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Spectral Mimetic Least-Squares Method for
div-curl systems
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2 Eindhoven University of Technology, Department of Mechanical Engineering, P.O.

Box 513, 5600 MB Eindhoven, The Netherlands,
M.I.Gerritsma@TUDelft.nl,a.palha@tue.nl

Abstract. In this paper the spectral mimetic least-squares method is
applied to a two-dimensional div-curl system. A test problem is solved
on an orthogonal and curvilinear and both h- and p-convergence is pre-
sented. The resulting solutions will be pointwise divergence-free for these
test problems. For N > 1 optimal convergence rates on an orthogonal
and a curvilinear mesh is observed. For N = 1 the method does not
converge.

Keywords: div-curl system, spectral element method, mimetic methods

1 Introduction

Div-curl systems play an important role in static electromagnetic fields, [4, 8] and
incompressible viscous flows, [8, Ch.5]. One of the first papers where mimetic
discretization for div-curl problems is described, is by Nicolaides, [9]. Nicolaides
introduces geometric degrees of freedom and incidence matrices for metric-free
derivatives on dual grids. When homogeneous tangential boundary conditions,
n × u = 0, or homogeneous normal boundary conditions, u · n = 0, are pre-
scribed we have that N0(∇×) ⊥ N (∇·), where N (A) denotes the null space of
the operator A. This orthogonality property is important for well-posedness of
div-curl systems. Mimetic discretizations preserve this property at the finite di-
mensional level. The method described by Nicolaides, [9], is a mimetic method.
In this paper mimetic spectral element methods are used in a conforming least-
squares formulation as described in [2, Ch.6]. Application of the non-conforming
approach described in [2, Ch.6] can be found in [3].

2 Div-curl system

Let Ω be a contractible domain Rd, d = 2, 3 with Lipschitz continuous boundary
∂Ω. The div-curl problem consists of finding u ∈ H0(∇×, Ω,Θ1)∩H(∇·, Ω,Θ−11 )
which satisfies{

∇× u = g in Ω

Θ−10 ∇ ·Θ1u = 0 in Ω
and n× u = 0 along ∂Ω . (1)
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The construction of conforming finite dimensional subspaces forH0(∇×, Ω,Θ1)∩
H(∇·, Ω,Θ−11 ) is non-trivial on arbitrary domains, therefore the a formulation
in terms of H0(∇×, Ω,Θ1) × H(∇·, Ω,Θ−11 ) is preferred. See [5] for weak for-
mulations based on (??).

Following the derivation in [2, Ch.6] the first order div-curl system is given
by 

∇× u = g in Ω

v −Θ1u = 0 in Ω

∇ · v = 0 in Ω

and n× u = 0 along ∂Ω . (2)

There exists a solution if g ∈ R(∇×), which, due to Poincaré’s Lemma, is equal
to ∇·g = 0. Uniqueness follows from: Let (u1,v1) and (u2,v2) be two solutions
of (1), then (u2−u1,v2−v1) satisfies (1) with g = 0, therefore u2−u1 ∈ N0(∇×)
and v2 − v1 ∈ N (∇·). But since N0(∇×) ⊥ N (∇·), the second equation in (1)
implies that u1 = u2 and v1 = v2, which proofs uniqueness.

Consider the least-squares functional{
J (u,v; g) = ‖∇ × u− g‖20,Θ2

+ ‖∇ · v‖2
0,Θ−1

0

+ ‖v −Θ1u‖20,Θ−1
1

X = H0(∇×, Ω,Θ1)×H(∇·, Ω,Θ−11 )
, (3)

The functional setting in terms of a two-dimensional double DeRham complex
for the variables (u,v) and the data g is shown in (??)

H0(∇×, Θ−12 , Ω)
∇×
//

Θ−1
2

�

v ∈ H0(∇·, Θ−11 , Ω)
∇· //

Θ−1
1

�

L2
0(Θ−10 , Ω)

Θ−1
0

�

g ∈ H(∇·, Θ2, Ω)

Θ2

O

u ∈ H(∇×, Θ1, Ω)
∇×
oo

Θ1

O

H1(Θ0, Ω)
∇

oo

Θ0

O
(4)

Theorem 6.5 in [2] asserts that the least-squares functional (2) is coercive with
respect to the natural norm on X. This property is inherited on conforming
subspaces of H0(∇×, Ω,Θ1)×H(∇·, Ω,Θ−11 ).

3 Spectral mimetic basis functions

On contractible domains, the horizontal operators in (??) form an exact se-
quence. The aim of mimetic spectral methods is form a sequence of finite di-
mensional subspaces which also form an exact sequence, see for instance [1, 6,
?]. Higher order methods for div-curl systems are also described in [10].

Let LN (ξ) the Legendre polynomial of degree N with derivative L′N (ξ). The
N + 1 roots, ξi, of (1 − ξ2)L′N (ξ) satisfy −1 = ξ0 < ξ1 < . . . < ξN−1 < ξN = 1
and are called the Gauss-Lobatto-Legendre (GLL) points. Next construct the
Lagrange polynomials, hi(ξ) through the GLL points with

hi(ξj) =

{
1 if i = j

0 if i 6= j
, i, j = 0, . . . , N .
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From the Lagrange polynomials, we can construct the so-called edge polynomials,
[6], as

ei(ξ) = −
i−1∑
k=0

dhk = −
i−1∑
k=0

dhk
dξ

dξ , i = 1, . . . , N .

The edge polynomials have that property that∫ ξj

ξj−1

ei(ξ) =

{
1 if i = j

0 if i 6= j
, i, j = 1, . . . , N .

These polynomials were presented for the first time at 7th International Con-
ference on Large-Scale Scientific Computations in Sozopol. 2009, [7, 11]. If we
expand a function in terms of Lagrange polynomials, then it derivative is natu-
rally expanded in terms of edge polynomials

f(ξ) =

N∑
i=0

fihi(ξ) =⇒ f ′(ξ) =

N∑
i=1

(fi − fi−1) ei(ξ) . (5)

In multiple dimensions we use tensor products of Lagrange and edge functions.
For instance, on I2 = [−1, 1]2 vector fields v ∈ H(∇·, I2) are expanded as

v = (p, q) =

 N∑
i=0

N∑
j=1

pi,jhi(ξ)ej(η),

N∑
i=1

N∑
j=0

qi,jei(ξ)hj(η)

 . (6)

Then, using (3) we have

∇ · v =

N∑
i=1

N∑
j=1

[pi,j − pi−1,j + qi,j − qi,j−1] ei(ξ)ej(η) .

Since the ei(ξ)ej(η) form a basis for PN−1,N−1, we have that

∇ · v = 0 ⇐⇒ pi,j − pi−1,j + qi,j − qi,j−1 = 0 . (7)

Note that ∇ · v = 0 can be completely expressed in terms of the expansion
coefficients pi,j and qi,j and the basis functions cancel from this equation. Sec-
ondly, the signs (+1) and (−1) in the discrete divergence, (4), correspond to the
incidence matrices used in [1, 9, ?].

For u ∈ H(∇×; I2) we will use the expansion

u = (u, v) =

 M∑
i=1

M∑
j=0

ui,jei(ξ)hj(η),

M∑
i=0

M∑
j=1

vi,jhi(ξ)ej(η)

 . (8)

Using (3) again, we have

∇× u =

M∑
i=1

M∑
j=1

[vi,j − vi−1,j − ui,j + ui,j−1] ei(ξ)ej(η) .
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If the right hand side function g in (1) is projected onto ei(ξ)ej(η) as

gh =

M∑
i=1

M∑
j=1

gi,jei(ξ)ej(η) ,

then ∇× u = g can be represented on the grid by the difference equation

vi,j − vi−1,j − ui,j + ui,j−1 = gi,j . (9)

Note, that although we use high order polynomial expansions, the discrete equa-
tions (4) and (5) are very sparse. In fact, the sparsity of these two equations is
independent of the polynomial degree.

It is in the equation v − Θ1u = 0 that the two different expansions are
equated. Even when Θ1 is the identity map, this will give a full matrix. The
div and curl equations can be discretized independent of the particular choice
of basis functions. The dependence on the basis functions only appears in the
constitutive equation v −Θ1u = 0.

The variables u and v will be treated as contravariant vectors. If we transform
the equation to curvilinear coordinates only the equation v−Θu = 0 is affected,
the div and curl equations remain unchanged. In Section ?? the performance of
this discretization in curvilinear coordinates is demonstrated.

4 Mapping to curvilinear coordinates

In Section 3 the expansion are given on the square (ξ, η) ∈ I2. Consider the map

x = x(ξ, η) , y = y(ξ, η) ,

then the components of u and v transform as

u(x, y) = (p(x, y), q(x, y)) ,


p(x, y) = 1

detJ

[
p(ξ, η)∂x∂ξ + q(ξ, η)∂x∂η

]
q(x, y) = 1

detJ

[
p(ξ, η)∂y∂ξ + q(ξ, η)∂y∂η

] ,

and

v(x, y) = (u(x, y), v(x, y)) ,


u(x, y) = 1

detJ

[
u(ξ, η)∂y∂η − v(ξ, η)∂y∂ξ

]
v(x, y) = 1

detJ

[
−u(ξ, η)∂x∂η + v(ξ, η)∂x∂ξ

] ,

where detJ = ∂x
∂ξ

∂y
∂η −

∂x
∂η

∂y
∂ξ . We use the expansions from Section 3 for p(ξ, η),

q(ξ, η), u(ξ, η) and v(ξ, η).



5

5 Numerical results

Consider problem (1) on Ω = [−1, 1]2 ⊂ R2 with right hand side function g =
2π2 cos(2πx) cos(2πy). For Θ1 = I the exact solution u = (u, v) for this test case
is {

u = −π cos(πx) sin(πy)

v = π sin(πx) cos(πy)
; ,

which resembles the test case used in [10]. For the expansions of u and v we use
N = M in (??) and (??), respectively. Consider the map Φ : Ω → Ω given by

Fig. 1. A 16× 16 grid for c = 0.0 (left) and c = 0.2 (right).

{
x = ξ + c sin(πξ) sin(πη)

y = η + c sin(πξ) sin(πη)
.

For c = 0.0 this mapping maps the orthogonal coordinate system (ξ, η) in the
orthogonal coordinate system (x, y), see the grid on the left in Figure 1, while
for c = 0.2 the orthogonal coordinates (ξ, η) are mapped on the curvilinear
coordinates (x, y) on the grid grid in Figure 1. Figure 2 displays h-convergence

Fig. 2. h-convergence of u (left) and v (right) for polynomial degrees N = 1, . . . , 6 on
the orthogonal grid corresponding to c = 0.0.

on a sequence of uniform, orthogonal grids. The corresponding convergence rates
can be found in Table 1. Based on interpolation theory, we expect a convergence
rate equal to N , which is confirmed for all polynomial degrees, except for N = 1
which does not seem to converge at all. Application of the least-squares to

Fig. 3. h-convergence of u (left) and v (right) for polynomial degrees N = 1, . . . , 6 on
the orthogonal grid corresponding to c = 0.2.

the curvilinear grid gives h-convergence plots for various polynomial degrees as
shown in Figure 3. The observed convergence rates agree with the theoretical
expected convergence rates, as shown in Table 1, except again for the piecewise
linear-piecewise constant approximation corresponding to N = 1.

Table 1 also contains the L∞-norm of v for all polynomial degrees, on all
number of elements K on both the orthogonal grid, c = 0.0 and the curvilinear
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Table 1. Convergence rates for the div-curl least-squares solution on orthogonal (c =
0.0) and curvilinear grids (c = 0.2).

c = 0.0 c = 0.2

N u v ‖∇ · v‖∞ u v ‖∇ · v‖∞
1 0.2 0.2 0.0 0.1 0.1 0.0
2 2.0 2.0 0.0 2.0 2.0 0.0
3 3.0 3.0 0.0 3.0 3.0 0.0
4 4.0 4.0 0.0 4.0 4.0 0.0
5 5.0 5.0 0.0 5.0 5.0 0.0
6 6.0 6.0 0.0 6.0 6.0 0.0

grid, c = 0.2. In all cases the field v is exactly divergence-free. This conservation
property (or involution constraint in time-dependent problems) which is essential
for incompressible flows and electromagnetism, is a direct consequence of the
topological property (4).
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