

Delft University of Technology

On Single-Error-Detecting Codes for DNA-Based Data Storage

Weber, Jos H.; De Groot, Joost A.M.; Van Leeuwen, Charlot J.

DOI
10.1109/LCOMM.2020.3023826
Publication date
2021
Document Version
Accepted author manuscript
Published in
IEEE Communications Letters

Citation (APA)
Weber, J. H., De Groot, J. A. M., & Van Leeuwen, C. J. (2021). On Single-Error-Detecting Codes for DNA-
Based Data Storage. IEEE Communications Letters, 25(1), 41-44. Article 9195449.
https://doi.org/10.1109/LCOMM.2020.3023826

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/LCOMM.2020.3023826
https://doi.org/10.1109/LCOMM.2020.3023826

1

On Single-Error-Detecting Codes
for DNA-Based Data Storage

Jos H. Weber, Senior Member, IEEE, Joost A.M. de Groot, and Charlot J. van Leeuwen

Abstract—DNA-based storage is considered to be a promising
option to accommodate huge amounts of data. The strings of
nucleotides are prone to errors though. To reduce the error
probability, these strings should satisfy constraints on the ratio
of A’s and T’s versus the number of G’s and C’s, and on the
maximum number of repeated identical nucleotides. To deal
with errors when they occur after all, it is also desirable that
the set of DNA-strings possesses certain error correction or
detection capabilities. This is established by designing quaternary
constrained codes with a specified minimum distance. Here,
maximum-sized block codes with a fixed number of G/C symbols,
no symbol repetition, and a minimum Hamming distance of two
are presented.

Index Terms: Constant-weight codes, DNA-based data stor-
age, error-detecting codes, runlength-limited sequences.

I. INTRODUCTION

Deoxyribonucleic acid (DNA) has been demonstrated to
be a promising medium for massive digital data storage [1],
as a possible alternative for magnetic and optical discs. An
overview of trends and methods in DNA-based storage has
been provided in [2]. For robustness purposes, the strings con-
sisting of the nucleotides adenine (A), thymine (T), guanine
(G), and cytosine (C) should satisfy some constraints. For
example, the number of G/C nucleotides in the string, called
the GC-weight, should be (about) the same as the number
of A/T’s. Furthermore, the number of subsequent identical
nucleotides in a string should not be too long, which can
be established by imposing a runlength constraint. The GC-
weight and runlength constraints lead to a restricted set of
quaternary sequences that can be used for representing the
digital data. By carefully selecting a code, that is a subset of
this set, with a certain minimum (Hamming) distance, we can
enforce some error correction or detection capabilities as well
[3].

King derived bounds on the sizes of quaternary codes with
fixed length, GC-weight, and minimum Hamming distance [4].
Immink and Cai focused on the runlength constraint in DNA
codes [5], and in subsequent studies they involved the GC-
weight as well [6], [7]. Limbachiya et al. [8] and Cao et al.
[9] derived lower bounds on the sizes of optimal codes with a
fixed GC-weight and a specified minimum Hamming distance,
under the strong runlength restriction that identical nucleotides
are not allowed to occur next to each other. They call the latter
the no-runlength constraint. It reduces the error probability

Manuscript accepted for publication in IEEE Communications Letters,
Sept. 9, 2020. The authors are with Delft University of Technology,
Dept. of Applied Mathematics, Delft, The Netherlands, j.h.weber@tudelft.nl,
j.a.m.degroot@tudelft.nl, lot.leeuwen@gmail.com.

when retrieving the stored data, but it may also reduce the
code rate.

In this paper, we are interested in finding the largest codes
among the ones meeting given specifications. We present a
recursive formula to determine the size of the set of quaternary
words with any fixed length, GC-weight, and runlength con-
straint. A technique based on generating functions to calculate
such quantities was already presented in [6], but our simple
recursive expression has the advantage that it can also be
easily evaluated for large lengths. Our major result is that
for the specific case of imposing the no-runlength constraint,
as considered in [8], [9], we determine the maximum size of
any code within the mentioned set having minimum Hamming
distance two, i.e., optimal single-error-detecting codes. This
settles an open problem from [8] and comes with an explicit
construction for optimal codes.

The rest of the paper is organized as follows. In Section II,
notation and basic definitions are provided. Then, our results
on the sets and codes under consideration are presented and
proved in Sections III and IV. Finally, concluding remarks are
given in Section V.

II. PRELIMINARIES

For convenience, we will represent the nucleotides by
numerical symbols rather than letters in the rest of this paper,
using the mapping

A ↔ 0, T ↔ 1, G ↔ 2, C ↔ 3. (1)

We consider words of length n over the {0, 1, 2, 3} alphabet.
The full set of size 4n of such words is denoted as B(n), i.e.,

B(n) = {0, 1, 2, 3}n. (2)

With every x = (x1, . . . , xn) ∈ B(n) we associate the
following two words of length n. The first one is the low/high
word xLH = (xLH

1 , . . . , xLH
n) with

xLH
i =

{
L if xi = 0, 1,
H if xi = 2, 3,

(3)

for all i. It indicates whether a symbol xi is in the lower
category {0, 1} or in the higher category {2, 3}. The second
one is the cluster word xC = (xC

1 , . . . , x
C
n) with

xC
i =

L if xLH

i = L and xLH
j = H

∀j : 1 ≤ j ≤ n ∧ |j − i| = 1,
H if xLH

i = H and xLH
j = L

∀j : 1 ≤ j ≤ n ∧ |j − i| = 1,
xi otherwise,

(4)

for all i. It will be used in Section IV for clustering purposes.

2

We define the GC-weight w(x) of x as the number of
symbols in x that are equal to 2 or 3, i.e.,

w(x) = |{i : xLH
i = H}|. (5)

Further, the (maximum) runlength r(x) of x is the maximum
number of subsequent identical symbols in x, i.e.,

r(x) = max{r : ∃i such that xi = xi+1 = · · · = xi+r−1}.
(6)

The index i(x) of x is the number of symbols in xC that are
valued L or H, i.e.,

i(x) = |{i : xC
i ∈ {L,H}}|. (7)

For example, if x = (0, 1, 3, 3, 1, 2, 2, 0, 2), also shortly
denoted as 013312202, then xLH = LLHHLHHLH, xC =
0133L22LH, w(x) = 5, r(x) = 2, and i(x) = 3.

In order to reduce the error probability, a well-chosen subset
of B(n) should be used for data storage purposes rather than
the entire set B(n) itself. Usually, constraints are put on
the GC-weights and the maximum runlengths of the words.
Therefore, we consider the subset Br(n,w) that contains all
the words from B(n) that have GC-weight w and runlength at
most r, i.e.,

Br(n,w) = {x ∈ B(n) : w(x) = w ∧ r(x) ≤ r}. (8)

Its cardinality is denoted by Br(n,w). In Section III we will
present a formula for Br(n,w).

It is often desirable to equip the set of words that is used for
the data representation with some error correcting or detecting
capabilities. In order to establish this, one could select a code
C, i.e., a subset of Br(n,w), satisfying a certain distance
property. The Hamming distance between two sequences x
and y from Bn is defined by d(x,y) = |{i : xi ̸= yi}|. The
(minimum) Hamming distance d(C) of a code C is defined
as the smallest Hamming distance between any two different
codewords, i.e., d(C) = min{d(x,y) : x,y ∈ C,x ̸= y}.
A code with Hamming distance d is known to correct up to
⌊(d− 1)/2⌋ substitution errors. Alternatively, it could also be
used to detect up to d − 1 substitution errors. An important
research challenge is to determine the largest possible code in
Br(n,w) with Hamming distance at least equal to d. Its size
will be denoted by Br(n,w, d), i.e.,

Br(n,w, d) = max{|C| : C ⊆ Br(n,w), d(C) ≥ d}. (9)

In Section IV we will determine B1(n,w, 2), i.e., the largest
possible size of a single-error-detecting code of length n, in
which all codewords have GC-weight w and no subsequent
identical symbols.

III. A FORMULA FOR Br(n,w)

In this section we will focus on Br(n,w), i.e., the number
of words in the set Br(n,w). In [8], an explicit formula
for B1(n,w) is provided. In [6], it is shown how Br(n,w)
can be obtained using generating functions. Here, we give a
simple recursion to find Br(n,w). In order to do so, we define
Nr(n,w) as the set of all words in Br(n,w) that do not end
with a zero, i.e.,

Nr(n,w) = {x ∈ Br(n,w) : xn ̸= 0}. (10)

Its cardinality is denoted by Nr(n,w). By symmetry argu-
ments, we have

|{x ∈ Br(n,w) : xn ̸= i}| =
{

Nr(n,w) if i = 0, 1,
Nr(n, n− w) if i = 2, 3.

(11)
Numerical values of Nr(n,w) and Br(n,w) can be found as
follows.

Theorem 1. For 0 ≤ w ≤ n and r ≥ 1, it holds that
Nr(0, 0) = 1,

Nr(n,w) = 2n−1

(
n− 1

w

)
+ 2n

(
n− 1

w − 1

)
(12)

if 1 ≤ n ≤ r,

Nr(n,w) =

min{r,n−w}∑
j=1

Nr(n− j, w)

+2

min{r,w}∑
j=1

Nr(n− j, n− w) (13)

if n ≥ r + 1, and

Br(n,w) =

min{r,n−w}∑
j=0

Nr(n− j, w). (14)

Proof: The result Nr(0, 0) = 1 follows from the observation
that B(0) contains only the empty word, that has length and
GC-weight both equal to zero, does not contain symbol runs
longer than r, does not end with a zero, and thus is in Nr(0, 0).

If 1 ≤ n ≤ r, then any word in B(n) satisfies the runlength
constraint, so we only need to count the number of words
in B(n) that have GC-weight w and end with a symbol
i ∈ {1, 2, 3}. If i = 1, then this number is 2n−1

(
n−1
w

)
, since

there should be w symbols from {2, 3} in the first n − 1
positions, with the remaining symbols from {0, 1}. Similarly,
this number is 2n−1

(
n−1
w−1

)
if i ∈ {2, 3}. Hence, (12) follows

by summation over i = 1, 2, 3.
Next, we consider the case n ≥ r + 1. Any word in

Nr(n,w) can be uniquely decomposed into a word from
Br(n − j, v) not ending with an i, followed by a run of j
equal symbols i where i ∈ {1, 2, 3}. If i = 1, then v = w
and j ∈ {1, 2, . . . ,min{r, n − w}}, where j ≤ r is due
to the runlength constraint, and j ≤ n − w is due to the
fact that the GC-weight of a word in Br(n − j, w) cannot
exceed its length. Similarly, if i ∈ {2, 3}, then v = w− j and
j ∈ {1, 2, . . . ,min{r, w}}. On the other hand, for all indicated
values of i and j, appending a string of j symbols i to a word
from Br(n−j, v) not ending with an i leads to a unique word
in Nr(n,w). Hence, by applying (11) and summation over all
j for each i and then over i = 1, 2, 3, the number of sequences
in Br(n,w) not ending with a zero is as stated in (13).

Finally, we prove (14). Any word in Br(n,w) can be
uniquely decomposed into a word from Nr(n−j, w), followed
by a string of j zeroes. Here, j is a nonnegative integer
satisfying both j ≤ r, due to the runlength constraint, and
j ≤ n−w, since the length n−j of a word from Nr(n−j, w)
is at least equal to its GC-weight w. On the other hand,
appending j zeroes to any word from Nr(n − j, w), with

3

TABLE I
VALUES OF B2(n,w).

w = 0 w = 1 w = 2 w = 3 w = 4 w = 5
n = 1 2 2
n = 2 4 8 4
n = 3 6 24 24 6
n = 4 10 56 96 56 10
n = 5 16 120 296 296 120 16

j any value from {0, 1, . . . ,min{r, n − w}}, gives a unique
word from Br(n,w). The result thus follows by summation of
Nr(n− j, w) over all j.

Table I gives example Br(n,w) values with r = 2, 1 ≤
n ≤ 5, and 0 ≤ w ≤ n.

IV. A FORMULA FOR B1(n,w, 2)

Limbachiya et al. presented a general lower bound on
B1(n,w, d) [8, Theorem 2]. In the same paper, they also
obtained specific lower bounds by running an algorithm,
giving better results. Here, we settle the problem for the case
d = 2, i.e., we determine B1(n,w, 2).

We start by partitioning B1(n,w) into disjoint clusters. Two
of its words x and y are in the same cluster if and only if
their corresponding cluster words xC and yC, as defined in
(4), are equal. We show that words in different clusters cannot
have Hamming distance one.

Lemma 1. Let n and w be integers satisfying 0 ≤ w ≤ n and
n ≥ 2. It holds for any x,y ∈ B1(n,w) with xC ̸= yC that
d(x,y) ≥ 2.

Proof: Suppose there exist x,y ∈ B1(n,w) with xC ̸= yC

and d(x,y) = 1. Let i denote the position in which x and
y differ. Note that xLH = yLH, since xj = yj for all j ̸= i
implies that xLH

j = yLHj for all j ̸= i, but also that xLH
i = yLHi

due to the fact that w(x) = w(y) = w.
Observe from (4) that xC

i ∈ {L,H} would imply that yLHj =
xLH
j ̸= xLH

i = yLHi for all j ∈ {1, 2, . . . , n} with |j − i| = 1.
This gives that yCi = xC

i , and thus, in combination with the
facts that xLH = yLH and xj = yj for all j ̸= i, that xC = yC,
which contradicts our assumption. Hence, xC

i /∈ {L,H} and
thus xC

i ∈ {0, 1, 2, 3}. However, this implies that a) xLH
i−1 =

xLH
i or b) xLH

i+1 = xLH
i . If a) holds, then yLHi−1 = xLH

i−1 =
xLH
i = yLHi and yi−1 = xi−1 ̸= xi. Since xi ̸= yi, this

implies yi−1 = yi, which violates the runlength constraint in
y. Similarly, we obtain a contradiction if b) holds.

In conclusion, if x,y ∈ B1(n,w) with xC ̸= yC, then
d(x,y) ̸= 1. Since xC ̸= yC also implies d(x,y) ̸= 0, of
course, the result stated in the lemma follows.

Next, we determine the sizes of the clusters.

Lemma 2. Let n and w be integers satisfying 0 ≤ w ≤ n and
n ≥ 2. Then, for any x ∈ B1(n,w), the cluster that contains
x is Cx =

{
y ∈ B1(n,w) : y

C = xC
}

and it has cardinality
2i(x).

Proof: The Cx expression follows from the definition of a
cluster. From (7) it follows that xC has exactly i(x) entries

equal to L or H. Replacing the L-valued entries in xC by 0 or
1 and its H-valued entries by 2 or 3 generates all the words
in the cluster. Hence, there are 2i(x) words in the cluster that
contains x.

As an immediate consequence of the previous two lemmas
we have the following result.

Corollary 1. Let n and w be integers satisfying 0 ≤ w ≤ n
and n ≥ 2. It holds for any x ∈ B1(n,w) with i(x) = 0 that
d(x,y) ≥ 2 for all y ∈ B1(n,w) with y ̸= x.

Let I(n,w) be defined as the subset of B1(n,w) containing
all words with index zero, i.e.,

I(n,w) = {x ∈ B1(n,w) : i(x) = 0}. (15)

Its size is denoted by I(n,w). We are now ready to state and
prove the main result of this paper.

Theorem 2. For 0 ≤ w ≤ n and n ≥ 2, it holds that

B1(n,w, 2) =
B1(n,w) + I(n,w)

2
. (16)

Proof: Note that by Lemma 1 a code C ⊆ B1(n,w) with
d(C) = 2 and |C| = B1(n,w, 2) can be partitioned in maximal
subsets, with minimal distance 2, of the clusters that partition
B1(n,w). So all clusters of size 1 are subsets of C, which
means that I(n,w) ⊆ C. Now take any cluster that contains
more than one word. This cluster can be written as Cx for
some word x from B1(n,w) \ I(n,w). We will show in the
next paragraph that a maximal subset of Cx with minimal
distance 2 contains half of the number of words of Cx.
From this we conclude that C contains half of the words of
B1(n,w) \ I(n,w) and all words of I(n,w), i.e., its size is
(B1(n,w)− I(n,w))/2+ I(n,w) = (B1(n,w)+ I(n,w))/2.

Let i = i(x) be the cluster index of Cx. According to
Lemma 2, the cluster size equals 2i. Replacing the L-valued
entries in xC by 0 or 1 and its H-valued entries by 2 or 3
generates all the words in the cluster. We map each word in
Cx to a binary vector of length i by removing all symbols at
positions j for which xC

j ∈ {0, 1, 2, 3}, and then subtracting 2
from all the remaining entries equal to 2 or 3. Note that this
mapping is a Hamming-distance-preserving bijection from Cx

to the set V(i) of all binary vectors of length i. It follows from
the well-known Singleton bound [3], that the largest subset of
V(i), such that any two different words in the subset differ in
at least 2 positions, has size at most 2i−1. This upper bound
can be achieved by selecting, e.g., all binary words of length i
that contain an even number of ones. The inverse image of this
set is a maximal subset of Cx with minimal distance 2 that
contains half of the words of Cx. This completes the proof.

From the proof of Theorem 2 it is apparent how to construct
a code C in B1(n,w) with d(C) ≥ 2 and |C| = B1(n,w, 2).
For example, such an optimal code is

C = {x ∈ B1(n,w) :
∑

i:xC
i ∈{L,H}

xi is even}. (17)

Observe that I(n,w) is indeed a subset of this code C, since
any x ∈ I(n,w) has xC

i ∈ {0, 1, 2, 3} for all i. Hence, for such
words the summation in (17) is over the empty set, resulting

4

in the value zero, which is even. Further, C contains half of
B1(n,w) \ I(n,w).

Note that we have an expression for B1(n,w) from the pre-
vious section. Hence, if we derive an expression for I(n,w) as
well, then Theorem 2 enables the computation of B1(n,w, 2).
In order to do so, we define M(n,w) as the set of all words
in I(n,w) ending with a zero or a one, i.e.,

M(n,w) = {x ∈ I(n,w) : xLH
n = L}. (18)

Its cardinality is denoted by M(n,w). By a symmetry argu-
ment, we have

|{x ∈ I(n,w) : xLH
n = H}| = M(n, n− w). (19)

Numerical values of M(n,w) and I(n,w) can be found as
follows.

Theorem 3. For 0 ≤ w ≤ n and n ≥ 2, it holds that
M(n, 0) = 2, M(n,w) = 0 if w ∈ {1, n− 1, n},

M(n,w) = M(n− 1, w) + 2M(n− 2, n− 2− w) (20)

if 2 ≤ w ≤ n− 2, and

I(n,w) = M(n,w) +M(n, n− w). (21)

Proof: Note that M(n,w) consists of all the words x in
B1(n,w) for which it holds that xLH ends with the symbol L
and, furthermore, that it has only runs of L-symbols and H-
symbols of length at least two each. Hence, it contains only
the words 01010 . . . and 10101 . . . of length n if w = 0, due
to the runlength constraint, and no words at all if w ∈ {1, n−
1, n}. This gives the stated expressions for M(n,w) with w ∈
{0, 1, n− 1, n}.

If 2 ≤ w ≤ n − 2, then note that the last three symbols
of xLH are either a) LLL or b) HLL. The set of words in
M(n,w) for which a) holds can be obtained by appending a
unique extra symbol to each of the words from M(n− 1, w).
For all y ∈ M(n − 1, w), this extra symbol must be 0 if
yn−1 = 1 and 1 if yn−1 = 0 to obtain a unique word from
M(n,w). The set of words in M(n,w) for which b) holds can
be obtained by appending two well-determined extra symbols
to the words from I(n− 2, w) \M(n− 2, w). For all words
in I(n − 2, w) \M(n − 2, w), we have two options for this
tail, i.e., 01 and 10, to obtain a unique word from M(n,w).
Hence, because of (19), the number of words in M(n,w) in
the b) category is 2M(n − 2, n − 2 − w). Together with the
fact that the number of words in M(n,w) in the a) category
is M(n− 1, w), (20) follows.

Finally, (21) is obvious, since it just states that the size of
I(n,w) is the sum of |M(n,w)| and |I(n,w) \ M(n,w)|,
where the expression for the latter follows from (19).

Table II gives example values for B1(n,w) from Th. 1,
I(n,w) from Th. 3, and B1(n,w, 2) from Th. 2. For w =
⌊n/2⌋ and 4 ≤ n ≤ 13, lower bounds on B1(n,w, 2) have
been reported in [8, Table I], that were obtained via an altru-
istic algorithm. These bounds equal the corresponding values
from Th. 2 and thus the codes obtained by that algorithm
are optimal when w = ⌊n/2⌋ and 4 ≤ n ≤ 13. However, the
advantages of our code construction (17) are that no algorithm
needs to be run to generate the codewords and that it is
guaranteed to be the largest possible code for any w and n.

TABLE II
VALUES OF B1(n,w), I(n,w), AND B1(n,w, 2).

B1(n,w) w = 0 w = 1 w = 2 w = 3 w = 4
n = 2 2 8 2
n = 3 2 16 16 2
n = 4 2 24 56 24 2
n = 5 2 32 128 128 32
n = 6 2 40 232 424 232
n = 7 2 48 368 1040 1040
n = 8 2 56 536 2104 3352

I(n,w) w = 0 w = 1 w = 2 w = 3 w = 4
n = 2 2 0 2
n = 3 2 0 0 2
n = 4 2 0 8 0 2
n = 5 2 0 8 8 0
n = 6 2 0 16 8 16
n = 7 2 0 24 16 16
n = 8 2 0 32 24 56

B1(n,w, 2) w = 0 w = 1 w = 2 w = 3 w = 4
n = 2 2 4 2
n = 3 2 8 8 2
n = 4 2 12 32 12 2
n = 5 2 16 68 68 16
n = 6 2 20 124 216 124
n = 7 2 24 196 528 528
n = 8 2 28 284 1064 1704

V. CONCLUDING REMARKS

We have presented a recursive expression for Br(n,w), i.e.,
the number of quaternary words with length n, GC-weight
w, and runlength constraint r. Furthermore, we have derived
a recursive expression for B1(n,w, 2), i.e., the size of the
largest quaternary code with length n, GC-weight w, minimum
Hamming distance 2, and no identical symbols next to each
other in each codeword. An interesting research challenge is
to find expressions or improve bounds for Br(n,w, d) with
other values of r and/or d, i.e., for cases with a more relaxed
runlength constraint and/or stronger error correcting/detecting
capabilities.

REFERENCES

[1] G. M Church, E. M. Rubin, and S. Kosuri, “Next-generation digital
information storage in DNA,” Science, vol. 337, no. 6102, p. 1628, 2012.

[2] S. M. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and
O. Milenkovic, “DNA-based storage: trends and methods,” IEEE Trans.
Mol. Biol. Multi-Scale Commun., vol. 1, no. 3, pp. 230-248, Sept. 2015.

[3] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting
codes, North-Holland, 1977.

[4] O. D. King, “Bounds for DNA codes with constant GC-content,”
Electronic Journal of Combinatorics, vol. 10, pp. 33-46, 2003.

[5] K. A. S. Immink and K. Cai, “Design of capacity-approaching con-
strained codes for DNA-based storage systems,” IEEE Commun. Lett.,
vol. 22, no. 2, pp. 224-227, Feb. 2018.

[6] K. A. S. Immink and K. Cai, “Efficient balanced and maximum
homopolymer-run restricted block codes for DNA-based storage,” IEEE
Commun. Lett., vol. 23, no. 10, pp. 1676-1679, Oct. 2019.

[7] K. A. S. Immink and K. Cai, “Properties and constructions of con-
strained codes for DNA-based data storage,” IEEE Access, vol. 8, pp.
49523-49531, 2020.

[8] D. Limbachiya, M. K. Gupta, and V. Aggarwal, “Family of constrained
codes for archival DNA data storage,” IEEE Commun. Lett., vol. 22, no.
10, pp. 1972-1975, Oct. 2018.

[9] B. Cao, S. Zhao, X. Li, and B. Wang, “K-means multi-verse optimizer
(KMVO) algorithm to construct DNA storage codes,” IEEE Access, vol.
8, pp. 29547-29556, 2020.

