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Learning Tracking Control for Cyber-Physical
Systems

Chengwei Wu, Wei Pan, Guanghui Sun, Jianxing Liu, and Ligang Wu, Fellow, IEEE

Abstract—This paper investigates the problem of optimal
tracking control for cyber-physical systems (CPS) when the cyber
realm is attacked by denial-of-service (DoS) attacks which can
prevent the control signal transmitting to the actuator. Attention
is focused on how to design the optimal tracking control scheme
without using the system dynamics and analyze the impact of DoS
attacks on tracking performance. First, a Riccati equation for the
augmented system including the system model and the reference
model is derived under the framework of dynamic programming.
The existence and uniqueness of its solution are proved. Second,
the impact of the successful DoS attack probability on tracking
performance is analyzed. A critical value of the probability
is given, beyond which the solution to the Riccati equation
cannot converge. The tracking controller cannot be designed.
Third, reinforcement learning is introduced to design the optimal
tracking control schemes, in which the system dynamics are not
necessary to be known. Finally, both a dc motor and an F16
aircraft are used to evaluate the proposed control schemes in
this paper.

Index Terms—Cyber-physical systems, Reinforcement learning,
Optimal tracking control, DoS attacks.

1.. INTRODUCTION

The increasing development of computer and communica-
tion devices promotes the emergence and application of cyber-
physical systems (CPS). The cyber realm ubiquitously embeds
such devices to process, exchange and gather the information
and then directly interacts with the physical components. As
a promising engineered system, it can be applied to a variety
of fields varying from the national defense to smart housing.
Especially, the thriving of 5G, which provides a more reliable
and low-delay communication network, will make CPS more
and more widely applied in the future. Antsaklis in [1] has
scrutinized the relevant definition, applications and challenges
of CPS and pointed out that CPS would transform the way that
human interacts with the physical environment. It is worth not-
ing that CPS bring great advantages while challenges cannot
be neglected due to the vulnerability of the cyber layer. Most
researchers motivate their research by discussing some cyber
attacks. Examples of such attacks include both Stuxnet and
attacking Maroochy Shire Council’s sewage control systems
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[2]. It has been an urgent task to design schemes to secure
CPS against attacks.

To address the security problem, many researchers have
dedicated to such a field [3]–[8]. For the secure state estimation
problem, the critical condition to securely reconstruct the
state under sparse sensor attacks has been proposed in [9].
Combining the sliding mode observer, a secure algorithm has
been proposed to reconstruct states under both sparse attacks
and external disturbances in [2]. To make the schemes in [2],
[9] more robust to attacks, a secure estimation reconstruction
algorithm, which allows the attacks to change over time has
been provided in [10]. Besides the secure state reconstruction,
the secure control under attacks also attracted considerable
attention. In [11], an adaptive control framework has been pro-
posed to mitigate the sensor and actuator false data injection
attacks. To reduce the assumptions imposed on the denial-
of-service (DoS) attack model, attack frequency and attack
duration approaches have been proposed in [12]. For the secure
consensus control for multi-agent systems under attacks, it can
refer to [13], [14] and the references therein. Different from
the above results, the game-theoretical approach, which can
address an attacker and a defender in a unified framework has
been applied to design secure defense control schemes [15]–
[17]. Nevertheless, the secure tracking control problem has not
been fully investigated except [18]. Besides, the exact system
dynamics are the necessary knowledge in the aforementioned
results.

Reinforcement learning can find optimal decisions without
using exact system dynamics. Such a technique refers to two
different forms. One is that the underlying environment is
described by a Markov decision process. In this scenario, the
reinforcement learning is often used in games and robotic
control [19]. But the stability of the learned policies is not
guaranteed. The other is that the environment is described by
differential equations without knowing exact system dynamics.
Using the model structure, the second reinforcement learning
technique can not only design optimal control policies, but also
guarantee the stability, which has been widely applied in the
control field [20]–[22]. Combining the Q-learning approach
[23], [24], the reinforcement learning approach, also known as
the adaptive dynamic programming in the control community
has been widely applied to find solutions for different control
problems, for example, zero-sum game based optimal control
[25], [26], optimal control for linear periodic systems [27],
control for networked systems [28], and tracking controller
design [29], [30]. Although elegant control schemes have been
proposed, there exist two problems in the Q-learning approach
[21]. One is that if the external disturbance is considered, it
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needs to evolve in a specific manner. The other lies in that
the probing noise adding to the control input can result in the
bias of the solution. In [21], an off-line optimal controller has
been designed, and the mentioned two problems have been
solved. It is noted that the secure tracking control problem
for CPS using reinforcement learning is not fully studied.
Compared with existing results, for example, [21], [30], [31],
there exist some challenges in designing the secure tracking
controller under attacks. The challenges include analyzing the
existence of the solution to the derived Riccati equation, and
revealing the relation between the attack probability and the
system performance, which motivates this paper.

This paper investigates the secure tracking control problem
for CPS under malicious actuator DoS attacks, which are
modeled based on the signal-to-interference-plus-noise (SINR)
ratio based communication model. The reference model which
can be unstable is given to generate the tracked signal.
Reinforcement learning is introduced to design the secure
tracking controller. The main contributions of this paper can
be summarized as follows:

1) This paper shows that the value function for the aug-
mented system (i.e., augmenting the reference model
and the physical plant) can be rewritten in the quadratic
form, with which the Bellman equation is used to derive
the Riccati equation.

2) Different from existing results, for example, [21], [30],
the successful attack probability exists in the derived
Riccati equation. The probability affects the existence
and uniqueness of the solution to the Riccati equation.
This paper proves that the existence and uniqueness
of the solution to the derived Riccati equation can be
guaranteed under certain conditions.

3) A critical condition for the successful attack probability
is derived, beyond which the solution to the Riccati e-
quation cannot converge. Using the learning scheme and
the matrix decomposition technique, the critical value is
obtained without using the exact system dynamics.

Finally, both a dc motor and an F16 aircraft system are utilized
to evaluate the effectiveness of the proposed control scheme.

The rest of this paper is organized as follows. Section
2. describes the system formulation and the problem setup.
Section 3. introduces how to prove the existence and optimality
of the desired tracking controller. A Q-learning based control
scheme and its convergence are provided in Section 4.. An
off-policy learning control scheme is proposed in Section 5.,
and then we conclude this paper in Section 6..

Notations. The notations used throughout the paper are
defined as follows. AT means the transpose of the matrix
A. M−1 is the inverse of the matrix M. Rn denotes the
n-dimensional Euclidean space. A positive definite (positive
semidefinite) matrix P is defined as P > 0(P ≥ 0). I and 0
represent the identity matrix and a zero matrix with compatible
dimensions, respectively. diag(·) denotes the matrix with diag-
onal structure. ⊗ denotes the Kronecker products and vec(Q)
is a column vector consisting of the transpose of each row in
Q. Without explicitly stated, the dimensions of matrices are
compatible with algebraic operation.

Reference	model

Attacker

Actuator Sensor

Physical	realm

( )u k

Console

Cyber	world

Plant
( )y k

( )x k

( )r k

( )r k
( )x k

( ) ( ) ak u k

Fig. 1. The system blueprint. The definitions of the symbols x(k), y(k),
u(k) etc are defined in the paper.

2.. SYSTEM FORMULATION AND PRELIMINARIES

The diagram of the system frame is described in Fig. 1,
which shows that the controller and the actuator interact with
each other using the cyber layer. The adversary can implement
DoS attacks to prevent the cyber realm from transmitting
the control signal to the actuator. In this section, we give
a model to describe the physical dynamics. A command
model is provided to generate the reference signal. An SINR-
based communication model is introduced to describe the
interactions between the system designer and the adversary.
Following the above setup, the control objective of this paper
is set. Next, we give the details.

A. Physical process and reference model descriptions

In this paper, we assume that the underlying physical plant
in Fig. 1 is governed by the following model [32]–[34]

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k), (1)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu represents
the control input signal and y(k) ∈ Rny denotes the mea-
surement output. A, B and C are matrices with appropriate
dimensions, which are unknown.

For the reference trajectory, we give the following command
generator

r(k + 1) = Fr(k), (2)

where r(k) is the reference trajectory and F means a given
gain. Here, F is not necessary to be Hurwitz.

Remark 1: As discussed in [29], such a model can generate
a variety of trajectories, for example, the step signal, the ramp
and the sinusoidal waveform. As to difficulties resulting from
using non-Hurwitz F , it can be overcome by introducing a
discount factor in the designed performance index. The details
will be discussed later.

Considering system (1) and the reference trajectory (2), the
augmented system is written as

x̄(k + 1) = Āx̄(k) + B̄u(k), (3)
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where

x̄(k) =

[
x(k)
r(k)

]
, Ā =

[
A 0
0 F

]
, B̄ =

[
B
0

]
.

For the tracking controller, it is designed as follows

ua(k) = K1x(k) +K2r(k), (4)

where K1 and K2 are tracking controller gains, which are
designed in the following contents.

B. SINR-based communication model

For DoS attacks, the attacker can implement them with
many alternative techniques. For instance, it can send superflu-
ous requests to flood the targeted communication network to
attempt to prevent all legitimate requests from being fulfilled.
Also, the system operator has the power to send requests to
the communication. Accordingly, to address the interaction
between the system operator and the adversary, a signal-to-
interference-plus-noise ratio based communication model is
introduced to describe the successful attack probability in this
section. The relation between the symbol error rate RSER and
signal to noise ratio RSNR is described as [35]

RSER = 2S(
√
ϕRSNR),

S(ν) =
1√
2π

∫ ∞
ν

e
−ξ2
2 dξ, (5)

where ϕ is a positive scalar.
Based on the digital communication theory [36], RSNR

under DoS attacks can be rewritten as

RSINR =
%s(k)

%a(k) + ς2
,

where RSINR means the signal-to-interference-plus-noise ra-
tio, %s(k) and %a(k) respectively mean the power, which the
system operator and the attacker utilize to send their requests
at time k. ς2 is the additive white Gaussian noise power.

If DoS attacks occur, they can result in packet dropouts [12],
[34], [37]. To describe the effect of DoS attacks on the actua-
tor, we define α(k) as an indicator function. When α(k) = 0,
it indicates that the attack is successfully implemented, and
the packet is lost. Otherwise, α(k) = 1. Then, we can obtain

u(k) = α(k)ua(k), (6)

According to the above discussion, the following equation
can be obtained [35]

ᾱ = P(α(k) = 1) =

(
1− 2S

(√
ϕ%s(k)

%a(k) + ς2

))L
, (7)

where L means the length of the transmitted data.

C. Control objective

In this paper, not only the tracking performance but also the
optimality should be guaranteed. Thus, define the following
value function to quantify the control cost

V (x̄(k)) = E

{ ∞∑
i=k

βi−k
[
(y(k)− r(k))

T
Q (y(k)− r(k))

+ uT (k)Ru(k)
]}

= E

{ ∞∑
i=k

βi−k
(
x̄T (k)Q̄x̄(k)

+ α(k)uTa (k)Rua(k)
)}
, (8)

where 0 < β ≤ 1 is defined as a discounted factor, the known
weighting matrices Q ≥ 0, R > 0, and Q̄ = C̄TQC̄, C̄ =[
C −I

]
.

Remark 2: The value function similar to (8) can be found
in [29], [30], whose results cannot be extended to our paper
directly due to the existence of the stochastic indication
function α(k). The expectation of α(k) affects the existence of
the tracking controller to be designed, which will be discussed
later. Besides, the discussion of the discounted factor β can
refer to [29].

In this paper, the control objective is to design a learning
based optimal tracking scheme such that the performance
index (8) can be minimized (i.e., minimizing the control cost)
while the output signal can be driven to track the desired
trajectory. Next, we will show how to derive the desired
optimal tracking controller.

3.. OPTIMAL TRACKING CONTROLLER DESIGN AND
STABILITY ANALYSIS

This section mainly presents how to design the optimal
tracking controller. First, we prove that the value function is
still in the quadratic form even DoS attacks occur. Second,
the Riccati equation for the augmented system (3) is derived,
by solving which the optimal tracking controller is designed.
Last, the existence and uniqueness of the solution to the Riccati
equation are proved. The relation between the critical value of
the attack probability and the existence and uniqueness of the
solution is revealed.

A. Analysis of the value function

First, a proposition is proposed to show that the value
function defined in (8) can be written in a quadratic form.

Proposition 1: If the tracking control scheme is designed as
u(k) = α(k)ua(k), the performance index (8) can be written
as V (x̄(k)) = E

{
x̄T (k)Px̄(k)

}
with

P =

[
P1 P2

PT2 P3

]
.

Proof: Submitting the controller u(k) into the perfor-
mance index (8) yields

V (x̄(k)) = E

{ ∞∑
i=k

βi−k
(
x̄T (k)C̄T Q̄C̄x̄(k)

+ α(k)uTa (k)Rua(k)
)}

= E

{ ∞∑
i=0

βi
[
x̄T (i+ k)

(
Q̄+ α(k)KT

1 RK1

)
×x̄(i+ k) + x̄T (i+ k)

(
−CTQ+ α(k)

× KT
1 RK2

)
r(i+ k) + rT (i+ k) (−QC

+ α(k)KT
2 RK1

)
x̄(i+ k) + rT (i+ k)
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×
(
Q+ α(k)KT

2 RK2

)
r(i+ k)

]}
. (9)

Using the dynamics in the augmented system (3) and the
command generator (2), x̄(i+k) and r(i+k) can be computed
as

x̄(i+ k) = Gix̄(k) +Hir(k),

r(i+ k) = F ir(k), (10)

where

hj = A+ α(k + j)BK1, Gi =
i∏

j=0

h(j),

Hi =
i−1∑
n=0

i−n−1∏
j=n

h(j + 1)

α(k + n)BK2F
n,

for the operator ‘
∏

’, if the upper bound is less than or equal
to the lower bound, h(•) = 1.

Combining (9) and (10) yields

V (x̄(k)) = E
{
x̄T (k)Px̄(k)

}
,

where

P1 =

∞∑
i=0

βi
[
GTi
(
Q̄+ α(k)KT

1 RK1

)
Gi
]
,

P2 =

∞∑
i=0

βi
[
GTi
(
−CTQ+ α(k)KT

1 RK2

)
F i

+ GTi
(
Q̄+ α(k)KT

1 RK1

)
Hi

]
,

P3 =
∞∑
i=0

βi
[
(F i)T

(
Q+ α(k)KT

2 RK2

)
F i

+HT
i

(
Q̄+ α(k)KT

1 RK1

)
Hi

+HT
i

(
−CTQ+ α(k)KT

1 RK2

)
F i

+ (F i)T
(
−QC + α(k)KT

2 RK1

)
Hi

]
.

The proof is completed.

B. Optimal tracking controller design

Next, a theorem is proposed to determine the gains K1 and
K2 in the tracking controller.

Theorem 1: For the system (1), the optimal tracking con-
troller is designed as

ua(k) = K1x(k) +K2r(k) = −K̄x̄(k), (11)

where K̄ =
(
R+ βB̄TPB̄

)−1
B̄TPĀ and P is a unique

solution to the following Riccati equation

P = Q̄+ βĀTPĀ

−ᾱβ2ĀTPB̄
(
R+ βB̄TPB̄

)−1
B̄TPĀ. (12)

Proof: According to the performance index (8) and
V (x̄(k)) = E

{
x̄T (k)Px̄(k)

}
, we can obtain

V (x̄(k)) = x̄T (k)Q̄x̄(k) + ᾱuTa (k)Rua(k)

+βE

{ ∞∑
i=k+1

βi−k−1
(
x̄T (k)Q̄x̄(k)

+ α(k)uTa (k)Rua(k)
)}
. (13)

Then, the Bellman equation can be written as

V (x̄(k)) = E
{
x̄T (k)Q̄x̄(k) + α(k)uTa (k)Rua(k)

+βV (x̄(k + 1))} . (14)

Combining the definition of V (x̄(k)), define the following
Hamiltonian function

F(x̄(k), ua(k)) = x̄T (k)Q̄x̄(k) + ᾱuTa (k)Rua(k)

+E
{
βx̄T (k + 1)Px̄(k + 1)

}
−E

{
x̄T (k)Px̄(k)

}
. (15)

Based on the results in [29], the following equation should
be satisfied

∂F(x̄(k), ua(k))

∂ua(k)
= 2ᾱRua(k) + 2ᾱβB̄TPĀx̄(k)

+2ᾱβB̄TPB̄ua(k) = 0,

which implies

ua(k) = −
(
R+ βB̄TPB̄

)−1
βB̄TPĀx̄(k). (16)

Submitting (3) and (16) into (14) yields the Riccati equation
(12), which completes the proof.

If we can obtain the solution P through solving the Riccati
equation in (12), the optimal control gain K̄ can be designed.
However, there exists a variable ᾱ in the equation (12), which
affects the existence and uniqueness of the solution P [38].
It is thus necessary to discuss the relation between ᾱ and the
existence and uniqueness of P .

C. Analysis of the solution to the Riccati equation

The existence of the solution to the Riccati equation (12)
will be analyzed in this subsection. Before giving the existence
conditions of the solution, define the following functions

H(X) = Q̄+ βĀTXĀ

−ᾱβ2ĀTXB̄
(
R+ βB̄TXB̄

)−1
B̄TXĀ,

Hk(X) = H(Hk−1(X)), (17)

where Hk(X) means k times composition function for any
positive integer k.

Remark 3: Here, (17) is defined to facilitate analyzing
the existence and uniqueness of the solution to the Riccati
equation in (12). It is obvious that the definition of H(X) is
equivalent to the right side in (12). If we can show that H(X)
can converge to a unique bound, and H(X) = X has a unique
solution, the existence and uniqueness of the solution to the
Riccati equation (12) can be proved.

The following theorem is proposed to show that H(X) can
converge to a unique bound.

Theorem 2: If there exists a matrix X̃ ≥ 0 such that the
inequality H(X) ≤ X̃ holds, H(X) = X has a unique
solution X∗ and lim

k→∞
Hk(X0) = X∗ for any initial value

X0 ≥ 0.
Proof: Define the following functions

H1(K̄,X) = Q̄+ β (1− ᾱ) ĀTXĀ

+ᾱ
(
β(Ā+ B̄K̄)TX(Ā+ B̄K̄) + K̄TRK̄

)
,
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Hk1(K̄,X) = H1(K̄,Hk−11 (X)). (18)

By computing, we can find that H1(K̄,X) is equal to
H(X). Accordingly, if we can prove the following conditions
hold, the proof can be completed.

If there exists a matrix X̃ ≥ 0 satisfying H1(K̄, X̃) ≤
X̃ , H1(K̄,X) = X has a unique solution X∗ and
lim
k→∞

Hk1(K̄,X0) = X∗ for any initial value X0 ≥ 0.

Firstly, as can be seen from the structure of H1(K̄,X), it
is a monotonically increasing function w.r.t the variable X .
For the zero initial condition X0 = 0, Xk = Hk1(K̄,X0).
According to the monotonically increasing property of the
function Hk1(·), the following monotonic sequence can be
obtained

0 = X0 < X1 ≤ . . . ≤ Xk.

Similarly, iteratively using the condition H1(K̄, X̃) ≤ X̃
yields

Hk1(K̄, X̃) ≤ . . . ≤ H1(K̄, X̃) ≤ X̃.

Considering the fact X̃ > X0 and the monotonically
increasing property of the function Hk1(·), we can obtain

Xk ≤ Hk1(K̄, X̃) ≤ X̃,

which implies the sequence Xk is monotonically increasing
and bounded. In this way, we conclude that the sequence Xk

can converge to X∗.
Next, consider a general case, that is, the initial condition

is for X0 ≥ 0. Then, we can always find a positive scalar η
such that X∗ ≥ ηX0 holds. Combining the above results, the
following inequality can be derived

Hk1(K̄, 0) ≤ Hk1(K̄, ηX0) ≤ Hk1(K̄,X∗) ≤ X∗.

Therefore, lim
k→∞

Hk1(K̄, ηX0) = X∗ holds. According to the
structure, the following equation holds

Hk1(K̄, ηX0)−Hk1(K̄, 0) = η
(
Hk1(K̄,X0)−Hk1(K̄, 0)

)
,

which implies

lim
k→∞

Hk1(K̄,X0) = X∗.

Using the similar approach, we can conclude that H(X) =
X has a unique solution X∗ and lim

k→∞
Hk(X0) = X∗ for any

initial value X0 ≥ 0. The proof is completed.
Different from the general Riccati equation, the one in

(12) has a parameter ᾱ, which will affect its convergence.
Namely, if the adversary can implement the attacks with
a high probability, the conditions in Theorem 2 cannot be
satisfied anymore nor does the solution to the Riccati equation
exist. Therefore, Theorem 3 is proposed to show that on what
conditions the solution to the Riccati equation exists.

Theorem 3: For the case |
√
βρ| > 1, the following in-

equality is necessary to ensure that the solution to the Riccati
equation (12) exists

β (1− ᾱ) ≤ 1

ρ2
,

where ρ means the spectral radius of the matrix Ā.

Proof: According to Theorem 2, we know that there exists
a matrix X ≥ 0 satisfying

X ≥ H(X) = Q̄+ βĀTXĀ

−ᾱβ2ĀTXB̄
(
R+ βB̄TXB̄

)−1
B̄TXĀ

= Q̄+ β (1− ᾱ) ĀTXĀ+ ᾱβĀTXĀ

−ᾱβ2ĀTXB̄
(
R+ βB̄TXB̄

)−1
B̄TXĀ. (19)

Based on the matrix inverse lemma [39], the following
equation holds

ᾱβĀTXĀ− ᾱβ2ĀTXB̄
(
R+ βB̄TXB̄

)−1
B̄TXĀ

= ᾱβĀT
(
X−1 + βB̄R−1B̄T

)−1
Ā. (20)

Submitting (20) in (19) yields

X ≥ Q̄+ β (1− ᾱ) ĀTXĀ

+ᾱβĀT
(
X−1 + βB̄R−1B̄T

)−1
Ā.

Since B̄ is not invertible and X > 0, ᾱβĀT (X−1 +
βB̄R−1B̄T )−1Ā ≥ 0. Thus,

X ≥ Q̄+ β (1− ᾱ) ĀTXĀ,

which shows that β (1− ᾱ) ≤ 1
ρ2 must hold. The proof is

completed.
Remark 4: It is worth noting that the condition in Theorem

3 depends on ρ. We, however, do not know the exact matrix
Ā. In the next section, we will design the controller via using
the Q-learning approach, based on which we can obtain ρ.

Based on the above results, the following theorem is pro-
posed to show the stability of the augmented system (3) and
the optimality of the controller (11) is guaranteed by the
following theorem, whose proof is omitted for want of space;
see [29].

Theorem 4: For the augmented system (3), Theorems 1-
3 hold. Define ē(k) = β

k
2 e(k) with e(k) = y(k) − r(k).

The optimal tracking controller in (11) can stabilize ē(k).
Meanwhile, the value function V (k) = E

{
x̄T (k)Px̄(k)

}
can

be minimized.

4.. Q-LEARNING OPTIMAL TRACKING SCHEME DESIGN

The above results show that the optimal tracking scheme
exists yet the exact system dynamics are needed in the design
process. Accordingly, the Q-learning approach is introduced
to design a model-free optimal tracking control scheme. To
facilitate analyzing the convergence of the tracking control
algorithm without using system knowledge, an algorithm with
the system parameters is designed. Based on such an algorith-
m, the Q-learning tracking control algorithm without using
system knowledge is provided.

Define the Q-function as follows

Q(x̄(k), ua(k)) = E
{
x̄T (k)Q̄x̄(k) + α(k)uTa (k)Rua(k)

+βx̄T (k + 1)Px̄(k + 1)
}
. (21)

Using (3), (21) can be rewritten as

Q(ξ(k)) = ξT (k)Mξ(k) + E
{
ξT (k)

[
ĀT

α(k)B̄T

]
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×P
[

ĀT

α(k)B̄T

]T
ξ(k)

}

= ξT (k)

[
Q̄+ βĀTPĀ ᾱβĀTPB̄

∗ ᾱR+ ᾱβB̄TPB̄

]
ξ(k)

= ξT (k)Qξ(k), (22)

where

ξ(k) =

[
x̄(k)
ua(k)

]
, Q =

[
Q11 Q12

∗ Q22

]
,

Q11 = Q̄+ βĀTPĀ, Q12 = ᾱβĀTPB̄,

Q22 = ᾱR+ ᾱβB̄TPB̄, M = diag
{
Q̄, ᾱR

}
.

Based on [25], we know that the relation between P and Q
can be described as

P =
[
I K̄T

]
Q
[
I K̄T

]T
,

which further implies

Q = M+ E
{[

ĀT ĀT K̄T

α(k)B̄T α(k)B̄T K̄T

]
×Q

[
Ā α(k)B̄
K̄Ā α(k)K̄B̄

]}
. (23)

Based on (16), the optimal tracking controller can be thus
described as

ua(k) = −Q−122 QT12x̄(k). (24)

Accordingly, if we can learn online and obtain the matrix
Q, the optimal controller can be designed without using the
system dynamics.

Based on (21) and (22), the Q-function satisfies the follow-
ing equation

ξT (k)Qξ(k) = ξT (k)Mξ + E {βQ(x̄(k + 1), ua(k + 1))}
= ξT (k)Mξ

+E
{
βξT (k + 1)Qξ(k + 1)

}
. (25)

Define ξ̄(k) = ξT (k)⊗ ξT (k). (25) is equivalent to

ξ̄(k)vec(Q) = ξ̄(k)vec(M) + βE
{
ξ̄(k + 1)vec(Q)

}
.(26)

The least-squares approach can be used to obtain Q. Note
that Q is a (nx+nu+ny)×(nx+nu+ny) symmetric matrix.
Therefore, at least n = (nx + nu + ny)(nx + nu + ny + 1)/2
data should be provided to solve (26).

Now, we are in the position to propose Algorithm 1, which
online learns the matrix Q and obtains the optimal tracking
controller.

In the process of fulfilling Algorithm 1, the probing noise
e(k) should be added to the control signal in (24), that is,
ua(k) = −Q−122 QT12x̄(k) + e(k) is actually applied to (25) to
generate data, with which the existence of

(
ξ̄T ξ̄

)−1
can be

guaranteed [25].
Remark 5: By implementing Algorithm 1, not only the

tracking controller ua(k) but also the matrix Q can be
obtained. The structure of Q in (22) implies Q11 = Q̄ +
βĀTPĀ > 0, which further implies Q11 − Q̄ is a positive-
definite/semi positive-definite and symmetric matrix. Then,
Q11 − Q̄ can be decomposed as DTD with D being a full

Algorithm 1
1: Provide initial values for K̄0 and Q0

2: Set the allowed learning error ε and i = 0
3: Execute the policy evaluation
ξT (k)Qi+1ξ(k) = x̄T (k)Q̄x̄(k) + ᾱuTa (k)Rua(k) +
E
{
βξT (k + 1)Qiξ(k + 1)

}
4: Execute the policy improvement
ua(k) = −Q−122,i+1QT12,i+1x̄(k) + e(k)

5: Construct vec(Qi+1)
6: if ‖Qi+1 −Qi‖ < ε then
7: Output the matrix Qi+1 and the optimal tracking

controller ua(k)
8: else
9: i = i+ 1

10: Reture to Step 3
11: end if

rank matrix. Also, the matrix P can be decomposed as MTM
with M being a full rank matrix. Then, Q11 = Q̄+ βĀTPĀ
is described as

DTD = βĀTMTMĀ,

which implies

Ā =
1

β
M−1D.

Moreover, ρ in Theorem 3 is obtained without knowing the
exact system dynamics.

A. Convergence analysis of Algorithm

To prove the convergence of Algorithm 1, the following
lemma is given.

Lemma 1: [25] Iterating Qi is equivalent to iterating Pi.
Using the conclusion in Lemma 1, the following theorem

is proposed.
Theorem 5: If the Riccati equation (12) is solvable, Qi in

Algorithm 1 can converge to the value Q with an allowed error
ε and the optimal tacking controller gain K̄ can be obtained.

Proof: Lemma 1 implies whether Qi converges or not
depends on the convergence of Pi. Theorem 2 proves that the
Riccati equation (12) is solvable. Thus Qi can converge and
the gain K̄ can be obtained. The proof is completed.

Next, a dc motor is adopted to validate the proposed optimal
tracking control scheme. Both the model-based and model-free
simulation results are provided. In this way, the effectiveness
of the proposed scheme can be clearly shown.

Example 1: The system matrices for the dc motor are given
as follows [40]

A =

[
1.00021 0.00460
0.00460 0.00004

]
, B =

[
0.34868
7.68069

]
,

C =
[

1 0
]
.

For the dc motor, regard the voltage and the angular position
as the control input and output, respectively. First, we use
Theorems 1 and 2 to calculate the solution P and the optimal
gain K̄. Set Q = 2, R = 2, the discounted factor β = 0.7,
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the reference model gain G = 1. Then, the solution P and the
optimal gain K are computed as

P =

 5.2114 0.0148 −5.2096
0.0148 0.0001 −0.0148
−5.2096 −0.0148 5.2077

 ,
K̄ =

[
−0.5403 −0.0025 0.5400

]
.

The reference trajectory is set as r(k) = 3 rad. Figs. 2
and 3 show the simulation results of the proposed tracking
control scheme. According to these two figures, we can
conclude the proposed tracking controller can track the desired
trajectory under attacks. However, DoS attacks can deteriorate
the tracking performance.

0 10 20 30 40 50 60 70 80 90 100
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1.5
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2.5
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time(k)

 

 

DoS attack
y(k) with attacks
r(k)
y(k) without attacks

Fig. 2. Tracking performance comparisons under attacks and without attacks.
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Fig. 3. Tracking errors under attacks and without attacks.

Next, the simulation results of the model-free optimal
tracking control scheme are given. According to (22), we first
compute the matrix Q to be learned as

Q =


5.6496 0.0168 −5.6475 0.8110
0.0168 0.0001 −0.0168 0.0037
−5.6475 −0.0168 5.6454 −0.8105
0.8110 0.0037 −0.8105 1.5010

 .
To apply Algorithm 1 to design the tracking control scheme,

30 data is collected for each iteration and a probing noise is
added to fully explore the state space. Figs. 4 and 5 depict
the convergence of the matrix Qi and the control gain K̄i,

respectively. As can be seen from Figs. 4 and 5, Qi and K̄i

can converge to the desired values after 20 iterations. The
values are respectively as

Q20 =


5.6496 0.0168 −5.6475 0.8110
0.0168 0.0001 −0.0168 0.0037
−5.6475 −0.0168 5.6454 −0.8105
0.8110 0.0037 −0.8105 1.5010

 ,
K̄20 =

[
−0.5403 −0.0025 0.5400

]
.
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Fig. 4. The error of ‖Qi −Q‖.
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Fig. 5. The error of ‖K̄i − K̄‖.

Using Algorithm 1, the optimal tracking control scheme is
implemented. Fig. 6 shows the responses of the output signal
and the reference signal. The added probing noise is depicted
in Fig. 7. It is clear that the probing noise is not added any
more after the control gain is successfully learned online and
the output signal can be driven to track the given reference
signal.

To show that the DoS attack can increase the control cost
and affect the learning rate, Tab. I gives different values for
‖P‖. It can be seen that ‖P‖ increases as ᾱ decreases. Fig. 8
demonstrates that along with the improvement of cyber-layer
security, the learning needs fewer and fewer iteration times.

Although the approach proposed in Algorithm 1 can design
the optimal tracking controller without using the exact system
dynamics, a bias of the solution can happen due to adding the
probing noise e(k) in the control signal, which may result in
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Fig. 6. The trajectories of the output y(k) and reference signal r(k) in the
learning.
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Fig. 7. The response of the added probing noise in the learning.

TABLE I
‖P‖ UNDER DIFFERENT ᾱ.

ᾱ 0.6 0.7 0.8 0.9 1
‖P‖ 10.4192 10.1152 9.8398 9.5886 9.3583
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Fig. 8. The learning times under different probability ᾱ. (“Error” denotes
‖Qi −Q‖.)

an incorrect control gain K̄. In the following, we show the
bias resulting from adding the probing noise in Algorithm 1.

When adding the probing noise e(k), the following equation
can be obtained

ξT (k)Qi+1ξ(k) = x̄T (k)Q̄x̄(k) + ᾱuTa (k)Rua(k)

+E
{
βξT (k + 1)Qiξ(k + 1)

}
= x̄T (k)Q̄x̄(k) + ᾱuTa (k)Rua(k)

+2ᾱeT (k)Re(k) + 2ᾱuTa (k)Re(k)

+E
{
βξT (k + 1)Qiξ(k + 1)

}
.

Compared with Line 3 in Algorithm 1, two extra items
depending on e(k), that is, 2ᾱeT (k)Re(k) and 2ᾱuTa (k)Re(k)
exist in the above equation, which can make the solution
incorrect. To avoid such a problem, we will provide an
alternative approach to designing the tracking control scheme
without using the exact system dynamics. The policy ua(k)
to be updated is also applied to the system to generate data
for learning in Algorithm 1, which is viewed as an on-
policy approach [21]. In the following, an off-policy learning
approach is presented to realize the control objective of this
paper.

5.. OFF-POLICY LEARNING CONTROL ALGORITHM

This section mainly investigates how to propose an off-
policy learning control scheme for CPS under DoS attacks
without knowing the complete system dynamics. The physical
process in (1) under actuator DoS attacks is rewritten as

x(k + 1) = Āix(k) + α(k)B̄
(
K̄ix(k) + ua(k)

)
. (27)

where Āi = Ā − α(k)B̄K̄i. uia(k) = −K̄ix(k) is the target
policy to be learned and updated and i ∈ Z is each learning
step.

For the learned uia(k), the Bellman equation (14) can be
described as

V i+1(x̄(k), ua(k))− E
{
βV i+1(x̄(k + 1), ua(k))

}
= E

{
x̄T (k)Q̄x̄(k) + α(k)uTa (k)Rua(k)

}
. (28)

At the point x̄(k+ 1), the Taylor expansion of V (x̄(k) can
be calculated as

V (x̄(k) = E
{
V (x̄(k + 1) + 2x̄T (k + 1)P

× (x̄(k)− x̄(k + 1)) + (x̄(k)− x̄(k + 1))
T

× P (x̄(k)− x̄(k + 1))} . (29)

Then, (28) can be rewritten as

V i+1(x̄(k), ua(k))− E
{
βV i+1(x̄(k + 1), ua(k))

}
= E

{
x̄T (k)Pi+1x̄(k)− βx̄T (k)ĀTi Pi+1Āix̄(k)

−α(k)β
(
K̄ix(k) + ua(k)

)T
B̄TPi+1x̄(k + 1)

− α(k)β
(
K̄ix(k) + ua(k)

)T
B̄TPi+1Āix̄(k)

}
. (30)

According to (27) and the Bellman equation (14), the
following Lyapunov equation can be obtained

Q̄− Pi+1 + ᾱK̄T
i RK̄

T
i + E

{
βĀTi Pi+1Āi

}
= 0. (31)
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Combining V (x̄(k)) = E
{
x̄T (k)Px̄(k)

}
, (30) and (31)

yields

E
{
x̄T (k)Pi+1x̄(k)− βx̄T (k + 1)Pi+1x̄(k + 1)

}
= x̄T (k)Q̄x̄(k) + ᾱx̄T (k)K̄T

i RK̄
T
i x̄(k)

−E
{
α(k)β

(
K̄ix(k) + ua(k)

)T
B̄TPi+1x̄(k + 1)

}
−E

{
α(k)β

(
K̄ix(k) + ua(k)

)T
B̄TPi+1Āix̄(k)

}
.(32)

A. Model-based off-policy learning control scheme

If we provide a stabilizing control signal ua(k) and an
initial K̄0 for (32), the solution Pi+1 and K̄i+1 can be solved
iteratively using the least-square approach. The details are
described in Algorithm 2.

Algorithm 2
1: Set the initial learning step i = 0 and the learning error ε
2: Give an admissible controller ua(k)
3: Obtain K̄i+1, Pi+1 through solving (32) using the least-

square approach
4: if ‖K̄i+1 − K̄i‖ < ε then
5: Output K̄i+1 as the optimal control gain
6: else
7: i = i+ 1
8: Reture to Step 3
9: end if

Next, the following theorem is proposed to show the con-
vergence of Algorithm 2.

Theorem 6: The gain K̄i+1 obtained from Algorithm 2 can
converge to the optimal control scheme (11).

Proof: Submitting Āi and (1) into (32) yields

E
{
x̄T (k)Pi+1x̄(k)− β

(
Āx̄(k) + α(k)B̄ua(k)

)T
×Pi+1

(
Āx̄(k) + α(k)B̄ua(k)

)}
= x̄T (k)Q̄x̄(k) + ᾱx̄T (k)K̄T

i RK̄
T
i x̄(k)

−E
{
α(k)β

(
K̄ix(k) + ua(k)

)T
B̄TPi+1

×
(
Āx̄(k) + α(k)B̄ua(k)

)}
−E

{
α(k)β

(
K̄ix(k) + ua(k)

)T
× B̄TPi+1

(
Ā− α(k)B̄K̄i

)
x̄(k)

}
. (33)

By direct calculation, (33) can be obtained as

x̄T (k)Pi+1x̄(k)− βx̄T (k)ĀTPi+1Āx̄(k)

= x̄T (k)Q̄x̄(k) + ᾱx̄T (k)K̄T
i RK̄

T
i x̄(k)

−2ᾱβx̄T (k)K̄T
i B̄Pi+1Āx̄(k)

+ᾱβx̄T (k)K̄T
i B̄Pi+1B̄K̄ix̄(k),

which further implies

Pi+1 = Q̄+ βĀTPi+1Ā− ᾱβ2ĀTPi+1

×B̄
(
R+ βB̄TPi+1B̄

)−1
B̄TPi+1Ā. (34)

Theorem 2 concludes that Pi can converge. Thus the gain
K̄i solved using Algorithm 2 can converge to the desired
optimal value. The proof is completed.

Before analyzing the effect of the probing noise e(k) on
the solution obtained from Algorithm 2, define P̃i+1 and P̂i+1

respectively as the solutions under e(k) 6= 0 and e(k) = 0.
Next, the following theorem shows that P̃i+1 = P̂i+1.

Theorem 7: The solution P̃i+1 under the probing noise is
equal to P̂i+1 without the probing noise.

Proof: Under e(k) 6= 0, (32) can be described as

E
{
x̄T (k)P̃i+1x̄(k)− β

(
x̄(k + 1) + α(k)B̄e(k)

)T
× P̃i+1

(
x̄(k + 1) + α(k)B̄e(k)

)}
= x̄T (k)Q̄x̄(k) + ᾱx̄T (k)K̄T

i RK̄
T
i x̄(k)

−E
{
α(k)β

(
K̄ix(k) + ua(k) + e(k)

)T
B̄T P̃i+1

×
(
Āix̄(k) + α(k)B̄ (ua(k) + e(k))

)}
−E

{
α(k)β

(
K̄ix(k) + ua(k) + e(k)

)T
× B̄T P̃i+1

(
Ā− α(k)B̄K̄i

)
x̄(k)

}
. (35)

By performing some mathematical operations, (35) can be
written as

x̄T (k)P̃i+1x̄(k)− E
{
βx̄T (k + 1)P̃i+1x̄(k + 1)

}
−2E

{
α(k)βx̄T (k + 1)P̃i+1B̄e(k)

}
−ᾱβeT (k)B̄T P̃i+1B̄e(k)

= x̄T (k)Q̄x̄(k) + ᾱx̄T (k)K̄T
i RK̄

T
i x̄(k)

−E
{
α(k)β

(
K̄ix(k) + ua(k)

)T
B̄T P̃i+1x̄(k + 1)

}
−E

{
α(k)β

(
K̄ix(k) + ua(k)

)T
B̄T P̃i+1e(k)

}
−E

{
α(k)βx̄T (k + 1)P̃i+1B̄e(k)

}
−ᾱβeT (k)B̄T P̃i+1B̄e(k)

−E
{
α(k)β

(
K̄ix(k) + ua(k)

)T
B̄T P̃i+1Āix̄(k)

}
−ᾱβeT (k)B̄T P̃i+1Āix̄(k),

which implies

x̄T (k)P̃i+1x̄(k)− E
{
βx̄T (k + 1)P̃i+1x̄(k + 1)

}
= x̄T (k)Q̄x̄(k) + ᾱx̄T (k)K̄T

i RK̄
T
i x̄(k)

−E
{
α(k)β

(
K̄ix(k) + ua(k)

)T
B̄T P̃i+1x̄(k + 1)

}
−E

{
α(k)β

(
K̄ix(k) + ua(k)

)T
B̄T P̃i+1Āix̄(k)

}
.(36)

Thus, P̃i+1 can be solved from (36).
When e(k) = 0, (32) is rewritten as

x̄T (k)P̂i+1x̄(k)− E
{
βx̄T (k + 1)P̂i+1x̄(k + 1)

}
= x̄T (k)Q̄x̄(k) + ᾱx̄T (k)K̄T

i RK̄
T
i x̄(k)

−E
{
α(k)β

(
K̄ix(k) + ua(k)

)T
B̄T P̂i+1x̄(k + 1)

}
−E

{
α(k)β

(
K̄ix(k) + ua(k)

)T
B̄T P̂i+1Āix̄(k)

}
.(37)

P̂i+1 can be solved from (37). As can be seen from (36) and
(37), P̃i+1 = P̂i+1 holds, which shows that adding the probing
noise in Algorithm 2 will not result in the bias of the solution.
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Thus, the gain K̄i+1 obtained from Algorithm 2 can converge
to the optimal control scheme (11). The proof is completed.

B. Model-free off-policy learning control scheme

It is easy to see that system dynamics are necessary infor-
mation in Algorithm 2. Next, the off-policy learning control
scheme without using exact system dynamics is proposed
based on Algorithm 2.

Based on Kronecker product, (32) can be described as(
x̄T (k)⊗ x̄T (k)

)
vec(Pi+1)

−βE
{(
x̄T (k + 1)⊗ x̄T (k + 1)

)
vec(Pi+1)

}
+2ᾱβ

(
x̄T (k)⊗

(
K̄ix̄(k) + ua(k)

)T)
vec(B̄TPi+1Ā)

−ᾱβ
((
K̄ix̄(k)− ua(k)

)T ⊗ (K̄ix̄(k) + ua(k)
)T)

×vec(B̄TPi+1B̄)

= x̄T (k)Q̄x̄(k) + ᾱx̄T (k)K̄T
i RK̄

T
i x̄(k). (38)

By direct mathematical operations, we can see that the
following equation is equal to (38).(

x̄T (k)⊗ x̄T (k)
)

vec(Pi+1)

−β
(
x̄T (k + 1)⊗ x̄T (k + 1)

)
vec(Pi+1)

+
[
2ᾱβ

(
x̄T (k)⊗

(
K̄ix̄(k) + ua(k)

)T)
+ 2β (1− ᾱ)

(
x̄T (k)⊗ uTa (k)

)]
vec(B̄TPi+1Ā)

−
[
ᾱβ
((
K̄ix̄(k)− ua(k)

)T ⊗ (K̄ix̄(k) + ua(k)
)T)

− β (1− ᾱ)
(
uTa (k)⊗ uTa (k)

)]
vec(B̄TPi+1B̄)

= x̄T (k)Q̄x̄(k) + ᾱx̄T (k)K̄T
i RK̄

T
i x̄(k). (39)

To facilitate showing that (39) can be solved by using the
least-square approach, define the following variables

Wl =
[
W1,l W2,l W3,l

]
,

W1,l =
(
x̄T (k + l)⊗ x̄T (k + l)

)
−β
(
x̄T (k + l + 1)⊗ x̄T (k + l + 1)

)
,

W2,l = 2ᾱβ
(
x̄T (k + l)⊗

(
K̄ix̄(k + l) + ua(k + l)

)T)
+2β (1− ᾱ)

(
x̄T (k + l)⊗ uTa (k + l)

)
,

W3,l = −ᾱβ
((
K̄ix̄(k + l)− ua(k + l)

)T
⊗
(
K̄ix̄(k + l) + ua(k + l)

)T)
+β (1− ᾱ)

(
uTa (k + l)⊗ uTa (k + l)

)
,

Ψ =
[

vec(Ψ1)T vec(Ψ2)T vec(Ψ3)T
]T
,

Ψ1 = Pi+1, Ψ2 = B̄TPi+1Ā, Ψ3 = B̄TPi+1B̄,

Φl = x̄T (k + l)Q̄x̄(k + l)

+ᾱx̄T (k + l)K̄T
i RK̄

T
i x̄(k + l).

Then, (38) can be rewritten as

WlΨ = Φl, l = 0.

Obviously, there exist % = (nx + ny)2 + nu(nx + ny) +
n2u unknown elements in Ψ. To use the least-square approach

to solve those unknown elements, at least % data should be
collected. Define W̄ and Φ̄ as the collected data with

W̄ =
[
WT

0 WT
1 . . . WT

%−1
]T
,

Φ̄ =
[

Φ̄T0 Φ̄T1 . . . Φ̄T%−1
]T
.

Combining the least-square approach, Ψ can be obtained as

Ψ =
(
W̄T W̄

)−1 W̄T Φ̄.

Moreover, the optimal control gain can be represented as

K̄i+1 = (R+ βΨ3)
−1
βΨ2.

Based on the above discussion, the off-policy learning con-
trol scheme without using exact system dynamics is presented
in Algorithm 3.

Algorithm 3
1: Set the initial learning step i = 0 and the learning error ε
2: Give an admissible control gain and K̄ ua(k) = K̄x̄(k)+
e(k) with e(k) 6= 0

3: Obtain K̄i+1, through solving (39) using the least-square
approach

4: if ‖K̄i+1 − K̄i‖ < ε then
5: Output K̄i+1 as the optimal control gain
6: else
7: i = i+ 1
8: Return to Step 3
9: end if

The core of Algorithm 3 is to iteratively solve (39). (39)
is equivalent to solve the equation (32). In Theorem 7, the
convergence of iteratively solving (32) has been proved and
thus the convergence of Algorithm 3 can be also ensured.

To show the effectiveness of the proposed Algorithm 3, it
is applied to an F16 aircraft system . The details are described
in the following example.

Example 2: It is assumed that the physical system in Fig.
1 is a F16 aircraft system. The control signal is sent to the
actuator through the cyber layer. The adversary can invade the
cyber layer and prevent the control signal from successfully
transmitting. The linear model of the F16 aircraft is described
as [41], [42]

ẋ(t) = Ax(t) +Bu(t),

where x = [β ω ϕ]T is the state with β being the angle
of attack, ω being the pitch rate, and ϕ being the elevator
deflection angle. u(t) means the elevator actuator voltage, and

A =

 −1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1

 , B =

 0
0
5

 .
Under the sampling period 0.1, the parameters of the

discrete-time model are as follows

A =

 0.9065 0.0816 −0.0009
0.0741 0.9012 −0.0159

0 0 0.9048

 , B =

 −0.0002
−0.0041
0.4758

 .
In this example, we assume the output is y(k) = [1 0 0]x(k).

The reference signal is a constant, that is r(k + 1) = r(k).
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To validate the proposed scheme, we set Q = 1100, R = 1,
γ = 0.8, and ᾱ = 0.6. By directly solving the Riccati equation
in (12), the optimal control gain can be obtained as

K̄ =
[
−8.1286 −4.2321 0.3088 13.8525

]
.

The control objective is to make the state variable β to
track the desired constant trajectory with the minimal cost.
The simulation window is set as [0, 300], and the initial state
is given as x(0) = [0.2 0.1 0.3]T . For the constant reference
signal, it is defined as

r(k) =

 1, 1 ≤ k ≤ 130,
5, 131 ≤ k ≤ 240,
10, 241 ≤ k ≤ 300.

Using the above optimal control gain, Fig. 9 depicts the
responses of the system output and the reference signal under
attacks. From the results, we can conclude that although
attacks lead to some negative effects on the tracking perfor-
mance, the designed control gain can be still effective.

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10

time (k)

 

 

attack y(k) r(k)

Fig. 9. Responses of the output signal y(k) and reference signal r(k) under
DoS attacks.

In the following, Algorithm 3 is used to compute the optimal
control gain. To this end, set e(k) = randn sin(9.8k) +
cos(10.2k)2 + sin(10k) + cos(10k) as the probing noise with
randn being a function to generate a number from the
standard normal distribution. Collect 35 data for each iteration.
Fig. 10 shows the learning process of the gain K̄i. It is
apparent that the optimal gain can be learned gradually. By
recording each learning result, we can know that iterating
4 times yields the following optimal control gain with a
satisfying precision

K̄4 =
[
−8.1286 −4.2321 0.3088 13.8525

]
.

6.. CONCLUSION

The model-free optimal tracking control problem for CP-
S under DoS attacks has been solved in this paper. The
system performance under attacks has been maintained by
the proposed two learning based tracking control algorithms,
the difference of which have been pointed out. Also, we
have revealed the relation between the critical value of the
successful attack probability and the existence and uniqueness

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration times

Fig. 10. Response of ‖K̄i − K̄‖.

of the solution to the Riccati equation. According to the
learning approach used in this paper, the critical value can be
obtained without using the exact system dynamics, which is
different from those depending on the exact system dynamics,
for example, [37], [38] and the references therein. Finally,
the dc motor and the F16 aircraft systems have been used
to evaluate the effectiveness of the proposed control schemes.

As we have discussed in the previous section, the learning
technique used in this paper limits to the system structure.
In the future, we will investigate how to develop learning
based control scheme with stability guarantee for CPS, which
is described by a Markov decision process.
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