also follows
a k-mer based approach, and adapts probabilistic genome representations to make use of
growing public datasets of Saccharomyces genomes. We first construct a (phylo-)genetic
tree of 195 Saccharomyces genomes covering all major species in the Saccharomyces sensu
strictu. Using this tree, we define that the genomic contribution of a node (e.g. species,
lineage, strain) from a tree in a query genome can be seen as, 𝐹𝐺𝐶(𝑁 ) = Θ𝑈𝑁

Θ𝑅𝑁
, where Θ𝑈𝑁

is the number of unique k-mers uniquely contained in node 𝑁 or any of its children, while
Θ𝑅𝑁 is the total possible number of unique k-mers from the query genome that could be as-
signed to node 𝑁 . This exact calculation requires one to test the membership of all k-mers
in a whole-genome sequencing dataset to all nodes in the tree—a calculation that is com-
putational feasible when using probabilistic genome representations. As such, we adapt
recent work on probabilistic data structures (e.g. genome sketches, sequence bloom-trees,
and the HyperLogLog algorithm) to enable fast calculation of 𝐹𝐺𝐶(𝑁 ). We benchmarked
Redwood2 on simulated and real Saccharomyces genomes, showcasing its ability to quickly
and accurately determine species composition in a whole-genome sequencing dataset of
a Saccharomyces isolate.
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Figure 5.2: Saccharomyces sensu strictu tree as constructed by Redwood2. (A) Hierarchical clustering of
195 genomes from eight different Saccharomyces species. (B) Node cardinalities (total number of unique k-mers)
of different parent nodes in the tree relative to initial sketch-sizes of 100,000. (C)The likelihood that a k-mer from
some parent-species node from the tree shown in (A) is also present in any other parent-species node based on
the relationships defined in the tree shown in (A). All colors (with the exception of black) correspond the ’Species’
color-legend to the right of (A).

5.3.1 Saccharomyces sensu strictu tree construction
Wefirst constructed a partial sequence bloom-tree of the Saccharomyces sensu strictu group.
Ideally, one would construct a tree using hundreds or thousands of samples uniformly
spanning the eight Saccharomyces species, enabling Redwood2 to better estimate the ge-
nomic contribution due to a large reference dataset. However, there is an in-balance in
the number of publicly available genomes for each species. For example, S. cerevisiae has
over 1,000 characterised public genomes [15, 73], contrast to S. jurei, S. kudriavzevii, S.
arboricolus, S. mikatae, and S. paradoxus where only 1-13 genome are publicly available
[260, 336–338, 354]. At the time when this study was conducted, S. eubayanus and S.
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uvarum each had less than ~60 public genomes available [264, 265]. Nevertheless, we used
195 total Saccharomyces genomes to represent Saccharomyces sensu strictu group, conse-
quently reflecting the in-balance of data availability for each species (see Figure 5.2 A).

Figure 5.2 A shows a hierarchical clustering of the 195 Saccharomyces genomes, and ac-
curately reflects the evolutionary histories of Saccharomyces sensu strictu species [336, 358–
360]. Additionally, the genomic diversity observed in each of the species varies. Figure
5.2 B shows the relative cardinalities (that is, the total number of unique k-mers) for the
parent-node of each species using sketch-size of 100,000. Disregarding hybrids, S. cere-
visiae is the least genomically diverse population with a cardinality 1.86x of the original
sketch-size, followed by S. eubayanus, S. uvarum, and S.paradoxus. We cannot infer the
genetic diversity for species-nodes with only one sample, such as S. jurei, S. kudriavzevii,
and S. mikatae. These results imply different sensitivity levels when estimating genomic
contribution for each species since Redwood2 infers statistical significance in the estima-
tions based on the likelihood of a k-mer being shared between two different species based
on the defined linear relationships in a phylogenetic tree.

Figure 5.2 C shows the likelihood that a random k-mer contained in one species-node
will be shared with any other species-node in the tree. For example, given a random set of
k-mers drawn from the S. cerevisiae species node, 4.82% of those k-mers are expected also
be present in S. eubayanus. The likelihoods thus indicate the minimum level of detection
for each species. S. arboricola and S. kudriavzevii harbours the lowest likelihoods at 2.7%,
while both S. jurei and S. mikatae have the highest at 9.77%. The former results are as
expected given the relationships defined in the tree in Figure 5.2 A, where the genomes for
S. arboricola and S. kudriavzevii are largely distinct single, branching out-groups relative
to the other species, implying a higher fraction of unique k-mers in their genomes, and
hence a lower fraction of shared k-mers with the other species (see Figure 5.2 A and C).
S. jurei and S. mikatae are relatively more similar in their k-mer content and appear to
have a higher fraction of shared k-mers with their closest neighbour, the parent node of S.
cerevisiae and its closest wild relative, S. paradoxus, which has been similarly reported by
[336].

5.3.2 Redwood2’s estimated species contributions are accurate in a
simulated benchmark

To evaluateRedwood2’s accuracy in estimating global species contribution in Saccharomyces
hybrid genomes, we simulated double and triple-hybrid genomes with various level of
species contribution (see Figure 5.3 A). More specifically, we varied the relative fraction
of genomic contribution (FGC)—that is, the fraction of genomic content originating from
some genome—for each simulated hybrid, reflecting known reported cases of natural Sac-
charomyces hybrid genomes involved in beer, wine, and cider fermentation (see Table 5.2).
For example, group-2 S. pastorianus genomes (a hybrid of S. cerevisiae and S. eubayanus)
can harbour the majority of chromosomes from both species in its nucleus [208, 212],
which would lead to an FGC value of 50% for each species. Contrast to group-1 genomes
where only a small fraction of S. eubayanus chromosomes remain [208, 212], which would
lead to proportionally higher FGC values for S. cerevisiae and lower values for S. eubayanus.
For the triple-hybrids, at least one species was fixed to retain all genomic content in the
simulated triple-hybrids, which would lead to a maximum FGC value of 50%.
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Figure 5.3: Benchmarking Redwood2 using simulated hybrid-genomes and a real global population
of S. cerevisiae strains. (A) The average error (y-axis) in Redwood2’s estimated species contribution (referred
to as FGC; see methods for exact calculation) for four different simulated hybrid genomes as a function of the
expected species contribution (x-axis). For each estimation, triangles represent statistical significance (p-val ≤
0.05) after Bonferroni correction. These results indicate high accuracy of ≥ 95% in a simulated setting involving
Saccharomyces hybirds involved in beer, wine, and cider fermentation. (B) Correlation of Redwood2’s estimations
of the species contribution from S. paradoxus and S. cerevisiae across 1,011 S. cerevisiae global strains from [73].
Despite the global genomic diversity in the collection of S. cerevisiae genomes, Redwood2 is still able correctly
estimate a S. cerevisiae species contribution of ≥ 99% for the vast majority of strains (bottom-right in figure).
In cases where the estimation is < 99%, we observe an increase in the estimated species contribution from S.
paradoxus, suggesting partial S. paradoxus alleles in the genomic dataset. All estimations were based on the tree
constructed in Figure 5.2A.
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We observed a 0-5% error in Redwood2’s estimated global species composition (see Fig-
ure 5.3 A). For example, in the simulated S. cerevisiae x S. eubayanus genomes, the error
for both species ranges from 0.09% to 4.86% (see Figure 5.3 A). Only the estimation at the
expected FGC value of ≤ 4.76% for both species was deemed in-significant (i.e. p-values
≤0.05 after multiple testing correction), reflecting the minimum level of detection as dis-
cussed in section 5.3.1 (see Figure 5.2 A). Additionally, the calculated errors for species
not in the simulated genome (e.g. false-positive species calculations) is minimal, with a
maximum of 0.47%, and all p-values are > 0.05 after multiple-testing correction, indicating
high specificity to discern Saccharomyces species not present in a given genome (see Fig-
ure 5.2). In the S. cerevisiae x S. kudriavzevii hybrid simulation, we observe lower errors
ranging from 0.01% to 1.21%, and all expected values > 0% are deemed significant except
at 4.76% in S. cerevisiae, with no significant contributions from other species (see Figure
5.2 A). These results show that Redwood2 can accurately approximate the global species
composition in (simulated) hybrid Saccharomyces genome.

The results shown in Figure 5.3 A additionally suggests that a relatively higher frac-
tion of k-mers are shared by S. cerevisiae and S. eubayanus, despite previous findings that
S. cerevisiae and S. eubayanus are phylogenetically more distant than S. cerevisiae and S.
kudriavzevii [338, 361, 362]. For example, Redwood2 has a relatively high error in estimat-
ing the species composition in a S. cerevisiae x S. eubayanus hybrid than a S. cerevisiae x S.
kudriavzevii. We hypothesize that this discrepancy may be due differences in the sequenc-
ing datasets used for both the construction of the Saccharomyces sensu strictu tree and
the simulated hybrid genomes. For example, the S. cerevisiae and S. kudriavzevii genomes
were based on short-read Illumina assemblies (see section 5.3.2), and hence the k-mer con-
tent originates from consensus representations of heterozygous regions (if diploid) and
collapsed repeats [15]. The majority of S. eubayanus and S. uvarum datasets used in the
tree construction exists only as read-sets, and hence the k-mer contents also include het-
erozygous sequences and true repeat-content [264, 265]. As we used a complete S. cere-
visiae reference assembly to simulate the hybrids, k-mer content from typically collapsed
regions (e.g. sub-telomeric and ribosomal loci [207, 212, 260]) may yield false-positive
hits to S. eubayanus species, explaining the relatively high errors in the S. cerevisiae x S.
eubayanus hybrid. Nevertheless, we still observed only a maximum of ~5% error in the
simulations of these genomes (see 5.3).

A similar performance can be seen in the simulated S. cerevisiae x S. kudriavzevii hy-
brid and the S. cerevisiae x S. kudriavzevii x S. uvarum triple-hybrid, with no significant
contributions from any other species (see Figure 5.3 A). In particular, the standard devia-
tions for the simulated triple-hybrid increase at an expected FGC value of ~30%, indicating
different sensitivity values depending on the mixture of genomic content from different
species.

Overall, these results indicate that Redwood2’s estimations of the global species compo-
sition for a genome is ≥ 95% accurate in a simulated setting involving three Saccharomyces
species. However, the simulated hybrids were constructed with genomes already included
in the Saccharomyces sensu strictu tree, and hence, the results described above are biased
as they do not assess Redwood2’s accuracy when facing genomic diversity absent in the
reference tree.

We therefore investigated how genomic diversity absent in a given partial sequence
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bloom-tree influences Redwood2’s fractional genomic contribution calculation. We opted
to use a published dataset of 1,011 S. cerevisiae genomes capturing the global diversity
of the S. cerevisiae species [73], as opposed to simulating genomic diversity in-silico. We
found that the vast majority of the FGC values for the S. cerevisiae species were > 99%,
and no sample had statistically significant contributions from any other species (see Fig-
ure 5.3 B). For a subset of strains where the estimation is < 99%, we observe a correlation
(r = -0.88) between decreasing FGC values of S. cerevisiae and increasing values for S. para-
doxus, suggesting partial genomic sequences from the S. paradoxus species, which is the
closest wild relative to S. cerevisiae [225, 260]. Interestingly, the six outliers in the bottom
left corner of Figure 5.3 B (i.e. 𝐹𝐺𝐶(𝑆.𝑐𝑒𝑟𝑒𝑣𝑖𝑠𝑖𝑎𝑒) < 95.4% and 𝐹𝐺𝐶(𝑆.𝑝𝑎𝑟𝑎𝑑𝑜𝑥𝑢𝑠) < 0.03%)
are the strains AMH, BAL, CDH, CEG, CEI, and CFH—which are among the top most diver-
gent strains based on the total number of single nucleotide variants as reported in their
respective study et. al [73]. Although there are small predicted genomic contributions
from S. paradoxus as well as S. eubayanus in these strains, these contributions are minimal
and deemed insignificant (p-value > 0.05), suggesting that the genomic sequences of these
strains are not entirely of Saccharomyces origin. Indeed, CDH and CFH were reported to
have genomic contamination from Staphylococcus epidermis [73], explaining the relatively
lower species contribution from S. cerevisiae by Redwood2, and it may be possible that the
other strains similarly harbour non-Saccharomyces originating sequences. Nevertheless,
these results show minimal influence in Redwood2’s species estimation when faced with
unobserved genomic diversity, at least when the diversity is in similar range to that of the
global S. cerevisiae genomic diversity.

5.3.3 Redwood2 provides informative global species estimations in
public hybrid genomes

In addition to the simulated benchmark described in the previous section, we also evalu-
ated Redwood2’s accuracy in estimating the global species composition in real published
hybrid-genomes (see Figure 5.4 and Table 5.2). In general, Redwood2’s estimations across
the different hybrid-genomes reflect the evolutionary histories reported in their respective
published studies (see Figure 5.4), and showcase the applicability of Redwood2 for studying
the evolutionary histories of different Saccharomyces hybrids. For example, CBS1483 and
WE34_70 are group-1 S. pastorianus strains (a hybrid of S. cerevisiae and S. eubayanus with
slightly higher S. cerevisiae genomic content due to higher chromosome copy-numbers
[208, 212]. This is contrast to the Group-1 originating strain, CBS1538, which retains only
a few S. eubayanus chromosomes. Indeed, Redwood2’s estimations precisely reflect the
genomic contributions from the two evolutionary groups (see Figure 5.4).

Importantly, the ability to systematically estimate the species contribution in S. pasto-
rianus genomes can help disentangle two competing theories regarding the evolutionary
origins of this species: all S. pastorianus genomes originate from a single evolutionary
event and a population bottleneck led to two evolutionary groups [208, 212], or there
were two separate hybridization events the led to two groups [208]. A hallmark feature
distinguishing both groups is the relative genomic contribution from the S. cerevisiae and
S. eubayanus species [208, 212]. Unfortunately, most comparative genomic studies of S.
pastorianus have only involved a few number of isolates, so the global spectrum of species
composition in this species is unknown [208, 212]. As such, a systematic evaluation of the
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Figure 5.4: Redwood2 species composition estimations on published Saccharomyces hybrid-genomes.
The genomes are a mixture of real-world Saccharomyces hybrid genomes used in beer, wine, and cider fermenta-
tion, whose evolutionary history and species composition has been investigated in their respective studies (see
Table 5.2). Each sub-plot represents a distinct Saccharomyces species-hybrid with the strain identifiers on their
respective y-axis, and bar-plots representing Redwood2’s estimated species composition color-coded to repre-
sent the eight major species in the Saccharomyces sensu strictu group (see Figure 5.1). Asterisks indicate that the
corresponding 𝐹𝐺𝐶 calculation is statistically significant (p-val ≤ 0.05) after multiple-testing correction.

species contribution in hundreds to thousands of global S. pastorianus isolates can help
provide evidence for one of the two competing theories by indicating either a binary or
gradient separation in the relative species composition of S. cerevisiae and S. eubayanus in
S. pastorianus isolates.

Two additional genomes that we evaluated with Redwood2 was the S. cerevisiae x S.
kudriavzevii x S. uvarum triple-hybrid strains, CID1 (a cider yeast isolated in France) and
CBS2834 (a fendant-wine yeast isolated in Switzerland) [264]. The species composition
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for both strains were determined by mapping reads to a concatenated reference of cod-
ing sequences from the reference assemblies of S. arboricola, S. cerevisiae, S. kudriavzevii,
S. mikatae, S. paradoxus, and S. uvarum, and resolving multi-mappings reads using diver-
gence thresholds [264]. As such, the reported genomic composition for CID1 is 36.5% fo
S. cerevisiae, 33.5% for S. kudriavzevii, and 29.6% for S. uvarum. The reported genomic
compositions for CBS2834 are 36.2%, 28.1%, and 30.2%, respectively. Indeed, Redwood2’s
Saccharomyces species estimations for both genomes precisely reflect the reported compo-
sitions using the same sequencing read-set: 33.2%, 31.2%, and 30.8% for CID1, respectively;
for CBS2834, they are 33.8%, 23.6%, and 32.7%, respectively. These results not only show-
case Redwood2’s accuracy, but also it’s feasibility in determining species composition in
Saccharomyces hybrids, as they do not require choosing a single ”best” reference genome
with additional evolutionary parameters, especially when one considers the standing ge-
nomic diversity within various Saccharomyces species [15, 73, 264].

We similarly evaluated two S. cerevisiae x S. kudriavzevii hybrid-strains, VIN7 (a wine-
yeast from South Africa) and HA1836 (a wine yeast from an Austrian vineyard) [340, 356].
VIN7 was reported to contain a 2:1 ratio in the S. cerevisiae and S. kudriavzevii genomic
contributions, respectively [340]. However, this was based on estimated chromosome
copy-number ratios as it was observed to have a homozygous S. kudriavzevii sub-genome
[340]. Given that we were only able to process de novo assembly of this strain (raw-read
data was not publicly available) which is a consensus representation of all true haploid
chromosomes, Redwood2 estimated 50% contribution from each of the two species (see
Figure 5.4). Interestingly, although HA1836 was reported to have a similar composition to
strain VIN7 [356], Redwood2 indicates that HA1836 is a S. cerevisiae x S. eubayanus hybrid-
strain with a slightly higher S. cerevisiae sub-genome (see Figure 5.4). Based on the rela-
tively higher genome content of VIN7 along with our results regarding S. cerevisiae and
S. eubayanus hybrids, VIN7 would be classified as a group-2 strain. Indeed, the estimated
sequence divergence based on the native implementation of the MASH-algorithm [177]
of HA1836 to the group-2 strains, CBS1483 and WE34_70, is 7.44e-04 and 9.82e-04, respec-
tively; contrast to the estimated sequence divergence of 0.037 when compared to VIN7.
As such, HA1836 is likely a S. cerevisiae x S. eubayanus hybrid as opposed to the reported
S. cerevisiae x S. kudriavzevii hybrid, further showcasing the applicability of Redwood2 to
objectively study hybrid Saccharomyces isolates.

The S. cerevisiae x S. uvarum hybrid-strain, Muri (a beer yeast from Norway), was re-
portedly characterized to mostly harbour S. cerevisiae and S. uvarum chromosomes, with
significant chromosomal introgressions from S. eubayanus [263]. Although the exact esti-
mated compositions were not calculated, Krogerus et al. visually report a full S. cerevisiae
sub-genome and a hybridized version of S. uvarum and S. eubayanus chromosomes [263].
Redwood2 reports genomic contributions of 28.8%, 25.1%, and 26.4% for S. cerevisiae, S.
uvarum, and S. eubayanus, respectively. Additionally, Redwood2 reports 9.77% genomic
contribution from S. paradoxus. To verify the accuracy of the S. paradoxus estimate, we
aligned reads to a concatenated reference of S. cerevisiae S. eubayanus, and S. uvarum as
described by [263], and additionally added the S. paradoxus genome, CBS432 [260]. Using
very conserved thresholds to curate the multi-mapping reads, we found ~123,000 unique
read-alignments to S. paradoxus, but the vast majority of these alignments were mapping
to the sub-telomeric regions. In a similar manner to the species estimation errors induced
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by using full short-read Illumina datasets (see section 5.3.2), Redwood2’s species estima-
tion of 9.77% for S. paradoxus is likely a false-positive estimation arising from genomic
sequences in the sub-telomeric regions that are only accessible in the long-read PacBio
assemblies, contrast to the rest of the short-read Illumina assemblies used to construct the
Saccharomyces sensu strictu tree [207, 212, 260]. Despite the fact that some samples in the
tree are based on Illumina read-sets containing sub-telomeric regions, these regions are
often hyper-variable and differ across Saccharomyces genomes [207, 214, 260]. Thus, more
uniform representation of sub-telomeric sequences across the tree would be required to
properly assess k-mers deriving from these regions.

Finally, the S. cerevisiae x S. eubayanus x S. uvarum triple-hybrid (also known as S.
bayanus) strain, NCAIM676 (isolated from an unknown fermented drink in Hungary), was
reported to have a species composition with 72.2% S. uvarum, 26.8% S. eubayanus, and
0.98% S. cerevisiae [264]. Using the same read-set, Redwood2 estimates follows the same
pattern but with different contributions: 52.7% S. uvarum, 26.2% S. eubayanus, and 10.4% S.
cerevisiae—the remaining 10% comprising of statistically insignificant contributions from
the other species (see Figure 5.4). The reported species composition of NCAIM676 was
determined using the same method as CID1 and CBS2834, but with a second-round of
alignment-filtering to distinguish sequences deriving from S. eubayanus or S. uvarum due
to their high-sequence homology [264]. Although Redwood2’s estimation are relatively
proportional, the reported differences may be due to inherent biases in their methodolo-
gies.

Overall, Redwood2 processed de novo assemblies in less than 55 seconds with no more
than 512 Mb of RAM using a single thread, and 1.7 Gbp Illumina read-set (e.g. 141x cover-
age for 12 Mbp genome) in 5:38 minutes with four threads using no more than 769 Mb of
RAM—both on a standard Mac laptop (i.e. 2.3 GHz Dual-Core Intel Core i5).

5.3.4 Redwood2 limitations
Redwood2’s accuracy is ultimately influenced by the quality of the constructed partial se-
quence bloom-tree. As discussed in section 5.3.1, there is an in-balance in the number
of publicly available genomes for the members of the Saccharomcyes species, and hence
a biased sampling of the genomic diversity used by the current our constructed Saccha-
romyces sensu stricto tree. A future build could integrate an additional ~200WGS dataset of
S. eubayanus from a recent study [363]. Nevertheless, the current tree provides accurate
approximations even for species where only a limited number of samples are available.
Importantly, the accuracy in the species assignment for the genomes used construct the
partial sequence bloom-tree is critical, as mislabelling could lead to incorrect species-to-
k-mer assignment. Redwood2 is also influenced by the sketch-sizes used to construct the
partial bloom-tree. In this study, we used sketch-size of 100,000, as we found it to be a size
that minimises computational resources but retains relevant sensitivity levels to identify
statistically significant species contributions in (natural) hybrid-genomes (see Figure 5.4).
Additionally, false-positive allocation of unique k-mers to nodes in the tree should increase
when a large number of k-mers from a query genome are streamed (e.g. high-coverage
read-set relative to a de novo assembly). This is observed in Figure 5.4 A, where queried
read-sets have proportionally higher false-positive allocations to unexpected species rel-
ative to queried de novo assemblies. Decreasing the false-positive rate during tree con-
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struction can reduce false-positive hits in high-coverage read-sets, at the cost of increase
memory requirements.

Discrepancies between reported and estimated global species composition in real Sac-
charomyces genomes additionally highlight differences in accessibility of genomic infor-
mation in the current Saccharomyces sensu stricto tree. As shown in Figure 5.4 B, a small
fraction of the genomic contribution is incorrectly assigned to S. paradoxus, albeit not sta-
tistically significant. The S. cerevisiae genomes used to construct the Saccharomyces sensu
strictu tree are based on de novo assemblies from Illumina reads [15], contrast to the S. para-
doxus genomes which are de novo assemblies from PacBio data [260]. Given that long-read
assemblies better assemble repetitive regions (e.g. sub-telomeric genes) [207, 212, 260], the
sketches of the S. paradoxus genomes could contain k-mers derived from homologous sub-
regions that are present in the S. cerevisiae assemblies, but not fully represented due to
missing/collapsed repetitive regions. A similar situation could occur when comparing de
novo assemblies and short-read datasets, as assemblies can fail to capture both repetitive
sequences and heterozygous information since they are largely consensus representations
of the true genome. Indeed, we observe higher errors in the simulated S. cerevisiae x S. eu-
bayanus hybrid which involves a high-quality S. cerevisiae assembly with closed gaps and
Illumina read-sets of the S. eubayanus population (see section benchmark). Similarly, we
also observe relatively higher S. eubayanus species estimation in the two S. cerevisiae x S.
kudriavzevii x S. uvarum triple-hybrids (see Figure 5.4). Although these issues may not
lead to statistically significant species estimations, they affect the overall proportions of
the estimated species composition values (e.g. summing less than 100%).

5.4 Conclusion
Redwood2 is a fast and alignment-free approach to estimate the global species composition
of one or more species in a de novo assembly or whole-genome sequencing dataset of a Sac-
charomyces isolate. Our method can thus facilitate evolutionary investigations of (large)
collections of Saccharomyces genomes. In particular, we were able to provide rapid and
accurate estimations in the species composition of real-world industrial hybrids involving
cider, beer, and wine fermentation. In the latter case, Redwood2 provided evidence for a
mis-classification in the species composition of an existing wine strain.
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Approximate, simultaneous

comparison of microbial genome
architectures via syntenic

anchoring of quiver representations
A long standing limitation in comparative genomic studies is the dependency on a reference
genome, which hinders the spectrum of genetic diversity that can be identified across a popu-
lation of organisms. This is especially true in the microbial world where genome architectures
can significantly vary. There is therefore a need for computational methods that can simul-
taneously analyze the architectures of multiple genomes without introducing bias from a
reference.

In this paper, we present Ptolemy: a novel method for studying the diversity of genome
architectures—such as structural variation and pan-genomes—across a collection of micro-
bial assemblies without the need of a reference. Loosely speaking, Ptolemy is a “top-down”
approach in comparing whole genome assemblies: genomes are represented as labelled-multi-
directed graphs—known as quivers—which are then merged into single, canonical quiver by
identifying “gene anchors” via synteny analysis. The canonical quiver therefore represents an
approximate, structural alignment of all genomes in a given collection encoding structural
variation across (sub-)populations within the collection. We highlight various applications of
Ptolemy by analyzing structural variation and the pan-genomes of different datasets compos-
ing of Mycobacterium, Saccharomyces, Escherichia, and Shigella species. Our results show
that Ptolemy is flexible and can handle both conserved and highly dynamic genome archi-
tectures. Ptolemy is user-friendly—requires only FASTA-formatted assembly along with a
corresponding GFF-formatted file—and resource-friendly—can align 24 genomes in ∼10 mins
with 4 CPUs and < 2GB of RAM

This chapter has been published in Bioinformatics [364]
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6.1 Introduction
Single-molecule sequencing technology has enabled near-complete reconstruction of mi-
crobial genomes in both bacterial and eukaryotic organisms [146, 207, 259, 260]. Fur-
thermore, ultra-long reads—such as those obtained from Oxford Nanopore Sequencing
Technology—can greatly facilitate completion of genome assemblies [147]. This informa-
tion enables a more comprehensive understanding of the genomic architecture, variation,
and evolution of microbial species [207, 259, 260]. As single molecule sequencing tech-
nologies become more accessible, high-quality microbial assemblies are expected to be-
come more prevalent, decreasing the dependency of a reference genome in comparative
studies and instead shifting towards direct assembly-to-assembly analysis.

In general, comparative genomic studies aim to identify differences and similarities
in the genetic content of a collection of genomes. Depending on the nature of the re-
search question, this can be achieved via two strategies: “bottom-up” and “top-down”.
Bottom-up approaches are essentially (multiple) whole genome alignment which use short
sub-sequences to anchor and align genomes and which then undergo (multiple) sequence
alignment [241, 365–368]. One classic tool isMUMmer [241], which aligns a query genome
to a reference genome using maximal unique matches (MUMs). Clustering of MUMs can
then highlight structural differences—such as translocation, inversions, large insertions
and deletions—between the query and reference [241]. Sequencing projects dealing with
collections of (novel) assemblies often use MUMmer to align the genomes to a common
reference and identify variations across the collection of genomes by globally comparing
differences between each query and reference [147, 207, 260, 369]. However, compara-
tives results can be biased as these variants only account for differences in sequence that
is shared between the query and reference genome. More specifically, nested variation—
such as unique sequences in a collection of genomes that are absent in the reference but
themselves contain additional variation among each other—are missed.

Multiple-whole genome alignment approaches offer higher resolution of nested vari-
ation that can exists across a collection of genomes. Tools like the EPO pipeline [367],
Cactus [366], ProgressiveMauve [368], and Mugsy [365], utilize anchor-sequence-finding
methods (e.g. MUMs) across a set of genomes to identify collinear regions and thereafter
induce multiple sequence alignments across those regions. These approaches are partic-
ularly useful in identifying single nucleotide variants (SNPs) and insertion and deletions
(INDELs) across several assemblies without bias of a reference. In particular, Progressive-
Mauve and Mugsy have been designed in the context of microbial assemblies with Pro-
gressiveMauve tolerating structural variation—such as inversion—common in microbial
species [365, 368]; enabling both sequence and structural variation discovery across a col-
lection of genomes. Nevertheless, a major limitation of these approaches is scalability as
they have run-times that can take several hours/days depending on genome divergence
[365, 368].

Alternatively, the “top-down” approach in comparing assemblies uses pre-defined bio-
logical features as opposed to rawDNA sequence. Onewidely-studied approach is synteny
analysis: using gene annotations to identify sets of (coding) sequences that are similar/d-
ifferent across a set of genomes [370]. The intuition is that (evolutionary) closely related
genomes are not random and instead share a similar genomic structure—such as gene
order—due to some common ancestor. The aim is then to identify orthologous sequences
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across two or more genomes and find segments that maximally extend the collinearity
of the gene order, often referred to as synteny. Tools like i-ADHore [371], Proteny [372],
SynFind [373], and SynChro [374] aim to identify syntenic regions across a collection of
two or more genomes which can then be processed down-stream for further characteriza-
tion. It is important to note that these methods heavily rely on pre-defined gene annota-
tions and are therefore sensitive to annotation errors. Furthermore, syntenic regions are
computationally less expensive to compute since the annotations—equivalent to sequence
anchors in methods using the bottom-up approach—are pre-defined. Because the goal of
these methods is to compare genomes in terms of gene-order and content, the analysis is
generally restricted within one or several syntenic regions [371–374].

The use of graph-based data structures for comparing multiple genomes has recently
been highlighted. More specifically, the paradigm of computational pan-genomics aims to
combine multiple assemblies into a single, graph-based data structure to reduce reference
bias and enable more robust analysis of variation that exists within a (sub-)population
[174]. The benefit of this approach has been demonstrated in alignment and variant call-
ing analysis of short-read data sets [375, 376]. In these studies, existing variation were
integrated into a common reference genome represented as a graph, which facilitated bet-
ter placements of short-reads to difficult regions (e.g. highly variable regions), providing
a better understanding of the allele composition of those regions within (sub-)populations
[375, 376].

Implementations of graph-based data structures in comparative genomics is not new
and has been previously used for awide-range of genome analysis applications. In terms of
microbial genome comparison, the utilization of graph-based representations have been
used to compare multiple genome assemblies using a combination of the “bot-tom-up”
(DNA-sequence-based) and “top-down” (synteny/gene annotation-based) approach. Sibelia,
for example, concatenates multiple genomes sequentially into a single “virtual” genome
which is then decomposed into a DNA sequence-based kmer de Bruijn graph [377]. Sets
of nodes that are sequentially-identically “labeled” (e.g. kmer sequence) are merged thus
leading to an alignment de Bruijn (A-Bruijn) graph data structure [377]. DRIMM-synteny
[378]—a predecessor of Sibelia—uses a similar approach except that it works at the gene-
level: nodes are genes, kmers consist of the alphabet of assigned gene labels, and the
A-Bruijn graph is constructed by applying the “gluing” operation on identical labeled
kmers. Similarly, Pandaconda [379] uses pre-assigned family protein labels across mul-
tiple genomes, decomposes the genomes into a de Bruijn graph, and applies the gluing
operation on identically labeled nodes. Therefore, genetic variation—encoded as alter-
nate paths of genes and gene families—highlight architectural differences across multiple
genomes. A major difference is that Pandaconda does not modify the graph to remove
cycles enabling discovery of complex structural variations across a set of genomes [377–
379]. It is also important to note that both DRIMM-synteny and Pandaconda—which used
the “top-down” approach—require pre-assigned labels such that genes that are considered
to be identical (e.g. orthologous) have the same label [378, 379]. Ultimately, these graph-
based approaches aim to summarize the genetic content of multiple genomes in a single
graph data structure to identify genetic variation across multiples assemblies; attempting
to place biological context surrounding variation that exists across the genomes.

Here, we present Ptolemy: a method to simultaneously compare the genome archi-
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tectures of collections of microbial assemblies using both gene synteny and sequence
information. Ptolemy is a graph-based and gene annotation approach to aligning mul-
tiple genomes (e.g. “top-down”), similar to the A-Bruijn methods previously mentioned.
However, Ptolemy does not require pre-assigned gene labels and instead computes these
labels by identifying maximally-syntenic-ortholog-clusters of sequences based on the cor-
responding gene annotations of an assembly. Furthermore, Ptolemy represents the as-
semblies via a labelled-multi-digraph model (also known as quivers) and uses subsequent
morphism mappings to align multiple genomes into a canonical quiver. The resulting rep-
resentation thus captures structural across a collection of genomes into a single graph data
structure which can then be extracted using dynamic maximally-labelled path traversal
and intuitively visualized with available graph visualization software.

6.2 Methods
The algorithms for our graph and synteny-based approach for simultaneous alignment of
multiple genomes is packaged into Ptolemy and takes as input a set of FASTA-formatted
assemblies along with their gene annotations in GFF-format. The two novel contributions
of Ptolemy are the genome representation and corresponding utilities of labelled-multi-
directed graph (also known as quivers) and the syntenic-anchor finding algorithm. In the
following sections, we provide a detailed description of the algorithms used in Ptolemy:
first, we describe the quiver representation of a genome and morphism mappings to struc-
turally align multiple genomes without the need of a reference via a “top-down” approach
(e.g. orthologous genes). We then describe our implementation of construct-ing such rep-
resentation using syntenic-anchors based on syteny-based ortholog clustering. Finally,
we describe how structural variation can be extracted from the quiver as a population
using dynamic path traversal of labelled edges.

6.2.1 Synteny and the quiver representation of genomes
As previously mentioned, synteny analysis exploits the property that the locations of
genes in evolutionary close genome are not random but instead share common structures
such as gene order [370–374, 380, 381]. The term ortholog has been used to describe
gene sequences between two genomes that derived from a common ancestral gene due
to strain/species deviation [381, 382]. Intuitively, two closely related genomes will re-
tain a large fraction of orthologs along with the order of which they appear throughout
the genome, referred to as synteny [383]. Overtime, structural variation (such as gene
duplications and deletions) and chromosomal rearrangements (including translocations,
inversions, and horizontal gene transfer) disrupts synteny between genomes [383]. These
disruptions are therefore indicative of structural variation [379, 383]

Under the context of a directed graph, the disruption of syntenywould induce alternate
paths between genomes. Let a genome, 𝐺, be represented as a graph, 𝐺 = (𝑉 ,𝐸), where
the vertex set 𝑉 contains all genes in it’s respective genome. The edge-set, 𝐸, is a set of
directed edges describing the sequence of adjacent genes as they appear in the genome
such that two adjacent genes 𝑣 and 𝑤 are connected by a directed edge, 𝑒, describing 𝑣 →
𝑐. Note that this high-level graph representation of a genome will contain disconnected
connected components if multiple chromosomes are present. Now imagine a working
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Figure 6.1: Representing genome architectures as graphs. Figure (A) shows two genomes, 𝐺1 and 𝐺2, each
containing a single chromosome with 5-8 genes. Figure (B) shows graphical representation of genomes 𝐺1 and
𝐺2. Merging similar nodes in the genome graphs shown previously results in a new graph, Figure (C). The
addition of labels to nodes and edges results in a labelled-multi-directed graph, also known as quivers. Figure
(D) shows the quiver representation for genomes 𝐺1 and 𝐺2—in this case the colours corresponds to the labels
of 𝐺1 and 𝐺2. Merging of the two quiver similarly results in Figure (E), the canonical quiver representation of
genomes 𝐺1 and 𝐺2.

example of two closely related genomes, 𝐺1 and 𝐺2 (see Figure 6.1). Constructing a high-
level representation of both genomes will yield nearly identical graph with the exception
of topological differences associated with structural variation (Figure ??B). By merging
identical nodes and edges—which in this context corresponds to orthologous genes in
genomes 𝐺1 and 𝐺2—we create a single, canonical genome graph, 𝐺′, for both genomes,
naturally inducing alternate paths reflecting structural variation (see Figure 6.1C).

The addition of labels to nodes and edges to nodes and edges results in a labeled multi-
directed graph, known as a quiver (Figure 6.1D). A quiver of genome 𝐺, is a graph, 𝐺 =
(𝑉 ,𝐸,𝐿𝑉 , 𝐿𝐸), where 𝑉 and 𝐸 are defined as before, 𝐿𝑉 is a function mapping a vertex 𝑣
to a family of set labels, Σ ∣ 𝑥 ∈ 𝑋 , such that 𝐿𝑉 ∶ 𝑣 → Σ𝑥 ∣ ∀𝑣 ∈ 𝑉 , and 𝐿𝑒 is a function
that maps an edge e to Σ𝑥 such that 𝐿𝑒 ∶ 𝑒 → Σ𝑥 ∣ ∀𝑒 ∈ 𝐸. In our working examples of
genomes 𝐺1 and 𝐺2, Σ𝑥 would correspond to unique identifiers for each chromosome in a
each genome (e.g. 𝐺1-CHRI, 𝐺2-CHRI, 𝐺1-CHRII, 𝐺2-CHRII, ⋯). Note than an edge thus
has a head an a tail. In other words, for two adjacent nodes 𝑣 and 𝑤 with directed edge 𝑒
describing 𝑣 →𝑤 , the tail of an edges, termed 𝑒𝑡 , is 𝑣 and the head of an edge, termed 𝑒ℎ,
is 𝑤 .

Creating a single canonical quiver from two or more quiver representations can be
formally described through morphisms. A vertex-morphism for a quiver is a function,
𝑀𝑉 ∶ 𝑉 → 𝑌 , that maps vertices from some vertex set 𝑌 to alternate quiver represen-
tation, 𝐺′ = (𝑌 ,𝑍 ,𝐿𝑌 , 𝐿𝑍 ). Similarly, an edge-morphism is a function, 𝑀𝐸 ∶ 𝐸 → 𝑍 , that
maps edges from some edge set 𝐸 to an edge set 𝑍 belonging to the alternative quiver
representation 𝐺′. Therefore, the applications of 𝑀𝑉 and 𝑀𝐸 on 𝐺1 and 𝐺2 result in the
transformation to a single, canonical quiver, 𝐺′ (Figure 6.1E). In this context, the canonical
quiver 𝐺′ is a graphical representation containing the synteny disruptions (e.g. structural
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variation) in 𝐺1 and 𝐺2; and the morphisms 𝑀𝑉 and 𝑀𝐸 describe either ”unique” genes
or the merging of orthologous sequences. Acquiring 𝐺′ from some set of quivers thus re-
quires the construction of the mapping functions 𝑀𝑉 and 𝑀𝐸 from a set of given quivers.

We have now described how we can obtain a single canonical quiver 𝐺′ from a set
of individual quiver-genome representations. 𝐺′ describes disruptions of synteny within
a set of genomes which are indicative of structural variation across multiple genomes
and can be obtained via the construction of vertex and edge-morphisms (e.g. mapping
functions). In the next section, we describe our implementation of constructing these
morphisms from a set of genomes through synteny-based ortholog clustering.

6.2.2 Construction morphisms via syntenic anchors
We can construct the vertex and edge-morphisms for a canonical quiver by performing
synteny-based ortholog clustering. Ortholog clustering aims to identify sets of correspond-
ing orthologous sequences across a given number of genomes, and is generally obtained
through some form of pairwise sequence alignment (either DNA or protein) combined
with phylogenetic-inference. For constructing a canonical quiver representation, we re-
quire ortholog clusters that are syntenically supported—in other words, sequences that
maximize the synteny in the surrounding region of each gene for all genomes in the cluster.
We refer to these clusters as syntenic anchors. For example, two genes from two genomes
may share high sequence similarity and thus form an ortholog cluster. However, the two
genes may be located in completely different areas of the genome sharing no synteny in
the surrounding regions. In the context of constructing the vertex and edge-morphisms
for aligning multiple genomes, we wish to avoid forming these clusters as they will result
in spurious connections of dissimilar regions across multiple genomes.

Figure 6.2 gives an overview of our procedure to identifying syntenic anchors. We
present a generalized description of our ap-proach, and exact details can be found in Sup-
plementary Methods in [213]. First, we create a database describing the architecture of
each genome such as chromosome content including gene sequence and location (see Fig-
ure 6.2A). Genes with overlapping open reading frames are merged together into a single
“gene unit” whose boundaries are defined by the minimum and maximum coordinates of
all overlapping open reading frames. During the database creation, we attempt to iden-
tify repeat expansions by identifying connected graphs induced from self-pairwise-gene
alignments (see Figure 6.2A) and assign repeat ranks describing the order of genes in these
regions. We then identify ortholog clusters throughout all genomes in the database by
identifying best reciprocal hits (BRHs) through pairwise alignments of the gene sequences
for every pair of genomes (see Figure 6.2B).

Syntenic anchors can then be derived from BRHs by scoring the synteny of their neigh-
bouring regions (see Figure 6.2C). Similar to several synteny region finders [371–374], we
use a general window scoring approach (such as nearby genes of a given position) as well
as independent left and right flanking windows (nearest genes strictly upstream and down-
stream) which enables us to handle structural rearrangements such as translocations and
inversions. We determine whether a BRH is a syntenic anchor by computing a synteny
score for each window (see Supplemental Methods in [213]). Conceptually, for some de-
fined window size, we iterate through each position upstream and downstream from a
BRH and compute the difference between ex-pected and observed synteny based on the
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Figure 6.2: Overview of Ptolemy. (A) Ptolemy first creates a database characterizing individual genome archi-
tectures for a given list of assemblies and their corresponding gene annotations. In this process, Ptolemy also
attempts to identify repeat expansion though self-pairwise gene alignments. (B) Best reciprocal hits (BRHs) are
then identified via pairwise gene alignment for every pair of genomes. (C) Syntenic anchors are derive for each
BRH by scoring the synteny of the sur-rounding region of corresponding genes. This is done in a pairwise fash-
ion for every pair of genomes. (D) The syntenic anchors are then used to construct the canonical quiver for all
genomes in the database.
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positional displacement of neighbouring genes (see Supplemental Methods in [213]). In
implementation, BRH’s are considered syntenic anchors if their synteny score meets a
minimum threshold. A detailed description of this parameter along with how to set it can
be found in the Supplemental Methods in [213].

Lastly, for a BRH containing genes involved in a repeat expansion, we compute the
syntenic score of the neighbouring regions outside of the repetitive region. The intuition
is that locally repetitive regions will cause inaccurate calculations for the synteny scores
for both genes that are within and around the repetitive region leading to an increase of
false negative syntenic anchors. Thus, we “mask” the repetitive regions and compute the
synteny upstream and downstream of the region. Furthermore, we restrict the synteny
scoring of repetitive genes to those that only have the same repeat rank normalizing the
syntenic anchors of repetitive regions to their left-most corresponding BRH.

We have described our procedure for identifying syntenic anchors using a synteny-
based scoring mechanism for each BRH. The scoring mechanisms accounts for structural
variation—such as translocations, inversions, and horizontal gene transfers—and consis-
tently handles repetitive regions such as repeat expansions. With the syntenic anchors
in hand, we can construct the edge and vertex-morphisms to create the canonical quiver
representation for a given set of genomes. In the next section, we describe our procedure
for constructing the morphisms, and hence, the canonical quiver.

6.2.3 Canonical quiver construction
We construct the edge and vertex-morphisms by merging all genes in a syntenic anchor
in a single node, implicitly constructing the edge-morphism as well (see Figure 6.2D). Let
a sytenic anchor be represented as a family of sets, 𝐴𝑖 ∣ 𝑖 ∈ 𝐼 , where 𝐼 is the total number
of sytenic anchors. By merging all genes in a each 𝐴𝑖 , we construct the vertex-morphism,
𝑀𝑉 ∶ 𝑣 → 𝑦 ∣ ∀𝑣 ∈ 𝐴𝑖 , ∀𝑦 ∈ 𝑌 , where 𝑌 is the set of nodes in the canonical quiver, 𝐺′ =
(𝑌 ,𝑍 ,𝐿𝑌 , 𝐿𝑍 ). Concatenating the labels (e.g. chromosome identifiers) for all genes in 𝐴𝑖
constructs the vertex label function, 𝐿𝑌 . Note that the universal set of vertex labels (e.g.
the union of all vertex labels in the canonical quiver) is the union of all labels in a set of
genomes and the label of each vertex is therefore a subset of the universal set of vertex

labels. Implicitly, we also construct the edge-morphism,𝑀𝑉 ∶ 𝑒 → 𝑧 ∣ 𝑒𝑡 , 𝑒ℎ ∈
𝑛
⋃
𝑖=1

𝑉𝑖 , ∀𝑧 ∈ 𝑍 ,

where the tail and head of an edge, 𝑒𝑡 and 𝑒ℎ, are a vertices from one of the 𝑁 genomes
in the database. Conceptually, we are merging all edges whose head and tail are part of
the same syntenic anchor. Similarly, the concatenation of all edge labels defined by the
edge-morphism similarly leads to the construction of the edge-label function, 𝐿𝑍 .

In our implementation, we output the canonical quiver in a GFA-formatted file [155].
Each node is represented with the unique identifier assigned during the database or vertex-
morphism construction. The path lines describe the original architecture of a sequence (e.g.
chromosome) using the node identifiers and, hence, can be used to extract the edge and
vertex labels. We additionally add a genome line starting with the identifier “G” describing
the set of sequences for each genome. The resulting GFA-formatted file is portable and can
be immediately visualized in any GFA-supported graph visualizer such as Bandage [384].
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6.2.4 Structural variant calling using quiver representations
Structural variants are traditionally based on a reference genome, but can also be described
as a family of subgraphs each describing architectural similarities and differences across
a population. Recall our working example of genomes 𝐺1 and 𝐺2 (see Figure 6.1). We can
describe the structural variant as an insertion of three genes in 𝐺2 with respects to 𝐺1.
Conversely, we can describe it as a deletion of three genes in 𝐺1 with respects to 𝐺2. In ei-
ther case, this approach makes use of a reference-genome. However, we can also partition
the canonical quiver and describe the graph as a family of subgraphs describing genomic
similarities and differences as a population. For example, genes 1, 2 and 3 and genes 4 and
5 can form two disconnected components each describing common genomic architectures
between 𝐺1 and 𝐺2. Genes 6, 7, and 8 can also form a disconnected component but instead
describe a variant in the genomic architecture between 𝐺1 and 𝐺2.

We identify structural variants in the canonical quiver using a two-step hybrid, ref-
erence and population-based approach. We use an inductive graph data structure [385]
for representing a canonical quiver enabling us to use a functional paradigm for identi-
fying structural variants. Given a canonical quiver, 𝐺′ = (𝑌 ,𝑍 ,𝐿𝑌 , 𝐿𝑍 ), we first define a
reference architecture used to partition the quiver into a family set of subgraphs repre-
senting differences across the given collection of genomes with respect to a commonly
observed population. By default, the reference architecture is obtained by computing the
most common genome architecture in the canonical quiver based on the frequency of sub-
populations within all edges. Specifically, for a given connected component, we obtain
the label of all edges, count the number of occurrences for a given group of labels, and
use the label with highest count; resulting in the most co-occurring group of genomes
in the canonical quiver—similarly to obtaining the “most weighted path”. Optionally, the
reference genome architecture can be computed using co-occurrences of sub-populations
within nodes rather than edges. For more specific comparisons—for example, comparing
pathogenic to non-pathogenic genomes—users can specify a specific population as the
reference architecture.

Given the label of the reference architecture, Σ𝑅 , we perform a reference-cut operation:

we remove all edges, satisfying, Σ𝑅 ⊆ 𝐿𝐸(𝑧) ∣∈
𝑋
⋃
𝑖=1

Σ𝑖 , 𝑧 ∈ 𝑍 , followed by the removal of all

vertices satisfying, 𝑑𝑒𝑔−(𝑥) = 𝑑𝑒𝑔+ = 0. Conceptually, the reference-cut operation removes
edges that are part of the reference architecture followed by nodes with no in or out-edges,
indicating genes shared across all genomes. The result is a family of subgraphs, Γ𝑓 ∣ 𝑓 ∈ 𝐹 ,
where 𝐹 is the total number of subgraphs, each representing a structural variant with
respect to the reference architecture.

Each subgraph Γ𝑓 may contain additional nested structural variation that can be char-
acterized through a recursive labeled-traversal approach. As previously discussed, nested
structural variation is generallymissedwhen solely comparing against a reference genome.
To characterize the nested variation, we traverse through each Γ𝑓 based on maximally
labeled path traversals: given some starting node, 𝑦1, and a label, Σ𝑥 we perform a depth-
first search traversal to obtain the maximally labeled path, 𝑡 = (𝑦1, 𝑦2,⋯ ,𝑦𝑝 , such that
(𝑦𝑖 , 𝑦𝑗) = (𝑧𝑖 , 𝑧𝑗) ∧ Σ𝑥 ⊆ 𝐿𝐸(𝑧) ∣ 𝑦𝑖 , 𝑦𝑗 ∈ 𝑌 ,𝑧 ∈ 𝑍 ,1 ≤ 𝑖 < 𝑗 ≤ 𝑝. If we remove all edges in-
ferred in 𝑡 and subsequently rmove all nodes with no in or out-edges, we recreate the
reference-cut operation. A recursion-based implementation where a new label is used in
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each iteration enables us to dynamically choose a new reference architecture based on all
structural similarities and differences within the population of genomes Γ𝑓 .

In our implementation, we first identify all connected components in the canonical
quiver. Then for each connected component, we compute the reference architecture, per-
form the reference-cut operation and tail-recursively report the maximally labeled traver-
sals. Similarly, we store the output in a GFA file where each connected component has
a corresponding GFA file describing all family of subgraphs identified and each path line
describes a maximally labeled traversal.

6.2.5 Ptolemy implementation
All the algorithms discussed are packaged under Ptolemy and generalized in three mod-
ules. The extraction + repeat finder module (𝐸 + 𝑅) creates a database for a given set of
genomes and attempts to identify repeat expansions. The syntenic anchor module SA per-
forms pairwise gene alignments across all genomes in the database, obtain BRHs, and
computes syntenic anchors. The canonical quiver module (𝐶𝑄) constructs the canonical
quiver by inferring the graph morphism functions from the computed syntenic anchors.

Ptolemy is implemented under a functional paradigmusing Scala (https://www.scala-lang.
org/) and released as an open-source software under the GNU GPL3 license. Binaries,
source code, documentation and example datasets are available through GitHub: https:
//github.com/AbeelLab/ptolemy.

6.2.6 Benchmark data
We evaluated Ptolemy by aligning three different datasets representing various microbial
genome architectures and populations. The MTBC dataset contains 24 complete assem-
blies from the Mycobacterium tuberculosis complex [190]. The Yeast dataset contains 12
complete, PacBio assemblies from the Saccharomyces sensu strictu group—the architectures
of these genomeswere previously analyzed [260]. The Eco+Shig dataset contains amixture
of 20 Escherichia coli and Shigella species that are both commensal and pathogenic—the
pan-genome of these organisms were previously analyzed [192]. The accession codes for
all assemblies can be found in Supplemental table 1 in [213]. Clustering of assemblies via
kmer-profiles was performed with MASH [177] using kmer size of 21 and sketch size of
1,000,000. The canonical quivers were visualized using Bandage [384] and internal scripts
using Scala.

6.3 Results
Genome architectures in the microbial world can be diverse rang-ing from species with
high sequence conservation to those with only 11% overlap in their genetic content [190,
192]. We therefore evaluated the utility of Ptolemy on three microbial datasets represent-
ing the spectrum of microbial genetic diversity. The MTBC dataset contains complete
assemblies from M. tuberculosis (22), M. canetti (1), and M. africanum (1) whose genome
architectures are conserved harbouring little structural variation relative to other prokary-
otic organisms [190, 191, 386]. The Yeast dataset contains complete assemblies of S. cere-
visiae (7) and S. paradoxus (5) which share large fraction of their synteny but are known to
harbour various balanced and in-balanced complex structural variation as well eukaryotic

https://www.scala-lang.org/
https://www.scala-lang.org/
https://github.com/AbeelLab/ptolemy
https://github.com/AbeelLab/ptolemy
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Figure 6.3: Pan-genome and canonical quiver overview of three datasets using Ptolemy. The various
figures shows an overview of the pan-genome and canonical quiver derived by Ptolemy for M. tuberculosis
genomes (top-left), Saccharomyces genomes (top-right), and E. coli and Shigella genomes (bottom). In general,
Figures A,E, and I compares the total number of genomes in the canonical quiver in comparison to all genomes
in the dataset. Figures B,F, and J shows the distribution of the number of genes shared across all genomes in
the dataset. Figures C, G, and K summarizes the Figures B, F, and J as a function of the relative location of the
chromosome. Finally, Figures D, H, and L shows a visual representation of the canonical quivers.

horizontal gene transfers [260]. The most diverse set is the Eco+Shig dataset consisting
of complete assemblies from E. coli (13), S. flexneri (3), S. boydii (2), S. dysenteriae (1), and
S. sonnei (1) which have dynamic genome architectures with many com-plex structural
variations and little overlap in their gene content [192]. We inspired our evaluation on
previously published analyses of the structural variants and pan-genome—shared fraction
of gene content across all genomes—of these datasets [191, 192, 260, 386].

6.3.1 Conserved genome architectures in MTBC
MTBC dataset—termed the canonical quiver—reflect previously published analyses of the
pan-genomes for Mycobacterium species. Figures 6.2A-D gives overview summary of the
pan-genome derived from the canonical quiver. On average, there are 1,013 more genes
in the canonical quiver in comparison to the gene content of the 24 assemblies (see Figure
6.3A)—note that we merge overlapping reading frames into a single, maximal gene (see
Methods). Most of these genes are shared across all genomes as 76% of all genes are shared
by at least half of the assemblies in the dataset (see Figure 6.3B). In terms of chromosomal
locations, we find that the number of genomes containing a gene is constant across the
chromosome with no clear “hot-spots” of unique gene content (see Figure 6.3C).

Structural variation encoded in the canonical quivers also reflect previous analyses
regarding structural variation within the MTBC dataset. Figure 6.2D visualizes the canon-
ical quivers and is (visually) representative of how dynamic the genomes are. As shown,
the canonical quiver is largely linear with a single, topological “loop” in the middle. By
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Figure 6.4: Large-scale inversion within a sub-population of M. tuberculosis genomes. (A) Shows a
subgraph of the canonical quiver at the breakpoint of an inversion present in 3 genomes. Nodes are genes
and the edges describe alternative paths that different genomes take: edges are coloured purple when they
exclusively describe the three genomes harbouring the inversion, and black otherwise. The thickness of the
edge corresponds to the number of genomes traversing the paths—the more common the path the thicker the
edge. (B) A dendogram of the hierarchical clustering of all genomes in the dataset based on kmer-profiles. The
samples in purples are those harbouring the large-scale inversion which cluster together.

extracting the family of subgraphs which correspond to the structural variations in the
canonical quiver, we find that the loop is representative of a large-scale inversion in 3 of
the 24 genomes (see Figure 6.4A). Kmer-based clustering of the assemblies (see Methods)
shows that the genomes harbouring the inversion also cluster together, indicative of a
sub-population within this dataset (see Figure 6.4B).

6.3.2 Variable genome architectures in Yeast
The canonical quiver confirms previous reports regarding genome architectures in the
Yeast dataset. Figures 6.3E-H shows an overview of the pan-gnome obtained by Ptolemy.
The canonical quiver has 6,919 genes, which is on average 1,249 more genes in comparison
to the 12 assemblies in the dataset (see Figure 6.3E). Most of the genes in this dataset are
universally shared as 80% of the gene content is present in at least half of the assemblies in
the dataset (see Figure 6.3F). As shown in Figure 6.2G, the number of genomes per gene is
fairly consistent across all chromosomes except for the starting/ending sub-regions where
this number sharply falls (see Figure 6.3G).

We were able to identify previously reported structural variation as well as additional
variation likely missed due to bias in reference-based comparisons. Although linearity
(e.g. synteny) is still observed throughout the quiver, Figure 6.3H shows various topologi-
cal features reflecting several translocations and inversions. (Note the different connected
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Figure 6.5: Genome-wide and sub-region-specific quiver decomposition for 12 Saccharomyces assem-
blies. (A) shows that the decomposition of the canonical quiver results in 5 unique genome architectures. The
first genome architecture (top-most set of chromosomes) is the most common and is largely similar to the com-
monly used reference genome for Saccharomyces cerevisiae, S288C. The remaining three are much more diverse
containing several translocation and inver-sions across the 16 chromosomes in the genome. (B) shows a sub-
region in the canonical quiver corresponding to the right sub-telomere region of chromosome XII. Black edges
correspond to paths containing the reference, S288C, and blue otherwise. Note the additional structural variants
present in several genomes which are absent in the reference.

components reflecting different chromosomal sequences in these organisms). By decom-
posing the quiver, we can reconstruct the genome architectures of the twelve genomes
proposed by Yue et al. (see Figure 6.5A) [260]. Specifically, the genome architectures for
eight genomes are similar to that of the S288C, a commonly used reference genome for S.
cerevisiae (see Figure 6.5A). For the additional three genomes we find various transloca-
tions in inversions across the 16 different chromosomes (see Figure 6.5A).

An example of the type of complex structural variation that exists within the Yeast
dataset is shown in Figure 6.5B. The figure corresponds to a sub-graph of the canonical
quiver corresponding to the alignment of the right sub-telomere region of chromosome
XII. As depicted, there are several structural variants unique to sub-populations in the
dataset which are absent in the commonly used reference genome of S288C (see Figure
6.5B). The bottom-most alternative path contains several genes associated to sugar and
alcohol metabolism (see Figure 6.5B). These genes are not only unique to 2 of 12 genomes
but also contain nested structural variation which is generally missed by reference-based
comparisons. An additional example is shown in Figure S1B in [213] depicting the align-
ment of the right end of the sub-telomere region for chromosome VII. Yue et al. previ-
ously reported a tandem expansion of two paralogs, MAL31 and MAL33 (involved in the
metabolism of the maltose sugar compound), for the S. paradoxus genome, CBS432 [260].
We find that this expansion is present—in variable length—in 9 of the 12 genomes and ab-
sent only in the S. cerevisiae genomes of SK1 and DBVPG6044 along with the commonly
used reference, S288C (see Figure S1B in [213]).
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6.3.3 A genomic “melting-pot” in the Eco+Shig dataset
We observe large variations in the pan-genomes for the 20 assemblies in the Eco+Shig
dataset. Each genome contains about 3,825 genes, contrasted by the canonical quiver
which has a total of 17,698 genes (see Figure 6.3I). This variation is further highlighted
in Figure 6.3J where only 18% of all genes are shared by at least half of the assemblies in
the dataset. Furthermore, the number of genomes per gene is highly variable and varies
throughout the chromosome (see Figure 6.3K).

We investigated structural variation encoded in the canonical quiver by comparing the
genome architectures of commensal and non-commensal pathogens [192]. The complex
structure of the canonical quiver is shown in Figure 3L and highlights the dramatic varia-
tion that exists within the genomes of the Eco+Shig dataset. Although some linearity exists,
Figure 6.3L shows that the canonical quiver contains many complex topological features
representing various forms of structural variations, inversions, and horizontal gene trans-
fers. (Note that a subset of these genomes contain several plasmid sequences and, hence,
Figure 6.3L displays several connected components). In the Eco+Shig dataset, 9 genomes
are described as commensal while the remaining 11 genomes are described as pathogenic
[192]. We defined the reference genome architecture to the 9 commensal genomes (see
Methods) and extracted the family of subgraphs representing structural variation between
the two populations.

We found 50 structural variants exclusive to the pathogenic genomes of containing at
least three genes and shared by at least two genomes. Among the largest structural variant
is a sub-graph in the canonical quiver of about ∼24 genes in length that is exclusive to
four Shigella genomes: S. flexneri strains 2a 301 and BS12, S. dysenteriae strain Sd197, and
S. sonnei strain Ss046 (see Figure S2 in [213]). Closer analysis showed that this variant
corresponds to the virulence-based type III secretion system [387], a hallmark genetic
compo-nent in pathogenic bacterial species [388].

6.3.4 Performance of Ptolemy
Although the construction of the canonical quiver can be fast—e.g. ∼10min for 24 genomes
(see Table 6.1)—it’s important to note that the time complexity is ultimately𝑂(𝑛2). The two
most computationally heavy steps in Ptolemy is computing best reciprocal hits (BRHs)—
which currently uses pairwise gene alignments across all pairs of genomes—and the syn-
tenic scoring of each BRH, each which is 𝑂(𝑛2) (see Table 6.1). For the latter step, the
worst case scenario is comparing highly conserved genomes (such as Mycobacterium tu-
berculosis as done in this study). For this type of organisms, many genes are shared across
a large fraction of all genomes and nearly every gene will have a BRH across all genomes,
resulting in 𝑛2 number of synteny scorings. Given that Ptolemy is implemented under a
functional paradigm and nearly entirely immutable, these steps are easily parallelizable
and currently makes use of all available CPUs. Analyzing large data sets is, in part, de-
pendent on the number of available CPUs in a machine/cluster. As an example, we ran
Ptolemy on 100 Mycobacterium tuberculosis genomes which took a total of 1 hour and 32
minutes using 20 CPUs.
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Table 6.1: Run time of Ptolemy across three datasets. Ptolemy is separated in three modules: extraction +
repeat finder (𝐸 +𝑅), syntenic anchors, (𝑆𝐴), and construction of the canonical quiver (𝐶𝑄).

Dataset Genomes Module Wall clock (min:s) Max mem. (Gb) CPUs
MTBC 24

𝐸 +𝑅 0:43 0.680 1
𝑆𝐴 11:35 1.35 4
𝐶 0:03 - 1

Yeast 12
𝐸 +𝑅 0:45 0.694 1
𝑆𝐴 5:05 1.44 4
𝐶 0:03 - 1

Eco+Shig 20
𝐸 +𝑅 0:42 0.632 1
𝑆𝐴 4:50 1.33 4
𝐶 0:03 - 1

6.4 Discussion
Advances in long-read sequencing technology are enabling re-searchers to feasibly ac-
quire “complete” assemblies for a collection of microbes. As this technology becomes
more accessible, we can begin to shed light at the diversity of genome architectures across
different (sub-) populations of microbial species, which has largely been hindered by limi-
tations of reference-based computational approaches. In this paper, we present Ptolemy: a
reference-free method for analyzing genome architectures across a collection of microbial
genomes. Ptolemy represents each genome as a labelled-multi-directed graph, known as
quivers. Using synteny analysis, the quivers can be merged into a single, canonical quiver
representing a structural-based multiple whole genome alignment. As shown in the ap-
plication of Ptolemy across three different datasets of Mycobacterium, Saccharomyces, and
Escherichia and Shigella species, the canonical quiver can be used to study pan-genomes
as well as systematically discovering structural variants in context of (sub-)populations.

The application of Ptolemy on the three dataset shows the spectrum of genomic diver-
sity that can exists in the microbial world. For example, the pan-genomes of the MTBC
dataset confirm high conservation of the genome architectures of these organisms, which
harbour rela-tively little-structural variation [190, 191]. Structural variants in these organ-
isms are therefore used as lineage-specific markers [365, 389]. Specifically, we show that
traversals of the canonical quiver can identify a large-scale inversion that exists within 3
of the 24 genomes (see Figure 6.3); these genomes correspond to a family of highly virulent
strains endemic to a sub-region in South Africa where the inversion has been previously
observed [386]. It is important to note that Figure 6.3B shows roughly 2,000 unique genes
across the 24 assemblies. Closer analysis showed that the majority of these genes cor-
respond to transposable insertion sequences and PE/PPE genes which are repetitive and
variable across genomes [390–392]—the latter which correspond to ∼10% of gene content
in M. tuberculosis genomes [390, 391].

For Saccharomyces species, sub-telomeric regions—the first/last ∼20-30 Kbp of a chromosome—
are biologically relevant as they harbour gene families that heavily influence biotechnology-
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based phenotypes [207, 234, 260]. However, these regions are notoriously challenging to
compare across different genomes as they typically undergo gene-deletion, expansion, and
reshuffling leading to highly dynamic architectures [207, 234, 260]. Indeed, Figure 6.3G
re-confirms previous observations of the diversity in these regions showing that the genes
in the beginning/end of each chromosomes are not commonly found across all genomes.
More specifically, Figure 6.4B shows the alignment of the right sub-telomeric region of
chromosome XII across all genomes highlighting nested-structural variation unique to
sub-populations in the dataset.

Expectedly, the results obtained in the Eco+Shig dataset dramatically differs to those
of the MTBC and Yeast dataset. We observe a significant lower number of genes shared
across all genomes similar to those previously reported (see Figure 6.3 I and J) and find
more complex structural variation in the canonical quivers (see Figures 6.2 D, H, and L).
Such dynamic genome architectures can complicate comparative studies [192, 368]. Our
ability to identify structural variation—specifically between commensal and pathogenic
strains—highlights the viability of Ptolemy in different microbial populations.

The accuracy of the Ptolemy is depended on the accuracy of the gene annotations in
a given dataset. Ptolemy only compares the sequence within the boundaries of each gene
and is therefore sensitive to annotations errors. More specifically, annotation errors can
lead to false negative merging of nodes inducing false positive structural variants. This
is shown in Figure S1A in [213] where the upper-most path of the alignment in the right
sub-telomeric region of chromosome V is likely caused by gene annotations errors: the
sum of the size of the two adjajcent TOG1 annotations is approximately the same as the
size of the TOG1 annotation in the bottom, adjacent path. Therefore, the alternative path
will be identified as a structural variant although it is likely that this is the same sequence
present in the remaining genomes in the dataset (see Figure S1A in [213]). We acknowl-
edge that annotating genomes is an error-prone process and often requires manual cura-
tions [393, 394]. For this reason, the current implementation of Ptolemy is regarded as an
“approximate structural aligner” and care should be taken when comparing genomes of
un-known annotation quality. Nevertheless, we were still able to construct pan-genomes
and identify structural variants that agree with previous published studies despite using
genomes sequenced and annotated by different groups and pipelines (see Figure 6.3, 6.4,
and 6.5).

Future work could use a two-step alignment process: syntenic-anchoring followed by
local-realignments of nodes. This is primarily to refine alignments of repetitive sequences,
especially those involved/nearby repeat expansions. As discussed in the Results, Figure
S1B in [213] shows a sub-graph of the canonical quiver of Yeast dataset repre-senting
the alignment of right sub-telomeric region of chromosome VII. We show that there is a
tandem expansion of variable length for two paralogous genes across 9 of the 12 genomes.
In this alignment, the right-flanking genes, PAU, COS2, and COS6, are present in other
sub-populations and are considered BRHs but Ptolemy considers them unique for most of
the genomes. This is largely due to difficulties in scoring the synteny in the surrounding
region heavily influenced by the downstream repeat expansion as well as the different
genes present upstream in each genome. Therefore, a two-step approach may first build
the canonical quiver and followed by a traversal seeking to re-score the synteny of genes
that are considered unique but possess BRHs in some defined neighbourhood of a local
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subgraph.

6.5 Conclusion
Advances in sequencing technology is expanding our knowledge of the genetic diversity in
microbial populations. Lacking are computational methods that can simultaneously com-
pare multiple assemblies without restricting analysis to only “similar” genomes. Here, we
show that Ptolemy is a flexible method that can systematically identify structural variation
across a collection of assemblies while providing insights in the population structure and
pan-genome of the collection—all without the need of a reference. Ptolemy tackles long-
standing challenges in comparative genomics including independence from a reference
genome, characterization of complex structural variation as sub-populations, and viabil-
ity in studying both conserved and highly dynamic genomes. The work presented here
is a step forward for studying the genetic diversity that is yet to be characterized in the
microbial world.
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7
An educational guide for nanopore

sequencing in the classroom
The last decade has witnessed a remarkable increase in our ability to measure genetic in-
formation. Advancements of sequencing technologies are challenging the existing methods
of data storage and analysis. While methods to cope with the data deluge are progressing,
many biologists have lagged behind due to the fast pace of computational advancements and
tools available to address their scientific questions. Future generations of biologists must be
more computationally aware and capable. This means they should be trained to give them
the computational skills to keep pace with technological developments. Here, we propose
a model that bridges experimental and bioinformatics concepts using the Oxford Nanopore
Technologies (ONT) sequencing platform. We provide both a guide to begin to empower the
new generation of educators, scientists, and students in performing long-read assembly of
bacterial and bacteriophage genomes and a standalone virtual machine containing all the
required software and learning materials for the course.

7.1 Introduction
What defines a biologist? In short, a biologist is a person who studies life and living organ-
isms. But this simple definition hides the true complexity of the field of biology. Biology
covers diverse topics such as molecular biology, structural biology, ecology, evolution, ge-
netics, microbiology, immunology, and biotechnology. Importantly, most (if not all) of
these topics have undergone incredible progress due to rapid discoveries and technologi-
cal advances [395, 396]. As such, a modern biologist has the inevitable tasks of adapting
to rapid change and mastering new knowledge and technology.

One of the most important revolutions in the field of biology was caused by the de-
velopment of next-generation sequencing (NGS) technologies. Using massively parallel
processing of samples, NGS dramatically reduces sequencing time and costs, enabling the
sequencing of entire genomes. Currently, genome sequencing and analysis have become
a crucial component in biology, as evidenced by recent scientific breakthroughs [81, 397]

This chapter have been published in PLOS Computational Biology [214]
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and by the exponential increase of reported genomes on GenBank (e.g., from 30,000 se-
quenced prokaryotic genomes in 2014 [398] to 183,000 in 2018 (https://www.ncbi.nlm.
nih.gov/genome/browse/#!/overview/), a 6-fold increase in only 4 years). Thus, not only
do biologists need to adapt and learn how to use these emerging technologies, they also
need to learn how to mine the ever-growing mountain of genomic information they gen-
erate, which requires bioinformatics skills. Now, the question is how do we train this
generation of biologists so that they have the required computational skills?

7.2 Bridging bioinformatics to biologists
Over the past few years, we have taught introductory bioinformatics to undergraduate
(second year BSc) biology students with basic molecular biology training. They are versed
in standard techniques (such as basic DNA extractions and PCR) but are unfamiliar with
specific DNA sequencing chemistries. In the past, this mandatory computational course
was entirely disconnected from lab work, making it hard for students to grasp how bioin-
formatics and biology are connected. To address this disconnect, we here share a more
integrated approach to teach bioinformatics to biology students. These students have a
conceptual grasp of sequencing and bioinformatics but not the detailed view on how var-
ious lab techniques (e.g., NGS chemistries) combined with various analysis methods (e.g.,
assembly, variant calling) can be used to answer specific biological questions and how
these techniques interact with each other.

The overall idea is to start from where students are already familiar (i.e., biology) and
expand from there. There are 4 types of learning activities in the course (see Figure 7.1):
(1) lectures in which students receive classroom instruction on bioinformatics topics, (2)
practical sessions in which students apply the material from the lectures to solve practical
exercises supervised by teaching assistants, (3) lab work in which sequencing data are
generated, and (4) a project that applies the bioinformatics concepts learned in the lectures
on data from the lab work. This is concluded by a poster session in which all students get
to review each other’s work. A week by week overview can be found in S1 Table in [214].

The formula presented here focuses on introducing bioinformatics to biology students,
helping them to acquire the skills and insights needed to operate and troubleshoot exist-
ing algorithms. The course does not focus on developing skills needed to create novel
algorithms or models.

During the pilot run of this course in the academic year from 2017 to 2018, we used
Oxford Nanopore Technologies (ONT) MinION sequencing as a data generation platform.
This platformwas selected because it has low capital cost and is a new exciting technology
easy to engage students with. Real-time data acquisition gives immediate feedback to the
students that data are being produced, even if they have to keep it running overnight. It is
easy to imagine they could get one of these devices at home. Students can see themselves
as scientists, as people discovering something new, an idea that we really like to foster.
Ultimately, any fast, cheap, and accessible sequencing platform would be good for our
goals, yet only MinION is currently available.

MinION has already made its way into undergraduate and graduate courses [399, 400].
Some of these courses focused on data analysis; they organized hackathons in which stu-
dents needed to devise a pipeline to infer the ingredients of food DNA samples or identify
human DNA samples [399]. Others developed the application of MinION further by also

https://www.ncbi.nlm.nih.gov/genome/browse/#!/overview/
https://www.ncbi.nlm.nih.gov/genome/browse/#!/overview/
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Figure 7.1: Integrated bioinformatics training with time on the x-axis. Lectures (green) give students
the necessary background to execute and understand Practical (blue) and Project (purple) sessions. Laboratory
sessions (yellow) enable students to employ their biological background and prepare their own DNA libraries
from samples of interest. Libraries prepared by each student group are pooled together and run on a MinION
device (Oxford Nanopore Technologies, Oxford, UK), generating data to be processed in Project sessions. Backup
data previously prepared from the same samples can be used if the students’ MinION run fails to provide enough
quality data for analysis. In the Practical sessions, students learn to use established bioinformatics methods, with
an emphasis on processing long-read data (see Figure 7.2, S1 Table and S1 Text in [214]). In the Project sessions,
they then apply these methods to the generated data to answer specific research questions. After intragroup and
intergroup discussions of results, students prepare their final project report and present their results in a poster
format.

teaching laboratory techniques for DNA extraction and sequencing library preparation
[400].

Additionally, the portable size of ONT’s MinION and the simplicity of library prepara-
tion enable scientists to use this technology in a wide variety of environments, including
a standard classroom [401–403]. As such, this device is not only attractive for researchers
but also for educational instructors: If this technology is empowering scientists to embark
on novel scientific studies, why not also empower young students to embark on effective
educational experiences?

7.3 Integrating nanopore sequencing in the classroom
The challenge set for students in our course was to identify and discover novel phages
from environmental samples and to reconstruct complete genomes from single-isolate
and metagenomics samples. The students had to address the following research ques-
tions, which were introduced at the very beginning of the course: (1) Can we assemble
and annotate fully closed genomes from a small number of long reads? (2) What are the
considerations for the assembly of metagenomics samples compared to single isolates? (3)
What is the advantage of long-read sequencing for the analysis of metagenomics samples?
(4) Can we identify virulent and temperate phages in metagenomics samples? (5) What
genes of interest can we find in both bacteria and phage genomes? Twenty-four groups of
4 students (96 total) prepared their own DNA libraries of various single-isolate bacterial,
bacteriophage, and metagenomic samples in the classroom. Number of groups and their
size were determined to allow for sufficient supervision within the available lab space.
If possible, smaller groups are preferable to increase the hands-on time of each student.
We would like to emphasize the benefits of having multiple groups working on different
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related samples (e.g., each barcode represents a similar but different microbial isolate).
This allows groups to initiate discussions about differences in their own findings—such
as unique sequences, structural variants and presence and/or absence of genes—and hy-
pothesize how those differences may influence the phenotypic traits of their sample. This
exercise helps them further appreciate the value of bioinformatics skills in a biological
setting and how the two are ultimately connected.

The DNA libraries were prepared using the rapid barcoding kit (SQK-RBK004), which
has fewer steps than other available kits and thus allows the procedure to be completed
within the 3-hour timeframe of the class. For longer sessions, the ligation sequencing kit
(SQK-LSK109) could be used, increasing the robustness and throughput of the experiment.
Both kits allow for barcoding of multiple genomic DNA samples. Samples were prepared
individually by each group and then barcoded and pooled together at different proportions
depending on the success of each group. When sequencing runs failed, the student was
supplied with previously generated backup data.

After running DNA samples in MinION, students performed quality control of their
data and then assembled the genomes. As we focused on teaching technical concepts of
bioinformatics, we provided a computational guide (see S1 Text in [214] and summary in
Fig 7.2) containing ready-to-go commands and scripts for commonly performed tasks that
can be broadly used with MinION data. To facilitate the use of this guide, we provided a
standalone virtual machine containing all required software used in S1 Text in [214].

Once data processing was completed, students pursued a variety of research questions,
such as investigating the genomic composition of their bacterial sample as well as the
population composition of their metagenomics sample. For example, students would de-
termine the bacteriophage species in their barcoded sample and compare their assembled
genome to that of the closest reference genome found in the National Center for Biotech-
nology Information (NCBI) reference sequencing database (RefSeq). In all cases, students
found that their assembly had little overlap with the reference, prompting discussions
about the novelty of the genetic content in their phage.

Students ran Centrifuge [408], a species classification and quantification tool, on their
metagenomics sample and generally concluded a mixture of viral and bacterial species.
This process stimulated discussion about a number of course-related topics: (1) limita-
tions of kmer-based tools (e.g., kmers are not always unique to individual species), (2)
biases when comparing against a reference data set (e.g., you can only classify what you
have previously observed), (3) understanding bacteriophage biology (e.g., phages can in-
tegrate their DNA in a bacterial host; therefore, sequences that are labeled as “bacteria”
may actually correspond to integrated phage DNA), and (4) understanding whether long-
read sequencing is advantageous to the scientific question addressed (e.g., long-read se-
quencing helps improve assembly quality of metagenomes, but the high error rates of the
technology still limit its usefulness; here, combining short-read and long-read data could
be the best approach to improved contiguity and base pair–level accuracy). These topics
were framed to explore how they may affect the student’s computational observations.

Through the integrated approach in our course, students can easily grasp the direct
influence of the experimental protocol on data quality. For example, a student’s excessive
pipetting leads to observably shorter read-length distributions, resulting in fewer unique
overlaps in the pairwise alignments, a less contiguous assembly graph, and ultimately
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Figure 7.2: Pipeline for genome assembly using MinION data. First, the barcoded sequences are demul-
tiplexed using Deepbinner [404] and basecalled using Albacore (Oxford Nanopore Technologies, Oxford, UK).
Nanoplot [405] is used to assess the quality of the sequencing data for downstream processing. If the data have
sufficient quality, they are used for assembly using, e.g., Canu [151]. Confidence on the resulting consensus
assembly is obtained using Minimap2 [93]. The assembly is polished to remove common mistakes using Nanop-
olish [15], and then Circlator [406] is used to determine the zero-based start of the genome, which depends on
whether it is a bacterial sequence or a bacteriophage sequence. Finally, the assembled genome is annotated using
Prokka [407]. Please refer to S1 Text in [214] for further details.
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more fragmented assemblies. Furthermore, the setup is sufficiently generic that different
scientific questions could be addressed using this pipeline, and it is sufficiently flexible to
adjust to the students’ background.

We experienced increased interest and engagement in our course from both the instruc-
tors and the students. Students were much more interested in the course content because
they could assume scientific responsibility and ownership. Spending several hours or days
in the lab goes a long way to make “scientists-to-be” feel “this is my data.”

The instructors leveraged the practical classes as an opportunity to generate and an-
alyze data for potential pilot studies, i.e., preliminary data for the next round of grants.
In our pilot version of the course, the experiments were chosen such that they contribute
to ongoing research in the lab. As a result, we generated several follow-up project ideas,
one of which resulted in a master’s thesis on heterogeneity of bacteriophage genomes
detected by nanopore sequencing, as well as a tripling of the number of undergraduate
lab-rotations in the area of bioinformatics.

Naturally, many of the assignments, including interpretation and comparison of a
genome assembly from single bacterial isolates to that of viral samples, were open-ended
and initially challenged the students. However, the experience gave them a more realis-
tic impression of academic research and foundational skills to help them in their future
career as modern biologists. In particular, different samples required different data inter-
pretations, naturally spurring discussions and collaborations among students. Future edi-
tions of such an integrated course could consider even developing the student ownership
further by explaining the “problem” and asking students to design the DNA sequencing
experiments given the boundaries of the reagents available. With adequate supervision
and coaching to include proper controls and experiments, this could lead to even greater
collaboration and ownership by the students.

7.4 Conclusion
Considering the fast pace at which sequencing technologies progress and at which ge-
nomics data are generated, it is no longer possible to ignore the urgency of equipping
young biologists with the required skills to manage the amount and type of sequencing
data being generated. Here, we used nanopore sequencing as one possible tool to prepare
a new generation of bioinformatics-aware modern biologists. Nanopore sequencing offers
an exciting opportunity to not only introduce students to the field of genomics and bioin-
formatics but also to address advanced biological and computational problems. Simple cus-
tomizations of the assignments are possible to make the course different every year and to
make it suitable for teaching students of different backgrounds, such as computer science
(e.g., toolbox handling, algorithm understanding), molecular biology (e.g., genomics, se-
quencing), or medicine (e.g., pathogen detection, cancer diagnostics). MinION also gives
a chance to teach the students how to use different tools and community-based analysis
and the importance of constantly updating their knowledge of recent technological devel-
opments.

The virtual machine and guide provided herein intend to assist science educators and
also geneticists to address timely questions in biology, such as detection of epigenetic mod-
ifications, characterization of human genetic variation, real-time detection of pathogens,
characterization of structural variation in cancer, and analysis of population transcrip-
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tomics. A walkthrough of ONTassembly of prokaryotic genomes and their viruses is pro-
vided in S1 Text [214]. All materials, including the virtual machine image, are available at
https://github.com/AbeelLab/integrated_bioinformatics.

https://github.com/AbeelLab/integrated_bioinformatics
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8
Discussion

With the rapid progression of genome sequencing technology, microbiology has embraced
bioinformatics as a core component of its research. Indeed, the chapters in this thesis show-
case the power of (novel) computational methods along with recent sequencing technolo-
gies as they have unraveled biological insights about the genomes of influential microbial
organisms, particularly in yeast. However, reflecting the 60+ years of the bioinformatics
research in conjunction with recent scientific advancements, there is still a lot left to ex-
plore. Here, I share some thoughts on-going challenges in bioinformatics, focusing on the
following question: how should one compare 𝑛 genomes in light of recent technological
and algorithmic developments?

Since the sequencing of the very first genes, researchers have postulated the promise of
comparative genomics, that is, comparing (multiple) genomes of similar and/or different
organisms in order to understand their biology and evolutionary history [75, 185, 186, 188,
189]. But as discussed in the introduction, technological challenges in whole-genome se-
quencing and assembly has restricted us to either a limited number of sub-regions and/or
samples. For example, early whole-genome sequencing data from the 1990s and early
2000s provided complete microbial assemblies, but their high-cost and labor-intensive pro-
tocols restricted the total number of genomes that could be affordably sequenced [81, 109].
Nevertheless, ambitions to understand their biology and evolutionary history is reflected
in the various comparative methods that have since been developed. This was followed by
second-generation sequencing data, which was less costly enabling us to sequence many
more samples, but at the trade-off of fragmented and incomplete assemblies [81, 109]. We
could still compare genomes deriving from second-generation sequencing data through
the (short-read) alignment and variant-calling paradigm, and various methods following
that paradigm were indeed developed [108, 409]. However, this approach is knowingly
biased by the choice of the reference genome and fails to interrogate “inaccessible” sub-
regions that are repetitive and or difficult to assemble.

Today, third-generation sequencing technology combines the best of both worlds by
offering the ability to obtain complete genome assemblies in a high-throughput and af-
fordable manner. Excitingly, we are beginning to routinely obtain high-quality and/or
compete genomes, especially for microbial organisms [109, 410]. And so, if the chal-
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lenge is not longer purely an issue of assembling genomes, the one can begin to focus
in the ”comparative”-part of comparative genomics. But with the availability of complete
genome assemblies, this begs the question: how do we better utilize the additional infor-
mation from complete assemblies? As most methodological questions goes, it depends
what we are trying to answer.

8.1 Systematic variant calling frommulti-whole genome
alignments?

A valuable use of the align-and-variant-call paradigm established with second-generation
sequencing is that it enables systematic identifications of variants across many genomes,
which we can subsequently associate to phenotypes. Unfortunately, it is much more chal-
lenging to systematically identify complex structural variations from only short-reads ,
and hence, genome-wide associations studies have largely been limited to single-nucleotide
polymorphisms. With complete genome assemblies, could we systematically identify the
“complete set” of variation without any biases, enabling more enriched associations?

One obvious challenge is properly defining collinear regions. This may be relatively
easier when comparing near-clonal populations due to a high abundance of anchors which
simplify a multi-genome chaining step, but becomes harder when the sub-population di-
verge in sequence similarity [365, 411, 412], especially if a minimum number of anchors
for a chain is enforced. Of course, one could argue that if a subset of sequences are too
divergent, then they should be left-out of the collinear blocks, leading to a set of variants
unique to some collection of individual genomes. However, in (microbial) coding regions,
variation in DNA sequence does not necessarily imply changes to amino acids [413, 414],
so DNA subsequences from some population may actually be conserved at the protein
level, and should not necessarily be seen as distinct sequences. This is further reinforced
when considering that adaptations to codon usage which can influence the efficiency of
expressed proteins, even if their DNA changes are synonymous [413, 414].

Additionally, how do you handle structural variation? For example, there are different
approaches to multi-whole-genome alignment, such as positional homology and glocal
alignments [103]. This choice becomes important if one cares more about structural vari-
ation, as opposed to aligning all homologous sub-regions regardless of their locations in
the genome. For example, bacterial genomes can undergo large structural changes due
to integration and/or rearrangement via horizontally acquired sequences. Similarly, un-
related bacterial genomes can acquire shared genomic sequences that provide them with
similar phenotypic behaviour. Alternatively, one could ’revert’ structural variation in all
genomes to match that of a single reference genome, enabling a single, artificial large
collinear region. However, this does not guarantee a common a collinear architecture, es-
pecially if the reference genome fails to contain sequences common across the remaining
genomes.

There is also the question of how to perform the alignments of collinear blocks: a pro-
gressive approach is fast but can introduces biases by fixing the position of indels despite
new information from later alignments [415]. Alternatively, a partial-order alignment
graph approach can better represent indels, but the sequences are order dependent [416].
Even then, these are still heuristically based with defined match and gap penalties, should
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those parameters dynamically adapt throughout a population of sequences [415]?
There has been a growing interest in genome graphs, aiming to facilitate comparisons

of multiple genomes by summarizing and navigating them through a graph-like data struc-
ture [174]. In principle, genome-graphs can directly represent multiple-whole genome
alignments: at the sequence level, they can natively support partial-order-like alignments
of collinear region, or at the very least their multiple-sequence alignment as a sub-graph
with different nodes and edges. As such, variants in this representation are not only sin-
gle allele differences, but also alternate paths (e.g. haplotypes). At the structural level, all
collinear regions could be connected by their adjacent locations in their native genomes,
enabling one identify structural variants such as inversions, translocations, and large dele-
tions and insertions through traversals of every collinear region. Thus, genome graphs
could facilitate comparisons of multiple whole genomes, but the precise methodology on
how to construct them remains an open problem.

8.2 The phasing of metagenomes
Metagenomic analysis is a comparison of large collection of microbial genomes. As one
would expect, long-read sequencing provides more complete reconstructions of their ge-
nomic landscapes. Importantly, it also offers opportunities to understand intra-strain di-
versity, much in the same manner that long-read provides better opportunities for haplo-
type phasing of multi-ploid organisms. Differences in alleles in two strains of the same
species can lead to different protein sequences (and in some cases different genes), alter-
ing their biological capabilities; such as in the case in mix tuberculosis infections. While
different genome architectures—such as presence, absence, and arrangement of genes in a
genome—can lead to different regulations of biological functions. This is particularly em-
phasized in a recent study showing that structural variation withinmicrobial communities
in the human microbiome may explain risks to metabolic diseases [417]. And although
it would obviously vary, the possibility that different microbiomes—say healthy and dis-
eased guts of human individuals—harbour different levels of intra-strain diversity could
further aid our understanding in the role of microbiomes and diseases. Nevertheless, most
long-read assembly algorithms currently only report a consensus representation of the
genomes in the community, ignoring diversity of alleles and genome architectures. But
the characterization of intra-strain diversity in metagenomic datasets isn’t all too different
from haplotype phasing of non-haploid genomes.

One can imagine applying existing frameworks for characterizing heterozygosity, such
as a de novo assembly approach aiming capture haplotype information [170] or through a
two-step approach by first generating a consensus-draft assembly and iteratively aligning
reads to detect heterozygous variants. However, the uncertainty of the number of het-
erozygous genomes (comparable to the problem of chromosome copy number), variabil-
ity of coverage due to mix-microbial communities and biases in DNA extraction methods,
as well as horizontal gene transfers further challenges the formulation of this problem.
Nevertheless, there are some (methodological) insights that can still be adopted.

Large heterozygous structural variants of several hundred nucleotides are obvious ge-
nomic features to resolve using long-reads. For example, contextual information (e.g. hap-
lotypes) about the surrounding regions of a structural variation would already provide a
higher resolution of the intra-strain diversity different microbial populations, such as the
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one generated by David Zeevi et al. in 2019 [417]. Although one would expect a logarith-
mic decrease in the frequency of heterozygous structural variants as their size increases,
their origin (such as attributing them to different species or different strains) as well as the
genomic structures they impose (such as characterizing instances of horizontal gene trans-
fer and operon structures) is not well explored and can be enriching to association studies.
As such, one may think that identifying large bubbles in a metagenomic assembly graph
or generating consensus draft assemblies and re-aligning the original long-reads may be
suffice to already provide enough contextual information to identify structural haplotypes.
But even then, their detection and characterization may not always be straightforward, as
inter-species homologous regions and repetitive sequences can complicate the construc-
tion of the assembly graph itself leading to detections of false positive and false negative
structural variants due to under- or collapsed representations of these sequences. As such,
it may be more advantageous to use a method utilizing a combination of both approaches
to precisely interrogate such variants.

Importantly, not all heterozygous variants are large. Smaller variation—such as SNPs
and indels of a few nucleotides—can alter the function of proteins, are thus equally impor-
tant to detect. These variants are more challenging to identify due to the nosiy nature of
long-reads making it challenging to discern true variation from sequencing errors. In a de
novo assembly approach, it is a common practice to “merge” sequences that look similar
enough to either correct reads or simplify the assembly graph, consequently masking se-
quence heterozygosity. Furthermore, read-error corrections can also mask heterozygosity,
requiring one to refer back to the raw reads. In an alignment approach, variants gener-
ally require certain coverage thresholds, which itself is non-uniform due to differences in
abundance in mix-microbial communities.

Simple cases are single (or few) variants surrounded by conserved sequences that result
in simple bubbles in an assembly graph, or clear alternate alleles in an alignment pileup.
And with long-reads, can be easily traversed to yield different bacterial haplotypes. More
challenging are stretches of contiguous sequences that have diverged leading to paths
constituted by many (nested) bubbles or contiguous stretches of various alternate alle-
les. These signals could correspond to different evolutionary adaptations of (non-)coding
sequences, including divergence in codon usage and protein functionality, but would be
challenging to discern from sequencing errors if such regions are under-sampled due to
low-abundances of such populations. Under the assumption that sequencing errors are
uniformly distributed across long-reads, one could imagine specific situations where only
a particular sub-region has diverged. Discerning such cases from sequencing errors could
thus potentially be accomplished by comparing paired-distributions of sequence similar-
ity across the reads relative to the assembly graph or linear draft assembly. Ultimately,
although there are heuristic approaches to resolve small heterozygous sequences the rela-
tively high error-rates of long-read along with large fluctuations in coverage may not be
enough to provide sufficient haplotype information.
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