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Artificial-Delay Adaptive Control for
Under-actuated Euler-Lagrange Robotics

Spandan Roy, Simone Baldi, Peng Li and Viswa N. Sankaranarayanan

Abstract—Artificial-delay control is a method in which state
and input measurements collected at an immediate past time
instant (i.e. artificially delayed) are used to compensate the
uncertain dynamics affecting the system at the current time. This
work formulates an artificial-delay control method with adaptive
gains in the presence of nonlinear (Euler-Lagrange) under-
actuation. The appeal of studying Euler-Lagrange dynamics is
to capture many robotics applications of practical interest, as
demonstrated via stability and robustness analysis and via robotic
ship and robotic aerial vehicle test cases.

Index Terms—Under-actuated robotics, artificial-delay control,
time delay estimation, Euler-Lagrange systems.

I. INTRODUCTION

The method of artificial-delay control was formulated as a
control scheme with reduced a priori knowledge of the system
dynamics [1]–[3]. The main idea of artificial-delay control is
to use state and input measurements collected at an immediate
past time instant (i.e. with an artificial delay) to compensate
the uncertain system dynamics affecting the system at the
current time instant. Artificial-delay control is also known in
literature as time-delay control: because this terminology can
be confused with the field of control of time-delay systems,
we use ‘artificial-delay control’ throughout this work.

Its simple design made artificial-delay control appealing
over the years, up to recent results based on linear matrix
inequalities [4], [5] that showed stability of an artificial-delay
closed-loop system under fast enough sampling (i.e. with small
artificial delay). Besides delayed state and input measure-
ments, artificial-delay control also requires a robustifying con-
trol term to counteract the error arising from compensating the
dynamics at the current time instant with past measurements.
This error is known as time-delay estimation (TDE) error.
The robustifying term can use an upper bound of the TDE
error or an online estimated bound [6]–[8]. Both constant and
state-dependent bounds have been proposed. Adaptive control
methods proposed to estimate online the effect of the TDE
error offered a perspective to TDE-based control with limited
structural knowledge, since the knowledge of upper bounds to
the uncertainty is not required to design the controller and the
uncertainty does not have to be assumed bounded a priori.
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Artificial-delay control has been widely applied in Euler-
Lagrange robotics, such as manipulators [9]–[12], exoskele-
ton or bipedal robots [8], [13], actuators [14], [15], cranes
[16], [17], excavators [18] and mobile platforms [19], [20].
Despite the heterogeneity of the applications, the underlying
artificial-delay design is similar, which shows its flexibility
to different Euler-Lagrange system structures. Stability and
robustness analysis of artificial-delay control typically rely on
the dynamics being fully-actuated: a notable exception are the
under-actuated TDE-based approaches appeared for electric
motors [21], [22], requiring linear dynamics and knowledge
of upper bounds to the uncertainty. This opens the question of
finding an artificial-delay control method for under-actuated
Euler-Lagrange robotics, as well as embedding this method
with adaptation capabilities.

Because of the reduced number of actuators, under-actuation
in robotic systems has advantages in terms of lightweight,
energy consumption and system simplicity. Under-actuated
robotics encompass tower [23], [24] and offshore cranes [25],
[26], robotic aerial [27], marine [28], [29] and ground vehicles
[30], robotic hands [31], and many more. Control of under-
actuated systems is more challenging than the corresponding
fully-actuated version. As a result, state-of-the-art controllers
for under-actuated systems are tailored to specific structures
or assumptions (e.g. linear structure, mass matrix depending
on a limited set of variables, state derivatives or unactuated
states being bounded [21], [22], [32]–[36]). The resulting
design is effective for the system at hand, but not flexible
for other structures. Also backstepping (or adaptive backstep-
ping) approaches have been deeply investigated (cf. [37]–[40]
and references therein): this paradigm is quite flexible for
controlling a wide range of robotic systems, provided that
structural knowledge is available for selecting the uncertainties
in standard linear-in-the-parameter form. While this is possible
in many applications (sometimes inner/outer loop architectures
are used to make this possible [41], [42]), it is a different
philosophy than artificial-delay control, where the TDE mech-
anism is indeed used to limit the structural knowledge.

This work gives an answer to control with limited structural
knowledge of under-actuated systems in the framework of
artificial-delay control. The contributions of the work are:
• To formulate the artificial-delay design so as to include

under-actuated dynamics in the TDE compensation, with-
out relying on linearity, structure of the mass matrix nor
boundedness of state derivatives or unactuated states;

• To retain the properties of adaptive designs, where instead
of upper bounding a priori the TDE error as in robust
design, the effect of the TDE error is estimated on-line;

• To demonstrate the flexibility of the proposed artificial-
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delay framework analytically and by testing it in systems
with different structures (robotic ship and aerial vehicle).

The rest of the paper is organized as follows: Sect. II provides
the problem formulation; Sect. III covers the control design
with stability/robustness analysis in Sect. IV; test cases are in
Sect. V and VI with conclusions in Sect. VII.

II. SYSTEM DYNAMICS AND PROBLEM FORMULATION

Consider the following class of under-actuated Euler-
Lagrange (EL) systems

M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q̇) + ds = [τT 0T ]T , (1)

where q ∈ Rn is the system state; M(q) ∈ Rn×n is the mass
matrix (containing mass and inertia terms); C(q, q̇) ∈ Rn×n
denotes the Coriolis, centripetal terms, which are proportional
to velocity; G(q) ∈ Rn denotes the gravity forces; F(q̇) ∈
Rn denotes velocity-dependent damping and friction forces;
ds(t) ∈ Rn denotes bounded external disturbance and τ ∈ Rm
is the control input where (n−m) ≤ m < n.

The interested reader can check [25]–[31] and references
therein to see how (1) apply to many under-actuated robotic
systems spanning from cranes to vehicles, or to standard
benchmarks such as cart-poles and Acrobots. For such EL
systems of practical interest, (1) exhibits a few properties, later
exploited for control design and stability analysis:
Property 1: ∃cb, gb, fb, d ∈ R+ such that ||C(q,q̇)|| ≤ cb||q̇||,
||G(q)|| ≤ gb, ||F(q̇)|| ≤ fb||q̇|| and ||ds(t)|| ≤ d.
Property 2: The matrix M(q) is uniformly positive definite.
This implies that ∃µ1, µ2 ∈ R+ such that

0 < µ1I ≤M(q) ≤ µ2I. (2)

Let M be decomposed as M , M̂ + ∆M, where M̂
and ∆M represent the nominal and perturbation terms of M,
respectively. The EL system (1) is considered to be uncertain
in the sense that precise knowledge of the system dynamics
terms M,C,F,G and ds is not available. In particular, the
following challenge is imposed in the form of an assumption:

Assumption 1. Only the knowledge of M̂ and an upper bound
for ∆M are available; the terms C,F,G and ds (and their
upper bounds cb, fb, gb and d) are considered to be unknown.

Remark 1 (No structure-specific assumptions). Under-
actuated designs from literature require either linear structure,
or the mass matrix to depend on a limited set of variables,
or the state derivatives/unactuated states to be bounded [21],
[32]–[35]. Here, no assumption is made on how actuated and
unactuated states affect the dynamics terms M,C,F,G.

For controller design, as well as for convenience of nota-
tion, let us rewrite system (1) by distinguishing between the
actuated and unactuated subsystems, as follows:

M(q)q̈ + N(q, q̇) + ds = [τT 0T ]T , (3)

where q = [qa
T qu

T ]T ,qa ∈ Rm,qu ∈ R(n−m)

M ,

[
Maa Mau

Mua Muu

]
,

N , Cq̇ + G + F =
[
NT

a NT
u

]T
,

ds ,
[
dTa dTu

]T
,da ∈ Rm,du ∈ R(n−m), (4)

with qa and qu being actuated and unactuated states, respec-
tively. System dynamics (3) can be rearranged as

Muuq̈u = −Muaq̈a + hu, (5a)
Msq̈a = τ + ha, (5b)

where hu , −(Nu + du),

ha , −(Na + da −MauM−1
uu(Nu + du)),

Ms , Maa −MauM−1
uuMua.

As M > 0 by Property 2, existence of M−1
s ,M−1

aa and M−1
uu

is ensured.

III. CONTROLLER DESIGN

Let us consider the tracking of a desired trajectory qd(t)

such that qd, q̇d, q̈d are bounded. Let qd(t) , [qda
T

qdu
T

]T

and let ea(t) , qa(t)− qda(t) and eu(t) , qu(t)− qdu(t) be
the tracking error in the actuated and unactuated subsystems,
respectively. The actuated subsystem (5b) can be written as

Maq̈a + (Ms −Ma)q̈a − ha = τ

⇒Maq̈a + ha = τ , (6)

where ha , (Ms −Ma)q̈a − ha, and Ma is a user-defined
positive definite matrix whose choice will be discussed later
(cf. Lemma 1). The control input τ is designed as

τ = Maν + ĥa, (7a)

ĥa = (τ )L −Ma (q̈a)L . (7b)

ν = q̈da −KDaėa −KPaea −KDuėu −KPueu −∆τ ,

∆τ =

{
ρ r
||r|| if ||r|| ≥ ε
ρ r
ε if ||r|| < ε

, r = BTPaξa, ξa ,

[
ea

ėa

]
,

(7c)

where (·)L = (·) (t − L) denotes a delayed version of the
signal with artificial delay L; KDa,KPa ∈ Rm×m and
KDu,KPu ∈ Rm×(n−m) are user-defined matrices such that
KDa > 0,KPa > 0 and KDu,KPu are of full rank (n−m);
ρ is a robustifying gain which will be designed later (cf. (19));
ε > 0 is a scalar whose role it to avoid discontinuity in control
input by pushing the error towards a boundary layer; Pa > 0
is the solution to the Lyapunov equation

AT
a Pa + PaAa = −Qa,

Aa ,

[
0 I

−KPa −KDa

]
, B ,

[
0
I

]
, Qa > 0.

Note that as the gains KPa and KDa are positive definite by
design, Aa is guaranteed to be Hurwitz.

Remark 2 (Structural knowledge). The use of ĥa in (7a),
implies that delayed input and state are used to compensate
system dynamics at the current time instant. The notable fea-
ture of such mechanism is that it is independent of structural
or parametric knowledge of ha, in line with Assumption 1. The
delayed state also include acceleration feedback, which is not
a peculiarity of our design, but it is standard in artificial-delay
literature1 [1]–[3].

1Acceleration feedback via inertial measurement units has become quite
standard, and several works in this sense regularly appear in robotics literature
[10], [13], [19], [43], [44].
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Substituting (7a) into (6), error dynamics for the actuated
subsystem is obtained as

ëa = −KDaėa −KPaea −KDuėu −KPueu −∆τ + σa

ξ̇a = Aaξa + B(−∆τ + σa −KDuėu −KPueu)

= Aaξa + B(−∆τ + φ1), (8)

where σa , M
−1

a (ĥa − ha), φ1 , σa −KDuėu −KPueu.
Here σa is termed as the TDE error. We now prove that the
TDE error holds an upper-bound structure.

Lemma 1. The TDE error σa can be upper bounded as

||σa|| ≤ θ0 + θ1||ξ||, (9)

for unknown positive scalars θ0, θ1, with ξ , [eTa eTu ėTa ėTu ]T ,
provided that the matrix Ma is selected to satisfy

||I−M−1
s Ma|| = ς < 1. (10)

Proof. See Appendix.

Remark 3 (Under-actuated TDE error). Condition (10) re-
quires Ma to be not too far from Ms (note that ς = 0 in
case Ma = Ms). In this sense, Ma in (10) plays the role of
a nominal (estimated) mass matrix, a condition also known
in conventional TDE methods for fully-actuated systems [1]–
[3]. Also note that, as compared to state-dependent structures
proposed for full actuation [7], the dependence of θ0, θ1 in
(9) on the system dynamics is different due to under-actuation.

Following (9) and, the facts ||ξ|| ≥ ėu and ||ξ|| ≥ eu, the
following upper bound on φ1 in (8) can be derived

||φ1|| ≤ θ∗0 + θ∗1 ||ξ||, (11)

where we define two unknown scalars θ∗0 , θ0, θ
∗
1 ,

θ0 + ||KPa|| + ||KDa||. Further, (8) and (9) reveal that the
error dynamics as well as the TDE-error depend explicitly
on the unactuated states. Hence, boundedness of (8) cannot
be ensured by following/applying state-of-the-art TDE-based
methods to actuated subsystem (6) alone.

Using (5a) and (6), the error dynamics of the unactuated
subsystem can be represented as

ëu = q̈u − q̈du = −M−1
uuMuaq̈a + M−1

uuhu − q̈du

= −M−1
uuMuaM

−1

a (τ − ha) + M−1
uuhu − q̈du. (12)

Substituting (7a) into (12) and using the relation σa =

M
−1

a (ĥa − ha) yields

ëu = −Γν + φ2, (13)

where Γ , M−1
uuMua, φ2 , −Γσa + M−1

uuhu − q̈du.
Note that (n−m) ≤ m by the system definition (1); thus,

one can design a constant full rank matrix H ∈ R(n−m)×m

such that the following holds:

K1 , HKPu > 0, K2 , HKDu > 0. (14)

Adding and subtracting Hν to (13) and expanding ν yields

ëu = −K1eu −K2ėu + Γ∆τ + φ2, (15)

Under-actuated 

dynamics

eq.(1) ( or eq.(5) )

a
q

u
q

Error 

variables

Delay

d

a
q

d

a
q

d

u
q

d

u
q

Robust adaptive 

control eq.(7) 

Delay

a
e

a
e

u
e

u
e r

a
q

u
q

Adaptive laws with 

TDE estimation 

eq.(20)

 calculation 

eq.(19)

10

d

a
q
d

u
q

Figure 1. Block diagram of the proposed control scheme.

where φ2 , (H+Γ)(KDaėa+KPaea+KDuėu+KPueu)+
φ2 −H(KDaėa + KPaea). Therefore, taking

ξu , [eTu ėTu ]T , Au ,

[
0 I
−K1 −K2

]
,

the error dynamics (15) can be represented as

ξ̇u = Auξu + B(Γ∆τ + φ2). (16)

Design of K1 > 0,K2 > 0 guarantees that Au is Hurwitz.
Using Property 1, the following holds for the term N in (3):

||Nu|| ≤ ||N|| ≤ gb + fb||x||+ cb||x||2, (17)

where x , [qT q̇T ]T . Now, observing the structures of hu,
φ2,φ2 in (5a), (13) and (15) respectively, and using the
relation (17), the following upper bound on φ2 can be derived

||φ2||||PuB|| ≤ θ∗∗0 + θ∗∗1 ||ξ||+ θ∗∗2 ||ξ||2, (18)

where θ∗∗i ∈ R+, i = 0, 1, 2 are unknown scalars (cf.
Assumption 1); Pu > 0 is the solution to the Lyapunov
equation AT

uPu + PuAu = −Qu for some Qu > 0. The
term ||PuB|| is solely considered in (18) for subsequent
mathematical simplifications. Note that while deriving the

relation (18), the following relations are utilized: ξ = x−
[
qd

q̇d

]
and qd, q̇d are bounded by design.

Observing the upper bound structures of ||φ1|| and ||φ2||
in (11) and (18) respectively, the gain ρ in (7c) is designed as

ρ = θ̂0 + θ̂1||ξ||+ γ, (19)

where θ̂i is the estimate of θ∗i , i = 0, 1; γ is an auxiliary gain
with a role in closed-loop system stabilization. The gains θ̂i, γ
are evaluated using the following laws:

˙̂
θi = (||r||+ ||ξu||)||ξ||i − ηiθ̂iβ||ξu||||ξ||i, i = 0, 1 (20a)

γ̇ = −γ
(
γ0 + γ1||ξu||+ γ2||ξ||4

)
+ (||r||+ ||ξu||) + γ0γ,

(20b)
with β > 1 + ς where ||PuBΓ|| ≤ ς, (20c)

θ̂i(0) > 0, γ(0) > γ, (20d)

where ηi, γ0, γ1, γ2, γ ∈ R+ are design constants. The gain
ς can be designed using the known upper bound of the
perturbed M (cf. Assumption 1). The term ρ essentially upper
bounds the uncertainties in an adaptive and state-dependent
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Figure 2. Robotic ship test case, paths for different schemes: proposed
adaptive under-actuated TDE, robust under-actuated TDE, linear PD.

way. Differently from standard artificial delay approaches with
constant upper bound, a state-dependent upper bound helps
shaping the uncertainty according to the state [45].

IV. STABILITY AND ROBUSTNESS ANALYSIS

A diagram summarizing the proposed controller is shown
in Fig. 1. Stability and robustness properties are given below.

Theorem 1. Under Assumption 1 and Lemma 1, the closed-
loop trajectories of (5) with control laws (7), (19) and adaptive
law (20) are Uniformly Ultimately Bounded (UUB).

Proof. See Appendix.

Remark 4 (Role of γ). The upper bound of uncertainty φ2

is a quadratic polynomial of ||ξ|| as in (18), which translates
into a third-order term θ∗∗2 ||ξ||3 during stability analysis (cf.
first inequality in (49)). This third-order term is tackled by the
term γ2||ξ||4 provided by the adaptive law of γ so as to ensure
closed-loop stability (cf. the discussion below (49)).

Remark 5 (Design guidelines). From (15) it can be noted that
the behaviour of the non-actuated dynamics can be tuned via
KPu,KDu, through (14). High values of ηi, γ1 and γ2 lead
to high γ2γ2 and small ιi, ι′i: this improves the convergence
of the polynomials f(||ξ||) and f(||ξ||) to f(||ξ||) < 0 and
f(||ξ||) < 0 (cf. the negative fifth degree terms in (49) and
(53) in the proof). However, such high values might lead to
high control input and therefore, these gains should be selected
according to application requirements.

V. VALIDATION

To evaluate the effectiveness of the proposed framework,
we consider robotic ship and robotic aerial vehicle test cases.
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Figure 3. Robotic ship test case: adaptive gains for the proposed adaptive
under-actuated TDE (Au-TDE) approach.

A. Robotic ship test case

Surface vehicles dynamics are a very common test case for
under-actuated robotics [33], and can be written as:

ẋψ̇
ẏ

 =

cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ

ur
v


mx 0 0

0 Iz myz

0 myz my

u̇ṙ
v̇

 =

 myvr +myzr
2 − d11u

−(my −mx)uv −myzur − d32v − d33r
−mxur − d22v − d23r

+

τ1τ2
0


(21)

where (x, y) denotes the position in Earth-fixed frame; ψ the
heading angle with respect to North; u, v, r denote the velocity
in surge, sway and yaw, respectively; τ1 and τ2 are surge force
and sway moment. The actual system parameters are taken
from the CyberShip II benchmark by Norwegian University of
Science and Technology (NTNU) [28], [29], where mx, my

and I are the masses along different axes and the inertia of the
ship, and d11, d22, d23, d32, d33 are damping terms that take
a complex nonlinear form (cf. the details in [28], [29]). Note
that the proposed control just needs nominal knowledge of
the mass matrix (in line with Lemma 1), whereas centripetal,
Coriolis and damping terms can be completely unknown.

The initial configuration of the ship is (x(0), y(0), ψ(0)) =
(2, 0, π/4) and zero speed. We select the artificial delay L =
0.1s, and the various control design parameters are KPa =
5I,KDa = 8I,KDu = 5[1 1]T ,KDu = 8[1 1]T ,Qa =
0.001I, ε = 0.1, η0 = 1, η1 = 1, γ0 = 1, γ1 = 0.01, γ2 =
0.03,γ = 0.003, θ̂0(0) = 0.01, θ̂1(0) = 0.1, γ(0) = 10
and β = 3. For comparison purposes, two other approaches
are used. The first approach, named robust under-actuated
TDE (Ru-TDE), is an under-actuated TDE version inspired
by [7], where the use of a state-dependent bound had been
shown to outperform standard TDE approaches [1], [6]; we
use constants θ̂0(t) = θ̂1(t) = 3.5, ∀t as upper bound.
The second approach is a proportional-derivative (PD) control,
which corresponds to removing the artificial delay (7b) and the
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Figure 4. Robotic ship test case, inputs for different schemes: proposed
adaptive under-actuated TDE, robust under-actuated TDE, linear PD.

robustifying gain (7c). The proposed adaptive under-actuated
TDE approach is abbreviated with Au-TDE.

Fig. 2 shows the tracking of the ship for a complex zigzag
maneuver (also known as Z-maneuver or Kempf maneuver),
in the presence of sinusoidal disturbances ds = 0.1 cos 0.1t
in both x and y direction, representing wind/currents. The
proposed Au-TDE has the best performance. The effectiveness
of the proposed design comes from the adaptive gains: it can
be seen from Fig. 3 that θ̂0 and θ̂1 converge at around 2.3.
On the other hand, the Ru-TDE uses the larger value of 3.5
which leads to larger spikes in the control input (cf. Fig. 4).
The linear PD is unable to provide acceptable performance.

B. Robotic aerial vehicle test case

The performance of the proposed controller is tested on a
robotic aerial vehicle moving over some walls with a payload:
this scenario is important for aerial transport in urban/indoor
scenarios [46], [47]. A Gazebo simulation platform using the
RotorS Simulator [48] for ROS with the Pelican quadrotor
model is adopted. The results of the proposed Au-TDE is com-
pared with an Adaptive Integral Backstepping (AIB) method
[38] and with Ru-TDE. A scenario is created in the ‘indoor
environment’ in the RotorS simulator, where the quadrotor is
required to perform the following actions sequentially (cf. Fig.
5), while following a minimum snap trajectory:
• From an initial position the quadrotor (unloaded) moves

to the first payload location;
• it picks up a payload of 0.3 kg (at approx t = 32s)

and moves over a wall to the other side and delivers the
payload (at approx t = 58s);

• then, it moves towards a second payload of 1.0 kg and
picks it (at approx t = 83s);

• then, it moves over the wall back to the initial position
and delivers the payload (at approx t = 123s).

The mass of the quadrotor without payload is 4.0 kg. The
RotorS simulator exploits the Gazebo physical modelling
approach according to the gazebo::physics::Model Class Ref-
erence, which means that adding a payload will automatically
change the mass and moment of inertia of the entire system.
Note that the proposed adaptive control design is not based on

mass/inertia estimation. Instead of estimating the mass/inertia
and using it to find the appropriate control gains (indirect
adaptive control approach [43], [49]), the proposed adaptive
laws directly estimate the control gains (direct adaptive control
approach). Systems with different mass/inertia will lead to
different control estimates. Further, we have added a wind dis-
turbance (random function with normal distribution in Gazebo
grids) of mean speed 2 m/s blowing in 45o direction to x-y
plane: this creates a persistent uncertainty term.

The following parameters are selected: L = 0.01s, KPa =
5I,KDa = 16I,KPu = 8[1 1]T ,KDu = 10[1 1]T , Qa = I,
ε = 0.1, η0 = 1, η1 = 1, γ0 = 1, γ1 = γ2 = 0.01,γ = 0.001,
θ̂0(0) = θ̂1(0) = 0.01, γ(0) = 0.1 and β = 7. For Ru-TDE,
constant upper bound for θ̂0 = θ̂1 = 4 are used. For AIB,
The gains c1, λ1 (cf. [38] for the definition) are selected as
c1 = 8, λ1 = 5 and nominal mass of the system is selected
as 4kg. Based upon user-defined desired position trajectories
(xd, yd, zd) (cf. Fig. 6) and desired heading angle ψd (0
degree here), the desired roll (φd) and pitch (θd) trajectories
are generated via the minimum-snapping methods as in [50]
(details omitted due to lack of space).

Figures 6-8 show the position responses with various con-
trollers and their corresponding tracking errors. The position
responses in Ru-TDE becomes constant for t > 92s as
the quadrotor topples: though the quadrotor manages to lift
the first payload, it could not lift the second payload high
enough to cross the wall. This happened because Ru-TDE
relies on a priori fixed gains based on predefined uncertainty
bounds; when the payload becomes heavier than expected, the
controller cannot adjust its gain to adapt to larger uncertainty.
On the other hand, AIB requires a priori knowledge of system
mass and considers the uncertainties to be bounded a priori
by a constant: however, when system mass/inertia is perturbed
and under non-constant wind disturbance, such assumptions
may be violated. As a result, AIB lost significant tracking per-
formance, especially when the desired trajectories take sharp
turns (for example cf. t = 40, 60, 90, 120s for z position).
On the other hand, the proposed Au-TDE is built upon state-
dependent uncertainties (cf. Lemma 1 and (19)) and, thanks
to its adaptive gains, it can tackle uncertainties without any a
priori knowledge. Table I shows that this strategy outperforms
the other controllers in terms of root-mean-squared (RMS)
error (the data in the parentheses give performance degradation
of the respective controller with respect to Au-TDE).

Table I
PERFORMANCE COMPARISON FOR AERIAL VEHICLE (PERCENTAGES

INDICATE DEGRADATION WITH RESPECT TO THE PROPOSED AU-TDE)

Position
RMS error in Position (m)

Ru-TDE AIB Au-TDE (proposed)

x 3.43 (97.1%) 0.16 (37.3%) 0.10
y 0.98 (90.8%) 0.13 (30.8%) 0.09
z 0.84 (86.9%) 0.27 (59.2%) 0.11

RMS error in attitude (degree)

roll (φ) 2.53 (45.1%) 1.85 (24.8%) 1.39
pitch (θ) 6.83 (86.8%) 0.92 (2.17%) 0.90

heading (ψ) 0.59 (71.2%) 0.22 (22.7%) 0.17
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Figure 5. Robotic aerial vehicle test case, snapshots from experimental scenario (with Au-TDE): quadrotor (a) starting from initial position (b) picking up
first payload (0.3 kg) (c) moving over a wall with first payload (d) dropping the first payload (e) picking up second payload (1 kg) (f) moving over the wall
with second payload (g) dropping the second payload at initial position.

Figure 6. Robotic aerial vehicle test case: position tracking by different
controllers (proposed Au-TDE, Ru-TDE, AIB) with variable payloads.

Figure 7. Robotic aerial vehicle test case: position tracking error by different
controllers (proposed Au-TDE, Ru-TDE, AIB) with variable payloads.

VI. EXPERIMENTAL RESULTS

In this section, we provide experimental results using a
quadrotor to verify the effectiveness of the proposed Au-
TDE compared to Ru-TDE and AIB [38] methods. The
experimental scenario consists of the following actions to be
sequentially performed by the quadrotor (cf. Fig. 9)

Figure 8. Robotic aerial vehicle test case: attitude (roll (φ), pitch (θ), heading
(ψ)) tracking error by different controllers (proposed Au-TDE, Ru-TDE, AIB)
with variable payloads.

• From an initial position (and without any payload) the
quadrotor first ascends, then moves horizontally to the
payload location;

• The quadrotor descends to pick up a payload of 0.3 kg
(approx.) at around t = 32s;

• The quadrotor moves towards a second location to drop
the payload.

The quadrotor setup includes 1 bluefox camera, 1 inertial
measurement unit, 1 gripper (0.2 kg approx.) and 1 Intel NUC
processing unit. Without any payload and excluding sensor
suits, the quadrotor weighs 4 kg (approx.). We have used
AprilTags at predefined locations, which the camera uses to
determine quadrotor location. Via such visual feedback (50
fps) and inertial measurement unit data, all the necessary
feedbacks are obtained for control design. It is to be mentioned
that the gripper operations, i.e., to open, grip and release
payload are not part of the control design and they are operated
via a remote signal.

The following parameters are selected KPa = 8I,KDa =
20I,KPu = 7[1 1]T ,KDu = 12[1 1]T ,Qa = I, ε = 0.1,
η0 = 1, η1 = 1, γ0 = 1, γ1 = γ2 = 0.01,γ = 0.001,
θ̂0(0) = θ̂1(0) = 0.01, γ(0) = 0.1 and β = 8. For Ru-TDE,
constant upper bound for θ̂0 = θ̂1 = 3 are used. Considering
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Figure 9. Snapshots from experimental scenario (with Au-TDE): quadrotor (a) starting from initial position (b) moving toward the payload (c) descending to
pick up payload (d) picking up the payload (0.3 kg) (e) moving with the payload (f) dropping the payload at final position.

the processing time for visual feedback, L = 0.02s is selected
for both Ru-TDE and Au-TDE. For AIB, the gains are selected
as c1 = 10, λ1 = 5 and mass of the system is selected as 4kg.

The tracking performance of various controllers are depicted
via Figs. 10-12 and Table II. The error plots depict that
the performance of all the controllers are close before the
payload is attached at t ≈ 32s. However, after the quadrotor
ascends with the payload, different performances become
evident: with the help of its integral control, AIB has better
tracking error than Ru-TDE, but it significantly falls behind
the proposed Au-TDE. As mentioned earlier, this is because
variation in system mass creates state-dependent uncertainty
which AIB is not designed to handle. Owing to the capabilities
to handle unknown and non a priori bounded state-dependent
uncertainties and external disturbances, Au-TDE is able to
outperform other methods (cf. Table II).

Table II
PERFORMANCE COMPARISON DURING EXPERIMENT WITH QUADROTOR

(PERCENTAGES INDICATE DEGRADATION WITH RESPECT TO THE
PROPOSED AU-TDE)

Position
RMS error in Position (m)

Ru-TDE AIB Au-TDE (proposed)

x 0.51 (78.4%) 0.26 (53.8%) 0.11
y 0.34 (70.5%) 0.13 (23.1%) 0.10
z 0.29 (51.7%) 0.25 (56.0%) 0.13

RMS error in attitude (degree)

roll (φ) 5.11 (70.4%) 1.61 (6.2%) 1.51
pitch (θ) 7.52 (83.9%) 3.42 (64.6%) 1.21

heading (ψ) 0.73 (65.7%) 0.42 (40.4%) 0.25

Figure 10. Position tracking by different controllers during experiment.

Interesting future works would be to demonstrate the pro-
posed approach in more challenging scenarios such as aggres-
sive maneuvers with payloads [51] and with slung payloads
[52], [53]. These are beyond the scope of this work as it
requires a sophisticated motion capture system and advanced
Kalman filtering techniques not covered in this work.

VII. CONCLUSIONS AND FUTURE WORK

Artificial-delay control is a simple control methodology
with various robotic applications where uncertain system dy-
namics are compensated using past input and state measure-
ments. In contrast with the state-of-the-art that has proven
stability and robustness of artificial-delay control for fully-
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Figure 11. Position tracking error by different controllers for experiment.

Figure 12. Attitude tracking error by different controllers for experiment with
quadrotor: roll (φ), pitch (θ), heading (ψ).

actuated systems, in this work we have proposed an artificial-
delay control scheme in the presence of under-actuation. We
expect the proposed solution to find application in all those
fields where artificial delay has been successfully applied,
since the presented framework inherits the same time delay
estimation (TDE) philosophy. The standard TDE approach
uses a constant upper bound for uncertainty, whereas the TDE
mechanism we used a state-dependent bound requiring an
extra estimator. There are at least three long-standing open
problems in artificial delay literature that are worth of future
consideration: the design of an artificial delay control free of
acceleration feedback; the design of an artificial delay control
explicitly taking non-ideal actuation into account (delay, sat-
uration); the design of high-order artificial-delay methods, in
line with high-order sliding mode methods [54].

APPENDIX

PROOF OF LEMMA 1

From (6) and (7), the following relations can be achieved:

ĥa = (ha)L = [(Ms)L −Ma](q̈a)L − (ha)L, (22)
σa = q̈a − ν. (23)

Using (22), the control input τ in (7a) can be rewritten as

τ = Maν + [(Ms)L −Ma](q̈a)L − (ha)L. (24)

Multiplying both sides of (23) with Ms and using (5b) and
(24) we arrive at

Msσa = Maν + [(Ms)L −Ma](q̈a)L

− (ha)L + ha −Msν. (25)

Defining K , [KPa KPu KDa KDu] and using (8) we have

(q̈a)L = (q̈da)L −KξL − (∆τ )L + (σa)L, (26)

Substituting (26) to (25) yields

σa = Ms
−1Ma((∆τ )L −∆τ )︸ ︷︷ ︸

χ1

+Ms
−1(Ms∆τ − (Ms)L(∆τ )L)︸ ︷︷ ︸

χ2

+ Ms
−1{(Ma −Ms)q̈d

a − (Ma − (Ms)L)(q̈d
a)L + ha − (ha)L}︸ ︷︷ ︸

χ3

+ Ms
−1(Ma − (Ms)L)KξL︸ ︷︷ ︸

χ4

−Ms
−1(Ma − (Ms)L)(σa)L︸ ︷︷ ︸

χ5

+ (I−Ms
−1Ma)Kξ︸ ︷︷ ︸
χ6

. (27)

The system property (2) implies Ms and Ms
−1 are bounded.

Any function ψ delayed as ψ(t− L) = ψL can be written as

ψL = ψ(t− L) = ψ(t)−
∫ 0

−L

d

dθ
ψ(t+ θ) dθ. (28)

Integration of any bounded function over a finite interval is
always finite. Therefore, using (28) and the interval from −L
to 0, the following conditions hold for unknown constants
δi, i = 1, · · · , 5:

||χ1|| = || −Ms
−1Ma

∫ 0

−L

d

dθ
∆τ (t+ θ) dθ|| ≤ δ1 (29)

||χ2|| = ||Ms
−1

∫ 0

−L

d

dθ
Ms(t+ θ)∆τ (t+ θ) dθ|| ≤ δ2 (30)

||χ3|| = ||Ms
−1

∫ 0

−L

d

dθ
{(Ma −Ms(t+ θ))q̈d

a(t+ θ)

+ ha(t+ θ)}dθ|| ≤ δ3 (31)

||χ4|| = ||(Ms
−1Ma − I)Kξ

+ Ms
−1

∫ 0

−L

d

dθ
(Ms(t+ θ)−Ma)Kξ(t+ θ) dθ||

≤ ||EK||||ξ||+ δ4 (32)

||χ5|| = ||Eσa + Ms
−1

∫ 0

−L

d

dθ
(Ms(t+ θ)−Ma)σa(t+ θ) dθ||

≤ ||E||||σa||+ δ5 (33)

||χ6|| = ||(Ms
−1Ma − I)Kξ|| ≤ ||EK||||ξ||. (34)

Define ||E|| = ||I −Ms
−1Ma||. Then, if Ma is selected

such that (10) holds, the upper bound of σa is formulated
using (29)-(34) from (27) as (9), with

θ0 =
1

1− ||E||

5∑
i=1

δi, θ1 =
2||EK||
1− ||E||

. (35)
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PROOF OF THEOREM 1

Stability is analyzed using the following Lyapunov function:

V =
1

2
ξTa Paξa +

1

2
ξTuPuξu +

1∑
i=0

(θ̂i − θi)2

2
+
γ2

2
, (36)

where θi = max{θ∗i , θ∗∗i }. We shall proceed the stability
analysis for the two cases (i) ||r|| ≥ ε and (ii) ||r|| < ε using
the common Lyapunov function (36).
Case (i) ||r|| ≥ ε

Using (7c), (8), (11) and (19), we have

1

2

d

dt
ξTa Paξa ≤ −

1

2
ξTa Qaξa − ρ||r||+ ||φ1||||r||

≤ −1

2
ξTa Qaξa −

1∑
i=0

θ̂i||ξ||i||r||+
1∑
i=0

θi||ξ||i||r||. (37)

Further, using (16) and (18)

1

2

d

dt
ξTuPuξu ≤ −

1

2
ξTuQuξu + ρς||x||+ ||φ2||||PB||||ξu||

≤ −1

2
ξTuQuξu + ς

1∑
i=0

(θ̂i||ξ||i + γ)||ξu||

+
1∑
i=0

θi||ξ||i||ξu||+ θ∗∗2 ||ξ||2||ξu||. (38)

Using the adaptive laws (20a) and (20b), we have, for i = 0, 1

(θ̂i − θi) ˙̂
θi = θ̂i(||r||+ ||ξu||)||ξ||i − ciθ̂2

i ||ξu||||ξ||i

− θi(||r||+ ||ξu||)||ξ||i + ciθ̂iθi||ξu||||ξ||i, (39)
γγ̇ = γ(||r||+ ||ξu||)

− γ2(γ0 + γ1||ξu||+ γ2||ξ||4) + γγ0γ, (40)

with ci , ηiβ a positive scalar (cf. (20a) and (20c)). Therefore,

d

dt

(
1∑
i=0

(θ̂i − θi)2

2
+
γ2

2

)
=

1∑
i=0

θ̂i(||r||+ ||ξu||)||ξ||i

− ciθ̂2
i ||ξu||||ξ||i − θi(||r||+ ||ξu||)||ξ||i + ciθ̂iθi||ξu||||ξ||i

+ γ(||r||+ ||ξu||)− γ2(γ0 + γ1||ξu||+ γ2||ξ||4) + γγ0γ.
(41)

Using (37), (38) and (41), the time derivative of (36) becomes

V̇ ≤ −δm(||ξa||2 + ||ξu||2) + θ∗∗2 ||ξ||2||ξu||

+
1∑
i=0

(cθ̂i − ciθ̂2
i + ciθ̂iθi)||ξ||i||ξu||

− γ2(γ0 + γ1||ξu||+ γ2||ξ||4) + γγ0γ + cγ||ξu||, (42)

where δm , 1
2 min{λmin(Qa), λmin(Qu)} and c , 1 + ς .

Since θ̂i(t) ≥ 0, the definition of V from (36) yields

V ≤ δM (||ξa||2 + ||ξu||2) +
1∑
i=0

(θ̂2
i + θ

2

i ) + γ2, (43)

where δM , max{λmax(Pa), λmax(Pu)}. Then, defining
Ω , (δm/δM ) and using (43), (42) is simplified to

V̇ ≤ −ΩV +
1∑
i=0

Ω(θ̂2
i + θ

2

i ) + Ωγ2 + θ∗∗2 ||ξ||2||ξu||

+
1∑
i=0

(cθ̂i − ciθ̂2
i + ciθ̂iθi)||ξ||i||ξu||+ cγ||ξu||

− γ2(γ0 + γ1||ξu||+ γ2||ξ||4) + γγ0γ. (44)

Since ci and γ1 are positive constants by design, it is always
possible to split these terms in the following way

ci =
3∑
j=1

cij , γ1 =
2∑
k=1

γ1k, cij , γ1k > 0 ∀i, j, k. (45)

The following simplifications can be made:

− ciθ̂2
i + cθ̂i + ciθ̂iθi

= −ci1θ̂2
i − ci2

{(
θ̂i − (c/(2ci2))

)2

− (c2/(4c2i2))

}
− ci3

{(
θ̂i −

(
(ciθi)/(2ci3)

))2

−
(
(ciθi)

2/(4c2i3)
)}

≤ −ci1θ̂2
i + c2/(4ci2) + (ciθi)

2/(4ci3). (46)

Further,

− γ2(γ0 + γ1||ξu||) + γγ0γ + cγ||ξu||

= −γ11γ
2||ξu|| − γ0

{
(γ − (γ/2))

2 − (γ/2)2
}

− γ12||ξu||
{

(γ − (c/2γ12))
2 −

(
c2/4γ2

12

)}
≤ −γ11γ

2||ξu||+
(
c2/4γ12

)
||ξu||+ (γ2/4). (47)

Investigating the adaptive laws (20a)-(20b) and conditions
(20d), it can be verified there exists a positive γ such that

θ̂i(t) ≥ 0 and γ(t) ≥ γ > 0 ∀t ≥ 0. (48)

Since γ ≥ γ and ||ξ|| ≥ ||ξu||, using (46)-(47), (44) becomes

V̇ ≤ −ΩV +
1∑
i=0

Ω(θ̂2
i + θ

2

i ) + Ωγ2 + (γ2/4) + θ∗∗2 ||ξ||3

+
1∑
i=0

(
c2

4ci2
+

(
ciθi

)2
4ci3

)
||ξ||i+1 − ci1θ̂2

i ||ξu||i+1

− γ2γ2(||ξ||5 − ||ξ||4)− γ11γ
2||ξu||+

(
c2/4γ12

)
||ξu||

= −ΩV − θ̂2
0 (c01||ξu|| − Ω)− θ̂2

1

(
c11||ξu||2 − Ω

)
− γ2 (γ11||ξu|| − Ω) + f(||ξ||), (49)

where f(||ξ||) , −γ2γ2||ξ||4 + ω3||ξ||3 + ω2||ξ||2

+ ω1||ξ||+ ω0,

ω0 ,
1∑
i=0

Ωθ
2

i + (γ2/4), ω1 ,
c2

4c02
+

(
c0θ0

)2
4c03

+
c2

4γ12
,

ω2 ,
c2

4c12
+

(
c1θ1

)2
4c13

, ω3 , θ∗∗2 .

Using Descartes’ rule of sign change and Bolzano’s Theorem,
it can be verified that the polynomial f(||ξ||) has exactly
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one positive real root. Let ι ∈ R+ be the positive real root
of f(||ξ||). The leading coefficient of f(||ξ||) is negative as
γ2γ2 ∈ R+. Therefore, f(||ξ||) ≤ 0 when ||ξ|| ≥ ι. Define

ι0 , Ω
c01
, ι1 ,

√
Ω
c11

, ι2 , Ω
γ11

. From (49), V̇ ≤ −ΩV when

||ξu|| ≥ max {ι, ι0, ι1, ι2} . (50)

Case (ii) ||r|| < ε
Using (7c), (8), (11) and (19), we have for ||r|| < ε

1

2

d

dt
ξTa Paξa ≤ −

1

2
ξTa Qaξa − ρ(||r||2/ε) + ||φ1||||r||

≤ −1

2
ξTa Qaξa +

1∑
i=0

θi||ξ||i||r||. (51)

The following simplification is made for i = 0, 1:

εθ̂i||ξ||i = θ̂2
i −

{(
θ̂i − (ε||ξ||i)/2

)2

− (ε2||ξ||(2i))/4
}

≤ θ̂2
i + (ε2||ξ||(2i))/4. (52)

Using (51)-(52) and a similar procedure as Case (i), the
following can be deduced for Case (ii):

V̇ ≤− ΩV − θ̂2
0 (c01||ξu|| − (Ω + 1))

− θ̂2
1

(
c11||ξu||2 − (Ω + 1)

)
− γ2 (γ11||ξu|| − (Ω + 1)) + f(||ξ||), (53)

where f(||ξ||) , −γ2γ2||ξ||4 + ω3||ξ||3 + ω′2||ξ||2

+ ω1||ξ||+ ω′0,

ω′2 , ω2 + (ε2/4), ω′0 ,
1∑
i=0

Ωθ
2

i +
{γ + (ε/γ0)}2

4
+
ε2

4
.

Asserting similar argument made for Case (i), V̇ ≤ −ΩV is
guaranteed when

||ξu|| ≥ max {ι′, ι′0, ι′1, ι′2} , (54)

where ι′ is the sole positive real root of the polynomial f
and ι′0 ,

(
Ω+1
c01

)
, ι′1 ,

√
Ω+1
c11

and ι′2 ,
(

Ω+1
γ11

)
. Hence,

investigating the stability results for Cases (i) and (ii), it can
be concluded that the closed-loop system remains UUB and
ea, ėa, eu, ėu, θ̂i, γ are bounded.
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