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Predicting Rainfall Induced Slope Stability
Using Random Forest Regression
and Synthetic Data

Elahe Jamalinia, Faraz S. Tehrani, Susan C. Steele-Dunne,
and Philip J. Vardon

Abstract

Water fluxes in slopes are affected by climatic conditions
and vegetation cover, which influence the effective stress
and stability. The vegetation cover is the intermediate
layer between the atmosphere and the slope surface that
alter water balance in the slope through evapotranspira-
tion and leaf interception. This paper studies the
data-driven approach for predicting the macro stability
of an example grass-covered dike based on actual data
and also synthetic data provided by numerical modelling.
Two numerical models are integrated in this study. The
water balance in the root zone is simulated through a crop
model, whereas the hydro-mechanical and safety analysis
of the example dike is done using a two-dimensional
Finite Element model. The considered period for these
analyses is 10 years (3650 daily instances) which will be
used to generate a time-series dataset for a secondary dike
in the Netherlands. The features included in the dataset
are parameters that (i) have a meaningful relationship
with the dike Factor of safety (FoS), and (ii) can be
observed using satellite remote sensing. The output
dataset is used to train a Random Forest regressor as a
supervised Machine Learning (ML) algorithm. The
results of this proof-of-concept study indicate a strong
correlation between the numerically estimated FoS and
the ML-predicted one. Therefore, it can be suggested that
the utilized parameters can be used in a data-driven

predictive tool to identify vulnerable zones along a dike
without a need for running expensive numerical
simulations.
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Introduction

The main components of flood protection system in the
Netherlands are primary and secondary dikes with the total
length of more than 18,000 km. The condition of these
engineering structures is assessed based on the infrequent
visual inspections usually through ground-based observa-
tions. This current method can be systematically augmented
by using Earth Observation (EO) data to evaluate the dike
condition (Jamalinia et al. 2019a, b; Özer et al. 2018). One
crucial aspect of slope stability analysis is the identification
of critical points along the slope.

In geotechnical engineering, the analysis and prediction
of (in)stabilities is of great importance; however, often little
attention is paid to the transient conditions due to vegetated
cover and interaction with the environment. This is due to
the computational intensity and difficulty in collecting in situ
information on the condition of the slope.

Synthetic data driven approaches based on Machine
Learning (ML) can be used to develop an efficient estimation
of the slope condition and speed up the assessment process,
even at the regional scale. In recent years, ML methods have
been used in several studies for predicting slope (in)stability
(Ada and San 2018; Ghorbanzadeh et al. 2019; Lin et al.
2018; Pourghasemi and Rahmati 2018).

In this research, a Random Forest (RF) approach is used
to build and train an ML model on 3650 synthetic data
points produced by an integrated crop-geotechnical model
on an example geometry. The results show the potential
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application of Earth Observation (EO) data for identifying
the vulnerable slopes (locations along the slope) without the
need for repeating expensive numerical simulations.

Methodology

An integrated crop-geotechnical model (Jamalinia et al.
2020a) is used in this research to calculate the Factor of
Safety (FoS) of a dike under realistic climate and vegetation
conditions for ten years (daily analysis). The results are used
to study the possibility of using ML algorithms to forecast a
slope condition based on the observable data from climate,
vegetation and slopes.

Numerical Method

In Fig. 1 the geometry of the example dike is shown. This
idealised dike is a typical regional Dutch dike (de Vries
2012), which is covered by permanent grass over the surface
of the dike with a fixed depth of root zone, 40 cm (shown as
green area in Fig. 1). It is assumed that the base boundary is
an impermeable layer, while other boundaries of the dike are
assumed to be permeable, meaning that the left and right
sides have a fixed phreatic surface and the top boundary has
a temporal precipitation/evaporation flux applied.

Since standard geotechnical models do not simulate
the (dynamic) effects of vegetation, i.e. evapotranspiration
and leaf interception, on mass balance and thereby slope
stability, the current research utilises an integrated
crop-geotechnical model developed by the authors by inte-
grating two existing models (Jamalinia et al. 2020a),
although other academic modelling approaches have con-
sidered various aspects of the impact of vegetation (Elia
et al. 2017). Using this numerical approach enables the study
of climatic and vegetation conditions on the stability. The
influence of the soil cracking, due to droughts and reducing
shear strength, is included in our previous studies (Jamalinia
et al. 2019b, 2020a, b). The workflow (Fig. 2) is controlled
by Python and explained in detail.

The meteorological data (e.g. rain and temperature) and
soil parameters are inputs for the integrated
crop-geotechnical model. The climate data was obtained
from the Royal Netherlands Meteorological Institute
(KNMI) at Schiphol Airport station (Amsterdam), which is
close (circa 9 km) to the location of the actual dike. The
major outputs from the 1D crop model (LINGRA) (Bouman
et al. 1996; Rodriguez et al. 1999), shown in Fig. 2 are: Leaf
Area Index (LAI), area of leaves divided by the area of
ground; crack area (Acrack); average soil moisture in the root
zone (SMrz). The major outputs from the 2D geotechnical
model, Plaxis (2018), are the ground water level (GWL),
surface displacement and FoS.

The input parameters for the crop model and the
geotechnical model are listed in Tables 1 and 2, respectively.

Data Driven Method

In this study the results of 3650 realisations (simulations)
from the integrated crop-geotechnical model, each simulat-
ing a period of 10 years from 2009 to 2019, are used in
training and testing a RF regressor to predict the safety
condition of the example dike. The Random Forest approach
is one of the most widely used ensemble learning algorithms.
The RF (Breiman 2001) constructs individual Decision
Trees (DTs) based on bagging, using bootstrap sampling
where samples are taken randomly with replacement from
the training set (Qi and Tang 2018). In the DT method the
data is divided into smaller subsets and a tree is expanded
until the leaf node, where the decision is made about the
target value or class in DT regression or DT classification.
As the RF method uses the training dataset to create multiple
decision trees, the variance of the final model is reduced and
then it is less sensitive to over-fitting (Burkov 2019). Each
decision tree of the RF predicts an output and RF regression
models take the average of all the individual decision tree
estimates.

Fig. 1 Geometry representing boundary, root zone layer, and the
analysis point

Fig. 2 Flow chart of numerical modeling procedure
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Results

Numerical Simulations

Example temporal inputs and outputs of the numerical
simulations are shown in Fig. 3. Time-series of rainfall and
temperature (TMP) as climate data is shown in Fig. 3a, b,
respectively.

In Fig. 3c–e the variation of crop model outputs over time
is shown. Considering the worst-case scenario, it is assumed
that cracks do not close during the wet periods, but only
expand during unprecedented drier conditions (Fig. 3c). The
percentage of the cracked soil area increases in such dry
periods and its area remains constant until the next drier
period. It is assumed that the cracking happens only in the
root zone area with the maximum depth of 40 cm, equal to
the root zone depth. The sudden decrease in LAI on 15 June
and 15 August annually in Fig. 3d shows mowing events,

which were imposed in the crop model based on the mowing
schedule of secondary dikes in the Netherlands (Jamalinia
et al. 2019a). A higher presence of cracks causes a reduction
in the rate of LAI growth after mowing. In the summer of
2018, according to Fig. 3e, the root zone experienced the
driest condition during the previous 10 years, and the crack
area reached the maximum value during the simulation
period. In Aug. 2018, the root zone soil moisture (SMrz)
reached its minimum value, and it can be seen that vegeta-
tion could not easily re-grow after mowing.

The temporal variation of absolute surface displacement |
UA| at point A (Fig. 1) and FoS are selected as outputs of the
FEM model (2D geotechnical model), shown in Fig. 3f, g,
respectively. Displacement at point A follows the variation
of SMrz, which reflects the response of the |UA| to the cli-
mate and vegetation conditions. The combined effect of
rainfall, LAI variations, and crack area influence the water
flux into the dike which caused temporal variations of FoS.
The maximum crack area in August 2018 and very low LAI

Table 1 Input parameters used
for the crop model, modified after
Jamalinia et al. (2020a)

Parameters Value Unit

Soil Water content at field capacity (prior to cracking) 0.29 cm3water=cm3soil

Water content at the wilting point below that wilting starts 0.12 cm3water=cm3soil

Critical water content below that transpiration is reduced 0.05 cm3water=cm3soil

Maximum drainage from root zone to lower layers 50 mm=day

Vegetation Specific Leaf Area: leaf area over leaf mass 0.025 m2=g

Remaining LAI after mowing 0.8 m2leaf =m2soil

Critical leaf area beyond that self-shading occurs 4 m2leaf =m2soil

Table 2 Input parameters for the
geotechnical model, modified
after Jamalinia et al. (2020a)

Parameters Value Unit

Root
zone

Dike
body

Constitutive model
(Mohr-Coulomb)

Saturated unit weight 20 12 kN=m3

Friction angle (prior to
cracking)

23 23 �

Cohesion (prior to cracking) 2 2 kPa

Dilatancy angle 0 0 �

Young’s modulus 10 20 MPa

Poisson’s ratio 0.3 0.2 –

Initial void ratio 0.67 1.2 –

Hydraulic model (van
Genuchten*)

Hydraulic conductivity 0.14 0.03 m=day

Scale parameter (a) 1.47 1.38 m�1

Fitting parameter (n) 1.97 1.32 –

Fitting parameter (m) 0.87 −1.24 –

*Hysteresis is not considered
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(almost bare soil) caused an increased infiltration due to
heavy precipitation event. In addition, the soil had the lowest
shear strength due to the maximum crack area, which
together led to the minimum FoS.

Feature Selection

There are two criteria to select the features in this study to
train the RF regressor: the feature (1) has a strong, mean-
ingful relationship with the FoS; (2) is observable remotely,
so experts can monitor these parameters and assess the slope
condition based on that feature. Therefore, the features in
this study are from (i) climate: rainfall and temperature,
(ii) vegetation: LAI, observing anomalies in vegetation
could be used as an indicator to distinguish whether a dike is

significantly cracked; (iii) slope surface displacement: it can
be used as a proxy for both saturation (short term changes)
and for accumulation of cracks (long term changes),
although long term changes may also indicate subsidence or
other processes (Jamalinia et al. 2020a). Using the PSInSAR
method Ferretti et al. (2001), it is possible to map surface
deformation with millimetre precision.

The lag correlation between pair of key parameters is
plotted in Fig. 4. A positive lag means the second term
causes the first one. There is a 15 days lag between LAI and
Satrz, which means that root zone saturation affects vegeta-
tion growth most after 15 days. There is a strong correlation
between saturation at point A (SatA) and |UA|, which shows
that surface displacement is responsive to the available water
in the root zone, which is mentioned in the time-series result
as well. Existing correlation in Fig. 4a, b suggest that using

Fig. 3 Time-series of inputs and
outputs from the developed
integrated models for 10 years
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LAI and |UA| could be good indicators for available water
near to the dike surface, and both are reasonably easy to
monitor remotely, unlike the SM. The negative correlations
between (Fos, SMrz) and (Fos, |UA|) shown in Fig. 4c, d,
suggest using |UA| as an indicator to estimate safety. The
cumulative rainfall during the 35 days before an event day,
Rain.cu_35 (Fig. 4f), has a stronger correlation with FoS
than rainfall on the same day (Fig. 4e). This period has
showed the best predicted FoS among other periods (Jama-
linia et al. 2020c). Therefore, in the RF analysis a history of
rainfall is considered.

Random Forest Regression

The 10-year simulation results from 2009 to 2019 are used to
build a predictive model using the mentioned features in
previous section. The data set is split to training set (70% of

dataset) and testing set (30%), and the number of trees in the
RF algorithm set to be 1000.

Here the ability of RF for real time prediction is tested.
The features are selected from the same day at which the FoS
is calculated, except for rainfall that accumulation during last
35 days is considered. The feature importance values are
plotted in Fig. 5 which are derived from the RF regressor as
a result of training processes. It turns out that the absolute
surface displacement |UA| has the highest importance (0.52).
LAI and cumulative precipitation during the last 35 days
(Rain.cu-35) have almost the same feature importance of
0.2, and daily temperature (TMP), has the least effect on FoS
and therefore its prediction. As mentioned before, according
to time-series results and correlation, vegetation growth and
displacement are affected by precipitation, so precipitation
impact is embedded in LAI and |UA|.

The predicted FoS from the RF method is plotted against
the calculated FoS from the FEM model in the numerical

Fig. 4 Lag correlation between
pair of key parameters
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analysis in Fig. 6. The results show that the RF model yields
precise estimation for assessing dike safety only from the
observable data. The scatters are colorized by LAI values
and day of year (DOY) which suggests that usually at low
LAI and winter period (e.g. when LAI is lower than 2 during
November to February) outliers occur, where there is not
enough energy available for vegetation to grow.

In another analysis, the time-series prediction has been
carried out to investigate the ability of the RF method to
predict the future FoS from historical data. The training data
set has been collected from the first 70% of the dataset and
the remaining 30% used as the test set. So, the model is built
based on avoiding random train, test split selection. The
predicted and calculated FoS are plotted against time in
Fig. 7. The temporal trends are well represented, with
deviation in the low values and after the cracking event
during the summer of 2018. The results demonstrate that RF
can be used as a promising method to predict slope condition
using observable input data: meteorological data, vegetation
and surface displacements. Therefore, doing a numerical
analysis for a slope and calculating FoS for a time period
would help experts to assess the condition of the slope in
future using these observable parameters, without the need
to repeat time-consuming simulations.

Conclusion

This proof of concept study investigates the potential use of
observable data in predicting slope condition. A one-way
coupled model framework composed of a crop model and a
geotechnical model was used to calculate the factor of safety
of an idealised dike covered with grass for 10-year period
simulation. The existing correlation between selected
parameters assisted in the feature selection for this
data-driven study approach, as well as an assessment of
whether they are remotely observable. The supervised ML
algorithm, Random Forest (RF), has been used for predicting
FoS using key parameters such as: precipitation, tempera-
ture, LAI and surface displacement at a selected point on the
example dike. The RF algorithm results in a prediction with
high accuracy (RMSE = 0.05). Among the features, surface
displacement shows the highest feature importance. It is
shown that displacement is responsive to the amount of
water in the root zone which is affected by the climate and
vegetation condition. The results of this study show the
potential use of EO data for real time monitoring of slopes

Fig. 5 Feature importance out of RF regression

Fig. 6 Correlation between real time predicted FoS and calculated
FoS. Scatters are colorized by (a) LAI, (b) Day of Year (DOY)
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and detecting the vulnerable locations along the slopes. The
results show some deviation, probably due to the strong
non-linearities in the physical model, therefore the worth of
the RF model is to identify weak areas and allow further
detailed investigation.
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