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Summary 

 

A base map provides essential geospatial information for applications such as urban 

planning, intelligent transportation systems, and disaster management. Buildings and 

roads are the main ingredients of a base map and are represented by polygons. 

Unfortunately, manually delineating their boundaries from remote sensing data is time 

consuming and labour intensive.  

Airborne laser scanning (ALS) point clouds provide dense and accurate 3D 

positional information. Automatic extraction of buildings and roads from 3D point 

clouds is challenging because of their irregular shapes, occlusions in the data, and 

irregularity of ALS point clouds.  

This study focuses on two particular objectives: (i) accurate classification of a large 

volume of ALS 3D point clouds; and (ii) smooth and accurate building and road outline 

extraction. To achieve the classification objective, we perform point-wise deep learning 

to classify an ALS point cloud of a complex urban scene in Surabaya, Indonesia. The 

point cloud is colored by airborne orthophotos. Training data is obtained from an 

existing 2D topographic base map by a semi-automatic method proposed in this 

research. A dynamic-graph convolutional neural network is used to classify the point 

cloud into four classes: bare land, trees, buildings, and roads. We investigate effective 

input feature combinations for outdoor point cloud classification. A highly acceptable 

classification result of 91.8% overall accuracy is achieved when using the full 

combination of RGB color and LiDAR features. 

To address the objective of outline extraction, we propose building and road outline 

extraction methods that run directly on ALS point cloud data. For accurate and smooth 

building outline extraction, we propose two different methods. First, we develop the 

ordered Hough transform (OHT), which is an extension of the traditional Hough 

transform, by explicitly incorporating the sequence of points to form the outline. 

Second, we propose a new method based on Medial Axis Transform (MAT) skeletons 

which takes advantage of the skeleton points to detect building corners. The OHT 

method is resistant to noise but it requires prior knowledge on a building’s main 

directions. On the contrary, the MAT-based method does not require such orientation 

initialization but is more sensitive to noise on building edges. We compare the results 

of our building outline extraction methods to an existing RANSAC-based method, in 

terms of geometric accuracy, completeness of building corners, and computation time, 

and demonstrate that the MAT-based approach has the highest geometric accuracy, 

results in more complete building corners, and is slightly faster than other methods.  

For road network extraction, we develop a method based on skeletonization, which 

results in complete and continuous road centerlines and boundaries. In our study area, 

several roads are disrupted and disconnected due to trees. We design a tree-constrained 

approach to fill road gaps and integrate road width estimated from a medial axis 
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algorithm. Comparison to reference data shows that the proposed method is able to 

extract almost all existing roads in the study area, and even detects roads that were not 

present in the reference due to human errors.  

We conclude that our object extraction methods enable a complete automatic 

procedure, extracting more accurate building and road outlines from ALS point cloud 

data. This contributes to a higher automation readiness level for a faster and cheaper 

base map production. 
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Samenvatting 

 

Een basiskaart biedt essentiële geospatiale informatie aan voor applicaties zoals 

stadsplanning, intelligente transportsystemen, en rampbeheer.  Gebouwen en wegen 

zijn de hoofdbestanddelen van een basiskaart en worden door veelhoeken voorgesteld. 

Spijtig genoeg is het manueel afbakenen van hun grenzen op basis van remote sensing 

gegevens tijds- en arbeidsintensief. 

Puntenwolken verkregen via laserscannen vanuit de lucht (ALS) leveren dichte en 

nauwkeurige 3D-positie-informatie. Automatische extractie van gebouwen en wegen op 

basis van puntenwolken is uitdagend omwille van hun onregelmatige vormen, occlusies 

in de gegevens, en onregelmatigheden van de ALS-puntenwolken. 

Deze studie richt zich op twee bepaalde doelstellingen: (i) nauwkeurige classificatie van 

grote aantallen ALS-3D-puntenwolken; en (2) vloeiende en nauwkeurige 

contourafbakening van gebouwen en wegen. Om de classificatiedoelstelling te 

verwezenlijken voeren we puntsgewijze deep learning uit om een ALS-puntenwolk van 

een complexe stadsscene in Surabaya, Indonesië, te classificeren. De puntenwolk is met 

behulp van orthofoto’s vanuit de lucht ingekleurd. Trainingsgegevens worden 

verkregen van een bestaande 2D topografische basiskaart door middel van een 

halfautomatische methode die in dit onderzoek voorgesteld wordt. Een dynamisch-

grafisch convolutioneel neuraal netwerk wordt gebruikt om de puntenwolk in vier 

klassen te classificeren: onbebouwde grond, bomen, gebouwen, en wegen. We 

onderzoeken combinaties van effectieve invoerfeatures voor de classificatie van 

buitenpuntenwolken. Een zeer aanvaardbaar classificatieresultaat van 91.8% aan 

algemene nauwkeurigheid werd bereikt bij het gebruik van de volledige combinatie van 

RGB-kleuren en LiDAR features. 

Om de doelstelling van contourafbakening te adresseren, gebruiken we voor 

gebouwen en wegen afbakeningsmethodes die rechtstreeks op gegevens van ALS-

puntenwolken worden uitgevoerd. Voor nauwkeurige en vloeiende contourafbakening 

van gebouwen stellen we twee verschillende methodes voor. Ten eerste, we ontwikkelen 

de geordende Hough transformatie (OHT), wat een uitbreiding is van de traditionele 

Hough transformatie, door de sequentie van punten die de contour vormen, expliciet 

te gebruiken. Ten tweede, we stellen een nieuwe methode voor die gebaseerd is op 

Mediale Astransformatie (MAT) skeletten en die gebruik maakt van de skeletpunten om 

hoeken van gebouwen te detecteren. De OHT-methode is bestand tegen ruis maar 

vereist voorkennis over de belangrijkste richtingen van een gebouw.  Integendeel, de 

MAT-gebaseerde methode vereist geen dergelijke initialisatie van de oriëntatie, maar is 

gevoeliger voor ruis op de randen van gebouwen. We vergelijken de resultaten van onze 

methodes voor contourafbakening voor gebouwen met een bestaande methode die op 

RANSAC is gebaseerd, op basis van geometrische nauwkeurigheid, volledigheid van de 

hoeken van gebouwen, en rekentijd. We tonen dat de op MAT gebaseerde aanpak de 
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hoogste geometrische nauwkeurigheid heeft, wat resulteert in meer complete hoeken 

van gebouwen, en tevens licht sneller is dan andere methodes. 

Voor de afbakening van wegennetwerken ontwikkelen we een methode die 

gebaseerd is op skeletisering, wat resulteert in volledige en ononderbroken middellijnen 

en randen van wegen. In ons studiegebied zijn verschillende wegen verstoord en 

onderbroken door bomen. We ontwikkelen een boombeperkte aanpak om hiaten in 

wegen op te vullen en wegbreedtes, die op basis van een mediaal as-algoritme geschat 

worden, te integreren. Vergelijking met referentiegegevens toont dat de voorgestelde 

methode in staat is om bijna alle bestaande wegen in het studiegebied te extraheren, en 

zelfs om wegen te detecteren die niet aanwezig waren in de referentiegegevens omwille 

van menselijke fouten. 

We concluderen dat onze extractiemethodes voor objecten een compleet 

automatische procedure toelaten om meer accurate gebouw- en wegcontouren op basis 

van gegevens van ALS puntenwolken te extraheren. Dit draagt bij aan een hoger niveau 

van automatiseringsgereedheid, voor een snellere en goedkopere productie van 

basiskaarten.
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1 
Introduction 

1.1 Motivation 

Extracting outlines of topographic objects, like streets or houses, for mapping is a labor-

intensive and time-consuming task. This research proposes methodology to extract GIS 

map elements (buildings and roads) automatically from airborne laser scanning (ALS) 

point cloud data enriched by aerial orthoimage color information. 

1.2 Background 

The use of geospatial information is increasing rapidly. There is growing recognition in 

both governments and the private sector that geospatial data is a vital component of 

effective decision making (UN-GGIM, 2015). In this digital era, geospatial technologies 

are revolutionizing the economy (World Bank, 2019). Geospatial information becomes 

a part of daily life and used to guide the mobilization of people and goods, to perform 

spatial modeling of an area, and to provide analysis of investment and business.  

Geospatial information is the spatial aspect describing the location and position of 

an object or event that is beneath, on or above the earth surface, which is expressed in 

a particular coordinate system (Stock and Guesgen, 2016). A more complex definition 

could include different location-related datasets combined into layers that show 

information such as land use and population density. At its simplest, geospatial 

information is defined as the basic information found on a base (topographic) map. 

Once geospatial information is created, it can be used many times to support a 

multiplicity of applications (UN, 2015). The production of a map involves a long and 

complex procedure. Considering the importance of base maps in providing geospatial 

information for public needs, there is a need for more automated approaches to ensure 

the community get the right data at the right time.  

This research focuses on the automation of the process of acquiring topographical 

object outlines, buildings and roads, for base mapping from ALS point cloud data. In 

the following, the digital map production workflow is introduced. Next the role of ALS 

point clouds in digital base mapping is explained, and general overview on map 

automation using artificial intelligence are discussed. 
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1.2.1 Digital base mapping 

Maps are abstract models of reality which are designed to facilitate the extraction of all 

sorts of metrical and topological properties. They convey information on location, 

direction, distance, height, magnitude, connectivity and spatial association (Visvalingam, 

1990). Digital mapping refers to the extraction and representation of spatial objects and 

their relationships in a complete, explicit and coherent but not redundant form on or 

by a computer. A digital map is a compact, structured, and elegant representation of 

geospatial data and their attributes on a computer-based system (Visvalingam, 1989).  

A digital map is generally represented by two data types: raster and vector. Raster 

data stores information in the form of a matrix of grid cells or pixels. Each cell or pixel 

is represented by the cell address of its corner or center location. Each cell also has 

discrete attribute value assigned to it. Aerial and satellite images are examples of raster 

data, which are stored into different file formats such as: .geotiff, .img, .bil, etc. Vector 

data represents information into three basic types: points, lines, and polygons that 

delineate object outlines. A pair of points forms a line segment, and an ordered set of 

connected line segments forms a line. A set of connected lines where the start and end 

point have the same coordinates forms a polygon. Points composing a line or a polygon 

have coordinates and can be assigned with additional attribute information. Several data 

file types for vector format are: .shp, .dwg, .las, etc. Characteristics of raster and vector 

data for representing geographic features are illustrated in Figure 1.1. 

 
Figure 1.1 Digital representation of geographic features (point, line, and area) in vector (green) and 
raster format (orange). In vector format, each geographic feature is defined spatially by Easting (x) and 
Northing (y) coordinates. In raster format, data is represented as a grid structure where each grid cell 
or pixel is referred to by its particular column and row index. 
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 1 
Considering the current base map necessity, many people, organizations and 

institutions prefer to produce maps in vector format above raster format. Compared to 

the raster format, the vector format has some advantages which are described as 

follows: 

 crisp – vector data looks crisp at any scale with discernable boundaries, from 

the highest to the lowest zoom level; 

 attribute – vector data can be conveniently enriched by numerous attributes in 

text format as well as integer, and floating numbers; 

 size, speed and resources – vector data is usually less than 50% of the size of 

raster data which requires less storage, less time to transmit, and less resources 

for processing. 

 data sharing and integration – vector data is easier to be shared and integrated 

with other spatial and non-spatial data, for example associating population 

density into an administrative boundary layer. 

 style – vector data allows various cartographic styles to be applied according to 

the user needs.  

 

According to their purpose, different digital map provides different geospatial 

information. A (topographic) base map has general purpose to represent the visible 

features of landscapes such as buildings, relief, water bodies, and roads and serve as 

reference (in terms of geometry and positional) for thematic maps. Such reference map 

is regarded as scientific documents that should fulfill high standards on positional 

accuracy (Visvalingam, 1990). Base maps are produced at different scale, level of detail, 

and quality (American Society of Photogrammetry, 1980). For urban areas, topographic 

objects need to be mapped at a scale of 1:10,000 or larger. As many countries suggest 

topographic base maps as reference for thematic maps, cartographic enhancement and 

the geometric accuracy are important issues when topographic base maps are created 

(Hoehle, 2017). 

Using Indonesia as research area, an illustration of a complete base map production 

workflow using traditional methods is presented in Figure 1.2. Traditional methods 

employ humans to interpret and delineate map objects. The map production workflow 

consists of five main steps: object delineation, DTM (Digital Terrain Model) generation, 

topology validation, toponym surveying and field checking, and database 

synchronization and cartography.  

Based on the Regulation of Geospatial Information no.11/2018 on the Technical 

Analysis of the Implementation of Geospatial Information that is used to estimate 

project time length and cost in Indonesia, it is known that object delineation takes most 

time and costs, about 40% of the total allocated time and budget. Thus, automating this 

step is believed to strongly accelerate the map production workflow. 

1.2 Background 
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Figure 1.2 A digital base map production using airborne images and ALS point clouds workflow using 
traditional methods, consists of 5 main tasks: object delineation, DTM generation, topology validation, 
toponym (geographical names) and field checking survey, and geodatabase synchronization and 
Cartography. The most time consuming and expensive task, object delineation, is inside the red dotted 
box. This particular workflow is from Indonesia. 

1.2.2 ALS point clouds as input for mapping 

Airborne Laser Scanning (ALS) is recognized as one of the major data acquisition 

techniques in the community of photogrammetry, remote sensing, and computer vision. 

An ALS system, is able to acquire accurate and dense 3D LiDAR point clouds 

representing the topographic surface. Another main strength of ALS systems lies in the 

fact that the LiDAR signal is able to penetrate small gaps in vegetation and other semi-

transparent objects above the surface. 3D point clouds have several characteristics, 

which make data processing very challenging: they are unordered, unstructured, and 

irregular. ALS point clouds are often considered to have 2.5D geometric structure (Su 

et al., 2016) and in general contain no RGB color information. Here, 2.5D point cloud 
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refers to the projection of the points along a specific direction (in this case the Z-

direction). For example a building is seen only from the top although few points of 

building facades are also presented. Figure 1.3 visualizes different geospatial data over 

the same area. This example includes ALS point cloud data, aerial orthoimages, and the 

corresponding 1:1000 base map.  

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 1.3 Visualization of different geospatial data over the same urban area in Surabaya, Indonesia. 
(a) colored ALS point cloud by height; (b) aerial ground orthoimage shows shadowed area caused by 
high buildings; (c) 3D visualization of labeled ALS point cloud colored by object class; (d) ALS point 
cloud colored by object class (blue: ground, green: trees, orange: buildings, red: roads); (e) the top 
view of 1:1000 base map (green: ground and vegetated areas, orange: buildings, red: roads); (f) 3D 
visualization of building and road of 1:1000 base map. 

1.2 Background 
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In comparison to aerial images, ALS point clouds may have limitations in 

representing sharp edges. This is because, in general, the laser does not always exactly 

hit an object along its edges. But, ALS point clouds are considered superior to aerial 

images for building extraction, since ALS is shadow independent and is free from relief 

distortion. Furthermore, LiDAR data provides a unique data source and has advantages 

over satellite and aerial images in capturing urban features with accurate height 

information, especially for building extraction (Yu et al., 2010).  

As stated by Petrie and Toth (2009), the appearance of laser scanning system have 

been affecting geospatial data acquisition since laser scanning has an outstanding ability 

to represent and portray topography, building structures, and foliage with precise, fine, 

three-dimensional details. Compared to traditional 2D images, 3D LiDAR point clouds 

have the capability of providing significantly richer geometrical information cues for 

analyzing objects and environments (Han et al., 2020) e.g. position, size, shape and 

object orientation (Vosselman et al., 2005; Lin et al., 2020). However, LiDAR point 

clouds have limited reflectance properties regarding the object surface compared to 

aerial images. Regarding the object boundaries, LiDAR point clouds are usually not as 

good as aerial images due to their intrinsic characteristics (irregular and unstructured).  

Given the advantages and disadvantages, many studies suggested to combine both 

data to improve the degree of automation and the robustness of object extraction 

(Schenk and Csatho, 2002). For the time being, the question of how to optimally use 

ALS data together with aerial imagery has still not been fully solved (Jarzabek-Rychard 

and Maas, 2017). 

1.2.3 Map automation and artificial intelligence 

Automation is a process, operation, or a system by a machine for repetitive tasks to 

limit human intervention. Map production is the process to extract and compile 

geographical data on a map. A workflow is a process or procedure in which certain tasks 

are completed. Therefore, an automatic map production workflow can be defined as a 

machine-driven process that results in the completion of tasks related to the extraction, 

compilation or construction of a map product.  

Technology to automatize mapping is necessary to provide the community with up-

to-dated and reliable geospatial information. For more than 50 years, automation of 

map production has been recognized to increase processing speed and improve map 

quality. Tobler (1959) stated that most basic tasks in cartography can be automated and 

that the volume of maps produced in a given time will be increased while costs are 

reduced. Robinson et al. (1995) stated the importance to compile a map in a way that is 

as easy as possible. This means that to perform an automated workflow, it is necessary 

for map-makers to sort out certain things associated to inputs and outputs, such as: the 

data sources (including their spatial and temporal resolution, geometric accuracy, cost, 

permissions, etc.), the map specification (including map projection, scale, area, map 

https://www.sciencedirect.com/science/article/pii/S0034425711002811#bb0935


 

7 

 1 
element, mapping method, etc.), and the final map representation (including data output 

format, printed map, and web map).  

In recent years, automation and artificial intelligence are used interchangeably in 

reducing human resources for effective and efficient data processing tasks. Artificial 

intelligent is a science that mimics human intelligence and behavior to solve problems 

and finish certain tasks. Based on this definition, automation can be used with or 

without artificial intelligence. Automation is often applied for fix procedures 

programmed by humans or simply just by replacing workers without the need to learn 

or solve problems. 

Automatic object extraction for mapping consists of two primary tasks: object 

classification and outline extraction. Machine learning has the capability to parse and 

learn from data, and make the best possible decision based on what it has learned. This 

makes machine learning powerful for remote sensing classification. A special type of 

machine learning, deep learning, has received increasing interest in the last years. This 

is due to its capability to design features from data and make intelligent decisions on its 

own. Deep learning has proven to be faster and more accurate in classification of 

complex and huge data than machine learning (Najafabadi et al., 2015). We define the 

relation between automation and artificial intelligence, including machine and deep 

learning, as presented in Figure 1.4. 

  

Figure 1.4 Relation between automation, Artificial Intelligence (AI), Machine Learning (ML), and 
Deep Learning (DL). Automation can be applied using AI. ML is a subset of AI that enables machines 
to automatically learn and use experience to improve performance. DL is a subset of ML where 
multiple layers of a neural network are stacked together to create a huge network to map input into 
output. Illustration is adapted from Goodfellow et al (2016). 

 

1.2 Background 
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The demand for digital base maps, especially for buildings and roads, for various 

applications is increasing. As a consequence, authoritative organizations like National 

Mapping Agencies (NMA), face challenges to produce the digital base map in a short 

period of time with limitations on financial and human resources (Eidenbenz et al., 

2000). To cope with higher product demands, increased productivity and lower costs, 

automation tools in the production should be employed. As laser scanning point cloud 

data provides very reliable and detailed surface descriptions, it is obvious that automated 

point cloud processing for map production may lead to significant benefits.  

1.3 Problem formulation 

The main problem with current traditional map production, with its manual detection 

and delineation of objects in remote sensing data, is that it is labour intensive, and costly 

(Idris et al., 2012). Moreover, traditional map production may lead to inconsistencies, 

subjectivity and blunders. However, automatizing map production in a time- and cost-

efficient way while maintaining map quality has its own problems, in particularly for 

urban areas. These problems are caused by the high diversity and complexity of real-

world scenes (Poullis, 2013): the same object may have different shape, size, color, and 

texture, depending on acquisition time, sensor, and acquisition geometry (Awrangjeb et 

al., 2014). As an example, building roofs may have different shape, color, and size, and 

their appearance is further affected by small details (trees, antennas, terrasse chairs, etc.). 

The fact that the same objects may have different object characteristics makes 

automation even more problematic.  

The use of 3D point clouds for automatic map object extraction remains 

problematic due to the absence of structure, order and semantics as well as the inherent 

irregularity, incompleteness, and ambiguity of point clouds. These problems explain 

why 3D point clouds are not very well described and difficult candidates for procedural 

and algorithmic programming (Kanevski et al., 2009). We conclude that due to the 

diversity of object appearances and the complexity of object structures, the problem of 

the automation of point cloud object extraction is still an active field of research.  

Given the issues, in this following, we focus on discussing the particular problems 

with the automatic map element extraction from ALS point clouds for two objectives: 

(i) accurate classification of a large volume of ALS 3D point cloud; (ii) smooth and 

accurate buildings and road outline extraction. 

1.3.1 Classification and segmentation 

Scene classification is a key prerequisite for automatic object extraction. This means 

that the quality of object extraction is largely determined by the classification accuracy. 

Classification can be defined as the process of categorizing data (pixels, voxels, or 

points) into multiple homogenous groups, where data of the same group will have 
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similar properties. In this research, we define a point cloud classification as a process to 

assigning each point of a point cloud with a specific class or semantic label, also known 

as semantic segmentation or point labeling.  

Classification or semantic segmentation of point clouds is considered non-trivial 

work in complex urban scenes (Bláha et al., 2016). Although a large number of remote 

sensing classification techniques have been studied for more than half a century, it is 

still difficult to determine a unique optimal classification method due to object 

variations, object complexities, and occlusions (Weng, 2012; Hu et al., 2014). Various 

landscapes and different data resolutions (spatial and temporal) may require different 

classification techniques and settings. For point clouds, classification is even more 

challenging due to their high redundancy, uneven sampling density, and lack of explicit 

structure (Nguyen and Le, 2013; Kang and Yang, 2018). The two most trivial parts of 

classification are discriminative features and proper classifiers (Zhu et al., 2017). 

Nowadays, deep learning is the fastest growing technique in pattern recognition, 

computer vision, and data analysis (Zhu et al., 2017). As indicated by its name, deep 

learning is able to learn and extract high dimensional features from training data by 

itself. The deep learning capability to extract high-level features, complex abstraction, 

and data representations from large volumes of data makes it attractive for remote 

sensing data processing, particularly for detection, classification, and semantic 

segmentation tasks. Deep learning, which is mostly applied to structured grids (images), 

has been implemented with more and less success for geospatial 3D point clouds. Using 

deep learning to directly process 3D point clouds is challenging due to several factors 

e.g. high dimensionality, sparsity, and the unstructuredness of point cloud data (Guo et 

al., 2020). Earlier approaches overcame this challenge by transforming the point cloud 

into a structured grid (image or voxel) which lead to the increase of computational costs 

or loss of depth information (Bello et al., 2020).  

PointNet (Qi et al., 2017) pioneered 3D point-wise deep learning methods that 

directly process point clouds for object detection and classification task. However, there 

are problems remaining when directly from ALS point clouds using deep learning to 

classify urban objects need to be solved. First, deep learning can take a large number of 

good training samples to extract the high-level features and learn hierarchical 

representation of data with large variety and veracity (Zhang et al., 2018). Nevertheless, 

the determination of an optimal number and quality of training samples to obtain 

acceptable classification accuracy is still unknown. The quality of training samples is 

closely related to correct point labeling, presence of noise, and sufficient object type’s 

representation. Second, deep learning involves many parameters and settings, which are 

not intuitive to be linked to the real world. Up to now, many point-wise deep learning 

architectures work well for 3D indoor point clouds. The implementation of indoor 

point-wise deep learning for 2.5D ALS point cloud, needs to be studied further as it 

requires at least additional parameter tuning. Third, the irrelevant input feature might 

1.3 Problem formulation 
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cost a great deal of resources during the training process of neural networks. Good 

feature selection results can improve learning accuracy, simplify learning results, and 

reduce learning time for deep learning methods (Cai et al., 2018). Combination of 

airborne point clouds and images is expected to increase point-wise deep learning 

classification. ALS point clouds have the advantage at having accurate 3D coordinates 

and several additional off-the-shelf features such as intensity, return number, and 

number of returns. On the other hand, aerial images offer spectral color information 

that may provide more distinctive features but could also add more noise.  

1.3.2 Building and road extraction 

Map elements (building polygons and road centerlines) are essential for a wide range of 

applications such as urban planning, disaster response, intelligent transportation system, 

etc. On the map, buildings are represented by their outlines. Currently, delineating 

building outlines and road centerlines requires extensive manual work in map 

production. It is time consuming and expensive since it requires labor to draw building 

outlines or road centerlines one by one, especially in urban scenes. This is one of the 

reasons that makes base map production or updating difficult to be completed in a 

specific time.  

One promising solution for enhancing base map production is by automatizing the 

process of object outline extraction or vectorization. Automatic processing aims at the 

reduction of processing time, costs, and human errors. Many studies have been 

investigating automated procedures for object outline extraction in the last two decades. 

Yet, we consider it an open problem due to its complexity and large variation in building 

and road structures.  

The building roof outlines extracted in this research are designed to meet specifications 

and assumptions as specified below: 

 a building is represented by the size and shape of a 2D representation of its roof. 

That is, the size and shape of the buildings are similar to the roof as seen from 

the top. Buildings with overhanging roofs will have similar sizes and shapes on 

the map as its roof; 

 small details or interior parts inside the building roof will not be considered. For 

example, in extracting outlines, a building with a gable roof will be treated as a 

flat roof; 

 the expected result should meet the requirements of at least 1:5.000 map scale. 

Any building of an area of 2.5 m x 2.5 m or larger should be present in the map; 

 the positional accuracy of building roof outlines should be similar to or better 

than 1.5 meter. 

 

https://www.sciencedirect.com/topics/computer-science/neural-networks
https://www.sciencedirect.com/topics/computer-science/deep-learning-method
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The road centerlines and outlines use assumptions and must meet specifications as 

specified below: 

 the road is represented by the size and shape of a 2D representation of the road 

including the road centerline and outlines;  

 the road should be topologically correct and should not have gaps due to 

occlusions (trees and cars);  

 the expected result should meet the requirements of 1:5.000 map scale. A road 

having a width more than or equal to 2.5 m should be represented by a polygon 

and centerline. A road having width less than 2.5 m is represented by its 

centerline only;  

 the positional accuracy of a road centerline should be at least 1.5 meter. 

 
Buildings outlines are obtained by connecting all edge points. Edge points are 

provides by the concave hull (Moreira and Santos, 2007) or the alpha-shape 

(Edelsbrunner, Kirkpatrick and Seidel, 1983), but their output is usually jaggy or wavy 

as shown in Figure 1.5.a. When using these well-known bounding hull algorithms, flaws 

on the object edge (inside the red ellipses in Figure 1.5.b) may still remain as they do 

not consider the object characteristics (Guercke and Sester, 2011). Existing work on 

line regularization that process directly on a point cloud to obtain smooth and complete 

outlines have certain limitations (e.g. only consider two building primary directions, 

limit the building direction at certain angle differences). 

 

  

(a)  (b) 

Figure 1.5 Noisy and jaggy building outlines due to data imperfections. (a) for a building 
without tree disturbance, initial building outlines are typically jaggy and wavy; (b) flaws 
(inside red circles) exist on the building edge due to trees close to the building. 

Although a number of advancements in road extraction from ALS point clouds have 

been made, there are still two notable unsolved problems: how to obtain accurate road 

point from a point cloud and how to avoid the influence of attached areas (e.g., parking 

lots and bare grounds) on road extraction (Hui et al., 2016). Similar to the building case, 

extracted road centerlines are often jaggy or wavy because of noisy road edges. In 

addition, an extracted road network may also suffer from occlusions by trees and cars, 

which can disturb the network topology. For example, a tree with dense and wide 

1.3 Problem formulation 
 

https://www.sciencedirect.com/topics/computer-science/unsolved-problem
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canopy on the side of the road hampers road visibility which in the end causes 

inaccurate centerlines, road gaps, or network discontinuity. To conclude, an automatic 

process to extract building and road outlines for a base map using ALS point cloud data 

involves as sequential steps: classification and segmentation, edge point detection, and 

line regularization. Each step may have error which can be propagated and will 

accumulate in the last step. Given these facts, the following the research questions are 

formulated. 

1.4 Research questions  

Based on the problems discussed in the previous section, the main objective of this 

thesis reads: 

to develop automatic methods to extract topographic object outlines 

for digital base mapping using airborne laser scanning point cloud 

data supported by aerial images. 

 

We aim to minimize human efforts in producing object outlines required for digital 

base maps. Object outlines in this research are the polygons representing shapes of 

topographic object, in this case buildings and road networks. To extract such outlines, 

high resolution and accurate data is required. Airborne laser scanning (ALS) provides 

dense and accurate 3D points representing the topographic surface which is essential 

for object extraction. Aerial images provide color information that can be used in 

addition to increase the quality of object outline results. 

Given the above main objective, the main research questions and their sub-

questions are defined as follows: 

1. How to accurately classify huge point cloud data into several classes in a 

way feasible for routine map production using deep learning? 

One of the core problems in classification and segmentation is how to select and 

use effective features to obtain classification efficiency and result accuracy. 

Several machine learning methods to classify point clouds have been introduced. 

Different machine learning methods have different advantages and limitations. 

One of this research main concerns is related to classification of large volumes 

of ALS point cloud data to obtain an acceptable accuracy result. Therefore, it is 

essential to choose a classification method properly fit to the data characteristics 

and objectives. Deep learning gained much popularity due to its supremacy in 

terms of accuracy and handling huge amount of data. Given the advantages of 

deep learning, we attend the following sub-questions related to point cloud 

classification method: 

1.1. How to effectively utilize additional features from aerial images to 

increase the accuracy of ALS point cloud classification? 



 

13 

 1 
1.2. How to provide good and cheap training samples for ALS point cloud 

classification? 

2. How to accurately extract complete and smooth road networks from given 

segmented road points? 

Similar to buildings, the accuracy of road network outlines and centerline 

extraction depends on the road points classification and segmentation quality. 

The difficulties of road extraction from ALS point clouds lie in the fact that 

existing road detection methods mainly used cues based on color, 

monochromatic intensity, and texture. Different areas may have different road 

color and patterns. Distinctive features are sometimes hard to find in some study 

areas. Variations in the road neighborhood are sometimes insufficient to separate 

road from non-road objects. For example, a front yard of a house with color 

similar to a road sometimes can be detected as road. Moreover, road network 

extraction involves network structure (topology) which add complexity to the 

task. In this aspect, the following two sub-questions are derived: 

2.1 How to obtain a complete and accurate road centerlines from given 

segmented road points, where these road points may be affected by gaps 

and noise?  

2.2 How to obtain outlines representing the actual road borders?  

 

3. How to accurately extract straight and smooth building outlines from 

given segmented building points? 

 The accuracy of building outlines depends on the quality of point cloud 

classification and segmentation. However, the high complexity of real world 

scenes and huge data volumes may lead to imperfect classification and 

segmentation results. ALS point cloud irregularity with its limited color 

information (only intensity), makes classification and segmentation even more 

challenging. In many cases, buildings and trees are confused in classification and 

segmentation results. Regardless the color, points on buildings and trees 

sometimes share similarity in pattern or characteristics that may lead to 

confusion. Points on building roofs are often classified as tree points or vice 

versa, as buildings are often adjacent to trees. Such conditions may results in 

over- and under building segmentation, which causes false building outline 

extraction results. Various classification methods using different approaches 

have been introduced, but due to LiDAR point cloud characteristics, flaws in 

classification and segmentation results may still exist. Thus, the following sub-

questions will be addressed: 

3.1 How to mitigate the effect with of noise and flaws on building edges? 

3.2 How to accurately acquire complex building outlines of arbitrary shape?  

 

 

1.4 Research questions 
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1.5 Scope and limitations 

In this research, the proposed methods are tested on ALS point clouds in combination 

with RGB color from aerial orthoimages (also known as orthophotos). This research 

uses datasets acquired from airborne optical systems and assumes that the input data 

sources are correct, well confirmed, and ready for further processing. Therefore, we will 

not discuss processing stage such as point cloud or image acquisition, geo-referencing, 

and co-registration (strip or bundle adjustment). To provide automatic map object 

extraction, we consider only the extraction methods of the two most expensive map 

objects i.e. buildings and road networks. This research is expected to generate map 

elements that at least meet the 1:5.000 map scale specifications (one meter positional 

accuracy). The map have at least 2D vector format specified as GIS vector data (e.g 

shapefile) using the same coordinate reference system as the original input data. The 

expected 2D vector map is supposed to be 3D-ready data, which means that it allows 

association or attributing object height (Z-drapping) for further step. Thus, assigning 

Z-value (object height) to obtain 3D vector data from our 2D vector results is not 

considered in this research. 

1.6 Outline and research methodology 

This chapter briefly describes the motivation, background, problems, research objective 

as well as scope and limitations. Figure 1.6 gives an overview of the methodology 

applied in this research. The main research objective is formulated and sub-divided into 

three questions. The three main chapters presenting new methodology (Chapter 3 to 5) 

address the three research questions as described in Section 1.4 and correspond to 

scientific papers that have been previously published either in a scientific journal or in 

conference proceeding. All the papers were subject to a full paper peer-reviewing 

process. 

Chapter 2 provides an overview of automatic digital base map production and 

challenges on using ALS point clouds. A general overview on work on automatic object 

outline extraction from ALS point cloud data, including classification and segmentation, 

and line extraction, is presented. This chapter is intended to provide sufficient 

foundation to build upon in subsequent chapters.  

Chapter 3 examines different feature combinations and loss functions for the 

classification of colored ALS point clouds using a point-wise deep learning approach. 

The point cloud is colored by ground orthophotos, which were acquired at the same 

time from the same platform as the ALS point cloud. We try different input features 

combination to investigate the importance of different off-the-shelf features from ALS 

point clouds and aerial images. Different loss functions are also applied to minimize the 

effect of class imbalance as exists in our study area caused by a combination of dense 

buildings separated only by small roads. This chapter also provides an integrated 

procedure for road vectorization starting from a large size airborne point cloud 
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sampling in an urban scene. Parts of this chapter have been published in the proceedings 

of the 40th Asian Conference on Remote Sensing, Daejeon, South Korea 

(Widyaningrum and Lindenbergh, 2019) and the Remote Sensing journal 

(Widyaningrum et al., 2021).  

Chapter 4 introduces building outline extraction from ALS point clouds using a 

method called Ordered-list Hough Transform (OHT). Our literature review shows that 

methods on building outline extraction use regularization to obtain smooth and accurate 

building outlines. Nevertheless, the currently acquired quality (in terms of geometric 

accuracy, straightness, and completeness) of the extracted building outline results need 

to be improved, especially for complex buildings. Hough transform, which is initially 

invented to identify complex lines in images, was applied to perform outline detection 

from point clouds data although its performance on detecting different sizes and 

orientations of buildings automatically remains a problem. We design the criteria that 

meet the challenge and has successfully demonstrated this on three different study areas 

of different characteristics. ALS point clouds of each study area are classified and 

segmented by different segmentation methods to test and evaluate the stability of the 

proposed method. Chapter 4 was published in the Remote Sensing journal, see 

Widyaningrum et al. (2019). 

Chapter 5 presents our work on building outline extraction from ALS point cloud 

using a so-called Medial Axis Transform (MAT) approach. Considering that existing 

methods on building outline extraction mainly use specific rules to determine the 

building orientations which then lead to limitations to detect outlines for buildings of 

arbitrary orientation, we suggest a primitive-free approach based on skeletonization to 

extract accurate and straight outlines of buildings of arbitrary orientation. A shrinking 

circle method is applied to building edge points for obtaining medial skeleton points. 

Based on the segmented medial points and medial descriptors, building corner points 

can be estimated. A comparison to outcomes of existing building outline extraction 

methods of the same study area is presented. Chapter 5 was published in the Pattern 

Recognition journal, see Widyaningrum et al., (2020). 

Chapter 6 gives conclusions and recommendations for future work. 

 

1.6 Outline and research methodology 
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Figure 1.6 Overview of the methodology developed in this research. 
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2 
Automatic Building and Road 

Extraction 
 

 

In this chapter, a general overview on the use of ALS point clouds for automatic building 

and road extraction is given. Building and road extraction delineate their physical 

boundaries in planimetric which may implicitly include the classification and 

segmentation problem. Base map specifications and ALS point cloud characteristics are 

reviewed in Section 2.1. As prerequisite for extracting object outlines, ALS point cloud 

classification and segmentation are required, which is discussed in Section 2.2. Section 

2.3 describes line extraction methods and line regularization methods, which are 

particularly useful for building outline and road network extraction. Section 2.4 provides 

a short summary of this chapter. 

2.1 ALS point cloud for mapping 

The importance of automatic point cloud processing is increasing with the interest of 

using laser scanning for various applications, in particular for mapping. Despite the 

advantages in providing extensive and accurate 3D data within reasonable time, 

methods to automatically process point clouds are still open for further development. 

Considering their characteristics, ALS point clouds have both advantages and 

disadvantages with respect to automatic object extraction (Schenk and Csatho, 2002). 

Digital base map requirements and point cloud characteristics are presented in Section 

2.1.1 and Section 2.1.2, respectively. 

2.1.1 Digital base map  

The definition of base map varies and evolves over time. According to the American 

Society of Photogrammetry (1980), a base map is the graphic representation of the earth 

surface at a specified scale of selected fundamental map information and is used as a 

framework upon which additional data of a specialized nature may be compiled. The 

International Cartographic Association/ICA (1996) defines a map as a symbolized 

image of geographical reality, representing selected features of characteristics resulting 
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from the creative effort of its author’s execution of choice and is designed for use when 

spatial relationships are of primary relevance. The last two decades, digital mapping has 

been introduced. A base map is defined as a layer that provides essential information 

on common land features upon which mapping applications may be performed and 

from which more specialized data may be derived (Decker, 2000). In the current 

definition, a base map provides not only geospatial information but should also include 

spatially associated attributes and should be easy to share and integrate. Figure 1.1 shows 

a digital representation of a base map consisting of several layers: buildings (orange), 

transportation networks (red), water bodies (blue), etc. 

There are two major phases in creating a map: data acquisition and map production. 

At the data acquisition phase, data collection activities are performed to obtain the main 

input data for map production such as aerial images, point clouds, satellite images, etc. 

At the next phase, map production, acquired data is processed into a map. The map 

production phase involves several data processing activities such as data 

alignment/registration, classification, delineation/vectorization, editing, cartography 

and database processing.  

 

To create a good map, certain criteria and specifications need to be fulfilled. As an 

example, for Indonesia, the required object completeness is 85% for buildings while 

90% accuracy for road and water bodies (Regulation of Head of Geospatial Information 

Agency, 2014) is required. The geometric accuracy is set at 30% of the map scale. For 

example, to make a 1:5.000 map, the required geometric accuracy is 30% x 5000 = 1.5 

meter. This means, any object on the map is allowed to deviate from its real location by 

1.5 meter maximum. Further details on the 1:5000 base map specifications for 

Indonesia are presented in Table 2.1. 

 

 

(a) (b) 

Figure 2.1 Digital representation of the Indonesian base map. (a) 1:10.000 digital base map of 
Bandung city, Indonesia, in vector format; (b) a digital base map is managed as geospatial information 
database containing several main layers. 
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Table 2.1 Specifications of the Indonesian 1:5.000 base map. 

Criteria Buildings Roads 

Coordinate and Reference 
System 

UTM - WGS84 UTM - WGS84 

Elevation Reference 
(Geoid) 

Indonesian SRGI 
(Indonesian Geospatial 

Reference System) 

Indonesian SRGI 
(Indonesian Geospatial 

Reference System) 

Geometric accuracy 1.5 meter 1.5 meter 

Minimum objects area to be 
delineated as a polygon 

Building size ≥ 2.5 x 2.5 
meters 

Road width ≥ 2.5 meters 

Maximum object width to 
be delineated as a line 

n. a 
Yes, if road width < 2.5 

meters 

Sharing/merging boundary 
Yes, if the distance 

between buildings ≤ 1 
meter 

No 

Completeness 85% 90% 

 

2.1.2 ALS point cloud characteristics 

For more than two decades, Airborne Laser Scanning (ALS) has been used for fast 

collection of data over large areas in a timely manner (Kabolizade et al., 2010). An ALS 

system is a sensor platform, which uses laser-based measurements of the distance 

between the aircraft carrying the platform and the ground (Vosselman and Maas, 2010; 

Höfle and Rutzinger, 2011). A typical ALS system mounted on an aircraft contains 

several instruments: (i) the laser scanner to emit the pulses to the target on the ground 

and receive the backscattered pulse; (ii) an Inertial Navigation System (INS) to record 

the aircraft orientation; (iii) a high precision Global Positioning System (GPS) to record 

the position of the aircraft; and (iv) a computer interface to control, record, and manage 

communication among devices and data storage. 

Figure 2.2 illustrates the ALS point cloud acquisition technique over the earth 

surface. The laser pulses reflect off objects on the surface including buildings, trees, and 

road. The laser instrument records the travel time required for each pulse to hit the 

object and travel back to the instrument. Using the location and orientation of the laser 

scanner (from the GPS and INS), the scan angle and the range distance to the object is 

used to compute the 3D (X, Y, Z) coordinates of each pulse return. This produces a 

collection of return locations, which is known as a point cloud. A set of 3D points 

acquired by ALS equipment is called as a point cloud. Along with the 3D position, 

additional information (intensity, return number, number of returns, full pulse 

recording) can be collected and added to each point of the resultant dataset 

(Tomljenovic, 2016).  

2.1 ALS point cloud for mapping 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/airborne-laser-scanning
https://www.sciencedirect.com/science/article/pii/S0303243416300897#bib0075
https://www.sciencedirect.com/science/article/pii/S0303243416300897#bib0055
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(a) (b) 

Figure 2.2 ALS point cloud acquisition. (a) Principle of ALS point cloud acquisition. The distance 
to the target on the ground is precisely determined by the travel time of the emitted pulse to the 
surface and back to the sensor device. GPS and INS are used to track the location and orientation of 
the aircrafts. Most pulses travel at an angle, while some pulses are directly nadir. Smaller scan angles 
increase the point density; (b) 3D visualization of ALS point cloud colored by elevation. 

 

3D point clouds can represent almost any type of physical object, landscape, or 

geographic region at all scales with any precision (Richter, 2018).  Based on the 

projection direction, ALS point clouds are considered as 2.5D data as it only represent 

an object from one direction, which is from the top direction. ALS point clouds have 

several benefits such as the ability to penetrate dense vegetation, no effect of relief 

displacement, lighting conditions insensitivity, and multiple returns information. 

Moreover, ALS data allow for a highly automated processing workflow (Jarzabek-

Rychard and Maas, 2017).  

The use of ALS point clouds for topographic mapping is still not efficient due to 

bottlenecks that hinder the automatic processing of point cloud data due to the their 

core internal characteristics of being irregular, unstructured, and unordered (see Figure 

2.3). A point cloud is irregular with regard to its density. Points in a point cloud are 

not evenly sampled across different parts of an object/scene. A point cloud is 

unstructured because it is not arranged on a regular grid. Each point is scanned 

independently and its distance to neighboring points is not always fixed. In contrast, 

pixels in images represent a 2D grid, and spacing between two adjacent pixels is always 

fixed. A point cloud is unordered because its points are stored as a somehow unordered 

list in a file. The order in which the points are stored does not change the scene 

represented, which makes it invariant to permutations. 
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(a) (b) 

  
(c) 

Figure 2.3 Point cloud internal characteristics. (a) irregularity means that points are sometimes not 
evenly sampled or have different point density (the upper part is sparser than the lower part); (b) 
unstructured means that each point is independent and the distance to the neighboring points is not 
fixed; (c) unordered means that points are stored as an unordered list that lacks topology and 
connectivity. 

 

Döllner (2020) added other point cloud characteristics, including: 

 discrete representation – discrete samples of shapes without restriction 

regarding topology or geometry; 

 incompleteness – due to the discrete sampling, representations are incomplete 

by nature; 

 ambiguity – the semantics (e.g. surface type, object type) of a single point 

generally cannot be determined without considering its neighborhood; 

 per-point attributes – each point can be attributed by additional per-point data 

such as color or surface normal; 

 massiveness – 3D point clouds may consists of millions or billions of points. 

2.1 ALS point cloud for mapping 
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2.2 Point cloud classification and segmentation 

In general, automatic obtaining object outlines can be achieved through a particular 

sequence of processing stages, detection and extraction. Object detection is essentially 

classification and segmentation of the input data which result in detected objects with 

coarse boundaries. Object extraction is then carried out to delineate the shape of 

detected object by vectors (Rottensteiner and Clode, 2009). 

Different definitions exist for data classification, segmentation, and clustering since 

it is applied in diverse studies and applications such as computer science, medical 

engineering, archeology, biology, image and signal processing, and remote sensing. To 

avoid confusion, in this research, we refer to point cloud classification or semantic 

segmentation as the process to label each point with a class label so that all points in 

the dataset are categorized into the assigned classes. While segmentation is defined as a 

process to group nearby points having similar geometric characteristics into a segment. 

We use segmentation to partition a classification result into several groups according to 

their 2D or 3D position. In our context, classification results in points labelled as 

building, while segmentation partitions classified building points into individual 

buildings or several building blocks. Figure 2.4 illustrates the difference between 

classification and segmentation.  

  
(a) (b) 

Figure 2.4 Point cloud classification and segmentation results on a small subset of Surabaya city, 
Indonesia. (a) Classification results in points labelled according to their classes (blue represents bare 
land, green represents trees, orange represents buildings, and red represents road); (b) segmentation 
results in different building blocks, all consisting of points having the class labels buildings (different 
colors indicate different building blocks). 

 

Similar to 2D image classification, 3D point cloud data is also greatly benefitting 

from current rapid development of machine learning. Existing classification techniques 

running directly on 3D point clouds are categorized into unsupervised and supervised 

methods, which will be discusses in paragraph 2.2.1 and 2.2.2, respectively. A literature 

review on the current hot classification approach, deep learning, is presented in Section 

2.2.3. 
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2.2.1 Unsupervised approach 

An unsupervised approach assigns unspecified classes to points based on a predefined 

parameterization without a prior information about class labels of the given dataset. 

Many segmentation methods for extracting topographic objects from point clouds have 

been developed in the last decades. In machine learning, a feature is defined as the 

individual property or characteristic of an object or phenomenon being observed 

(Bishop, 2006). The feature space is the set of all possible feature vectors, where a 

feature vector contains the feature values of one data point. For example, a color image, 

where color is parameterized by its RGB values, has a 3D RGB feature space. 

A higher level of information of a LiDAR point cloud can be obtained by 

aggregating homogenous segments that are mainly determined by geometric constraints 

within neighborhoods (Sithole, 2005). The idea of this approach is to cluster similar 

points, merge them, and then separate them from other clusters according to certain 

parameters (such as planarity, roughness, shape, spectral values, etc.) to identify 

candidate objects for further processing. Several studies in literature categorized 

unsupervised methods into four categories: region-based, edge-based, graph-based and 

cluster-based techniques. Each method has different advantages and limitations which 

will be discussed in the following. 

 

Region-based 

Region-based segmentation mainly uses the assumption that neighboring points within 

one region have similar properties (Vosselman, 2013). If neighboring points are similar, 

they belong to one cluster/segment. These algorithms identify patches and seeds and 

then connect or group the patches based on adjacency features (such as normal, 

curvature, slope, etc). Nardinocci et al (2003) applied region-growing using height 

differences to generate planar segments. The geometry and topology of regions is 

expressed using graph theory, where segment nodes carry information on segment size. 

Rules are applied to extract segments representing ground, vegetation, buildings, and 

other objects. Rabbani et al. (2006) proposed segmentation of point clouds using a 

smoothness constraint that worked well for highly accurate point clouds. Unfortunately, 

this method may become problematic for less accurate point clouds. Shen et al. (2012) 

proposed a segment-based classification method by implementing surface growing to 

segment LiDAR points into different clusters and considering multiple echoes to 

distinguish ground from non-ground measurements. At last, rule-based classification is 

performed on the segmented point clouds. Vosselman (2013) developed a segmentation 

strategy by combining different approaches to segment large point clouds. Even though 

these techniques often succeed to satisfy their purposes, they have limitations to 

determine region borders accurately (Nguyen and Le, 2013) and are not well suitable 

for segmenting parts of a point cloud that cannot be described by surfaces (Vosselman 

et al., 2017). 

 

2.2 Point cloud classification and segmentation 
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Edge-based  

Edge based techniques segment point clouds by detecting planimetric edges forming 

boundaries of regions, and then group the points inside the closed boundaries. This 

technique often applies rasterization of a LiDAR point cloud (Bhanu et al., 1985; Jiang 

et al., 1996). The performance of this type of methods depends on the quality of the 

edge detector. Although edge-based methods allow fast segmentation, they may have 

accuracy problems and often detect disconnected edges that make it difficult for a filling 

procedure to identify closed segments. This is due to situations that commonly occur 

in point cloud data: high sensitivity to noise and uneven point density (Nguyen and Lee, 

2013; Castillo et al., 2012). Moreover, these techniques have limitations to work on 

point clouds directly. 

 

Model-based  

Model based techniques aim to fit geometric primitive shapes such as planes, cylinders, 

cubes, cones or spheres by using a mathematical model to segment points. Points 

conform to the mathematical representation of the primitive shape are labelled as one 

segment. Two most prominent algorithms for model fitting are RANSAC (Fischler and 

Bolles; 1981) and the Hough transform (Duda and Hart, 1972). Both algorithms have 

been widely implemented for 3D point cloud segmentation. Rabbani and van den 

Heuvel (2005) presented an efficient Hough based algorithm for automatic detection of 

cylinders in point clouds. Several algorithms used RANSAC for plane segmentation of 

building roofs (Chen et al., 2013), building facades (Bauer et al., 2005), and indoor 

scenes (Li et al., 2011). Oehler et al., (2011) used both Hough transform and RANSAC 

to perform coarse to fine plane segmentation from indoor and outdoor 3D point 

clouds.  

Tarsha-Kurdi et al. (2007) compared RANSAC and 3D Hough transform to detect 

planar roofs from airborne LiDAR point cloud data. They conclude that RANSAC is 

more efficient both w.r.t sensitivity to point cloud characteristics and processing time. 

Model-based algorithms use mathematical principles that are fast and robust to outliers. 

Their main limitation is inaccuracy when dealing with complex shapes and different 

point cloud sources (Nguyen and Lee, 2013; Poux et al., 2016). 

 

Cluster-based  

This technique groups data into clusters based on available or computed attributes. 

Afterwards, the points in each cluster are labelled by segment Id. This segmentation 

approach offers flexibility in accommodating spatial relations and attributes to 

incorporate different cues into the segmentation process. However, the limitation of 

these approaches is they are highly dependent on the quality of derived attributes. The 

attributes of point cloud data should be computed precisely to produce the best 

separation among different classes. K-means, mean shift, and fuzzy clustering are 
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among well-known clustering-based algorithms. In machine learning, this group of 

segmentation methods is called spatial clustering (Ilanthiraiyan and Krishnan, 2014). 

Filin and Pfeiffer (2006) introduced an ALS point cloud segmentation method based 

on cluster analysis in feature space. They introduced the slope-adaptive neighbourhood, 

which uses distance as a key feature. Biosca and Lerma (2008) presented an 

unsupervised robust clustering approach based on fuzzy methods to extract 

homogeneous segments from an unorganized point cloud. Sampath and Shan (2009) 

proposed a framework for the segmentation and reconstruction of buildings from ALS 

point clouds. The surface normals of all planar points were clustered by extended fuzzy 

k-means clustering. The problem related to the number of clusters to extract was solved 

by using a potential-based approach which considers both geometry and topology for 

determining cluster similarity. The method only focuses on tackling planar roofs of 

buildings. 

Compared to other non-parametric (partitioning or hierarchical) segmentation 

methods, some studies indicate that density-based algorithms are best suited for 

extracting features from point clouds data (Ghosh and Lohani, 2013; Tran et al., 2013). 

One well-known density based method, DBSCAN (Density-based Spatial Clustering of 

Applications with Noise) proposed by Ester et al. (1996), has the ability to find clusters 

of arbitrary shape as well as to detect outliers of large spatial data without pre-knowledge 

on the number of clusters. This technique employs two major parameter inputs: radius 

distance (𝑒𝑝𝑠) and a given minimum number of points (𝑚𝑖𝑛𝑃𝑡𝑠).  

DBSCAN uses the following definitions and conditions (see Figure 2.5): 

 Definition 1: Neighborhood 𝑁𝑒𝑝𝑠(𝑝) = {𝑞 ∈ 𝐷|𝑑𝑖𝑠𝑡(𝑝,𝑞) ≤ 𝑒𝑝𝑠}. 

Point 𝑝 is a core point if at least has 𝑚𝑖𝑛𝑃𝑡𝑠 points within distance 𝑒𝑝𝑠 (𝑒𝑝𝑠 

is the maximum radius from 𝑝) of it (including 𝑝). Those neighborhood points 

are said to be directly density-reachable from 𝑝.  

 Definition 2: directly density-reachable if: 𝑝 ∈ 𝑁𝑒𝑝𝑠(𝑞) and |𝑁𝑒𝑝𝑠| ≥ 𝑚𝑖𝑛𝑃𝑡𝑠. 

Point 𝑞 is directly density-reachable from 𝑝 if point 𝑞 is within 𝑒𝑝𝑠 

distance from 𝑝 and 𝑝 must be a core point.  

 Definition 3: density-reachable. 

Point 𝑞 is density-reachable from 𝑝 if there is a chain of 

points 𝑝1, … , 𝑝𝑛 where  𝑝1 = 𝑝 and 𝑝𝑛 = 𝑞 , such that each 𝑝𝑖+1  is directly 

reachable from 𝑝𝑖  (all the points on the chain must be core points, except 𝑞). 

 Definition 4: density-connected. 

Point 𝑞 is density-connected to point 𝑝 if there is a point 𝑟 where both 𝑝 and 

𝑞 points are density-reachable from point 𝑟. 

 Definition 5: outliers. 

Point not reachable from any other point is noise or outlier. 

 

2.2 Point cloud classification and segmentation 
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(a) (b) (c) 

Figure 2.5 Definitions and conditions of DBSCAN. Given a radius distance of point 𝑞 from point 

𝑝, 𝑒𝑝𝑠 = 1 meter and minimum number of points, 𝑚𝑖𝑛𝑃𝑡𝑠 = 4. (a) Directly density-reachable; (b) 
Density-reachable; (c) Density-connected. 

 
To find a cluster, DBSCAN starts with an arbitrary seed point 𝑝 and retrieves all 

neighbouring points (density-reachable) from 𝑝 that are located within a given radius 

distance (𝑒𝑝𝑠) and contains a given minimum number of points (𝑚𝑖𝑛𝑃𝑡𝑠). Outliers are 

defined once 𝑚𝑖𝑛𝑃𝑡𝑠 cannot be achieved within the given 𝑒𝑝𝑠. The cluster will grow as 

long as nearby points within the 𝑒𝑝𝑠 distance from seed 𝑝 fulfill the 𝑚𝑖𝑛𝑃𝑡𝑠 threshold. 

In case 𝑚𝑖𝑛𝑃𝑡𝑠 within distance 𝑒𝑝𝑠 is not fulfilled, a point or group of points is 

considered as outliers. During the cluster growing, outliers may change into a member 

of the cluster once they are in the 𝑒𝑝𝑠 distance from the respective seed. To grow the 

next cluster, the next seed is chosen that does not belong to any cluster. The clustering 

stops once all points are assigned. In this research, we implement DBSCAN clustering 

from 3D point data. 

Unsupervised classification can perform well even when no prior knowledge is 

available and is less labor intensive, as labeling the training samples is not required. 

However, these methods have main drawbacks: they neglect the possible correlation 

between different features and rely on specific mathematical principles that may not be 

universally valid for different dataset. 

2.2.2 Supervised approach 

Supervised approaches require labelled samples to learn the classification boundaries 

automatically from training data (Bishop, 2006). Supervised methods offer more 

flexibility than unsupervised classifiers that may have difficulty to tune different set of 

discriminant rules and thresholds to classify the points of different cases. Supervised 

classification has been successfully applied, using methods such as decision trees, 

Random Forest, SVM (Support Vector Machine), Bayesian networks, etc. However, 

such traditional machine learning approaches have one major limitation that is the 

requirement for designing and extracting explicit discriminative features, which may not 

always be successful for complex scenes. All of these supervised algorithms rely on 

discrimination functions in using representative attributes acquired from training data. 

Weinmann et al. (2015) describes a general procedure of point cloud classification 

consisting of four main stages: neighborhood selection, feature extraction, feature 

selection, and classification (Figure 2.6). 
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Figure 2.6 General procedure of 3D point cloud classification consisting of four stages: neighborhood 
selection, feature extraction, feature selection, and supervised classification. Image source: Weinmann, 
2015. 

 

SVM is based on statistical learning theory and has the aim of determining the 

location of decision boundaries that produce the optimal separation of classes in feature 

space (Cortes and Vapnik, 1995). Breiman (2001) proposes Random Forest (RF) based 

on the idea to combine many weak classifiers to obtain a strong classifier. Random 

Forest consists of several decision trees. Each tree in the Random Forest is created by 

drawing a subset of training data through the so-called bagging method. To train the 

trees, the bagging procedure will randomly select e.g. two thirds of the samples from 

the training data. The remaining samples are used in an internal cross validation for 

estimating the random forest performance. Several machine learning classifiers use 

statistical contextual models to reduce noise e.g. Conditional Random Fields (CRF) and 

Markov Random Fields (MRF). CRF takes into account the topological or geometric 

relationships between different objects that exist in e.g. data representing an urban 

environments and was successfully applied to obtain three main land cover classes: 

vegetation, building and ground (Niemeyer et al., 2012).  

Studies on point cloud classification using supervised approaches mainly use hand-

crafted geometric features as information cue (Weinmann et al., 2015; Landrieu et al., 

2017). Features used for classification need to be defined and selected in advance, which 

can be difficult as this requires domain expertise. 

2.2.3 Deep learning 

Deep learning has been recognized as an advanced technology for big data analysis 

with a large number of successful cases in image processing, speech recognition, object 

detection, etc (Zhang, et al., 2018; Zhou et al., 2019). Its ability to provide a reliable way 

to solve difficult task and computationally expensive problems makes deep learning 

popular. For scene detection and classification, handcrafted feature design and 

selection, which is a difficult task in regular machine learning, are no longer required 

when using deep learning (Xie et al., 2020).  

Deep learning is a subset of machine learning in artificial intelligence that uses 

multiple artificial neural networks or hidden layers to progressively learn high-level 

abstractions from training data using hierarchical architectures (Guo et al., 2016). One 

of the most well-known deep learning architectures for object extraction and 

2.2 Point cloud classification and segmentation 
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classification are Convolution Neural Networks (CNN) which are mostly applied for 

image analysis (Figure 2.7). One component equals at least one layer in a CNN. Three 

basic components of CNN are summarized as follow: 

 Convolutional layer learns and detects important features of the input (such as 

edges, lines, color gradients in the image). It has a set of filters whose parameters 

including weights need to be trained and adjusted during the training. A typical 

convolution uses 3x3 or 5x5 kernel size or receptive field. 

 Pooling layer to down-sample the information of the outputs from 

convolutional layer to make faster computation and more robust to variations in 

the position of features in the input. This is usually incorporated between two 

successive convolutional layers. By stacking a convolutional and a pooling layer, 

higher level of feature representations are gradually extracted. Max pooling, 

which keeps the maximum value of a matrix window, is a typical pooling layer. 

 Fully connected layer represents the feature vector for the input and makes 

prediction. This layer takes all neurons in the previous layer and connect them 

to every single neuron of the current layer to generate global semantic 

information. Fully connected layer is usually located in the few last layers of 

CNN.  

 

Figure 2.7 General CNN architecture consisting of 3 main components: convolutional layers, pooling 
layers, and fully connected layers. Any layer residing between input and output is known as hidden 
layer. The process generating the output (forward propagation) flows in one direction from the input 
to the output layer sequentially. To minimize the error and optimize the network’s parameters, the 
network computes loss function derivatives at the output layer and propagates them back towards the 
input layer (back propagation). 

 

In general, a training process in deep learning consists of six main steps: 

1. Initialization to assign initial weights applied to all neurons. 

2. Forward propagation is when the network assigns an input and passes through 

the hidden layers to produce an output, information flows forward through the 

network. 
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3. Loss function to represent how far the network’s prediction is from the true 

labels by calculating the differences between prediction and the true labels, given 

the current weights. 

4. Back propagation to iteratively minimize the error (differences between 

prediction and training label) by gradient descent and updating the weights. 

5. Weight update to adjust the weight value according to the back propagation 

results. 

6. Iteration until convergence is required as the weights may be adjusted by small 

values at a time. Therefore, several iterations are required by the network to learn. 

As point clouds are unstructured and unordered, it is almost impossible to use 

standard convolutional operators like in CNNs. Regular convolutional neural networks 

use convolution operation which are performed on data that is ordered, regular, and on 

a structured grid (e.g. images). Directly convolving kernels against features associated 

with the points will result in neglection of shape information and variance to point 

ordering (Zhang et al., 2020). Early approaches overcome these challenges by 

converting the point cloud into a structured grid format (Bello et al., 2020). Therefore, 

we categorized the deep learning works focusing on point cloud classification into three 

approaches: multiview-based, voxel-based, and point-based. Both multiview-based 

(MVCNN, SnapNet, and SnapNet-R) and voxel-based (VoxNet, PointGrid, 

SEGCloud) use an indirect approach that requires conversion of the point cloud into a 

regular structure. Point-based approaches work directly on point clouds (PointNet, 

PointNet++, SPG, etc.).  

PointNet (Qi et al., 2017) is a pioneering deep learning architecture that works 

directly on unstructured 3D point clouds. PointNet not only accelerated the speed of 

computation but also improved the performance of semantic segmentation (Zhang et 

al., 2019). To classify a point cloud, PointNet uses a network composed of a succession 

of fully-connected layers, instead of convolution operators. To use the network, each 

input point 𝑷𝒊 ∈ ℝ𝐷 (𝑖 = 1,… , 𝑁) is represented by its 𝐷-dimensional feature vector 

consisting of 3D coordinates (𝑥, 𝑦, 𝑧) with additional features such as RGB color, 

normals, etc.  

As shown in Figure 2.8, PointNet processes unorganized point cloud data in three 

stages. First, each unordered point is fed into a multi-layer perceptron (MLP) and 

mapped onto a 𝐶-dimension feature vector to extract independent features. Second, 

independent features are processed in a max pooling layer to aggregate 𝑁 point feature 

vectors invariant to permutations. Third, the 𝐶-dimension global features are mapped 

into an 𝐹-dimension output vector using another MLP.  

 

2.2 Point cloud classification and segmentation 
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Figure 2.8 Basic processing stages and components of PointNet. The network takes directly 𝑁 points 

as its input. Each 𝐷-dimensional of input point is mapped into a 𝐶-dimension feature vector through 
MLP. Per-point (local) features are aggregated into a global feature vector by max pooling layers. The 

global feature is then mapped onto 𝐹-dimensional output vector consisting of classification scores. 

 

Crucial problems PointNet tries to solve are: 

 Ordering problem due to lack of structure in point clouds. PointNet uses a 

symmetric function to map input points to higher-dimensional space. A 

symmetric approximate function takes 𝑛 vectors as input and outputs a new 

vector that is invariant to the input order e.g. 𝑠𝑢𝑚(𝑎, 𝑏) = 𝑠𝑢𝑚(𝑏, 𝑎) or 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑎, 𝑏) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑏, 𝑎) or 𝑚𝑎𝑥(𝑎, 𝑏) = 𝑚𝑎𝑥(𝑏, 𝑎) 

 Transformation invariance due to possible rotation and translation. PointNet 

uses a spatial transformation network (T-nets) to estimate an affine 

transformation matrix to spatially align input point clouds and features which 

makes the network invariant to geometric transformation. 

 

Although PointNet has a beneficial effect on point cloud classification and 

segmentation, by design, the network does not consider the local neighborhood 

structure and spatial correlation between points (Qi et al., 2017). Therefore, Qi et al. 

(2017) proposed PointNet++ to take into account the distance between points by using 

a hierarchical neural network. However, this model still not directly determines 

geometric features between points. A Dynamic Graph CNN (DGCNN) is then 

proposed by Wang et al. (2018) to overcome this problem. The DGCNN architecture 

incorporates a graph-based CNN approach to capture the local geometry of points by 

an edge convolution operation on a k-nearest neighbor graph which is iteratively 

updated. In addition, SuperPoint Graph (SPG) as proposed by Landrieu and 

Simonovsky (2018) offers a rich representation of contextual relationships between 

object parts rather than points. The model adaptively partitions the point cloud into 

geometrically homogenous simple shapes to build a Superpoint Graph which is then 

fed into a graph neural network for producing semantic labels. However, the method 

does not explicitly model the local spatial relationships among points, thus acquiring 

less shape awareness (Liu et al., 2019). PointCNN (Li et al., 2018) uses a so-called X-

conv operator to weigh and permute input points and features before they are processed 

by a typical convolution on the transformed features. Another deep learning 

architecture that processes points directly is KPConv (Kernel Point Convolution), 
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introduced by Thomas et al. (2019). Instead of using a multi-layer perceptron, KPConv 

applies 3D convolution kernels to define the radius neighborhoods as input and 

processes them with weights spatially located by a small set of kernel points.  

Deep learning architectures that directly process the point cloud are considered as 

the most effective and efficient as they do not need projection on multiple 2D images 

or 3D volumes (Ge et al., 2018). Current work on deep learning indicate the need of 

further improvement and investigation (Szegedy et al., 2016; Gu et al., 2018; Zhang et 

al., 2019). For example, the amount of sufficient good quality training samples, 

computational efficiency, training procedure acceleration. Furthermore, one major 

barrier for applying deep learning is that it requires skill and experience to select suitable 

hyperparameters such as the number of layers, kernel size, learning rate, etc. 

2.3 Line extraction 

Efforts to automate the extraction of object outlines from remote sensing data form a 

major research direction in the photogrammetric and computer vision communities 

(Agouris et al., 2004). Automatic object extraction defined in this research aims at 

obtaining topographic objects and their geometric reconstruction by vectors that can 

be used in GIS or Computer-Aided Design (CAD) systems.  

Several methods use an indirect approach to obtain outlines of topographic objects 

by deriving first a Digital Surface Model (DSM) from an ALS point cloud (Weidner and 

Foerstner, 1995; Brenner, 2000; Hollaus et al., 2010). Some other methods use point 

clouds directly to obtain an outline by detecting primitive shape representations such as 

lines and planes. Using ALS point clouds to extract outlines of man-made urban objects 

may suffer from point spacing irregularity effects that creates noisy boundaries. Thus, 

to obtain straight and smooth object boundaries, outline extraction has at least two main 

tasks: edge detection and line regularization. In this research, edge detection is defined 

as the process of selecting edge points of an object forming an outline. Line 

regularization is the process to smooth jaggy outlines caused by unstructuredness of 

edge points and additional data problems. In the following, we further discuss relevant 

methodologies for edge detection and line regularization. 

2.3.1 Edge-aware shape analysis 

Consider a set of points in 3D or 2D Euclidean space representing a building. Finding 

the most outer points can be categorized as edge point detection. Thus, a building 

outline is formed by connecting all line segments, in which each line segment connects 

two consecutive edge points. The problem to find simple and planar polygons outlining 

a finite point set in 3D or 2D Euclidean space arises in many practical applications. As 

an example, the task of creating a 3D building model comprises the detection of their 

outlines or footprints (Vosselman, 1999). Outline detection is a representation of a 

shape which is a classical problem in computational geometry.  

2.3 Line extraction 
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Convex and concave hulls 

The convex and concave hull are both representations of the area occupied by a set of 

finite points. In geometry, the convex hull of a set of point in a plane is the smallest 

polygon enclosing the points so that there are no concavities or inward corners in the 

polygon boundaries. The concave hull is loosely defined as a polygon tightly enclosing 

all points while allowing also inward corners, see also Figure 2.9.  

 

  
(a) (b) 

Figure 2.9. Convex and concave hulls outlining the shape of a set of points. (a) a convex hull always 

has interior angle 𝜑 between two neighboring edges equal to or less than 180 degrees; (b) a concave 

hull in general occupies smaller area than the convex hull as interior angles 𝜑 between two 

consecutive edges 𝑝𝑞̅̅ ̅ and 𝑞𝑟̅̅ ̅, are allowed to be greater than 180 degrees.  

 

Representing the shape of finite point sets by simple polygons becomes a challenge 

if the resulting outlines needs to be non-convex and straight with few edges and angles 

(Pohl and Feldmann, 2016). Non-convex shapes are those shapes in which at least two 

sides are pushed inwards (Figure 2.9.b). Alpha-shape (Edelsbrunner, 1983) is introduced 

as a solution to the problem, in which a predefined parameter alpha is used as a size-

criterion to determine the level of detail and capture the intuitive notion of the object 

shape. To address the same problem, Galton and Duckhum (2006) suggested nine 

evaluation criteria for concave hull algorithms, which was followed by several works 

such as k-nn concave hull (Moreira and Santos, 2007), X-shape (Duckham et al., 2008), 

alpha-concave hull (Asaeedi et al., 2017), etc. Having the same goal, many studies 

consider alpha-shape as a concave hull approach. Several methods identified edge 

points and apply boundary line detection to obtain straight and smooth line using either 

concave hull or alpha-shape (Dorninger and Pfeifer, 2008; Lach and Kerekes, 2008; 

Wei, 2008; Albers et al., 2016). 

Skeletonization 

Another shape analysis approach, skeletonization (Blum, 1967) derives a compact and 

thin line segment representation of an area or surface. The resulting skeleton, also 

known as medial axis, has the ability to maintain the geometrical and topological 
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properties of a shape such as its connectivity, length, direction, and width which makes 

it to some extent possible to recover the original shape (Figure 2.10). The main 

drawback of skeletonization is the sensitivity to the presence of noise or small 

undulations on the object edge as are common for point clouds. Skeletonization 

methods available in literature can be categorized into four main methods: geometry-

based (Voronoi, Delaunay triangulation, shrinking ball), distance function-based 

(Euclidean distance map); morphological thinning-based (straight skeleton, fast parallel 

thinning), and obtained by a general field function (linear transform, Newtonian model).  

 

   
(a) (b) (c) 

Figure 2.10 Skeleton characteristics. (a) skeleton (black line) is sensitive to noise or small changes on 
the object edge; (b) skeleton representing topological structure of the original object shape; (c) skeletons 
of similar shape and size can be extracted from different object shapes. Different objects may result in 
exactly the same skeleton. 

 

Works on topographical object extraction like outline and centerline extraction can 

greatly benefit from skeletonization characteristics. However, object extraction can 

normally not be solved satisfactorily by applying a basic skeletonization method 

alone (Haunert and Sester, 2008). This is because different methods have different 

advantages and limitations. For example, a fast parallel thinning algorithm can 

reconstruct the original object shape but it requires a binary image as an input (see 

Figure 2.11) and it is difficult to estimate the distance from a skeleton (centerline) to its 

corresponding object edges. On the other hand, a shrinking ball algorithm can directly 

process points, but more steps are required to deliver a linear skeleton as the algorithm 

results in skeletal points instead of a line. Furthermore, skeletonization usually results 

in jaggy or wavy skeleton branches. Thus, it is likely that modification or additional 

processing is required to obtain smooth and straight object outlines and centerlines. 

2.3 Line extraction 
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Figure 2.11 Reconstruction of original shape from the skeleton using a fast parallel thinning algorithm. 
The original shape can be reconstructed by estimating the position of all end points of the skeleton. 
A binary image is required as input for this algorithm. 

2.3.2 Line regularization 

Two well-known algorithms are used as basis for line fitting: RANSAC (Fischler and 

Bolles, 1981) and Hough transform (Hough, 1959; Duda and Hart, 1971; Ballard, 1981). 

The RANdom SAmple Consensus (RANSAC) algorithm is a simple but powerful 

algorithm which has ability to fit a mathematical primitive to a set of data affected by 

noise. RANSAC generates candidate lines based on a minimum number of two 

observations (data points) required to estimate the model parameters. The basic steps 

of the RANSAC algorithm are summarized in algorithm 1 as follows:  

 

Algorithm 1. RANSAC  

1. Randomly select the minimum number of points required to determine the 

model parameters; 

2. Estimate the parameters of the model; 

3. Determine the number of points from the dataset which fit within a predefined 

tolerance 휀. The fitting points are the inliers; 

4. If the fraction of the number of inliers over the total number of points; exceeds 

a predefined threshold 𝜏, re-estimate the model parameter using all inliers and 

terminate; 

5. Otherwise, repeat steps 1 through 4 (maximum of 𝑁 iterations) 

 

The key idea of Hough transform is to find a line model based on a voting scheme 

in parametric domain. A line in object space (𝑥, 𝑦) is converted into parametric space, 
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e.g. angle and distance from the origin (𝑟, 𝜃), or slope and intercept (𝑚, 𝑏). The number 

of points from all possible parametric combinations are stored in an accumulator 

matrix. Based on the local maxima shown in the accumulator matrix, best fitting lines 

can be detected. Algorithm 2 describes the general step of Hough transform. 

 

RANSAC and Hough transform are recognized as powerful tools to detect straight 

line which gives good results even in the presence of noise (Jacobs et al., 2013). In 

extracting straight and smooth lines, both algorithms can be used to regularize a noisy 

boundary or fuzzy line. Several improved algorithms for shape recognition use either 

RANSAC or Hough transform as basis. The Hough transform is more accurate and 

stable while RanSAC is more computational effective (Jacobs et al., 2013; Kröger et al., 

2016). For detecting planar roof of ALS point cloud, Tasha-Kurdi et al., (2007) 

compares 3-dimensional RANSAC and Hough algorithms. It turns out that RANSAC 

provides more efficient and better results than Hough transform. Figure 2.12 illustrates 

line fitting methods using RANSAC and Hough transform. 

 

Algorithm 2. Hough transform  

1. Parameterize each point from object space coordinates (𝑥, 𝑦) into parametric 

coordinates (𝑟, 𝜃); 

2. Store the number of points voting for the same parametric coordinates into a 

binned accumulator matrix; 

3. Find the parametric coordinates of all local maxima 

4. Back-transform parametric local maxima to the real object space coordinates 

  

(a) (b) 

Figure 2.12 Line fitting methods. (a) RanSAC fits a line to noisy points based on the distance of 
each point to a line model obtained from two points (black points). Any point located within a certain 
distance from a line is categorized as inlier. The best line is the one with most inliers; (b) Hough 

transform performs line parameterization by converting the line parameter from object space (𝑥, 𝑦) 

into parametric space (𝑟, 𝜃). The best line obtaines most votes in parameter space. 

2.3 Line extraction 
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Other approaches of line smoothing or regularization that have also been 

implemented in GIS (Geographic Information System) operations include Douglas-

Peucker (1973) and Visvalingam-Whyatt (1993) algorithms. To smooth a jaggy line, 

Douglas-Peucker chooses the points to be kept while Visvalingam-Whyatt algorithm 

removes points between two end-points iteratively. However, regularizing outlines 

using these two line smoothing algorithms (e.g. Douglas-Peucker) is not always 

effective, especially not for buildings, due to unintentional removal of certain corners 

(Pohl and Feldman, 2016). Moreover, both algorithms have limitation considering the 

presence of noise that is preserved in the results.  

2.4 Summary 

In this chapter, we reviewed state of the art of methods related to object outline 

extraction from ALS point cloud. We presented a general information on point cloud 

processing and methodological framework associating several required methods for 

conducting automatic map production from ALS point cloud which include at least two 

big tasks: classification and line extraction. Although several approaches have been 

widely used, some potential improvements are required to increase the performance 

and results quality. Considering the point cloud characteristics, extracting outlines of 

topographic objects directly from a point cloud is a challenging task but this point-wise 

approach also provides richer features than images that are helpful for automation. The 

following chapters discuss extraction methods of building and road outlines from ALS 

point cloud data proposed by this research. 
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3 
Automatic vectorization of  urban map 
objects from a colored ALS point 
clouds using DGCNN deep learning 
and skeletonization 
 

 

 

Urban map objects (buildings and roads) are essential input for urban planning, smart 

city concepts and traffic management. However, extracting and updating such vector-

based map manually is time consuming and labor intensive. This paper presents a 

methodology to extract urban map objects automatically from an Airborne point cloud 

combined with color information from an airborne orthophoto. First, we classify points 

into urban land cover classes using DGCNN (Dynamic Graph Convolutional Neural 

Network). Second, medial axis transformation derived skeletons are used to get initial 

building outlines from the building points, while thinning process is implemented to 

obtain road centerlines. Third, building outlines and road centerlines are refined: from 

the classified building points, building blocks outlines are extracted by a 2D shrinking 

circle method. Next, line simplification and road gap filling is conducted. Final road 

outlines are obtained based on the actual road width estimated by a medial axis approach. 

The proposed method is tested on the metropolitan area of Surabaya, Indonesia. The 

point-wise classification achieves a highly acceptable result with 91.8% overall accuracy 

when using the full combination of spectral color and LiDAR features. Based on the 

evaluation results, our method resulting in road polygons with 80.6% recall and 72.6% 

precision rate.  

This chapter is organized as follows: Section 3.1 gives background on the study. 

Section 3.2 describes related work on classification of ALS point clouds and map 

vectorization. Section 3.3 provides a description of the study area and specifies the data 

used in the research. The methodological framework, consisting of classification and 

vectorization of urban objects, is presented in Section 3.4. Section 3.5 presents and 

discusses results. Finally, conclusions and recommendations are given in Section 3.6. 

 



3. Automatic vectorization of urban map objects using DGCNN & skeletonization 

38 

   3 

3.1 Introduction 
Maps provide the integrative platform for all digital data that has a location dimension 
(UNGGIM, 2018). Decision-making, including urban planning, intelligent 
transportation systems, and disaster management depends on the availability of maps. 
Modern digital map production should be able to provide quality maps efficiently (faster 
and cheaper). Urban maps are crucial in situational decision making where building and 
roads are regarded as primary map ingredients (Nyerges and Jankowski, 2009; Indrajit 
et al. 2019). To efficiently obtain and maintain up-to-date maps, automatic extraction 
of man-made structures such as buildings and roads became an important research topic 
for geoinformatics (Hinz et al., 2001; Kabolizade et al., 2010). Automatic extraction 
remains challenging for several reasons: first, buildings and roads have different 
characteristics, in terms of shape, size, and color. Second, input data used for extraction 
is affected by noise and occlusions caused by objects (trees, cars, towers, etc.) in the 
scene. 

Airborne Laser Scanning (ALS) point clouds and aerial photos are the main very 

high resolution and accurate input data available to map cities. Both data have different 

characteristics and complementary advantages. Aerial photos are rich with spectral 

information, giving a representation similar to what humans see in the real world, while 

an airborne LiDAR point cloud provides an accurate 3-dimensional representation of 

urban objects (Shan and Toth, 2009). In case of edge detection, LiDAR point clouds 

may not always represent object boundaries well. On the other hand, aerial photo pixels 

clearly represent continuous and firm object boundaries. Combination of both data is 

expected to increase the degree of automatic processing as well as the quality of the 

result (Rottensteiner and Clode, 2009).  

In the last few years, there is significant development in research on deep learning 

to solve traditional machine learning problems (Griffiths and Boehm, 2019). Traditional 

machine learning use features defined by humans which may not be sufficient for 

certain complex cases. Due to its ability to process large datasets and to learn 

representations from complex data acquired in real environments (Carrio et al. 2017), 

deep learning is a promising tool to improve the performance and quality of automatic 

scene classification. Further work is required, however, to obtain urban map objects 

that are represented by their boundaries.  

Skeletonization provides an effective and compact representation of objects by 

reducing its dimensionality to a skeleton or centerline or medial axis while preserving 

the objects topology and geometric properties (Saha et al. 2016).  Skeletonization also 

allows to completely recover the shape of the original object. Considering the benefits 

of skeletonization, their application for urban map objects boundary extraction is 

promising. Thus, we designed a pipeline to obtain accurate urban object boundaries 

automatically from a colored airborne point cloud using a novel skeletonization 

approach.  
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The key contributions of this study are as follows: 

(1) To investigate an effective feature combination for the classification of huge 

outdoor ALS point clouds colored by aerial photos for complex urban 

landscapes having class imbalance due to the presence of many buildings. 

(2) To design and implement an integrated skeleton-based approach to vectorize 

a smooth road centerlines and boundaries from the classified road points. 

(3) To provide an effective approach to extract complete urban map objects 

including building and trees automatically from the classified points. 

3.2 Related work 

Previous studies on map elements extraction network extraction use various input data 

and methods. In general, urban map element extraction contains two major tasks: ALS 

point cloud classification and vectorization (outline extraction). Point cloud 

classification defined in this study refers to a task assigning predefined class or semantic 

label (e.g. ground, building, or tree) to each individual 3D point of a given point cloud, 

which is also known as semantic segmentation or class labeling. Vectorization is defined 

as extracting the boundary shape of an object in vector format (polygon, line, or point).  

3.2.1 Classification of ALS point clouds 

Classification of urban remote sensing data remains challenging as it usually involves 

large datasets while urban scenes are notoriously complex. Furthermore, point cloud 

data have particular characteristics that make classification even more challenging: they 

are unordered and unstructured, often with large variations in point density and 

occlusions (Balado et al. 2019). 

Nowadays, there is interest in using deep learning approaches to solve classification 

and segmentation tasks (Ghosh et al., 2019). Deep learning for 3D point cloud data has 

been developed. Some methods apply dimensionality reduction by converting 3D data 

into multi-view images (MVCNN, SnapNet, etc.), other methods organize point clouds 

into voxels (SegCloud, OctNet, etc.), or directly use 3D points as input (PointNet, 

PointNet++, etc.). Inspired by PointNet (Qi et al., 2017), several point-wise deep 

learning methods classify 3D point cloud data using a network composed of a 

succession of fully-connected layers.  However, PointNet limitations on capturing the 

spatial correlation between points, triggered several alternative point-wise deep learning 

network architectures such as SuperPoint Graph (Landrieu and Simonovsky, 2018), 

PointCNN (Li et al., 2018), and DGCNN (Wang et al., 2018).   

Deep learning has been used and adopted in various applications where the global 

interpretability still lacks a well-established definition in literature (Ish-Horowicz et al., 

2019). A central question regarding the interpretability: how can humans understand 

the reasoning behind the model predictions? A common interpretation approach is to 

3.1 Introduction 

https://www.sciencedirect.com/science/article/pii/S0926580519311033#bb0080
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identify the importance of each input feature to optimize the prediction results (Singla 

et al., 2019).  

In the context of neural networks, a model may have difficulties in learning 

meaningful features (Horwath et al., 2020). Most experiments on point-wise deep 

learning use benchmark indoor point clouds (e.g. Stanford S3DIS dataset) with input 

features consisting of 3D coordinates (𝑥, 𝑦, z), color information or RGB (Red, Green, 

Blue), and normalized coordinates (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧). Implementations for airborne point 

clouds with different input features are available in the literature. Soilan et al. (2019) 

implemented multi-classification (ground, vegetation, building) using PointNet applied 

on an ALS point cloud. They replaced RGB features as used in the original PointNet 

publication by LiDAR-derived features: Intensity, return number, and height of the 

point with respect to the lowest point in a 3x3m neighborhood. Even though the 

classification accuracy achieved 87.77%, there is high confusion between vegetation and 

buildings. Wicaksono et al. (2019) used a DGCNN to classify an ALS point cloud into 

building and non-building classes by two different feature combinations: with and 

without color features. Based on their results, they stated that color features do not 

improve the classification and suggested further research to address the incorporation 

of color information. In contrast, using a so-called sparse manifold CNN, Schmohl and 

Soergel (2019) obtained a 0.8% higher overall accuracy when using additional color 

information on their test set segmentation. Xiu et al. (2019) classify ALS point cloud 

data concatenated with color (RGB) features from an orthophoto using a PointNet 

architecture. By applying RGB features, overall accuracy increased by 2%, from 86% to 

88%. Additionally, Poliyapram et al. (2019) propose end-to-end Point-wise LiDAR and 

a so-called Image Multimodal Fusion Network (PMNet) for classification of an ALS 

point cloud of Osaka city in combination with aerial image RGB features. Their results 

show that the combination of Intensity and RGB features could improve overall 

accuracy from 65% to 79% while the performance in identifying buildings improved by 

4%.  

Despite the result inconsistencies of previous work using RGB features in ALS point 

cloud classification, to the best our knowledge, impact on the classification of using 

RGB image features in high-rise building areas where relief displacement has not yet 

been analysed. We conclude that the beneficial effect of using RGB features in ALS 

point cloud classification is unclear and indecisive. A possible explanation for the 

inconsistency of the results are problems in the fusion of the ALS point cloud and the 

color information.  

Effective classification with imbalanced data is still an important research area for 

real-world applications (Johnson and Khoshgoftaar, 2019). Most of the imbalanced 

class distribution relates to loss in performance (Hensman and Masko, 2015). Lin et al. 

(2018) introduce a focal loss function to address class imbalance in object detection in 

a case of extreme imbalance between foreground and background pixels. 
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3.2.2 Vectorization 

3.2.2.1 Road vectorization 

The complex appearance and topology of roads explains why road extraction remains 

a difficult task in remotely sensed data (Bendouda and Berrached, 2018). Clode et al. 

(2007) propose road centerline extraction by convolving a binary road image with a 

complex kernel, called Phase Coded Disk, which uses phase to encode the angle of a 

line. An initial road boundary is derived via supervoxels and graph cuts (Zai et al. 2017). 

Then, CNN-based boundary completion is used to complete road boundaries affected 

by gaps. To obtain a smoother and more accurate boundary, road centerlines extracted 

from GNSS trajectory points and satellite images are used as completion guidance for 

a generative adversarial network (GAN) model. Still, the method has a large error 

distance (the average distance between added points and their nearest corresponding 

point on the ground truth boundary) on curvy roads.  

Boyko and Funkhouser (2011) partitioned road points into several patches using a 

road map and then fitted a ribbon-snake (width extended active contour) to model road 

boundaries. In an area where several snakes meet or touch, the method results in jagged 

and disrupted road areas due to the absence of inter-snake interaction. Moreover, the 

method does not explicitly deal with road intersections and requires parameter tuning 

in terms of the energy field, which limits the automation. Widyaningrum and 

Lindenbergh (2019) used parallel thinning skeletonization of road binary images to 

extract the road centerline and then applied a connectivity-based approach to extract 

the network topology and regularize the skeleton to obtain smooth lines. However, the 

road polygon (road edges) are often not accurate as the method uses the same width for 

all roads in the study area and not applicable for curvy roads.  

Xu and Poullis (2019) implemented a post-processing refinement step which 

converts road pixels classified by the SegNeXt architecture into final road network 

vectors using iterative Hough transform. A set of study areas (Tokyo, Chicago, Boston, 

and Amsterdam) were used to determine how post-processing affects the accuracy and 

completeness of the extracted road network. Their results produce on average 

comparable results and in some cases better than the DeepRoadMapper (Mattyus et al., 

2017) and RoadTracer (Bastani er al., 2018) method. 

3.2.2.2 Building vectorization  

Building outline extraction methods can be classified into two groups: indirect and 

direct approaches. Direct method directly work on 3D point clouds, while indirect 

approaches require prior conversion from point cloud into other data representation 

(e.g. height model). A direct method implemented by Sampath and Shan (2007) used a 

modified convex hull combined with hierarchical least-squares regularization to obtain 

building outlines. Lach and Kerekes (2008) perform boundary extraction from point 

cloud data using a 2D alpha-shape and consecutive regularization. Albers et al. (2018) 

3.2 Related work 
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used a Hough transform to regularize building boundary points selected by a 2D alpha-

shape. The intermediate result got repositioned based on energy minimization. Huang 

and Sester (2011) reconstruct building footprints by first segmenting the 3D point cloud 

with a 3D Hough transform and then use roof heights and ridge information as 

additional parameters for the statistical reconstruction of a building footprint using a 

method called Reversible Jump Markov Chain Monte Carlo (RJMCMC). The proposed 

method only consider rectangular shapes. 

Using indirect method, Zhao et al. (2016) used boundary tracing of building regions 

detected by connected component analysis. First a point cloud is converted into a 

Digital Surface Model (DSM), then trees are removed by NDVI filtering, next 

regularization is applied based on principal directions. Jarzabek-Rychard (2012) report 

on straight-line extraction using Random Sample Consensus (RANSAC) in a height 

image derived from a LiDAR point cloud. Regularization is then performed by merging 

close parallel line segments and adjusting angles according to a mean direction estimated 

from the longest line segments.  

Based on the existing work related to our study, it is concluded that: 

1. Finding optimal input feature combination for airborne point cloud classification 

using a deep learning approach incorporating RGB color image remains an open 

issue due to inconsistencies between different research results.  

2. As class imbalance is naturally inherent in many remote sensing classification 

problems, providing a sufficient amount of good quality training samples 

without overfitting the data is still an important research topic. 

3. There is still an open discussion to improve the quality of road network 

extraction results, in particularly when dealing with road intersections, gaps, and 

curved roads. 

3.3 Study area and data specification 

The study area is located in the second-largest Indonesian metropolitan area, Surabaya 

city in West Java Province. The city is characterized by dense settlement areas with 

various types of well-connected roads. Surabaya city is home to numerous high-rise 

buildings and skyscrapers. Although many parks exist, vegetation in Surabaya city is 

dominated by trees. The study area covers 21.5 km², and coincides with four Indonesian 

1:5.000 base map sheets: 1408-4149A, 1408-4149B, 1408-4149C, and 1408-4149D as 

shown in Figure 3.1.a.  

The ALS point cloud is captured by an Optech Orion H300 instrument and has an 

average density of about 30 points/m². The aerial photos captured at the same time by 

a tandem camera have a spatial resolution of 8 cm with less than 15 cm positional 

accuracy. The ALS point cloud used for our research consists of 354.197.545 points. 

The ALS point cloud comes divided into two classes: ground and non-ground points. 
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The dataset is projected in the UTM49 South coordinate system using the WGS84 

geoid. Both LiDAR point cloud and aerial photos are acquired from the same platform 

at the same time in 2016. The reference data used to label the points and to evaluate the 

final results is an Indonesian 1:1.000 base map from 2017. The base map is acquired by 

manual 3D delineation from the same aerial photos. 

 

3.4 Methodology 

This study takes a point cloud colored by an orthophoto as an input to estimate 

automatically 2D urban map objects. These consist of building blocks and road 

networks in vector format (polygon or polyline). The object boundaries represent the 

footprints of buildings and road outlines that are orthogonally projected on a horizontal 

plane. In other words, the output of this study are smooth and accurate boundaries of 

building blocks and road networks to be presented on a large scale 2D map.  

Our methodological workflow consists of two main tasks: classification and 

vectorization (Figure 3.2). The point-wise classification task is performed first to 

automatically label the points into several object classes. This includes training set 

preparation, training by DGCNN, and evaluation of the classification results. 

Vectorization is then performed to extract road centerlines and building block outlines 

to be presented on a map. In the following, proposed methods are described focusing 

on Steps 2 and 3: classification and vectorization. 

3.4.1 Point-wise deep learning classification 

The goal of classification is to obtain class labels for each point of a point cloud. We 

aim for four point cloud classes: bare land, trees, buildings, and roads. Due to the limited 

number of LiDAR points covering water in the study area, a water class is not included. 

Vegetation other than trees is not required for our map. 

   

(a) (b) (c) 
Figure 3.1.  Input data and coverage of Surabaya city, Indonesia. (a) Orthophoto of the study area 
covering the four indicated 1:5000 map sheets; (b) ALS point cloud covering the 1408-4149C map sheet 
colored by elevation; (c) The 1:1.000 base map of the 1408-4149C map sheet containing buildings 
(orange), roads (red), and water-bodies (blue). 

3.3 Study area and data specification 
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Figure 3.2. The methodological workflow to extract urban map objects (buildings and roads) 
automatically from ALS point cloud and super-imposed orthophoto. 

 

 

This study uses a Dynamic Graph CNN (DGCNN) architecture proposed by Wang 

et al. (2018) for classification. DGCNN is a pointwise neural network architecture that 

combines PointNet and a graph CNN approach. The network architecture uses a spatial 

transformation module and estimates global information, like PointNet. The Graph 

CNN approach captures local geometric information while ensuring permutation 

invariance. It extracts edge features through the relationship between a central point 

and neighbouring points by constructing a nearest-neighbor graph that is dynamically 

updated. 

3.4.1.1 Training set preparation 

As our method requires spectral information, the first step is to project RGB (Red 

Green Blue) color information from an orthophoto onto the ALS point cloud data by 

nearest neighbor. Next, the point cloud data is downsampled to 1 meter 3D spacing for 

efficiency and to facilitate the capturing of global information. For the classification 

task, the 1408-4149C map sheet is used as test data and the remaining map sheets (1408-

4149A, 1408-4149B, and 1408-4149D) are used as training samples (see Figure 3.1.a). 

To label the points, 2D building and road polygons from the 1:1000 base map of 

Surabaya city were used. Although the point cloud data used in this study is already 

classified into ground and non-ground points, two challenges needed to be solved when 
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using a 2D base map to label the point cloud. First, the corresponding base map does 

not provide information on trees. Second, as we use 2D base map polygons to label the 

points, the labeled building and road points may include many mislabeled points in case 

trees exist above buildings or roads. Therefore, we perform hierarchical filtering to label 

tree and bare land points based on surface roughness. The method is also intended to 

improve the quality of the training samples by removing likely mislabeled points on 

buildings and road points. 

The labeling criteria are as follows:  

 From the non-ground points, points are labeled as building using 2D building 

polygons of the base map. Using the same method, ground points are labeled as 

road. Remaining points are labeled as bare land.  

 From the points labeled as building or road, any point that has surface roughness 

above a threshold is re-labeled as tree. The surface roughness is estimated for 

each point based as the distance to the best fitting plane estimated using all 

neighboring points inside an area of 2m × 2m. Given the resulting roughness 

values for both trees and building points in selected test areas, and given the fact 

that tree canopies in the study area have a minimum diameter of about 3m, the 

roughness threshold is set empirically to 0.5m.  

 A Statistical Outlier Removal (SOR) algorithm is performed to remove 

remaining outliers. We set the threshold for the average distance (�̅�) = 30 and 

multiplier of standard deviation = 2. This means, the algorithm calculates the 

average distance of 30 k-neighboring points and then removes any point having 

distance more than �̅� + 2 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛.  

 As final step, training samples data are converted to the hdf5 (.h5) format by 

splitting each part of the area into blocks of size 30m × 30m with a stride of 

15m. These thresholds are set empirically for our data and study area to ensure 

local geometry is captured efficiently by the network. 

3.4.1.2 Point cloud classification by a DGCNN  

DGCNN is chosen as the network to perform point cloud classification. DGCNN 

architecture (see Figure 3.3) incorporates a so-called EdgeConv module to capture local 

geometric features from points, which is missing in previous point-wise deep learning 

architectures (Xie et al. 2019). EdgeConv constructs a local graph between a point and 

its k-nearest neighbor points and applies convolution-line operations on the graph 

edges. DGCNN uses PointNet (Qi et al. 2017) as basic architecture but combines it 

with graph CNNs. Instead of using fixed graphs, like other graph CNN methods, 

EdgeConv updates its neighborhood graphs dynamically for each layer of the network, 

thereby effectively increasing the spatial coverage of the neighborhoods, as the 

convolution step between layers down-samples the point cloud.  
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Each EdgeConv block applies an asymmetric edge function ℎΘ(𝑥𝑖 , 𝑥𝑗) = 

ℎΘ(𝑥𝑖, 𝑥𝑗 − 𝑥𝑖) across all layers to combine both the global shape structure (by 

capturing the coordinates of the patch center 𝑥𝑖) and the local neighborhood 

information (by capturing (𝑥𝑗 − 𝑥𝑖)) as shown in Figure 3.4. Similar to PointNet and 

PointNet++, the aggregation operation to downsample the input representation in 

DGCNN is max pooling. 

 

  

(a) (b) 

Figure 3.4 Basic differences between PointNet and DGCNN. (a) The PointNet output of the 

feature extraction 𝒉(𝒙𝒊), is only related to the point itself, (b) EdgeConv of the DGCNN elaborates 

the local geometry relationship 𝒉(𝒙𝒊, 𝒙𝒋 − 𝒙𝒊)  of a point to its neighbourhood. Here, a 𝑘-nn graph 

is constructed with 𝑘 = 4. 

 

(a) 

  
(b) (c) 

Figure 3.3 The DGCNN components for semantic segmentation architecture (a) The network  uses 
spatial transformation followed by three sequential EdgeConv layers and three fully connected layers. 
A max pooling operation is performed as a symmetric edge function to solve for the point clouds 
ordering problem, i.e. it makes the model permutation invariant while capturing global features. The 
fully connected layers will produce class prediction scores for each point; (b) A spatial transformation 
module is used to learn the rotation matrix of the points and increase spatial invariance of the input 
point clouds; (c) EdgeConv which acts as multi-layer perceptron (MLP), is applied to learn local 
geometric features for each point. Image source: Wang et al. (2018).  
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Suppose a point cloud is given with n points, each consisting of F features, denoted 

by 𝑋 = {𝑥1, … , 𝑥𝑛} ⊆  𝑅𝐹. In our case, feature dimensionality of 𝐹 = 9, as each point 

consists of 3D coordinates and 6 other features (e.g.  RGB color, normalized spatial 

location, Intensity, etc.). Recall that a graph consists of a set of objects, V (nodes) and 

their relations, E (edges). For each point, 𝑥𝑖 , DGCNN constructs a labeled k-nearest 

neighbor star graph whose vertices are 𝑥𝑖 and  the nearest neighbors, while its edges  

(𝑖, 𝑗1),…,(𝑖, 𝑗𝑘) connect 𝑥𝑖  to the points 𝑥𝑗1, … , 𝑥𝑗𝑘 closest to 𝑥𝑖. The k-nearest 

neighbours of a point dynamically changes from layer to layer of the network and are 

computed sequentially. The k-nearest neighbours of a point dynamically changes from 

layer to layer of the network and are computed sequentially. The edge function is 

defined as 𝑒𝑖𝑗 =  ℎΘ(𝑥𝑖 , 𝑥𝑗), where ℎΘ:𝑅𝐹 × 𝑅𝐹 → 𝑅𝐹′ is a non-linear function that 

contain learnable parameters Θ, and Θ = (𝜃𝑖 , … , 𝜃𝑘) is the weights of the filter to be 

optimized in each edge convolutional layer. 

3.4.1.3 The choice of feature combinations and loss functions 

Similar to PointNet and DGCNN, each point in the point cloud input is attributed with 

a 9 dimensional feature vector consisting of three spatial coordinates (x, y, z) and six 

additional features. Candidate additional features are: spectral color information (Red, 

Green, Blue), normalized 3D coordinates (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧), and off-the-shelf LiDAR 

features (Intensity, Return number, and Number of returns). Normalized 3D 

coordinates (𝑛𝑥, 𝑛𝑦 , 𝑛𝑧) are used as additional features by PointNet, PointNet++, 

DGCNN, and other networks to boost the translational invariance of the algorithm (Qi 

et al. 2018). Normalized 3D coordinates, in which the point cloud original coordinates 

are transformed to a common space coordinate (ranging from 0 to 1) by dividing x, y, z 

values by theirs maximum value of each tile, are expected to give global information. In 

the indoor case, normalized point coordinates provide a strong indication on the type 

of object (e.g. floor always has Z value close to 0, walls have X or Y values at 0 or 1, 

etc). This study tries to investigate the effectiveness of such normalized coordinates in 

the outdoor scenarios of orthogonal airborne point clouds. To evaluate the contribution 

of each feature, we compare four different sets of feature vectors as presented in Table 

3.1.  

Table 3.1 Different feature combinations 

Feature Set Set Name Features 

Set 1 RGB x, y, z, R, G, B, 𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 

Set 2 IRnN x, y, z, I, Rn, N, 𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 

Set 3 RGI x, y, z, R, G, I, 𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 

Set 4 RGBIRnN x, y, z, R, G, B, I, Rn, N 
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Description of different feature Sets presented in Table 3.1 is explain as the following. 

 Feature Set 1 uses the default feature combination, as widely used by indoor 

point cloud benchmarks (e.g. S3DIS dataset). It consists of 3D coordinates, 

RGB color, and normalized coordinates. 

 Feature Set 2 replaces RGB color by LiDAR features IRnN (Intensity, Return 

number, and Number of returns) to evaluate the importance of LiDAR features. 

 Feature Set 3 combines two color channels (Red and Green) with LiDAR 

intensity to investigate the importance of spectral features. 

 Feature Set 4 combines full RGB color features and LiDAR IRnN features and 

excludes normalized coordinates to evaluate the importance of global geometry. 

During training, 4096 points are uniformly sampled from each training block of size 

30m × 30m, to form data batches with a consistent number of points, while all points 

are used during testing. We used 9 features for training, therefore, the size of the data 

fed into the network is 4096 × 9. We use 𝑘 = 20 nearest neighbors for each point to 

construct the k-nearest neighbor graph. For all experiments, the final model is obtained 

after running 51 epochs, optimized by an Adam optimizer with an initial learning rate 

of 0.001, a momentum of 0.9, and a mini batch size of 16. The 3D point cloud semantic 

segmentation using DGCNN is performed on the High Performance Computing 

(HPC) environment of Delft University of Technology, consisting of 26 computing 

nodes. For training, two Tesla P100-16GB GPUs were used.  

Deep neural network learns to map a set of input to a set of output based on the 

training data. At each training step, the network compares the model predictions to 

actual labels to determine and increase the model performance. Typically, gradient 

descent is used as optimization algorithm to minimize the error and update the current 

model parameters (weights and biases). To calculate the model error, a loss function is 

used.  

A class imbalance exists in our study area because it is heavily dominated by 

buildings (59%) and trees (19%). Therefore, we investigate two different loss functions 

that are incorporated within the DGCNN architecture:  Softmax cross entropy loss and 

Focal loss (Lin et al., 2017). 

(1) Softmax Cross Entropy (SCE) loss. This is a combination of a Softmax 

activation function and cross-entropy loss. Softmax is frequently appended to 

the last fully connected layer of a classification network. Softmax converts logits, 

the raw scores output by the last layer of the neural network, into probabilities 

in the range 0 to 1. The function converts the logits into probabilities by taking 

the exponents of the given input value and the sum of exponentials of all values 

in the input. The ratio between the exponential input value and the sum of 

exponential values is the output of softmax. Cross entropy describes the loss 

between two probability distributions. It measures the similarity of the 

predictions to the actual labels of the training samples.  
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Consider a training dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖)|𝑖 ∈ {1,2,… ,𝑀}} with 𝑥𝑖 input data 

within a batch of size 𝑀, and 𝑦𝑖 is the 𝑖-th label target (one-hot vector) of 

𝐶 classes. 𝑓(𝑥𝑖) denotes the dimensional feature vector before the last fully 

connected layer of 𝐶classes. 𝑊𝑗and 𝑏𝑗 , 𝑗 ∈ {1,2,… , 𝐶} represent the trainable 

weights and biases of the 𝑗-th class in Softmax regression, respectively. Then the 

SCE loss is written as follows:  

ℒ𝑆𝐶𝐸 = −∑ log (
𝑒𝑥𝑝(𝑊𝑦𝑖

𝑇 𝑓(𝑥𝑖)+𝑏𝑦𝑖
)

∑ 𝑒𝑥𝑝𝐶
𝑗−1 (𝑊𝑗

𝑇𝑓(𝑥𝑖)+𝑏𝑗)
)𝑀

𝑖=1           (3.1) 

(2) Focal loss is introduced to address accuracy issues due to class imbalance for 

one-stage object detection.  Focal loss is a cross-entropy loss that weighs the 

contribution of each sample to the loss based on the classification error. The 

idea is that, if a sample is already classified correctly by the network, its 

contribution to the loss decreases. Lin et al (2017) claim that this strategy solves 

the problem of class imbalance by making the loss implicitly focus on 

problematic classes. Moreover, the algorithm weights the contribution of each 

class to the loss in a more explicit way using Sigmoid activation. The focal loss 

function for multi-classification is defined as: 

ℒ𝐹𝐿 = −∑ (𝑦𝑖
𝐶
𝑖=1 log(𝑝𝑖) (1 − 𝑝𝑖)

𝛾𝛼𝑖 + (1 − 𝑦𝑖) log((1 − 𝑝𝑖)𝑝𝑖
𝛾(1 − 𝛼𝑖))  (3.2) 

where 𝐶 denotes the number of classes; 𝑦𝑖 equals 1 if the ground-truth belongs 

to the 𝑖-th class and 0 otherwise; 𝑝𝑖 is the predicted probability for the 𝑖-th class; 

𝛾 ∈ {0,+∞} is a focusing parameter; 𝛼 ∈ {0,1}  is a weighting parameter for 

the 𝑖-th class. The loss is similar to categorical cross entropy, and they would be 

equivalent if  𝛾 = 0 and 𝛼𝑖 = 1. 

3.4.1.4 Classification evaluation 

To evaluate the prediction accuracy of different feature combinations and loss 

functions, the training set results are evaluated. This study uses several performance 

metrics as follows: 

 Overall accuracy, indicating the percentage of correctly classified points of all 

classes from the total number of reference points. This metric shows general 

performance of the model, thus, may provide limited information in case of class 

imbalance. 

 Confusion matrix, a summary table reporting the number of true positives, true 

negatives, false negatives and false positives of each class. The matrix provides 

information on the prediction metrics per-class and the types of errors made by 

the classification model. 

 Precision, Recall, and F1-score. Precision and Recall are metrics commonly used 

for evaluating classification performance in Information Technology and related 

to the False and True Positive Rates (Raschka, 2014; Tharwat, 2020). The recall 

(also known as completeness) refers to the percentage of the total points 
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correctly predicted by the model, while the precision (also known as correctness) 

refers to the percentage of the results that are relevant. The F1-score is a 

weighted average of precision and recall to measure model accuracy. 

3.4.2 Road network vectorization 

In this research, road network vectorization aims at obtaining the centerline and 

boundary of roads, starting from airborne 3D points classified as road. The centerline 

of the road is represented by a polyline while the road surface boundary is represented 

by a polygon. Following the methodology in Figure 3.5, road vectorization is divided 

into two major tasks: skeletonization and road completion. Skeletonization extracts the 

road centerline while completion smooths and completes both road centerline and 

boundary. 

 

Figure 3.5 Pipeline of road network vectorization consists of two main tasks: skeletonization (inside 
the yellow box) and road completion (inside the green box). The method requires points classified 
as road as input data. 

3.4.2.1 Road skeletonization 

The first step of the proposed road network vectorization removes noise that remained 

in the classified road points. This study considers isolated points or groups of less than 

10 points as noise or outliers. We apply DBSCAN clustering (Ester et al., 1996) to 

remove noise as this algorithm has the capability to handle arbitrary shapes including 

roads.  
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The second step, 2D rasterization, converts a set of noise-free road points to obtain 

a gridded image representing road and non-road pixels. A Kernel Density Estimator or 

KDE (Parzen, 1962) is used to estimate the density of points per-unit-area by a kernel 

function. Each grid of the output raster has a value determined by the density of 

neighboring points within a given radius. The KDE function is selected to exclude the 

area outside the road and to avoid gaps on the road caused by occlusions such as cars 

or trees. A weighted-distance Gaussian kernel of radius 2.5m is applied to obtain a 

density image of cell size 0.5m.  

Third, skeletonization is performed to estimate the road centerline. Fast parallel 

thinning introduced by Zhang and Suen (1984) is applied to estimate the 2D centerline 

of a road. The basic principle of the algorithm is to remove all pixels, layer by layer, 

starting from the boundary of the shape until only those pixels belonging to the skeleton 

remain. The algorithm requires a binary input image and preserves skeleton connectivity 

by using sub-iteration for each boundary removal iteration. The binary image consists 

of road (value 1) and non-road pixels (value 0). The parallel thinning algorithm only 

operates on pixels of value 1, representing the road. 

As illustrated in Figure 3.6.a, the black pixels assigned with number 1 represent the 

original road pixels. The algorithm processes only points P1 fully surrounded by black 

pixel neighbors in a 3 × 3 window as in Figure 3.6.b.  That is, black pixels at the border 

and corners of the image are excluded. Next, thinning proceeds by removing non-

skeleton pixels (change value of black pixel from 1 to 0) simultaneously until the 

skeleton pixels (white pixels with 1) remain. The skeleton result of the parallel thinning 

algorithm is presented in Figure 3.6.c. 

 

 

 

 

(a) (b) (c) 

Figure 3.6 Road skeletonization obtained by parallel thinning of binary image. (a)  Input binary image 

(black: road pixel, white: non-road pixel); (b) neighbors of 𝑃1 in 3 × 3 window; (c) Skeleton result 
(black: road pixel; white: skeleton pixel).  
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The first sub-iteration checks any pixel P1 to be removed or set to 0 if it satisfies all 

conditions as follows: 

C.1 Pixel P1 is black and has eight neighbors; 

C.2 2 ≤ S(𝑃1) ≤ 6 with S(𝑃1) is the number of black (non-zero) neighboring 

pixels of P1; 

C.3 The number of transition from white to black (0  1) of the neighbors 

ordered clockwise, equals 1; 

C.4 At least one of (P2, P4, P6) is white (𝑃2 × 𝑃4 × 𝑃6 = 0); 

C.5 At least one of (P4, P6, P8) is white (𝑃4 × 𝑃6 × 𝑃8 = 0). 

The second sub-iteration re-examines each pixel and set its value to 0 whenever it 

satisfies both C.1 to C.3 and C.4' and C.5'. 

C.4'    At least one of (𝑃2,𝑃4,𝑃8) is white (𝑃2 × 𝑃4 × 𝑃8 = 0); 

C.5'    At least one of (𝑃2,𝑃6, 𝑃8) is white (𝑃2 × 𝑃6 × 𝑃8 = 0). 

3.4.2.2 Road centerline simplification 

Skeletonization results in jaggy centerlines, therefore line simplification is applied. 

Visvalingam-Whyatt (1993) simplification is used. As illustrated in Figure 3.7, the 

algorithm iteratively removes vertices of least perceptible change based on triangles 

formed by three consecutive vertices. For any smallest triangle having an area smaller 

than a given area threshold, the middle vertex is removed. After each vertex removal, 

triangles are recomputed and the process is repeated. We set the area threshold to 0.3 

meter to simplify centerlines, which is sufficient to preserve the shape of curved roads 

as exist in our study area. 

 
 

Figure 3.7 Road centerline smoothing by a Visvalingam-Whyatt approach. (a) the centerline 
input consists of line segments (black) and its points; (b) triangles of 3 consecutive points are 
formed; the blue triangle has the smallest area; (c) remaining line segments and points after 
deletion of the blue point, the green triangle is the smallest; (d) remaining line segments and points 
after deletion of the orange point; (e) remaining end points resulting in a smoothed centerline. 
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3.4.2.3 Road completion 

We propose a tree-constrained extended dangle completion approach to fill in road gaps 

due to dense trees. A road gap is defined as an area that belongs to the road but due to 

some reasons is not detected, resulting in a disconnected road network. In this step, 

classified tree points are required to indicate which gaps on the road should be 

completed.  

Polygons representing tree coverage are extracted from points classified as tree using 

an alpha-shape (Edelsbrunner et al., 1983) based boundary. The proposed algorithm 

finds dangle points by searching for end-points of road lines. A radial buffer polygon, 

also called dangle space, is created for each dangle point. Based on the average of 

corresponding road width, the determined buffer radius to estimate the dangle space is 

4 meter. Next, the intersection between dangle space and tree polygon is examined. A 

road gap is detected if two different dangle spaces intersect one tree polygon (Figure 

3.8.a). From this pair of dangle polygons, a line connecting the corresponding dangle 

points is created. The line is used to fill in the road gap. The newly created line is then 

added to the existing road centreline (Figure 3.8.b).  

  

(a) (b) 

Figure 3.8 Road centerline completion by a tree-constrained extended dangle method. (a) A missing 
centerline segment is identified as non-empty intersection between tree polygon (green) and the dangle 
polygon (white circle) of a dangle point (purple); (b) road gap filling adds new road segments (red lines 
inside dotted white circles) forming a complete road centerline.  

 

Width-based buffering is applied to obtain road polygons. The road width is 

estimated by a Euclidean distance transform of the skeleton to the boundary. The 

distance transform finds the minimum distance between any point in the image to the 

closest zero pixel of the binary road image. The Euclidean distance is estimated by the 

following equation: 

𝑑𝑖 = √∑ (𝑝𝑖 − 𝑏𝑖
2)𝑛

𝑖     (3.3) 

𝑝𝑖= input points of the skeleton 
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𝑏𝑖= the background point (value=0) where the smallest distance occurs to input point 𝑝𝑖 . 

𝑛= number of input points 

 

Using the same binary image as for skeletonization, we estimate the road width by a 

distance transform. Such method results in another type of skeleton that encodes the 

maximum distance between any skeleton pixel and its corresponding edge pixels. The 

estimated width is assigned to the smoothed centerline by a spatial join. In this case, the 

smoothed centerline segment records the average of all the distance values that is 

intersect to any distance skeleton pixel. The final width used for the next step is the 

average of these widths. The smoothed centerline segment is buffered according to the 

estimated width.  

3.4.2.4 Road evaluation 

For evaluating the geometric accuracy of resulting road vectors, this study implements 

a set of area-based quality metrics, which are calculated based on polygon. To estimate 

the True Positives (TP), False Positives (FP), and False Negatives (FN), the evaluation 

method requires polygons created by buffering the road centerline results and the 

centerline references (see Figure 3.9). 

 

Figure 3.9 Polygon matching principle to estimate the total matched area between road result and 
reference polygons. Matched area is considered as TP (blue), area only found in the result is 
considered as FP (gridded area), otherwise FN (white). 

In addition, the extraction rate is also computed by comparing the length of road 

segments in the result and in the reference within 1.5 meter buffer. Road quality metrics 

(Completeness and Correctness) are then computed using Equation 3.4 to 3.5 below. 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%   (3.4) 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%                        (3.5) 

Completeness describes how well reference data is explained by the extracted road and 

is determined by the ratio of area/length of the matched reference to the total 

area/length of the reference data. Correctness represents the percentage of correctly 

extracted road data and is determined by the ratio of the area/length of the matched 

extraction to the total area/length of matched extraction (Rottensteiner and Clode, 

2009).  
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3.4.3 Building vectorization 

Our study area is located in a metropolitan city. Buildings in such area, which share 

building walls, form a building block. The building blocks are basic information essential 

for practical urban planning and design (Spiller and Agudelo, 2011) and urban spatial 

analyses (Salomons and Point, 2012). To extract building polygons, we use our previous 

work presented in Chapter 5 (Widyaningrum et al., 2020) that extended a 2D shrinking 

circle algorithm (Ma et al., 2012) to extract skeletal building points. The shrinking circle 

method works directly on points so rasterization is not necessary. The shrinking circle 

method estimates the skeletal points of a shape by fitting maximally inscribed circles to 

the given boundary points, based on nearest neighbors and normal vectors. The skeletal 

points are the center points of all maximally inscribed circles. The workflow of building 

block outline extraction is illustrated in Figure 3.10. 

 

 
Figure 3.10 Building outline extraction using medial axis descriptors. (a) building points classified 
by a DGCNN; (b) clustered building point, different color different cluster; (c) initial building block 
boundary (green line) is estimated by alpha-shape algorithm; (d) corner estimation by a MAT 
descriptors; (e) final smooth building block outline (green). 

On the classified building points, DBSCAN clustering algorithm is performed to 

divide building points into several building clusters. For each building cluster, boundary 

points are selected by an alpha-shape algorithm. On the resulting boundary points, a so-

called shrinking circle method is applied to generate the medial building block points. 
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Here, medial refers to a specific skeleton definition. The medial axis descriptors (circle 

radius, angles and normals) of all skeletal points are extracted and used for the next 

process, the corner-based segmentation. The real corner position is estimated by fitting 

a line to each skeletal segment followed by extrapolating the zero-radius location on 

that fitted line. Final smooth and accurate outlines are obtained by connecting the 

corner points based on theirs indices.  

3.5 Results and discussion 

This section, at first, provides quantitative and qualitative results on point cloud 

classification by DGCNN with different feature combinations. Second, the evaluation 

of the vectorization results are presented. Third, supplementary discussion related to 

the use of two different loss functions and the use of RGB features from orthophotos 

in case of high-rise buildings is presented. 

3.5.1 Classification results 

To investigate the best feature combination to classify ALS point cloud colored by an 

orthophoto using a deep learning approach, three different metrics 

(completeness/recall, correctness/precision, and F1-score) along with Overall 

Accuracy (OA) are used. For ALS point cloud classification, four different feature 

combinations and two loss functions are compared. The total number of samples used 

for training is 30.929.919 points, dominated by building points (59%). Trees, bare land 

and road classes are sampled by 21%, 13% and 7%, at the points respectively.  

Table 3.2 shows the classification results of all predefined feature combinations and 

loss functions used in this study. Based on the evaluation results, feature Set 4 achieves 

the highest overall accuracy (91.8%) and F1-score for all classes. In general, the use of 

normalized coordinate features (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧) in combination with other features is not 

as effective as the combination of spectral color with LiDAR features. The use of full 

RGB color and off-the-shelf LiDAR features significantly improves the F1-score of 

trees class by at least 7% and buildings by 5.7%. 

Table 3.2 Point cloud classification results of different feature combinations. 

Feature 

Set 

 

Feature  vector 

OA 

(%) 

F1-score (%) 

Bare land Trees Buildings Roads 

Set 1 x, y, z, R, G, B, 𝑛𝑥, 𝑛𝑦 , 𝑛𝑧 83.9 83.0 80.3 87.3 75.1 

Set 2 x, y, z, I, Rn, N, 𝑛𝑥, 𝑛𝑦 , 𝑛𝑧 85.7 84.2 81.6 89.1 79.0 

Set 3 x, y, z, R, G, I, 𝑛𝑥, 𝑛𝑦 , 𝑛𝑧 83.9 83.5 79.9 87.4 74.9 

Set 4 𝐱, 𝐲, 𝐳, 𝐑, 𝐆, 𝐁, 𝐈, 𝐑𝐧, 𝐍 91.8 87.7 88.6 94.8 84.1 
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Table 3.3 Per-class classification metrics of different feature combinations. 

Feature 
Set  

OA 

(%) 

Bare land (%) Trees (%) Buildings (%) Roads (%) 

Prec. Recall Prec. Recall Prec. Recall Prec. Recall 

Set 1 83.9 76.2 91.2 81.6 79.0 87.6 87.0 83.9 68.0 

Set 2 85.7 77.5 92.1 88.4 75.7 86.9 91.4 84.2 74.5 

Set 3 83.0 76.3 92.1 82.3 77.7 86.9 87.8 86.1 66.2 

Set 4 91.8 85.2 90.4 93.3 84.3 93.4 96.2 86.9 81.6 

 

Based on the class quality metrics presented in Table 3.3, the potential of different 

feature combinations to predict different land cover classes in our test area is discussed 

below: 

 Bare land class 

The lowest recall rate is achieved by feature Set 4 RGBIRnN. This indicates that 

normalized 3D coordinates are useful to detect bare land correctly. The highest recall 

rates are achieved by feature Set 4. This is because feature Set 4 produces much less 

False Positives (FP), which makes the precision rate higher. Combination of LiDAR 

intensity and normalized coordinates (Set 2 and 3) effectively maintains a high number 

of points correctly classified as bare land, indicated by high recall (92.1%). On average, 

the road class has the lowest recall rates while the bare land class always has the lowest 

precision. This indicates that there is high confusion between bare land and road classes, 

which we assume mainly happens due to the presence of open areas having similar 

height and color such as parking areas, front yards, and backyards. 

 Tree class 

Feature Set 4 obtains the highest recall and precisions rate with a score of 84.3% and 

93.3%, respectively. The use of both RGB color and LiDAR information in feature Set 

4 significantly increases the tree detection by almost 11% compared to the other feature 

Sets. In general, the main source of error are trees misclassified as buildings, which 

particularly occurs for trees adjacent to buildings. Our results also show that there are 

more trees misclassified as building than buildings detected as tree which results in recall 

rates that are always lower than precision.  

 Buildings 

The recall and precision rate of building detection did remarkably improve when using 

feature Set 4. Likely, the decreasing number of confusions between buildings and trees 

induces higher building classification accuracy. The biggest error sources for building 

classification are small details on roofs and building façades classified as tree. 

 Roads 

Although the road detection accuracy is not as good as other classes, the highest recall 

and precision rate is achieved by feature Set 4 with 81.6% recall and 86.9% precision. 

Using RGB and intensity (Set 4) as input features significantly improves the recall rate 

of roads by reducing the number of road points detected as bare land.  

3.5 Results and discussion 



3. Automatic vectorization of urban map objects using DGCNN & skeletonization 

58 

   3 

Figure 3.11 visualizes the classification results of different feature combinations over 

a subset of our test area in comparison to the following data sources: base map, 

orthophoto, LiDAR intensity, and Digital Surface model (DSM).  

The white rectangle highlights an area where most classification results fail to 

detect a highway and an adjacent road of different height. Feature Set 1 results in 

misclassification of some points on the overpass highways as buildings and the adjacent 

road below the highway as bare land points (see white rectangle in Figure 3.11.a). 

Because roads, buildings, and bare land have similar geometric characteristics (e.g. 

planarity), using LiDAR intensity (Figure 3.11.g) in addition is beneficial to increase the 

roas classification accuracy. 

A sand pile exists in the study area due to construction work at the time of data 

acquisition (indicated by yellow ellipses in Figure 3.11). Only feature Set 4 correctly 

classifies the sand pile points as bare land while the other feature Sets falsely classify the 

sand pile as building. This suggests that using complementary airborne LiDAR and 

spectral orthophoto features is increasing detection accuracy. 

    
(a)  Feature Set 1  (b)  Feature Set 2  (c)  Feature Set 3  (d)  Feature Set 4  

    

(e) (f) (g) (h) 

Figure 3.11 Samples of different feature Set results. (a) to (d): classification results of four feature 
combinations in comparison to (e) base map, (f) aerial orthophoto, (g) LiDAR intensity, and (h) 
Digital Surface Model (DSM). In (a) to (e) blue color represents bare land, green represents trees, 
orange represents buildings, and red represents roads, respectively. 
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3.5.2 Vectorization results 

3.5.2.1 Road evaluation 

For road centerline and outline vectorization, road points produced by feature Set 4 are 

used as this feature combination returns the best quality result. Using the method 

described in Section 3.4.2, a road centerline is extracted from the input road points by 

skeletonization. Visvalingam-Whyatt simplification method regularizes the jaggy 

centerline as resulting from the skeletonization step. Skeleton-based road network 

vectorization consists of road skeletonization and road completion (Figures 3.12). 

 

 

(a)    (b) (c) 

 

               (e)             (d) 

Figure 3.12 Road skeletonization workflow. (a) road points obtained by DGCNN classification; (b) 
Noise-free road  points after DBSCAN clustering; (c) rasterization of the road points using a kernel 
density estimator; (d) Binary road network image; (e) Continuous road centerline obtained by a parallel 
thinning skeletonization. 

Figures 3.13.a and 3.13.b show the road centerline result and reference, respectively.  

The method successfully extracts almost all existing roads in the area while maintaining 

network topology. Narrow roads in dense settlement areas are also extracted by our 

method. Road polygons, which incorporate estimated road width, are presented in 

Figure 3.13.c. Applying area-based evaluation metrics described in section 3.4.2, shows 

that our method is able to deliver road polygon result with 80.6% completeness and 

72.6% correctness.  

3.5 Results and discussion 
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(a) (b) 

   

(c)  (d) 

Figure 3.13 Road centerline extraction results overlaid on orthophoto. (a) road centerlines from the 
proposed method (red); (b) reference centerline (green); (c) road polygons from the proposed method 
(red); (d) road network evaluation results: red indicates matched areas (true positive), green indicates 
undetected road areas (false negative), while blue indicates roads only detected by our method (false 
positive).  

We also evaluate the quality of road centerline results. Using 1.5 meter positional 

accuracy, the road centerline result is correct if it lies within 1.5 meter buffer from the 

reference centerline. Based on this evaluation, the method results in a completeness and 

correctness of 79.3% and 80.2%, respectively. Our method can detect several roads 

which are not presented in the reference centerlines (see comparison of two orange 

rectangles in Figure 3.13.a and 3.13.b) which possibly happens due to human error. 

Several road segments not presented in our result are usually small road paths which 
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sometimes covered by building roofs (see blue circles in Figure 3.13.a and 3.13.b). 

As shown in Figure 3.13.d, most false positive areas (blue) are found at complex 

road configurations like a highway adjacent to a road of different height or a road 

adjacent to a paved park (indicated by the black rectangles). In these two cases, our 

method detects two adjacent roads instead of one. Parking areas are often classified as 

road which also contributes to the false positive rate. False negatives are mostly 

correspond to several road segments not detected by our method. There are also cases 

where the resulting road polygons have smaller width than the reference, especially at 

the highway borders, which increases the false negative rate.  

3.5.2.2 Building evaluation 

Building outline vectorization is performed using the feature Set 4 classification result. 

Given the segmented building points, MAT-based approach successfully extract the 

corner of buildings and building blocks accurately. Figure 3.14 shows an area where 

building points are clustered into several blocks. In addition, the comparison between 

building block outlines and reference building outlines from the 1:1.000 base map are 

shown in Figure 3.14.c and 3.14.d, respectively. 

 

  
(a) (b) 

  
(c) (d) 

Figure 3.14 Building points of dense settlement forming a block. (a) 3D visualization of point 
classified as building shows the building roof irregularity of the area; (b) clustering the building 
points results in block of buildings rather than individual buildings; (c) the building block outlines 
result (red) extracted by a MAT method; (d) individual building outlines reference (green) shows 
human subjectivity in interpreting the building boundaries. 

3.5 Results and discussion 
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In some parts of our study area, the building points are grouped into several 

building blocks instead of individual buildings as buildings are closely located together. 

The lack of gaps between buildings, variation in roof shapes and color makes it difficult 

to separate building points in individual buildings. Sparser point cloud density caused 

by down-sampling during the classification makes it even more challenging. 

3.5.3 Supplementary discussion 

In this discussion we discuss two effects in the DGCNN classification: (i) the influence 

of the loss function used and (ii) the influence of so-called relief displacement, which 

causes some mismatch between ALS point clouds and RGB imagery.  

3.5.3.1 Loss function 

Even though class imbalance exists in our study area, the overall accuracy is not 

necessarily increased by applying a Focal Loss (FL) function as may be expected. Table 

3.4 shows the results on feature Set 4 when using two different loss functions: SCE and 

FL (𝛼 = 0.2, γ=2).  

 

Table 3.4 Point cloud classification results comparing two different loss functions, 

SoftMax Cross Entropy (SCE) and Focal Loss (FL) on feature Set 4. Results are 

quantified in terms of Overall Accuracy (OA) and F1-score. 

Loss 

function 
Feature  vector 

OA 

(%) 

F1-score (%) 

Bare 

land 

Trees Buildings Roads 

SCE x, y, z, R, G, B, I, Rn,N 91.8 87.7 88.6 94.8 84.1 

FL x, y, z, R, G, B, I, Rn,N 88.1 81.8 85.3 92.7 68.6 

 

The overall accuracy (OA) of the results of feature Set 4 decreases by 3.7% if using 

FL. However, the F-1 score for the bare land and roads classes drops by ~6% and 

~15%, respectively, if using FL. Our explanation for this is that the loss function 

focuses on decreasing the loss of the classes that produces large amount of misclassified 

points, in this case buildings and trees, thereby somehow neglecting bare land and 

notably roads.  

Based on the confusion matrix presented in Table 3.5, Feature Set 4 in combination 

with FL has the highest precision rate (86.7%) for trees, but the number of correctly 

detected tree points is lower than for the other feature Sets. This is because FL focuses 

on increasing the detection rate by evaluating the errors of the dominant class so that 

the number of misclassified tree points is decreasing. For building classification, the 

highest recall (93.7%) is achieved when using FL with only 0.3% recall difference SCE. 

For road classification, the use of FL doubled the number of false negatives compared 

to SCE. 
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Table 3.5 Confusion matrix matrix for results obtained by applying DGCNN on 

Feature Set 4 when using Focal Loss. The matrix contains numbers of points. 

Feature set 4 

(RGBIRnN) 

Reference 
Precision 

Bare land Trees Buildings Roads 

P
re

d
ic

ti
o

n
 

bare land 340,132 770 33,529 78,364 75.1% 

trees 304 553,175 105,094 42 84.0% 

building 18,099 83,704 1,552,315 3,367 93.7% 

road 20,557 97 763 112,952 84.1% 

Recall 89.7% 86.7% 91.8% 58.0% 88.1% 

 

The white rectangles and yellow ellipses in Figure 3.15 indicate (a) an area where 

some parts of the highway are misclassified as building and, (b) a sand pile is 

misclassified as building when using Focal Loss (FL). For our purposes, the SCE loss 

function performs better then FL in the DGCNN architecture. 

  
(a)   (b)   

Figure 3.15 Comparison of two classification results obtained using two different loss functions. (a) 
classification results using SCE loss function results in more complete roads; (b) classification results 
using FL. using FL returns incomplete roads (white rectangle) and falsely classifies a sand pile as 
building (yellow ellipse). 
 

3.5.3.2 Relief Displacement 

One drawback of using aerial photos is the positional shift of high elevated objects (e.g. 

high rise buildings). This effect is called relief displacement and is caused by variation 

in camera angle. Displacement errors increase with the height of the object and the 

distance to the acquisition location. Objects suffering from relief displacement in 

photos usually have bigger size in the photo than in reality, as some parts of vertical 

walls are exposed and buildings appear to lean to one specific direction. In aerial photo 

classification, relief displacement is considered as one of the main sources of mislabeling 

(Chen et al., 2018). Figure 3.16 shows a relief displacement error in an orthophoto of a 

leaning building that blocks a lower building and nearby trees. 

3.5 Results and discussion 
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The use of ALS point clouds is a way to detect objects blocked by high-rise buildings 

that even a human operator cannot identify in an orthophoto. For example, part of a 

building in Figure 3.16.c (highlighted by a white ellipse) is automatically and correctly 

detected by our method (yellow outline) but is missing in the building reference (pink 

outline). This means that even though we use ground orthophotos to color the point 

clouds, which, as a consequence, results in wrongly coloured points in case of relief 

displacement, the network we employ still classifies the points correctly. It is likely that 

during training, DGCNN is able to learn and give smaller weight or big penalties to the 

color features in case relief displacement exist, thereby favoring the geometric point 

cloud information. 

 

  

 

(a) (b) 
 

  

(c)  (d) (e) 

Figure 3.16 Relief displacement makes a high rise building block an adjacent lower building and trees. 
(a) The leaning of a building (inside orange circle) on an orthophoto indicates relief displacement; (b) the 
building in the orthophoto has an offset of up to 17 meter from the reference polygon (pink outlines); (c) 
the LiDAR DSM indicates a part of building that does not exist in the base map/reference (inside the 
black ellipse); (d)  DGCNN can detect building points (orange) correctly including the missing building 
part (inside the black ellipse); (e) 3D visualization of the classified building points including the missing 
building part (inside the white ellipse). 
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3.6 Conclusion and future works 

In this study, a complete methodology to automatically extracting the urban map objects 

(roads and buildings) using effective point-wise deep learning and skeletonization of a 

colored ALS point cloud. The proposed method shows promising results for extracting 

urban map objects automatically from the combination of real world ALS point clouds 

and orthophotos. We labeled the training samples used for classification using the best 

available public vector data from a 1:1000 base map.  Experiments were conducted to 

test various feature combinations and two loss functions to classify outdoor point cloud 

data using the recent DGCNN architecture. Based on the classification results, the 

combination of full RGB image features and airborne LiDAR features outperforms 

other feature sets and significantly increases the classification accuracy. The Softmax 

Cross Entropy loss function performs better than Focal Loss, although the latter loss 

function was included in the testing because of some class imbalance in our input data.  

The output of the classification step is used as input for road and building outline 

vectorization. Consider the road networks characteristics, skeletonization facilitates 

efficient extraction of continuous centerlines and network topology. Our road 

extraction method successfully delivers 89% completeness of existing roads. We found 

that the use of kernel density is partly useful to remove the small gaps on the road due 

to cars. We demonstrate the novel of road completion task based on tree-constrained 

approach to fill the road gaps. Still there is space for some improvement, especially 

considering the positional accuracy of road intersections that is affected by some 

skeletonization characteristics. Due to the orthogonality of the ALS point cloud, our 

method does not perform well on multi-level roads of different altitude.  

Further research should include multi-scale processing to enable individual building 

and tree crown extraction. The development of an optimal input feature and block size 

selection procedures are also worth to be studied further. Such procedures should 

largely replace the current empirical for increasing deep learning classification 

accuracy.Our research indicates that 3D deep learning matured so much that it is now 

actually able to extract geometric information as required for digital maps at near-

operational quality, but in a much shorter time than traditional workflows. The 

applicability of our method to data representing other cities and countries as well as 

possible extensions to rural environments is an interesting direction for future research.  

 

 

 

 

 

 

3.6 Conclusion and future works 
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4 
Automatic building outline extraction 
from ALS point clouds by ordered 
points aided Hough transform 
 

 

Many urban applications require building polygons as input. However, manual 

extraction from point cloud data is time- and labor-intensive. Hough transform is a well-

known procedure to extract line features. Unfortunately, current Hough-based 

approaches lack flexibility to effectively extract outlines from arbitrary buildings. We 

found that available point order information is actually never used. Using ordered 

building edge points allows us to present a novel ordered points–aided Hough Transform 

(OHT) for extracting high quality building outlines from an airborne LiDAR point 

cloud. First, a Hough accumulator matrix is constructed based on a voting scheme in 

parametric line space (𝜃, 𝑟). The variance of angles in each column is used to determine 

dominant building directions. We propose a hierarchical filtering and clustering 

approach to obtain accurate line based on detected hotspots and ordered points. An 

Ordered Point List matrix consisting of ordered building edge points enables the 

detection of line segments of arbitrary direction, resulting in high-quality building roof 

polygons. We tested our method on three different datasets of different characteristics: 

one new dataset in Makassar, Indonesia, and two benchmark datasets in Vaihingen, 

Germany. To the best of our knowledge, our algorithm is the first Hough method that is 

highly adaptable since it works for buildings with edges of different lengths and arbitrary 

relative orientations. The results prove that our method delivers high completeness 

(between 90.1% and 96.4%) and correctness percentages (all over 96%). The positional 

accuracy of the building corners is between 0.2–0.57 m RMSE. The quality rate (89.6%) 

for the Vaihingen-B benchmark outperforms all existing state of the art methods. Other 

solutions for the challenging Vaihingen-A dataset are not yet available, while we achieve 

a quality score of 93.2%. Results with arbitrary directions are demonstrated on the 

complex buildings around the EYE museum in Amsterdam.  

This chapter is organized as follows: Section 4.1 provides the background of the 

research. Section 4.2 describes related work on 2D building outline extraction. The 

methodological framework is presented in Section 4.3 while Section 4.4 describes 
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different test sets and data preprocessing steps used in this research. Section 4.5 presents 

sensitivity analyses and experiments, followed by Section 4.6 that presents and discusses 

results. Finally, conclusions and recommendations are given in Section 4.7. 

4.1 Introduction 

The detection of straight and accurate building outlines is essential for urban mapping 

applications like 3D city modeling, disaster management, cadaster, and taxation. To 

accommodate the high demand of various applications, accurate building outline 

extraction requires an automated procedure. Rottensteiner and Briese (2002) stated that 

in the building reconstruction task, building boundary determination is a crucial but 

difficult step. In recent years, automatic approaches for detecting building roof outlines 

are still intensively studied. In urban remote sensing, automatic building line detection 

has a low success rate due to scene complexity, incomplete cue extraction, and sensor 

dependencies (Sohn and Dowman, 2007). 

LiDAR point clouds have become one of the most commonly used input data for 

large-scale mapping. For efficiency purposes, the need to optimize LiDAR data usage 

has increased rapidly. As LiDAR is able to provide accurate three-dimensional (𝑥, 𝑦, 𝑧) 

point clouds free from relief displacement, the use of LiDAR data to extract building 

polygons automatically has become a key target for researchers and practitioners within 

the geospatial industry. However, extracting building boundaries from point clouds is 

still a challenging task because LiDAR points do not always exactly hit the edge of a 

building. As a result, LiDAR point clouds feature jagged edges instead of straight and 

continuous lines. In addition, different kind of building roof configurations (size, shape, 

color, etc.) and the surrounding context increase the difficulties to design an automated 

method. A robust approach is required to adapt to different kinds of buildings and 

overcome the influence of noise. Efforts on building outline extraction were also 

conducted on the combination of LiDAR point clouds and aerial images to use each of 

their advantages. Unfortunately, to fuse different input data is not easy as building 

representations may suffer from relief displacement or building distortion in image 

scenes (Widyaningrum and Gorte, 2017). In many cases, the geometric position of 

images and LiDAR point clouds hardly match. 

Machine learning approaches, such as Support Vector Machine (SVM), Random 

Forest (RF), deep learning, etc., undeniable provided a breakthrough in the field of point 

cloud processing. Machine learning has been widely used to improve object extraction 

(e.g., building, road, trees, etc.), classification, and segmentation. Many geo-applications 

(base map production, cadaster, road inventory, etc.) require fine object boundaries to 

generate Geographic Information System (GIS) vector data as a final product. 

However, machine learning methods use neighborhood information to obtain learned 

or handcrafted features. Notably at borders between segments, such as at building 

outlines, such features are fuzzy. As a consequence, extracting sharp edges is difficult 
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for machine learning methods and results typically do not meet map production 

requirements. Therefore, post processing is necessary. Currently, a limited number of 

image-based building delineation tools exist, including BREC (Gamba et al., 2009), as 

well as point cloud-based commercial software such as TerraScan and ENVI. 

Nevertheless, the quality (geometric accuracy, straightness, and completeness) of the 

extracted building outline results need to be improved, especially for complex buildings 

(Golubiewski et al., 2019; Susetyo et al., 2018). This research aims to provide an 

alternative solution to extract accurate and straight building outlines from point clouds 

automatically.  

The problem of line detection method is one of establishing meaningful groups of 

edge points that lies along straight lines. Hough transformation is a well-known model-

based approach that uses length-angle or slope-intercept parameters to detect lines 

(Princen et al., 1992). Hough transform was introduced by Paul Hough in 1962 to detect 

curves in images and was applied to the field of computer vision by Duda and Hart 

(1972), who encouraged the use of the length from origin R and orientation angle θ for 

line parameterization. It was designed to solve a number of computer vision problems. 

Vosikis and Jansa (2008) stated that Hough transformation is a powerful tool for 

automated building extraction and creation of digital city models, but also that the 

degree of automation is still highly correlated to the quality of the input data. Another 

challenging problem of the use of the Hough transform is the limited accuracy of the 

object extraction, which is sensitive to the resolution of the accumulator space and to 

the noise in the data (Herout and Jansa, 2008; Lee and Kweon, 1997). Performance on 

detecting different sizes and orientations of buildings automatically also remains a 

problem.  

This research proposes a new method to extract accurate building outlines from 

ALS (Airborne Laser Scanner) point clouds automatically using an extension of Hough 

transform that exploits lists of ordered points to define line segments and corners. We 

provide the following three significant contributions to overcome common issues when 

dealing with the use of Hough transformation for line extraction: 

1. Detection of arbitrary directions. Regularization should not hamper the 

extraction of consecutive roof edges that are not perpendicular or roof edges 

with an orientation not matching the overall orientation of a building;  

2. Extraction of different interrupted segments of different lengths belonging to 

the same line. Instead of a line, collinear line segments should be 

distinguishable for preserving the original building geometry; 

3. Robustness to noise, flaws, and irregularity. The shape and size of a building 

should be preserved in case jaggy points or due to objects exist (e.g., trees) 

adjacent to the building causing flaws in the building segmentation result. 

4.1 Introduction 
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4.2 Related work 

Several methods to extract building outlines from point clouds have been proposed in 

the past. This literature review first discusses building extraction methods using various 

remote sensing techniques, followed by the use of LiDAR data and regularization for 

building extraction. Second, the use of Hough transform for line extraction is discussed.  

Recent studies on edge detection using deep learning techniques focus more on 

natural images (Bertasius et al., 2015; Shen et al., 2015; Liu et al., 2017; Yang et al., 2016; 

Wang et al., 2019, Kelm et al., 2019) and remote sensing images (Lu et al., 2018). 

Resulting edges are often thick and noisy and require post processing before thinned 

and sharp boundaries are obtained (Deng et al., 2018). In 2018, Microsoft conducts 

building footprints extraction for the US and Canada areas from satellite images by first 

classify building pixels using a deep learning toolkit (called CNTK), followed by a 

polygonization step that converts building pixel into polygon. The polygonization is 

conducted by imposing a priori building properties that are manually defined and 

automatically tuned. Some of these a priori properties are: 

 Building edge should have some minimal some minimal length, both relative 

and absolute, e.g., 3 m; 

 Consecutive edge angles are likely to be 90 degrees; 

 Consecutive angles cannot be very sharp, i.e., smaller than some auto-tuned 

threshold, e.g., 30 degrees; 

 Building angles likely have few dominant angles, meaning that all building 

edges are forming an angle of (dominant angle ± nπ/2). 

Yu et al. (2018) claim to present the first edge-aware deep learning network for 3D 

reconstruction from point cloud data, namely EC-Net. Edge-aware means here that the 

network learns the geometry of edges from training data, and during testing, it identifies 

edge points and generates more points along edges (and over the surface). This method 

has limitations in cases of large holes and otherwise incomplete data. Sharp edges 

around tiny structures that are severely under-sampled may not be extracted because 

the training patches become too large for tiny structures.  

Many studies combine different type of remote sensing to acquire accurate building 

outlines. Sohn and Downman (2007) proposed a method for building footprint 

extraction from a combination of IKONOS and LiDAR data. They apply a model-

driven approach on a LiDAR point cloud and a data-driven approach on satellite 

images. Li et al. (2013) present an automatic boundary extraction method by combining 

LiDAR and aerial images to handle various building shapes. Their method consists of 

three main steps. First, roof patch points are detected from filtering, building detection, 

and removal of wall points. Second, initial edges are obtained using a Canny detector 

constrained by buffer areas of edges extracted in the first step. In the final step, roof 

patches and initial edges are fused using mathematical morphology to form complete 



 

71 

 4 

building boundaries. It is stated that the boundary result contains redundancies, which 

need further simplification. The low point density causes a high number of false 

negatives and false positives.  

Zhao et al. (2016) propose building footprint extraction and regularization using 

connected components from airborne LiDAR data and aerial images. Building 

candidates are separated from a LiDAR Digital Surface Model (DSM) using connected 

operators and trees are removed using NDVI values derived from the image. Building 

boundary lines are traced by a sleeve line simplification algorithm and are regularized 

based on the principal building direction. This research identifies different sources of 

errors like the regularization process, DSM interpolation, and vegetation points near the 

buildings. Awrangjeb (2016) determined building outlines from point cloud data by 

boundary tracing and regularization to preserve high detail boundaries and return high 

pixel-based completeness. Errors occur due to failures to estimate a dominant direction. 

The method is extended by Akbulut et al. (2018) to smooth jagged building boundaries 

generated by an active contour algorithm. LiDAR point clouds and aerial images were 

combined to improve the segmentation quality of the active contour method. Siddiqui 

et al. (2016) performed a gradient-based approach to extract building outlines from both 

LiDAR and photogrammetric images. Gradient information obtained from LiDAR 

height and local color matching is used to separate trees from buildings. Prominent 

building orientations are regularized based on the assumption that building edges are 

mainly oriented at 0° (parallel), 90° (perpendicular), 45° (diagonally), 22.5°, or 11.25° to 

each other. The proposed method is able to deliver consistent results. However, their 

method is designed to extract buildings with flat and sloped roofs. Xie et al. (2018) 

presented a method for hierarchical regularization of building boundaries in noisy ALS 

and photogrammetric point clouds consisting of two stages. First, boundary points are 

shifted along their refined normal vector and divided into piecewise smooth line 

segments. In the second stage, parallel and vertical relationships between line segments 

are discovered to further regularize edges. 2D building footprints extraction was tested 

on two ISPRS Toronto benchmark datasets and obtained 0.77m and 0.68m RMSE. 

Several studies focus on the utilization of LiDAR data as a single input for building 

extraction and apply regularization to improve the result (Zhao et al., 2016; Siddiqui et 

al., 2016; Awrangjeb et al., 2014; Dorninger and Pfeifer, 2008; Gilani et al., 2016; Huang 

et al., 2018; Sampath and Shan, 2007). Regularization is applied to enforce rectangularity 

and orthogonality of human-made objects. Lach and Kerekes (2008) report on 

boundary extraction from LiDAR point cloud using 2D α-shapes and apply consecutive 

regularization. Line simplification based on a sleeve-fitting approach is applied once the 

edge points are extracted. Then, regularization is used to force boundary line segments 

to be either parallel or perpendicular to dominant building orientations. In this research, 

a quantitative analysis and geometric accuracy of the result is not given. Dorninger and 

Pfeifer (2008) use mean shift segmentation to detect a building and use 2D α-shape 

generalization to extract initial roof outlines from an airborne LiDAR point cloud. 

4.2 Related work 
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Based on the angular direction of subsequent line segments and connected linear 

components of the α-shape, regularization is then applied to enforce orthogonality and 

parallelism of linear components. Hence, the adjusted building edges are either parallel 

or orthogonal, and the method is not applicable for a building that has more than two 

edge directions.  

Sampath and Shan (2007) modified a convex hull algorithm to trace building 

boundaries from raw point cloud data and determine dominant directions. Then, 

regularization is applied using hierarchical least-squares to extract building outlines such 

that the slopes of line segments are either equal or perpendicular. However, the 

regularization quality was found to be dependent on the point density of the LiDAR 

data and only considers two dominant directions. Gilani et al. (2016) propose building 

detection and regularization using multisource data which are ALS point cloud data, 

orthoimages, and Digital Terrain Models (DTM). Candidate buildings are identified 

using connected component analysis from a building mask generated from ALS data. 

Building outlines are then detected by hierarchical clustering and filtering. Building 

footprints are generated using image lines and extracted building boundaries. 

Regularization begins with the selection of the longest line and it next adjusts nearby 

lines. The regularized building outlines may deviate from the correct building 

orientations since the result depends on the selection of longest lines.  

A comprehensive review on the use of Hough transforms in image processing and 

computer vision is presented in Illingworth and Kittler (1988). Mukhopadhyay and 

Chaudhuri (2015) present a comprehensive and up-to-date survey of Hough transform 

on various issues of Hough transforms, which even after 51 years of discovery is a lively 

topic of research and applications. Herout et al. (2013) specifically review the use of 

Hough transforms for line detection. Morgan and Habib (2002) used Hough transforms 

from a TIN model of LiDAR point clouds to determine building boundaries. Triangles 

incident to the building edges (internal breaklines) that connect buildings and ground 

points are selected and used to obtain triangle centers. These points are fed into a 

Hough transform to detect lines. Because of limited point density and smaller numbers 

of extracted triangles on some short building boundaries, the Hough transform detects 

less building lines than it should. Guercke and Sester (2011) used Hough transforms to 

simplify and straighten the shape of building footprints extracted from LiDAR data. A 

jagged building outline is divided into small line segments and is then transformed into 

Hough space. Line hypotheses are determined based on the dominant direction 

detected as peaks in Hough space. These hypothesis lines are then refined by least 

squares to form a closed polygon. The method has problems on buildings with multi-

parallel short building edges (stair-like shape) due to peak detection failures. 
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Iterative Hough transform is proposed (Dalitz et al., 2017) to detect building edges 

from 3D point clouds. Each line is optimized with an orthogonal least square fit. After 

a line is found, points belonging to this line are removed and the Hough transform 

procedure is repeated until no points are left or a sufficient number of lines is found. 

However, the proposed method has drawbacks such as memory insufficiency and 

overflow in the accumulator matrix because many points belong to a specific line. 

Another drawback is a premature stop of the iteration process due to many identical 

points with the same coordinates, which then yield no line direction due to zero 

covariance matrix. The Hough Transform suffers from several well-known problems 

including spurious peaks and quantization effects. Miller (2016) extracted building edges 

from a DSM generated from a LiDAR point cloud. Each edge is converted to lines 

using a Hough transform to get the building footprint. Inaccuracy of the extracted 

building footprint of a large dormer and tall extruding roof structure are mainly caused 

by rotation and bigger pixel size (down sampling) that ultimately reduced the 

performance of their approach.  

Oesau (2015) proposes a multiline extraction method for shape detection of mobile 

laser scanner (MLS) point cloud data. 2D line segments are extracted through a Hough 

Accumulator that combines both a Hough transform and global maxima in a discrete 

parameter space. However, over-simplification is introduced by the coarse resolution 

of the Hough Accumulator. Albers et al. (2016) use Hough transform to extract building 

line segments from airborne LiDAR point clouds. The building edge points are selected 

by a 2D α-shape algorithm and then repositioned based on energy minimization using 

three terms: distance estimated line to input points, angle between consecutive lines, 

and line segment length. The proposed method allows presenting more than one 

building orientation but is reported that to work for consecutive segments with 45° and 

90° angle difference (angle ∈ {45°, 90°, 135°, 180°}). Hohle (2017) generates straight 

building polygons from aerial images using Hough transform. It follows an 

orthogonality and parallelism scheme by assuming that consecutive building edges are 

orthogonal.  

In summary, obtaining accurate building boundaries are still an open problem. Prior 

Hough transform works mentioned above have certain limitation either to determine 

arbitrary building orientation or in accurate peak detection. Thus, the absence of 

building detection of arbitrary directions from point cloud motivates us to develop an 

automatic approach to extract building outlines accurately from a given point cloud. 

4.3 Methodology 

The goal of this research is to obtain the 2D outline or bounding polygon of a building 

automatically. We propose a hierarchical approach to select accurate lines by generating 

a point accumulator matrix from ordered building edge points. 

 

4.2 Related work 
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The expected result from this research is a set of 2D building polygons in vector 

format that meet the map following specifications: 

1. A building is defined based on a nadir representation of its roof; 

2. The building outline consists of straight-lines edges that form a closed polygon; 

3. The extracted 2D building outlines shall at least meet the criteria for Indonesian 

1:5,000 map scale specifications regarding the positional accuracy and level of 

detail (SNI 8205, 2015). That is the expected building outline has a positional 

accuracy of at least 1 m. The minimum building size that must be extracted is 

equal to 2.5 × 2.5 meter. 

We propose a general framework for obtaining building outlines and demonstrate 

its ability by applying it to different test sets. The general framework of this research 

consists of five major steps: pre-processing, edge point selection, building line segment 

detection using Ordered point-aided Hough Transform (OHT), line segment 

intersection, and 2D closed building polygon extraction from ordered building corners. 

The whole framework is shown in Figure 4.1. 

 

Figure 4.1 The general procedure for extracting high quality straight building outlines. 
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An overview of the proposed building outline extraction is illustrated in Figure 4.2.  

 

(a) (b) (c) (d) 

 
(h) (g) (f) (e) 

Figure 4.2 The proposed Ordered point aided Hough Transform (OHT) workflow for building 
outline extraction. (a) Building points; (b) concave hull of a building roof; (c) detection of dominant 
directions using local maxima; (d) detection of initial hotspots along dominant directions yields14 
initial hotspots; (e) reduction to 10 filtered hotpots; (f) 10 lines corresponding to filtered hotspots; 
(g) Point accumulator analysis yields 12 segments; (h) segment intersection identifies 12 corners. 

The novelty of our method lies in the use of ordered points, which to the best our 

knowledge has never been used to detect building lines of different length in Hough 

space. The capability of the proposed method to detect arbitrary building orientations 

provides another advantage over existing methods. The proposed OHT (approach 

consists of the following steps:  

1. Extract ordered 2D edge points from a given building segment by applying K-

NN concave hull;  

2. Parameterize all possible lines through the 2D edge points, and store the 

distances to the origin r of these lines in a matrix R. A Hough accumulator matrix 

HA counts accumulated points of the same orientation angle 𝜃 and distance r;  

3. Detect dominant building directions;  

4. Identify candidate cells representing prominent lines along dominant directions;  

4.3 Methodology 
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5. Create an Ordered Point List matrix 𝑂𝑃𝐿 to store lists of ordered points. OPL 

is then used for detecting and filtering line segments, generating building corners, 

and forming a closed polygon.  

4.3.1 Classification and segmentation 

Our method requires ordered building edge points. Only the 2D coordinates of the 

edge points will be kept to extract building outlines. For this task, we apply the concave 

hull K-Nearest Neighbor algorithm (Moreira and Santos, 2007) that uses the value of k 

as the only parameter to control the smoothness of the result. In the beginning, this 

algorithm finds its first vertex (point A) based on the lowest Y value. Then it will search 

k-nearest points (for k = 3: point B, C, D), as candidate for the next vertex. Point C 

will be assigned as the next vertex if it has the largest angle of right-hand turn measured 

from the horizontal line through point A. In the next step, the k nearest points of point 

C are queried, and the selected vertex is appointed once it has the largest angle of right-

hand turn from line A–C. The process is repeated until the first vertex is selected once 

again as candidate. 

Higher k will lead to smoother polygons. In this research, the k values vary from 3 

to 11 depending on the point density. A building with irregular point intervals may 

require higher value of k to derive suitable edges. 

4.3.2 Hough accumulator matrix 

The key idea of the Hough transform is to select straight-line candidates based on a 

voting scheme in a parameter space. To parameterize a line, we use two parameters: 

distance to the origin, r, and orientation angle, 𝜃. The mapping relations of a point in 

object space (𝑥, 𝑦) and (𝜃, 𝑟) parameter space is specified in Equation 4.1. 

𝑟 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 (4.1) 

The chosen polar (𝜃, 𝑟) parameters are advantageous over the slope-intercept 

(𝑚, 𝑐) parameterization since the (𝑚, 𝑐) may have a singularity when the slope of the 

line is infinite. The number of rows and columns of the matrix is adjusted according to 

the bin sizes of the two parameters. Each cell contains a number of lines having 𝜃 and 

𝑟 values. 

As illustrated in Figure 4.3.a, one line defined by a pair (𝜃, 𝑟) may contain different 

building edge points, here A, B, and C. The fan of all lines passing through one point 

(Figure 4.3.a) corresponds to a sinusoidal curve in Hough space (Figure 4.3.b), while 

each point in Hough space corresponds to one straight line in object space. 

For a given set of 𝑛 ordered LiDAR  points 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖), for 𝑖 = 1,2,… , 𝑛 forming 

a building roof boundary, a matrix R containing line distance 𝑟 parameter values is 

created as follows: 
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1. Fix origin O at (𝑚𝑖𝑛 𝑥𝑖, 𝑚𝑖𝑛 𝑦𝑖) for (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,2,… , 𝑛 and initiate a matrix 

R with dimension (𝑛 × 181); 

2. For point 𝑃𝑖 and for each 𝜃𝜖{1°, 2°,… ,180°}, determine 𝑟𝑖(𝜃) using Equation 

(3.1); 

3. Store 𝑟𝑖  in matrix R at position (𝑖, 𝜃). 

Matrix R stores 𝑟-values for lines of different angles (0° to 180°) through each point 

𝑃𝑖. Next, it will be considered if points share lines. Lines common to many points are 

likely to define a building edge. To identify common lines, i.e., lines defined by different 

points but sharing the same (𝜃, 𝑟) values, the Hough Accumulator (HA) is created next. 

HA requires binning of 𝑟 and 𝜃 to represent the location of its cells. Each cell in HA 

stores the number of points with matching 𝜃 and 𝑟. Different cells in HA represent 

different combinations of 𝜃 and 𝑟 values. The higher the number in a HA cell, the more 

likely the cell produces a correct line for an edge.  

Figure 4.3 Hough transform using (𝜃, 𝑟)  parameters for detecting lines. (a) In object space, a line 

represented by an angle-distance (𝜃, 𝑟) passing through three points A, B, and C; (b) In Hough space, 

this line appears as the point of intersection of the curves A̅, B̅, and C̅. 

HA is a 2D array of size (number of 𝑏𝑖𝑛𝑟× 180). The trade-off between the number 

of bins of the matrix and the number of available observations is crucial. Too many 

bins may lead to a sparse representation of the density that will decrease the ability to 

detect prominent lines. On the other hand, too few bins will reduce the resolution and 

accuracy of the building line results. We recommended that the bin width of 𝑟, (𝑏𝑖𝑛𝑟), 

is set according to the average point interval.  

4.3.3 Detection of arbitrary building directions 

Building shapes and other man-made objects are often characterized by certain 

geometrical regularities (Hohle, 2017), mostly appearing as perpendicularity or 

parallelism. However, in a reality, not every building is constructed using such 

geometrical regularities. Therefore, determining possibly arbitrary building direction is 

an important strategy for the building extraction process. 

 

 
 

(a) (b) 
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One limitation of Hough Transform is that when the number of lines increases, the 

correlated error around the peak in the parameter space could cause ambiguities for line 

(Leavers, 1992). To limit the search space for selecting line candidates, the proposed 

algorithm uses local maxima detection instead of global maxima. Local maxima are 

detected by identifying peaks in the graph of the variance of 𝜃 along the columns of the 

matrix HA. The variance is defined as the average of the squared deviations from the 

mean number of lines along the 𝜃 column of matrix HA. Finding local maxima means 

to detect accumulator cells that have higher vote than their neighborhood (peak). For 

detecting peaks, we first apply a Savitzky Golay filter (1964) to denoise the data. The 

basic idea of Savitzky Golay filtering is to replace each point by the corresponding value 

of a least squares fit of a low order polynomial fitted to points in a window centered at 

that point.  

In the smoothed variance data, peaks are detected if they meet two criteria: 

normalized threshold (amp) and minimum distance (mindist) between each detected 

peak. The normalized threshold will select peaks with higher amplitude than the 

threshold. Figure 4.4 illustrates the one-dimensional peak detection from a smoothed 

variance input (magenta graph) to define the direction. In most cases, the difference 

between two dominant building directions is close to 90°.  

  
Figure 4.4 Peak detection in smoothed data. The yellow graph represents the original variance and 
the magenta line represents smoothed data obtained after Savitzky Golay filtering. Vertical dashed-
lines indicate detected dominant directions. 

4.3.4 Hotspot selection 

After dominant directions are detected, the algorithm will next search along the 

corresponding columns for cells in matrix 𝐻𝐴 that have at least minL edge points. These 

cells are then preserved as initial hotspots. An initial hotspot is a candidate cell to 

represent a building line. The minimum edge length (minL) parameter is set based on 

the required building length, ℓ, as minL = ℓ/𝑑, where d denotes the point interval. If, 

for example, the point interval is 0.5 m and the minimum length of the building edge 

to be extracted ℓ is 2.5 m, the required threshold minL = 5. 
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However, in 𝐻𝐴, different column adjacent hotspots (one cell difference) may 

represent lines belonging to the same edge. This happens because some noise from the 

same edge points result in slightly different (𝜃, 𝑟) combinations. Hotspot filtering is 

applied by searching for any adjacent hotspots along a dominant direction. Only the 

hotspot that has maximal 𝐻𝐴(𝑖,𝑗)value is kept. Figure 4.2.d and Figure 4.2.e, 

respectively, present the result of initial hotspot detection and hotspot filtering. 

4.3.5 Ordered point list 

One of our main contributions is to extract building outlines using a so-called Ordered 

Point List (𝑂𝑃𝐿) matrix. This matrix is generated based on the classic Hough 

accumulator. 𝑂𝑃𝐿 has the same dimension as 𝐻𝐴 and the same (𝜃, 𝑟) parameters. The 

difference is that HA stores just the number of accumulated points voting for a line 

while 𝑂𝑃𝐿 stores the actual ordered lists of points voting for a line. This means that 

each cell in 𝑂𝑃𝐿(𝜃,𝑟) contains an ordered list of points 𝑃𝑖 that are on the parametric line 

𝑟 = 𝑥 cos(𝜃) + 𝑦 sin(𝜃) 

To obtain more accurate and complete building edges, in OPL, the contents of each 

filtered hotspot is merged with its adjacent cells of the same column (∆𝑏𝑖𝑛𝑟 = 0 and 

∆𝑏𝑖𝑛𝑟 = 1). Matrix 𝑂𝑃𝐿𝑚 contains the merged point members. The difference cell 

value between 𝐻𝐴, 𝑂𝑃𝐿, 𝐻𝐴𝑚, and 𝑂𝑃𝐿𝑚 of specific (𝜃, 𝑟) is llustrated in Figure 4.5. 

Points accumulated in 𝐻𝐴 (Figure 4.5.a) are specified in 𝑂𝑃𝐿 (Figure 4.5.c). The red 

cell marks one of the hotspots. Point members of hotspot cells of merged 𝑂𝑃𝐿𝑚 (a red 

cell in Figure 4.5.d) are adapted by include neighboring cells. As an example, 

𝑂𝑃𝐿𝑚(105,87) has 11 additional points that complement the existing ordered point 

members of 𝑂𝑃𝐿(105,87). 

4.3.6 Segment detection and filtering 

Our algorithm yields arbitrary main directions that are used to select prominent lines. 

For some buildings with a complex shape, a false main direction may get detected 

because the corresponding 𝜃 has the highest vote in 𝐻𝐴. Therefore, we apply 

hierarchical filtering to eliminate false lines resulting from a wrong main direction.  

Using filtered hotspots and the merged Point Accumulator matrix 𝑂𝑃𝐿𝑚 as main 

input, the algorithm measures the distance of each point belonging to a filtered hotspot, 

to the hotspot line parameterized by the pair (𝜃, 𝑟). Then, it counts the number of 

hotspot points that have a distance more than 𝑏𝑖𝑛𝑟. A hotspot will be removed from 

the list if one of two following conditions holds: 

 It has at least 3 points having a distance more than 𝑏𝑖𝑛𝑟; 

 It has a mean distance d bigger than half 𝑏𝑖𝑛𝑟value.  

This mean distance threshold is set based on an empirical observation for detecting 

false lines and distinguishing those from correct but noisy lines.  

4.3 Methodology 
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A line resulting from the traditional Hough transform cannot distinguish different 

segments belonging to the same line. In this case, two different building edge segments 

that share the same (𝜃, 𝑟) will not be detected. The proposed edge extraction algorithm 

requires segments, instead of lines, for producing a closed polygon. In this research, a 

segment is defined as a part of a line that is bounded by two building corner points. 

Note that a building line may contain more than one segment. 

  
(a) (b) 

 

(c) 

 

(d) 

Figure 4.5 Cells in HA, OPL, HAm, and OPLm for 𝑟= 86–88 and 𝜃= 104°–106°. Red cells 

correspond to hostspots. (a) 𝐻𝐴(𝜃,𝑟)cell containing accumulated numbers of points voting for a line; 

(b) 𝐻𝐴𝑚(𝜃,𝑟) cell containing merged accumulated number of points from its adjacent cell; (c) 

𝑂𝑃𝐿(𝜃,𝑟) cell containing lists of points voting for the same line; (d) 𝑂𝑃𝐿𝑚(𝜃,𝑟)cell containing lists of 

merged points from its adjacent cell. 
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Segment detection exploits ordered edge points stored in 𝑂𝑃𝐿𝑚. Each segment has 

a 𝜃, an 𝑟, and a number of ordered points. Multiple segments on a line are identified by 

a gap or point jump between ordered points in the list. We set the gap threshold to 2 

(two points jump). In this case, a gap is detected if there are at least two consecutive 

points missing from the list of ordered points. 

 
(a) 

 

𝑳𝟏 [0, 1, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202] 

𝑳𝟐 [[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [168, 169, 170, 171, 172, 173, 

174, 175, 176, 177, 178, 179, 180, 181, 182, 183]] 

𝑳𝟑 [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 

46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61] 

𝑳𝟒 [40, 41, 94, 95, 96, 97, 98, 99, 100, 101, 150, 151, 152] 

𝑳𝟓 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 72, 73, 201, 202] 

𝑳𝟔 [76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 197, 198, 

199] 

𝑳𝟕 [100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 

118, 192, 193] 

𝑳𝟖 [118, 119, 120, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192] 

𝑳𝟗 [[58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77], [116, 117, 118, 

119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135]] 

𝑳𝟏𝟎 [134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 

152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169] 

(b) 

Figure 4.6 Representation of ordered edge point distribution of a building. Lines are separated in 

segments by gap identification. (a) Line 𝐿9 (red) consists of two segments: 𝐿9𝐴 and 𝐿9𝐵; (b) List of 

points supporting the same line. The line points in 𝐿2 and 𝐿9 are both divided over two segments, 
indicated by red and blue numbers. 
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An example of segment detection is illustrated in Figure 4.6. The red line in Figure 

4.6.a consists of two segments as a gap exists in the list of ordered points (𝐿9) as 

presented in Figure 4.6.b. Line L9 has two different segments. Point members of 

segment 𝐿9𝐴 are marked in red (from 58 to 77), while the point members of segment 

𝐿9𝐵are marked in blue (from 116 to 135). The two segments are separated by a large 

point interval. A segment is then identified and selected as a list containing a minimum 

number of points minL. The minimum segment length is adjusted according to the 

output requirements. As an example, 𝐿1 in Figure 4.6.b consists of two lists of ordered 

points separated by a big gap. Nevertheless, it will return one segment only because the 

first list of ordered points only has two members, points 0 and 1.  

After all segments are identified, matrix 𝑂𝑃𝐿𝑚. contains different segments. These 

segments are sorted based on the first element of the list of points. Finally, segment 

filtering is performed. This last filtering step is needed to remove false segments that 

may remain in the result. A shorter segment having all points the same as a longer 

segment will be removed if one of two following conditions holds: 

 The first point is not assigned as the last point of a longer segment;  

 The last point is not assigned as first or last point of a longer segment. 

Lists of points are input for corner extraction. First, all building segments are sorted 

based on their lowest participating point label. Then, the algorithm extracts 

intersections from consecutive segments. A closed building polygon is formed by 

connecting all consecutive segment intersections.  

From two given parametric lines, 

r1 = 𝑥 𝑐𝑜𝑠𝜃1 + 𝑦 𝑠𝑖𝑛𝜃1 (4. 2) 

r2 = 𝑥 𝑐𝑜𝑠𝜃2 + 𝑦 𝑠𝑖𝑛𝜃2 (4. 3) 

 

The intersection point 𝑐(𝑥𝑐 , 𝑦𝑐) is computed as 

[
𝑥c

𝑦c
] =  [

𝑟1

𝑟2
] [

𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃2

𝑐𝑜𝑠𝜃1  𝑠𝑖𝑛𝜃1
] (4. 4) 

 

Table 4.1 summarizes different kind of point and line representations used in our 

proposed method. A point in object space is translated into a row in R, as a curve in 

𝐻𝐴, and as part of a list in 𝑂𝑃𝐿. Lines and segments in object space are represented by 

a subset of a column in R and as a cell in 𝐻𝐴. A cell in 𝐻𝐴 shows the number of points 

belonging to the same line, while a cell in 𝑂𝑃𝐿 shows the list of points of a line. Hence, 

in 𝑂𝑃𝐿, lines and segments are represented by list of several points. 
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Table 4.1 Summary for object representation of different matrix. 

Object Space  Matrix 𝑅 Matrix 𝐻𝐴 Matrix 𝑂𝑃𝐿 

Point  Row Curve Part of a list 
Line  Subset of column Cell / Point Long list 

Segment  Sub of subset Cell / Point Long list 

4.3.7 Validation 

Two different quantitative analyses are performed to evaluate the result of the building 

outline extraction: performance metrics and positional accuracy. The ground truth used 

as reference to assess our results is described in Section 4.4. We used three performance 

metrics (Rutzinger et al., 2009) to evaluate the building polygon results, completeness 

(Cp), correctness (Cr), and quality (Q). The performance metrics are calculated based on 

an area comparison of buildings in the reference data and in the result in the unit m². 

The positional accuracy is a geometric validation that evaluates if the quality of the 

extracted building polygons meets the geometric accuracy criteria. The positional 

accuracy is determined using a Root Mean Square Error (RMSE) value. The squared 

root of the average of the squared differences between corner positions (𝑋 and 𝑌 

coordinate) in the reference and in the result is calculated to estimate the RMSE.  

𝑅𝑀𝑆𝐸𝑥 =
√∑(𝑋𝑟𝑒𝑠 − 𝑋𝑟𝑒𝑓)

2

𝑛
 (4.5) 

𝑅𝑀𝑆𝐸𝑦 =
√∑(𝑌𝑟𝑒𝑠 − 𝑌𝑟𝑒𝑓)

2

𝑛
 (4.6) 

𝑅𝑀𝑆𝐸𝑟 =  √𝑅𝑀𝑆𝐸𝑥2 + 𝑅𝑀𝑆𝐸𝑦2 (4.7) 

Where 
 

𝑋𝑟𝑒𝑠, 𝑌𝑟𝑒𝑠 = Coordinates of resulting corner points 

𝑋𝑟𝑒𝑓, 𝑌𝑟𝑒𝑓 = Coordinates of corner points in the ground truth 

n  = Total number of corner points  

4.4 Test area and preprocessing 

4.4.1 Test set Makassar 

The test set is located in a newly built sub-urban area of Makassar city (Figure 4.7.b), 

Sulawesi island of Indonesia. The LiDAR point density is between 8–10 points/m² 

(ppm) and was acquired in 2012 using a Leica ALS70. The total study area is ̴1.2 km² 

(Figure 4.7.c). A topographic base map in vector format is used as ground truth (Figure 

4.7.a).  

4.3 Methodology 
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The LiDAR data we use has already been filtered into ground and non-ground 

points using TerraScan software. The software implements a Progressive TIN 

Densification, originating by Axelsson (2000), to filter non-ground points. From the 

non-ground points, the building roof points are separated from the tree points using 

two thresholds: point distance to planar surface (0.2 m) and minimum segment size (30 

m²).  

Figure 4.7 Test set of Makassar. (a) Test set area (inside red outline) overlaid to Indonesian 1:10.000 
base map; (b) Test set areas (inside yellow outline) overlaid to aerial orthoimage. (c) ALS point cloud 
of the Makassar test set colored by height; (d) Clustered building points. Different color indicates 
different segment. ©BIG. 

The 3D building points as output by TerraScan are then segmented into different 

clusters using the DBSCAN algorithm. DBSCAN segmentation (Ester et al., 1996) 

requires two parameters: radius distance (eps) and minimum number of points (minPts). 

To find a segment, DBSCAN starts with an arbitrary seed point p and then retrieves all 

neighboring points (density-reachable) from p that are located within a given eps and 

contains a given minPts. Outliers are defined once minPts cannot be achieved within the 

given eps. The cluster will grow as long as nearby points within the eps distance from 

seed p fulfill the minPts threshold. In case minPts within distance eps is not fulfilled, a 

point or group of points is considered as outlying. During the cluster growing, outliers 

may change into a member of one of the clusters once they are within the eps distance 

from the active seed point. To grow the next cluster, a next seed that does not belong 

  
(a) (b) 

  

(c) (d) 
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to any cluster is chosen. The clustering stops once all points are assigned. The parameter 

thresholds used for the Makassar dataset are eps = 1.2m and minPts = 3. This means that 

the required minimum number of points assigned as a cluster within 1.2 m from the 

seed points is three points. The segmented 3D building points resulting from DBSCAN 

after size filtering are shown in Figure 4.7.d. 

4.4.2 Test set Vaihingen 

The second area of study belongs to the Vaihingen test set provided by the ISPRS 

(International Society for Photogrammetry and Remote Sensing). The LiDAR point 

density varies between 4–7 points/m² (ppm). This data was acquired in August 2008 by 

a Leica ALS50 airborne LiDAR system. There are two sub areas, Vaihingen-A and 

Vaihingen-B, as presented in Figure 4.8. The Vaihingen-A dataset consists of residential 

buildings of complex shape surrounded by trees. Ground truth for Vaihingen-A 

comprises a set of building references from OpenStreetMap (OSM), confirmed by true 

orthophotos provided by the ISPRS. The Vaihingen-B test set, which is basically the 

same dataset as Vaihingen Area 2 as described on the ISPRS webpage, is characterized 

by complex high-rise buildings that have several roof layers at different height. This 

benchmark dataset is chosen and used by several similar studies (Zhao et al., 2016; 

Siddiqui et al., 2016; Gilani et al., 2016; Huang et al., 2018) to test and compare their 

algorithms. For Vaihingen-B, we use 2D building outlines in vector format as provided 

by ISPRS as ground truth.  

 

  

(a) (b) 

Figure 4.8 The test sets of Vaihingen. (a) Test set areas (inside red outlines) overlaid to OSM map; 
(b) Test set areas (inside yellow outlines) overlaid to ISPRS orthoimage. ©OSM and ISPRS. 

For the Vaihingen-A test set, we use the surface growing function of Point Cloud 

Mapper (PCM) developed by Vosselman et al. (2004) to perform point cloud 

segmentation. Surface growing thresholds implemented in this study are as follows: 

4.4 Test area and preprocessing 
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 Seed surface selection. At least 10 points out of 20 nearest points within a 1-m 

radius are used to check for neighborhood planarity and apply a 3D Hough 

transform. Seeds are extended to other points located within a 1-m radius with 

a height difference of less than 20 cm to the fitted plane. The bin sizes of the 

distances and angles of the 3D Hough transform are set to 20 cm and 3 degrees; 

 Growing expansion. Once a seed segment is found, region growing looks for 

adjacent points belonging to the same plane. Points are assigned to a plane if the 

distance to the corresponding plane is 50 cm maximum. 

A different segmentation method is applied for Vaihingen-B. First, the point cloud 

is classified using the LAStools software developed by Rapidlasso. We then preserved 

only the planar points using plane detection to remove remaining tree points. The planar 

points are then segmented using DBSCAN (eps = 1.2m and minPts = 3). The test set of 

the Vaihingen-A and the Vaihingen-B, as well as the segmentation and classification 

results (Figure 4.9).  

 

  

(a) (b) 

  

(c) (d) 

Figure 4.9 Two test sets of Vaihingen benchmark dataset. (a) ALS points of Vaihingen-A; (b) 
segmented points of Vaihingen-A; (c) ALS points of Vaihingen-B; (d) classified points of Vaihingen-
B. ©ISPRS. 
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4.4.3 Test set Amsterdam 

An additional point cloud dataset sampling the EYE-Amsterdam neighborhood 

(Figure 4.10.a) demonstrates the ability of our algorithm to extract complex buildings 

of multiple arbitrary directions. We use an open source AHN3 point cloud dataset 

downloaded from PDOK, the Netherlands. Point clouds of AHN3 acquired in 2014 

are already classified into several classes (ground, building, water, etc.). The AHN3 

classified building points of our EYE-Amsterdam study area is shown in Figure 4.10.d.  

 

  

(a)  (b) 

  
(c) (d) 

Figure 4.10 EYE-Amsterdam test set. (a) Map of the EYE-Amsterdam; (b) 2017 Aerial image of the 
EYE-Amsterdam; (c) 2014 AHN3 point cloud; (d) AHN3 classified building points (orange). ©PDOK 
of the Netherlands and ESRI-NL. 

4.5 Sensitivity analysis and experiments 

This section describes common issues that highlight specific features of our algorithm 

to answer the research objectives. The last paragraph presents a sensitivity analysis of 

the parameters used.  

4.5.1 Detecting multiple arbitrary direction 

The EYE building (as indicated by a white star in Figure 4.10.d) has a unique shape, 

which makes it impossible to apply perpendicularity rules. The A’DAM Lookout 

building (as indicated by a green star in Figure 4.10.d) is another complex building in 

this area with five building directions of different edge length. The ability of our 

proposed algorithm for extracting outlines of such complex building shapes is illustrated 

4.4 Test area and preprocessing 
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in Figure 4.11. Based on the detection of multiple arbitrary building directions (Figure 

4.11.a), the building segments are identified (Figure 4.11.b). As the final output, based 

on corners of consecutive building segments, a closed building polygon is formed 

(Figure 4.11.c). 

Herout (2013) stated that the accuracy of the Hough Transform is strongly 

dependent on the detection of maxima in parameter space. As local maxima for 

detecting arbitrary building directions depend on the number of votes, it is possible that 

edge points of a complex building dominantly vote for an incorrect building direction. 

This situation may cause the algorithm to detect false building lines that are supported 

by many edge points but are not part of any building segment.  

 

 
  

 

  

(a) (b) (c) 

Figure 4.11 Extraction of buildings with multiple arbitrary directions. (a) Hotspots (red points) of 
multiple arbitrary directions; (b) Line detection; (c) Building outlines results. 

Figure 4.12 illustrates the detection of a false dominant direction resulting in a false 

building line. The false main direction is likely caused by a special building geometry 

shape that allows most of the edge points from two different directions to vote for the 

same direction. In this case, parallel short building edges result in false lines. However, 

by adding a filtering step to our workflow, the algorithm is able to eliminate and remove 

these false lines. In Figure 4.12.a, initial hotspots are detected based on three dominant 
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directions at 𝜃 = 7°, 𝜃 = 78°, and 𝜃 = 96°. The yellow line, at 𝜃 = 78°, marks the falsely 

detected dominant direction corresponding to the false green lines in Figure 4.12.b. All 

lines corresponding to initial hotspots are shown in Figure 4.12.b, where false lines are 

shown in green and correct lines in red. Figure 4.12.c shows the results of our proposed 

segment filtering procedure. 

Figure 4.12 Outline extraction of a building with one false dominant direction. (a) Initial hotspots 
(red) in three dominant directions are detected where the highest peak (yellow line) is a false dominant 
direction; (b) Representation of all initial lines including five false lines (green); (c) Line segments 
after filtering. 

4.5.2 Extraction of different interrupted segments of different length 

One drawback of traditional Hough Transform is its difficulty to distinguish different 

segments that are collinear as any segment with the same (𝜃, 𝑟) parameters will be 

considered as the same line (1996). Moreover, in the application of traditional Hough 

transform, short segments only result in low peaks, which makes them difficult to 

identify (Lee and Kweon; 1997; Guerreiro and Aguiar, 2012). Because of this limitation, 

it is a problem to identify short building edges especially if long edges exist of different 

direction.  

 

(a) 

  

(b) (c) 

4.5 Sensitivity analysis and experiments 
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Figure 4.13.a and Figure 4.13.b, respectively, show that building outlines of different 

length and building outlines of collinear line segments (as indicated by red ellipses) are 

correctly extracted using the proposed method. By exploiting gaps in the ordered edge 

points of each line, segments that are collinear can be detected and separated. 

 

  

(a) (b) 

Figure 4.13 Building outline result of different segment lengths with two collinear segments. (a) 
Outline extraction of a building that has two collinear line segments (inside the red ellipse); (b) Outline 
extraction of a building that has four collinear line segments (inside the red ellipse). 

4.5.3 Robustness to noise and irregularity 

In general, our method has the ability to create correct outlines of noisy edge points and 

straighten up such imperfect building edges. Adjacent trees may cause flaws or 

irregularities in building segmentation results. This situation, later on, may induce an 

incorrect building outline. Our proposed method eliminates and removes the influence 

of such building irregularity. Figure 4.14.a and 4.14.c, respectively, show the outline 

results in case of over-segmentation for a rectangular and complex building shape by 

using the proposed method. Both buildings have flaws due to connected trees. In such 

cases, the algorithm has two possibilities to produce a correct building outline. First, 

due to sparse and irregular distribution of tree points, the number of edge points of the 

tree is less than the minimum length edge (minL) threshold. Second, in case the number 

of edge tree points is more than minL, the extracted line segments of the tree edges do 

not form a fully closed polygon. As the proposed algorithm uses consecutive lines based 

on ordered points to extract the corresponding corners, extraction of false corners is 

avoided.  

The capability of our algorithm to deal with irregularities may extend to an 

incomplete building roof case (under-segmentation). Figure 4.14.b shows the outline of 

a building roof that is partially covered by an adjacent tree. Correct lines are still 

obtained although there is a gap consisting of missing edge points in the middle building 

edge part.  
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4.5.4 Sensitivity analysis 

We have implemented a data-driven method that may require parameter tuning 

for areas of different characteristics. Parameters need to be set for using the proposed 

procedure are discussed as follows: 

 Bin size: to determine cell size and distribute the edge points in a specific row 

(binr) and column (binθ). We fix binθ at (1 degree), while the size of the binr is 

variable, depending on the point density. For the Makassar and the Vaihingen 

datasets, binr varies between 0.3 to 0.6 m. 

 Local maxima: to detect dominant building directions. Two parameters to 

determine dominant directions are the amplitude (amp) and the minimum 

distance (mindist) between each detected local maximum. The recommended 

threshold for amp is 0.5 m and mindist is 30°. In case of complex building shapes 

and noisy data, an amp threshold between 0.15–0.2 m and a mindist value between 

15°–30° is recommended.  

 Minimum number of points: to determine initial hotpots. The minL value is 

determined based on the length of the building edge that is required to be 

extracted. We applied a smaller edge threshold for the Vaihingen test set as this 

dataset has complex buildings with many short edges (± 1.5 m). The edge 

threshold for Vaihingen is set to 3 points. For AOI-1 Makassar, minL is set to 

five points. This threshold is set as the minimum length of a building segment 

length that needs to be extracted is 2.5 m.  

  
(a) (b) 

 

(c) 

Figure 4.14 Building outline results in case flaws exist in the segmentation results. (a) Outline of a 
building connected to a tree; (b) Outline of a building roof partially covered by a tree; (c) Outline of 
a complex building shape connected to a tree. 

4.5 Sensitivity analysis and experiments 
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Recap of parameter setting used in this research is presented in Table 4.2. 

Table 4.2 Parameter settings for different test sets. 

Test set binr amp mindist minL 

Makassar 0.3–0.6 m 0.5 m 30° 2.5 m 
Vaihingen-A 0.3–0.6 m 0.15–0.2 m 15–30° 1.5 m 
Vaihingen-B  0.3–0.6 m 0.15–0.2 m 15–30° 1.5 m 

Each Hough Accumulator matrix HA cell contains the number of edge points that 

vote for the same (𝜃, 𝑟) value. Bin size determination is a crucial step that influences the 

point distribution of edge points into each cell in HA. If the bin size is set too big, it 

may result in the coinciding of different edges or less accurate line results. On the other 

hand, if we set the bin size too small, some particular building edges may not be 

identified. The bin size for θ (binθ) is set to 1°. Experiments show that the determined 

binθ is sufficient to find line candidate. For point clouds with a point interval between 

0.3 and 0.7 m, we set the binr size to 0.5 m. 

We conducted an additional experiment to identify a sufficient binr value as well as 

to evaluate the sensitivity of the binr parameter. Two different building shapes (simple 

and complex) with a point interval from 0.4 to 0.7 m are used for this experiment. As 

simple building case, a building with a rectangular roof with 4 lines/corners is used. As 

complex case, we select a building with 24 lines/corners. The results of the experiment 

are presented in Table 4.3. 

Table 4.3 Evaluation of different bin size. 

Bin size 
(cm) 

Mean Std dev 
No. of Main 
Directions 

No. of 
Resulting 
Segment  

No. of 
Remaining 

Points  

RMSE 
(m) 

Simple Building (four lines/corners) 
20 0.071 0.043 3 6 5 0.224 
40 0.126 0.105 2 4 0 0.206 
50 0.121 0.101 2 4 0 0.198 
60 0.167 0.161 2 4 0 0.223 
80 0.223 0.195 2 4 0 0.248 

Complex Building (24 lines/corners) 
20 0.086 0.059 3 11 62 N/A 
30 0.140 0.109 4 17 19 N/A 
40 0.153 0.133 3 24 0 0.203 
50 0.192 0.168 3 28 0 0.346 
60 0.259 0.206 3 24 0 0.362 
70 0.284 0.248 3 33 0 0.473 
80 0.363 0.288 3 36 0 0.927 
90 0.390 0.356 3 26 6 N/A 
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For the experiment, all required parameters have the same value except binr. The 

results indicate that the smaller the bin size, the smaller the average of standard 

deviation and the RMSE. However, at the same time, the possibility to produce 

additional segments or corners that are not always correct increases. We also present 

the total number of edge points that is not used by any line to notify any incomplete or 

suspicious line result. In Table 4.3, a simple (square shape) building with binr = 30 cm 

and binr = 20 cm yields three dominant directions that could result in false lines. 

However, for binr = 30 cm, our method is able to eliminate these false lines by obtaining 

four building line segments with acceptable RMSE. Meanwhile, for binr = 20 cm, our 

method fails to deliver a complete building outline, as five points remain unused.  

The sensitivity of binr is increasing for a complex building. As this building has many 

line segments with significant length difference between the short and long segments 

(short edges have 3-4 points, while longer edges have 12–20 points), the determination 

of binr affects the line segments results (number of extracted segments and RMSE). 

Moreover, the small distance between several parallel building edges yields false 

dominant directions. In Table 4.3 a binr size that is smaller or bigger than the point 

interval (which is between 40 and 70 cm) results in an incomplete building outline, 

which is indicated by the presence of remaining points or no RMSE result (N/A).  

The distribution of resulted segment intersections for different bin sizes (from binr 

= 40 cm to binr = 80 cm) is illustrated in Figure 4.15.a. Different intersections of 

different bin sizes are indicated by different colors. Grey circles indicate a 1-m buffer 

of reference building corner. Some intersections located in the middle of building edge 

(as indicated by the blue circle in Figure 4.15.b) are obtained using binr = 70 cm and binr 

= 80 cm. However, these corners do not affect the shape of the polygon, as they are 

collinearly located between two other corners. 

The proposed building outline extraction works for single buildings. It requires a 

pre-processing step to select and acquire the outer building edge points. In certain cases, 

the proposed algorithm may fail to extract building outlines correctly due to heavy noise 

and errors in the segmentation. In this case, parameter tuning (binr and/or local maxima) 

may solve the problem, as the binning process of such irregular edge points may result 

in bad point division, and a voting scheme that makes the algorithm fail to detect correct 

local maxima. 

Considering the aforementioned problems, a scheme for quality checking of the 

output is necessary to increase the applicability of our method for map production. We 

define a strategy to assist the quality checker in case of an incorrect or doubtful result. 

A missing line or a shifted line that causes incomplete or incorrect building polygons 

can be detected from the number of edge points that is not used by any extracted line. 

Based on this, the human operator may decide to perform a manual check and confirm 

the result. This procedure is expected to accelerate quality control and minimize manual 

editing. 

4.5 Sensitivity analysis and experiments 
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(a) (b) 

Figure 4.15 Experiment to evaluate the influence of the bin size parameter in case of extracting a 
complex building outline within a 1-m buffer of the reference corners (grey circle). (a) Scatter plot 
of building corners for different bin sizes. Different plus (+) color indicate corners of different binr; 
(b) Zoomed in a part of building corners. 

4.6 Results and discussion 

In the following, we will discuss the overall results of the proposed method. A more 

detailed discussion of the experiments for the Makassar test set and the Vaihingen test 

sets respectively, are given next. Finally, a comparison to previous results on the 

benchmark test set (Vaihingen-B) is presented. 

4.6.1 General evaluation 

Goal of this research is to provide a robust procedure for automatic building outline 

extraction from airborne LiDAR point clouds. Using the ground truth described in 

Section 4.4, we evaluate our method. Our method is able to achieve high completeness 

and correctness for both study areas as shown in Table 4.4. For Makassar, building 

polygons results achieve 91.8% completeness, 99.2% correctness and 91.1% quality. 

The quality metrics of the Vaihingen-A test set are also high, 96.4%, 96.5%, and 93.2%, 

respectively. Vaihingen-B achieves slightly less good quality metrics of 90.1% 

completeness, 99.4% correctness and 89.6% quality.  

Table 4.4 Quality metrics of the building outline results and the concave hull results 
(Cp: completeness, Cr: correctness, Q: quality) 

Test Set Building Polygon Cp (%) Cr (%) Q (%) 

Makassar OHT results 91.8 99.2 91.1 
 Concave hull 92.1 98.3 90.7 

Vaihingen-A OHT results 96.4 96.5 93.2 
 Concave hull 95.3 95.2 90.9 

Vaihingen-B  OHT results 90.1 99.4 89.6 
 Concave hull 90.9 99.6 90.6 
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We use different methods of point cloud filtering, classification, and segmentation 

to assure that our building extraction method is able to adapt to and is not limited to a 

specific processing workflow. The proposed workflow for extracting building outlines 

requires segmentation as a pre-processing step. The quality of the segmentation result 

influences the extracted building outlines. Irregular concave hull outlines as shown in 

Figure 4.2.b, are not suitable as input for map products. Table 4.4 shows a comparison 

between an object-based evaluation of our results and the concave hull of the 

segmented building points. Our results have better quality and correctness, with an 

increase of between 1% and 3%, except for Vaihingen-B. This proves that our algorithm 

is able to increase the quality of building outlines resulting from the concave hull and 

improve the segmentation result quality. 

It should also be noted that the computational performance of the proposed method 

is not an issue. The average computation time of the proposed OHT method for 

delineating 2D building outlines on an Intel Core 2Duo CPU with a 2.4 GHz processor 

is about 0.579s per-building. 

The completeness of our building outlines results is lower than the correctness. This 

means that, on average, building polygons are smaller than the ground truth data. As 

LiDAR points rarely sample a building edge, only points located within the building 

roof are used, which causes a shrinking of the polygons. We estimated the percentage 

of shrinking area using all buildings of simple (square) size that are well-segmented in 

our test sets. The average of the building shrinking is consistent at 4.24% for the 

Makassar test set and 4.36% for the Vaihingen test sets. 

4.6.2 Results for Makassar 

Indonesian base map specifications require that each building edge of at least 2.5 m 

should be presented on the map. Accordingly, the minimum length minL of a segment 

for the Makassar test set is five points (2.5m/0.5m). The binr size is set to 0.5 m. The 

ground truth data used as reference for Makassar is the Indonesian base map at a scale 

of 1:10.000. The base map is obtained by manual 3D-compilation of stereo-photos 

acquired at the same time and from the same platform as the LiDAR data we use.  

The comparison between the extracted building polygons of Makassar and the 

ground truth is presented in Figure 4.16.b. From 42 buildings present on the base map, 

37 buildings are extracted. The five missing buildings are indicated by blue stars. In 

addition, our method is able to extract one building that is not present in the ground 

truth (as indicated by a black arrow in Figure 4.16.b). This building has a size of 15.5 m 

by 43 m and should have been present in the base map. 
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(a) 

 

(b) 

Figure 4.16 Illustration on how the proposed method regularizes building edges especially in case 
noise exist in the building segmentation input for the Makassar test set. (a) Building comparison 
between filtered building points (blue) and base map (red); (b) Building comparison between outlines 
generated by the proposed method (green) and base map (red). 

Even though some noise exists in the segmented building points, the proposed 

method is still able to extract accurate building polygons. As highlighted in Figure 4.16.a, 

most filtered building segments (showed in blue) are noisy. High vegetation points 

connecting to the buildings cause most of the noise. Six buildings have a size or shape 

different from the base map (indicated by black stars) due to imperfect filtering and 

segmentation of building points. Low elevation of building roof points is assumed as 

the main cause why five buildings (indicated by blue arrows) are completely missing.  
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Positional accuracy is measured for buildings that exist in our result and the base 

map. RMSE is measured based on the coordinate differences between building corners 

from our result and reference data. The RMSE for complete building polygons is 

between 0.38–0.57 m. For a building where some parts of its roof are not completely 

detected (as indicated by the black circle in Figure 4.16.b), the building corners shift 

reaches 10.84 m. 

During the experiment, the proposed method can actually extract building edges of 

a length less than the required 2.5 m from the Makassar data. The two buildings, as 

indicated by red arrows in Figure 4.16.b, are annexes of a size of 1.3 m by 6 m. These 

building annexes are likely not included in the map, as their size does not meet the 

1:10,000 base map specification. Our method is able to extract such small building parts 

by applying the minimum edge length paramater minL to minL = 3. 

4.6.3 Results for Vaihingen 

The chosen test sets of Vaihingen consist of high-residential buildings that have 

complex shape and are surrounded by trees. Several buildings have multiple roof layers 

of different heights and various length of edges. We set 1.5 m as the minimum length 

of a building line segment corresponding to minL = 3 for both of the Vaihingen test 

sets. The binr size setting is between 0.3 and 0.6 m.  

We succeeded to extract all buildings in the Vaihingen-A and the Vaihingen-B test 

set. For the Vaihingen-A test set, the reference data is acquired by Open Street Map 

(OSM) validated by aerial orthophotos provided by ISPRS. For the Vaihingen-B test 

set, we use a set of building outlines provided by ISPRS as the ground truth. The RMSE 

result of buildings in the Vaihingen-A data that are completely segmented is between 

0.2–0.37 m. As shown in Figure 4.17.b, five out of 27 buildings have different shape 

due to over-segmentation (three red stars) or under-segmentation (three black stars) due 

to dense trees above the building roof.  

The RMSE of extracted building corners is between 0.19–0.96 m. According to the 

ground truth, the Vaihingen-B results have the lowest quality metrics among our three 

test sets. The main cause for a lower quality metric is misdetection of a vegetated 

building roof part of significant size (8.5 m by 9.5 m), marked by the black circle in 

Figure 4.17.c, which is likely a low roof covering an underground basement. The 

filtering process failed to detect this roof part as a building as the height difference 

between this basement roof and the ground is less than 1 m. The Digital Surface Model 

(DSM) of this subset area, as presented in Figure 4.18.b, shows that height information 

may not help to detect this kind of building (inside the white circle). In addition, some 

vegetated building roofs are not completely detected (indicated by brown circles in 

Figure 4.18.a and Figure 4.18.b). This happens because the trees and their surroundings 

disturb the expected planarity. 
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(a) 

 
 

(b) 
 
 

  
(c) (d) 

Figure 4.17 Comparison of building outline results with ground truth. (a–b) Vaihingen-A test area; (c–
d) Vaihingen-B test area. Left: comparison of filtered building points (blue) and base map (red 
polygons); Right: outlines generated by the proposed method (green) and base map (red polygons). 

 



 

99 

 4 

In the results, several building polygons have a shape and size different from the 

ground truth because of tree points allocated to the segmented building points. High 

vegetation adjacent to buildings is the main cause for the high false positive rate of the 

building polygon results. Moreover, neighboring trees that cover some parts of the roof 

induce some false negatives. For example, in Figure 4.19.a, the building segment 

contains parts of four adjacent trees. These tree points have similar height as the 

building roof, which range from 275.5 to 276.5 m. The height difference to the mean is 

about 40 cm as shown in Figure 4.19.c. However, our line extraction algorithm is able 

to ignore 1 out of 4 trees as indicated by the yellow circle in Figure 4.19.a. An extra 

feature, such as intensity as shown in Figure 4.19.d may not work for obtaining a correct 

outline for this building case. A trade off in using the intensity value to remove trees 

will reduce the building completeness as there is a roof part covered by a big tree. An 

additional clustering step (using e.g., DBSCAN) may work to remove trees. 

Nevertheless, when a building roof is covered by dense trees (e.g., as marked by the 

purple circle in Figure 4.19.a), orthogonal input data (such as ALS point cloud data or 

airborne images) may not work to detect the building boundaries accurately. 

 

 

  

 

(a)  (b)  

Figure 4.18 Vaihingen-B misses some part of building roofs due to vegetation (inside the brown 
circle) and low roof elevation (inside the white circle). (a) Overlay of building outline results (magenta) 
and reference (blue) with orthophoto; (b) Overlay of building outline results (magenta) and reference 
(blue) with Digital Surface Model (DSM). 
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(a) (b) 

 

 

(c) (d) 

Figure 4.19 Trees connected to building lead to incorrect outline result. (a) Building outline result 
(green); (b) Reference building polygon; (c) Deviations from the mean roof height; (d) Intensity image 
of the neighboring building area. 

4.6.4 Comparison to previous building outline works 

An analysis is performed to compare the performance of the proposed method to 

previous methods. Several previous results are selected from the Vaihingen-B 

evaluation, which is available on the ISPRS web page 

(http://www2.isprs.org/commissions/comm3/wg4/results/a2_detect.html) and 

confirmed by the corresponding articles. We only consider methods aiming at obtaining 

straight building outlines that implement a data-driven approach and apply a 

regularization approach similar to our research objective. The selection is also limited 

to works that use ALS point clouds or a combination of ALS point clouds and aerial 

photos as input. We also include two results that are not presented on the ISPRS web 

page in our comparison.  

As shown in Table 4.5, the MON3 represents Siddiqui et al. (2016) method has 

highest completeness but this method uses additional color information from aerial 

photos to get straight lines. Building boundaries in the Vaihingen-B test set are clearly 

recognizable as bold white pixels in the aerial photos. Hence, the low building roof (as 
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marked by the white circle in Figure 4.18. a) as well as vegetated roofs (as marked by 

the brown circle) can still be detected. However, the lower correctness metric of the 

MON3 method indicates that some buildings may be over-segmented. On the contrary, 

our method has best correctness and quality metric for this test set. The higher quality 

metric indicates that our method delivers complete and accurate building polygon 

results. 

Table 4.5 Comparison to previous studies 

(Cp: completeness, Cr: correctness, Q: quality) 

Test set Input Data Cp (%) Cr (%) Q (%) 

Awrangjeb, 2014 (MON2) ALS 87.1 94.0 82.6 

Siddiqui et al., 2016 (MON3) ALS + Photos 97.2 84.3 82.3 

Gilani et al., 2016 (FED_2) ALS + Photos 88.8 84.5 76.4 

Zhao et al., 2016 ALS + Photos 91.0 95.0 86.8 

Huang et al., 2018 ALS 87.3 99.0 86.5 

Proposed method ALS 90.1 99.4 89.6 

 

Our proposed method requires building roof points as input. Then, the 2D edge 

points are transformed to Hough space to obtain prominent building outlines. Based 

on this scheme, as long as building points are given, our method should work for 

arbitrary point cloud data including point clouds generated from images by for example 

dense image matching process. 

4.7 Conclusion and future work 

We have presented a framework for delineating 2D building outlines automatically from 

segmented ALS point clouds. An adaptive approach to obtain boundary lines of 

different building shapes and sizes is developed based on an extension of Hough 

transformation exploiting the order of points forming a building outline. Point votes 

for all possible lines passing through given edge points are stored in a Hough 

accumulator matrix. Based on the accumulator matrix, the algorithm uses local maxima 

for detecting dominant building orientations. The prominent lines are selected based on 

detected dominant directions. A hierarchical filtering approach by empowering the 

Hough transform with ordered edge points is introduced to select correct building 

segments and derive accurate building corners. Many problems that occur with the 

original Hough Transform are avoided. 

Our enhanced Hough transformation method, which exploits the ordered points 

and regularity, gives a substantial improvement in the quality of building outline 

extraction as concluded from a comparison to existing benchmark results. Based on our 

extensive evaluation, the proposed procedure is able to deliver high completeness and 

correctness as well as high positional accuracy. Even though the Hough transformation 

4.6 Results and discussion 
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involves many matrices, aside from the pre-processing step, the processing speed to 

process the building outline is not an issue as the proposed algorithm works per single 

building. Another advantage of the proposed method is that it directly uses the point 

cloud. No data conversion or additional data is required. The proposed procedure is 

tested on different areas to verify the robustness of our method to the variation of 

different data specifications, and urban landscape characteristics. In case noise and small 

flaws exist in the data, the voting scheme of the Hough transform makes our method 

feasible for preserving the actual building shape and size. Implementation of the 

proposed outline extraction on different building segmentation attests that the use of 

the algorithm is not limited to a particular segmentation method. 

We implemented a data-driven method that involves directed regularization that 

works effectively to detect multiple building orientations and derive accurate straight 

outlines. Our algorithm, accordingly, has limitation to detect curved outlines. As the 

algorithm requires edge points for delineating outlines, it is sensitive to the pre-

processing steps, which are segmentation and concave hull. It may require parameter 

tuning for different dataset and different output requirements to achieve satisfactory 

results. Therefore, to guarantee an optimal result, understanding the input data and 

determining output criteria is necessary. 

Extension of the present work should consider the implementation and 

performance evaluation of the proposed method for massive map production. Applying 

a robust classification and segmentation method for a larger area may become one of 

the challenges in future, as it may influence the outline extraction result. Application of 

Hough transform for curved buildings should also be elaborated. 
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5 
Building outline extraction from 
ALS point clouds using Medial 
Axis Transform Descriptors 
 

 

Automatic building extraction and delineation from airborne LiDAR point cloud data of 

urban environments is still a challenging task due to the variety and complexity at which 

buildings appear. The Medial Axis Transform (MAT) is able to describe the geometric 

shape and topology of an object, but has never been applied for building roof outline 

extraction. It represents the shape of an object by its centerline, or skeleton structure 

instead of its boundary. Notably, end points of the MAT in principle coincide with corner 

points of building outlines. However, the MAT is sensitive to small boundary 

irregularities, which makes shape detection in airborne point clouds challenging. We 

propose a robust MAT-based method for detecting building corner points, which are then 

connected to form a building boundary polygon. First, we approximate the 2D MAT of 

a set of building edge points acquired by the alpha-shape algorithm to derive a so-called 

building roof skeleton. We then propose a hierarchical corner-aware segmentation to 

cluster skeleton points based on their properties which are the so-called separation angle, 

radius of the maximally inscribe circle, and defining edge point indices. From each 

segment, a corner point is then estimated by extrapolating the position of the zero radius 

inscribed circle based on the skeleton point positions within the segment. Our experiment 

uses point cloud datasets of Makassar, Indonesia and EYE-Amsterdam, The 

Netherlands. The average positional accuracy of the building outline results for 

Makassar and EYE-Amsterdam is 65 cm and 70 cm, respectively, which meet one-meter 

base map accuracy criteria. The results imply that skeletonization is a promising tool to 

extract relevant geometric information on e.g. building outlines even from far from 

perfect geographical point cloud data. 

In this chapter, some research background and an overview of related work is given 

in Section 5.1 and Section 5.2, respectively. Section 5.3 describes the methodological 

workflow using the MAT-based method to delineate building outlines. This is followed 

by a discussion of the results and conclusions as presented in Section 5.4 and Section 

5.5, respectively. 
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5.1 Introduction 

Mapping building roof outlines, also called building footprints, is essential for digital 

base map cartography, planning, surveillance, infrastructure management and 

sustainable city design. Several urban-related applications such as cadaster maintenance 

and building taxation require building outlines at a routine basis. Extracting building 

boundary lines manually is expensive and time consuming, especially in urban scenes. 

Research on extracting building outlines automatically from high-resolution data 

remains challenging due to the complexity of roof structures and variations in the design 

of our urban environment. Up to now, building outlines are typically digitized from 

multiple aerial images. The use of aerial images is preferred above other data sources as 

human operators can easily detect buildings on such images. For automation purposes, 

image disadvantages such as shadows, trees covering building roofs and color variations 

may increase the extraction error. Moreover, relief displacement may cause problems 

when using an orthoimage to obtain building boundaries in case of unfavourable image 

acquisition angles (Devi, 2014). Airborne Laser Scanner (ALS) point cloud data is an 

alternative data source. ALS point clouds have been used as a major data source for 

mapping applications for a few decades (Wang, et al., 2018). The ability of ALS point 

clouds to provide many accurate and undistorted 3D points makes it suitable as data 

source for object extraction. Man-made urban objects (buildings, roads, canals) typically 

have symmetric shape with straight lines and sharp corners. Such characteristics enable 

automatic boundary outline extraction from an ALS point cloud. Thus, the use of ALS 

point clouds for rooftop mapping in combination with an efficient algorithm is 

expected to provide better building outlines. 

Medial axis transform (MAT), is a powerful shape extraction technique that provides 

a compact geometrical representation while preserving topological properties of the 

input shape (Tsogkas and Dickinson, 2017; Tagliasachi, 2016). The MAT was 

introduced by Blum (1967) to describe biological shapes. Since then, it has been used 

for applications in image processing and computer vision. However, MAT has a 

fundamental drawback, which is its instability to small perturbations of the input shape, 

which then may disturb the topology of the MAT branches (Peters, 2018; Bai et al., 

2007). Moreover, wider deployment of MAT to extract shapes analysis from surveying 

quality data with its associated problems, is still challenging (Taglisachi, 2016). 

In principle, the MAT can be implemented for urban mapping purposes, particularly 

to extract building shapes by detecting its corners. As illustrated in Figure 4.1, corner 

points (red) are detected when the tip of a skeleton branch (blue line) touches the 

building boundaries (black). However, generating a MAT skeleton from point clouds is 

a challenging problem as such data contain fuzzy borders, in particular, when data is 

missing (Huang et al., 2013). This makes the application of MAT for airborne point 

clouds difficult.   

 



 

105 

 5 

Corners are important local features and knowledge on their location can minimize 

further data processing without losing specific features of the original object shape 

(Chen et al., 2009; Ghosh,2015). Given an airborne point cloud of an urban area, we 

propose a method for extracting building outlines automatically by detecting accurate 

roof corner points based on MAT descriptors. 

 

  

  

Figure 4.1 The MAT skeleton (blue lines) intuitively detects corners (red points) located at the 
intersection of the skeleton and the object boundary (black lines). 

5.2 Related Work 

Work on the development of building outline extraction from various remote sensing 

data has been intensified in parallel with the increased interest in GIS (Geographic 

Information System) digital map products (Taylor and Lovell,2012). Combining 

different data sources to extract building outlines is believed to increase the detection 

rate and accuracy compared to using a single data source as more features can be used. 

Nevertheless, fusion of data of different sensor types is not a trivial task as fusion is 

hampered by dissimilar resolution, alignment issues or mismatches in feature 

information caused by sensor characteristics or differences in viewpoint during 

acquisition (Furkuo and King, 2004). Manno-Kovacs and Sziranyi (2015) proposed an 

Orientation Selective Building Detection method to detect buildings from a 

combination of aerial and high-resolution satellite images. They apply active contouring 

for obtaining smooth and accurate building outlines. However, inhomogeneous 

buildings are sometimes only partially detected and any object connected to the building 

(e.g. trees) can result in false positive detections. Zhao et al. (2016), Awrangjeb (2016), 

and Li et al. (2013) combined LiDAR point clouds and aerial images to detect buildings 

and obtain smooth building outlines by regularization and mathematical morphology. 

Building outline errors occured due to failures to determine the building principal 

directions during regularization (Zhao et al., 2016; Awrangjeb, 2016) or line 

redundancies after simplification (Li et al., 2013) especially, in case of low point density. 

Our previous study (Widyaningrum et al., 2019) proposed an extended Hough 

5.1 Introduction 
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transform method using ordered lists of points to detect building boundary segments 

from airborne point cloud data. Hierarchical filtering is applied to remove spurious 

lines. That method outperformed existing state of the art methods in terms of 

correctness and quality metrics on benchmark dataset. However, the method is likely to 

introduce false corners, especially for buildings of complex shape, as spurious lines may 

still exist in the final step.  

Various definitions of MAT or skeleton found in literature correspond to different 

methods for computing the MAT leading to different results with different properties. 

In general, MAT algorithms typically focus on deriving the geometric location of the 

centerline or medial axis of a surface, so-called skeletonization (Leymarie and Kimia, 

2007). Up to now, numerous skeletonization methods and their application for 2D and 

3D object description are available in literature. The existing skeletonization methods 

are often categorized into four main approaches:  

 Morphological thinning-based methods that was first applied for discrete binary 

images (Pavlidis, 1978), and improved by Huang et al. (1987) and other related 

notions on the development of 3D thinning algorithm (Couprie and Bertrand, 

2016; She et al., 2009).  

 Geometry-based methods using medial axis transformation for planar shape 

(Lee, 1982) including Voronoi diagrams (Culver et al., 2004) and Delaunay 

triangulation (Reddy and Turkiyyah, 1995).  

 Distance-based functions such as skeleton generation and centerline by the 

distance transform (Niblack et al., 1992), skeletonization by discrete Euclidean 

distance maps (Ge and Fitzpatrick, 1996), and Euclidean skeleton based on 

connectivity criterion (Choi et al., 2003).  

 General-field functions which are generated by functions rather than use 

distance function, for example by replacing  the nonlinear distance with a linear 

transform (Ahuja and Chuang, 1980), using Newtonian potential model to 

replace the distance function (Chuang et al., 2000), and using Electrostatic Field 

Theory (EFT) function to generate potential distribution inside the object 

(Grigorishin and Yang, 1998).  

 

Reviews on skeletonization methods and its applications have been discussed by 

Saha et al. (2016; 2017), Pavlidis (1980), and Amenta et al. (2001). As many 

skeletonization algorithms were designed more for image analysis, we limit the scope of 

our study on skeletonization for point cloud data.  

Several works on MAT using geographical data for various purposes have been 

conducted. Haunert and Sester (2008) applied straight skeleton extraction to derive 

linear representations of polygons and road centerlines from a cadastral dataset. Yirci 

et al. (2013) extracted detailed pedestrian networks by generating a centerline using two 

skeleton operators (straight skeleton by parallel thinning and medial axis by Voronoi 
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diagram). Methods for river centerline extraction based on Delaunay triangulations 

remain challenging for certain complex situations e.g. a scenario with a skeleton 

branching in different directions (McAllister and Snoeyink, 2000; Regnauld and 

Mackaness, 2006). Broersen et al. (2017) used the 2D skeleton of a Voronoi diagram 

and the 3D skeleton of a shrinking ball for identifying watercourses and deriving its 

centerlines from classified aerial point clouds. Widyaningrum and Lindenbergh (2019) 

extract the road network of an urban area from a colored point cloud using parallel 

thinning skeletonization (Zhang and Suen, 1984). However, a further generalization 

step maintaining the road topological order is required for smoothing jaggy skeletal lines 

yielded by the parallel thinning algorithm. 

Ma et al. (2012) estimate a 3D medial axis point using a shrinking ball approach 

based on nearest neighbors and normals from a given set of points. Their work is 

claimed as a faster and simple method that approximates the 3D MAT based on 

maximally inscribed balls tangent to two surface points whose center is positioned on a 

normal line. The ball centers are the medial axis points. The shrinking ball algorithm is 

not only accurate and computationally efficient but is also considered as the most simple 

and fast existing surface-skeletonization method (Tagliasacchi et al., 2016). This method 

is considered as suitable for the geographical case as it is point based, simple, fast, and 

scalable (2018). However, to use this method, fine sampling is required to directly obtain 

a high quality skeleton. The fact that the shrinking ball approach can only result in 

unstructured skeleton points while disregarding the topology of the skeleton branches 

makes this algorithm not directly applicable for applications involving surveying data. 

For use in practical applications, the MAT consisting of medial points and 

corresponding maximally inscribed circles (in 2D) or balls (in 3D) needs further 

processing (Au et al., 2008; Chaussard et al., 2009; Kustra et al., 2015).  

5.3 Methodology 

Our research focuses on the adaptation of MAT for extracting building outlines from 

noisy point cloud data required for mapping and spatial modeling purposes. We extend 

the work on the iterative shrinking ball algorithm and develop a strategy to exploit 

skeleton features to accomplish the goal of accurate building outline extraction. A new 

approach for skeletal point segmentation is also proposed in this research. The 

proposed method achieves state-of-the-art in handling noisy surface boundaries and 

reconstructing the building outlines. It requires minimal human interaction by 

optimizing the use of skeleton-based features. Specifically, the contributions of our 

work are as follows: 

 We integrate skeleton-derived features and global features to perform robust 

skeletal points (MAT) segmentation handling varying point density and noise 

level.  
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 We combine ordered surface point indices and skeletal-derived features to detect 

corner points. 

 We introduce the use of skeletal-derived features to estimate building corner 

positions accurately.  

Overall, our method overcomes some traditional pitfalls of using MAT techniques in 

case of noisy input.  

As this research requires using the MAT in 2D space, we adapt the 2D shrinking 

circle algorithm by Ma et al. (2012). The general workflow of our proposed method for 

automatically extracting building roof outlines consists of four main steps (see Figure 

5.2). First, building boundary points are extracted by an alpha-shape algorithm 

(Edelsbrunner, 1983). Next, the boundary points are transformed into its 2D MAT or 

skeleton points using the 2D shrinking circle algorithm. Third, we then apply our MAT 

segmentation to segment the MAT points by exploiting their geometric attributes. The 

segments are then used to detect corner points. Fourth, polygonization is carried out to 

form a 2D closed polyline based on the detected corner points.  

 
(a) (b) (c) 

 
(f) (e)  (d) 

Figure 5.2 Proposed methodological workflow for extracting the building outlines in clock-wise 
order. (a) ALS building roof points as input; (b) 2D building boundary points; (c) 2D MAT 
extraction (blue points); (d) MAT points segmentation and outlier removal, different color for 
different segment; (e) corner points (red) estimation; (f) polygonization based on the estimated 
corners (red crosses). 

 

This research uses the extended shrinking circle approach that implements the 

denoising heuristic as proposed by Peters (2018). We define the skeleton of an object 

surface S as a set of center points 𝑐 of maximally inscribed circles B(𝑐, 𝜌) in S (see 

Figure 5.3) where 𝜌 denotes the radius of such circle. 
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Figure 5.3 The skeleton (blue line) of a rectangular shape with its corresponding inscribed circle 

(grey) and medial axis point 𝑐 (red point). 

The 2D skeleton points are also called medial axis points. By associating the circle 

radius 𝜌 function to the set of medial axis points, we obtain the so-called Medial Axis 

Transform (MAT). As shown in Figure 5.3, the medial axis points (red points) form the 

MAT skeleton (blue lines) of a rectangular object S. Each maximally inscribed circle (in 

grey) touches at least two points of the boundary of S (black outline). Center points of 

any circle that is not maximal or not inscribed in S (green circles) are dismissed and not 

considered as medial axis points. 

To provide a clear and coherent narrative, further details on each methodological 

step are provided in the following: Section 5.3.1 describes the alpha-shape algorithm. 

Section 5.3.2 and 5.3.3 provide necessary details on the shrinking circle method and 

skeletal points extraction, respectively. Skeletal point segmentation is described in 

Section 5.3.4. The last step, corner point estimation and building outline generation, is 

explained in Section 5.3.5. Evaluation methods for building outline extraction used in 

this research are discussed in Section 5.3.6. 

5.3.1 Alpha-shape 

Given the segmented building points, creating building outlines starts with boundary 

point selection by the alpha-shape algorithm as introduced by Edelsbrunner (1983). An 

alpha-shape is well known for its capability to preserve small shape details of a finite 

point set at a required level of detail. The 2D alpha-shape is constructed based on the 

2D Delaunay triangulation of the input points. The method identifies boundary points 

that are defined in terms of a parameter 𝛼 ≥ 0, which controls the level of detail of the 

boundary shape. Given a set S of points on a plane and a value of 𝛼, the algorithm 

works as follows: 

1. Compute the Delaunay triangulation DT(S) of S. All edges in DT(S) are 

candidate for the alpha-shape 𝑆𝛼 . 

2. For all edges 𝑒 of DT(S) with end points 𝑝 and 𝑞, say: 

a. Find two circles 𝐵𝑝𝑞1 and 𝐵𝑝𝑞2 of radius 𝛼 with center 𝑐𝑝𝑞(1) and 

𝑐𝑝𝑞(2) containing end points p and point 𝑞 of the same edge 𝑒. The 

circles are defined in terms of the below circle centers: 

5.3 Methodology 
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𝑐𝑝𝑞(1,2) =  (
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))                                                  (5.1) 

   Where ‖𝑒‖ is the length of the edge between end points 𝑝 and 𝑞. 

b. If at least one of the circles contains no points from S in its interior, 

𝑒 is a valid boundary edge (Figure 5.4.a), otherwise the edge is 

removed (Figure 5.4.b).  

3. The union of all valid boundary edges forms the alpha-shape 𝑆𝛼 (Figure 5.4.c) 

 

                        
(a) (b) 

 
(c) 

Figure 5.4 The alpha-shape criteria. (a) Delaunay edge connecting points 𝑝 and 𝑞 is a boundary edge 

as one of the circles, here the top circle, is empty; (b) Delaunay edge connecting points 𝑝 and 𝑞 is not 
a boundary edge as both circles are not empty; (c) complete boundary polygon (red line) of the point 

set as indicated by empty circles of radius 𝛼 (black circles). 

 

The value of 𝛼 is a real number with 0 ≤ 𝛼 ≤ ∞. As 𝛼 approaches 0, the shape may 

shrink, develop holes and may become disconnected. In the extreme case, the value of 

𝛼 = 0 results in the data points itself. When 𝛼 increases towards infinity, the alpha 

shape approaches the convex hull of the set 𝑆 of points. In case of geospatial point 

clouds, the point density is often varying, and is depending on sensor characteristics 

and measurement geometry and an appropriate value of 𝛼 should be chosen 

accordingly. To identify boundary points of unordered building roof points in our study 

areas, we decided empirically for an 𝛼-value between 0.3 and 0.5. 
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5.3.2 The shrinking circle principles 

Given are a set of noisy edge points V on a surface S with corresponding normal vectors 

𝑁. The MAT points are defined as the set of centers 𝑐 and corresponding radius 𝜌 of 

maximally inscribed circles B(𝑐, 𝜌) in S that are bi-tangent to the boundary S. The circle 

B and corresponding circle center 𝑐 are denoted as medial circle and medial axis point, 

respectively.  

The basic principles of the shrinking circle method (see Figure 5.5) are as follows: 

1. A medial circle touches the surface in at least two points (𝑝, 𝑞) where  𝑝, 𝑞 ∈ S. 

2. Following the line defined by normal vector 𝑁𝑝 of edge point 𝑝, the radius 𝜌 of 

a circle 𝑩𝑝 decreases iteratively until 𝑩𝑝 touches S at 𝑞, where 𝑞 ≠ 𝑝 and the 

circle center 𝑐 is on the line through 𝑁𝑝. Iteration stops if the maximal 𝑩𝑝 circle 

is found. 

3. A medial circle is a maximal empty circle, which means it contains no surface 

points. 

 

 

(a) (b) 

 
(c) 

Figure 5.5 Basic principles of the shrinking circle algorithm applied on noisy building edges. (a) 

Shrinking circle iteration of point 𝑝; (b) Circle center 𝑐𝑝  is the intersection of 𝑁𝑝 and perpendicular 

line of bisector 𝑝𝑞̅̅ ̅; (c) Medial circles of two consecutive points 𝑝1 and 𝑝2 results in two medial axis 

points  𝑐𝒑𝟏
 𝒊  and  𝑐𝒑𝟐

 𝒊 . 

5.3 Methodology 
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5.3.3  Skeletal points extraction 

To obtain the MAT of surface S, medial axis points 𝑐(𝑝) are computed. Hence, the 

maximal inscribed medial circle B for all sample points 𝑝 in S is computed by the 

following steps: 

1. An initial circle Binit of p is defined based on an initial radius 𝜌𝑖𝑛𝑖𝑡. The 𝜌𝑖𝑛𝑖𝑡 value 

is set sufficiently large e.g. equal to the largest distance between two input points.  

2. Given  𝜌𝑝
𝑘 , where 𝑘 =  {1, 2, . . , 𝑖} denotes the 𝑘-th iteration step, the circle 

center  𝑐𝑝
 𝑘  is given by: 

  𝑐𝑝
 𝑘 =  𝑝 − 𝑁𝑝 𝜌𝑝

 𝑘       (5.2) 

3. Find the surface point  𝑞𝑝
 𝑘  ∈ S closest to  𝑐𝑝

𝑘  such that  𝑞𝑝
 𝑘 ≠ 𝑝. 

4. Test for circle maximality for the circle defined by 𝑞𝒑
 𝒌 and 𝑝: 

a. If the distance from 𝑐𝑝
𝑘 to 𝑞𝑝

𝑘 equals the radius of the circle 𝜌𝑝
𝑘, the circle 

𝐵𝑝
𝑘 is maximal and  𝑐𝑝

𝑘 is a medial axis point.  

b. Otherwise, compute the radius of the next shrinked circle  𝜌𝑝
 𝑘+1 using 

the following equations: 

 𝜌𝑝
 𝑘+1 =

𝑑(𝑝,   𝑞𝑘+1)

2𝑐𝑜𝑠𝜃𝑝
𝑘+1         (5.3) 

Where: 

 𝑐𝑜𝑠𝜃𝑝
𝑘+1 =

𝑁(𝑝− 𝑞𝑘+1)

𝑑(𝑝,𝑞𝑘+1)
     (5.4) 

𝑑(𝑝, 𝑞𝑘+1) =
|𝑝− 𝑞𝑘+1|

2
     (5.5) 

The iteration will stop when the medial axis point as described in step 4.a. is found. 

Figure 5.5.a. shows consecutive shrinking of a circle touching S at point 𝑝, which results 

in a medial circle 𝑩𝒑
𝒊  and a medial axis point  𝑐𝑝

𝑖  in the last iteration.  

Given a defined inside and outside of surface S, the MAT consists of two components: 

one part inside surface S(𝑁𝑝), consisting of the so-called inner medial axis points, and 

another one outside surface S(−𝑁𝑝), the outer medial axis points. 

For each 𝑝 ∈ S, the corresponding inner and outer MAT points are computed by 

iterating steps 2 to 4. The inward normal 𝑁𝑝 is used for the inner MAT calculation, 

while the outward normal −𝑁𝑝 is used for the outer MAT calculation. Figure 5.5.b. 

shows the geometry for calculating the medial axis point 𝑐𝑝 and the direction of the 

normal vector 𝑁𝑝 for the inner circle (black arrow) and outer circle (red arrow). 

Noise handling is an essential step to overcome the sensitivity of MAT to noisy 

boundaries. In case a small bump or noise exist on the input surface, a circle may get 

shrunk too much which then likely results in undesirable medial axis points. Such overly 

shrinked circle, typically has a small separation angle 𝛼. The separation angle 𝛼 (see 
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Figure 5.5.b) is the angle between line  𝑝 − 𝑐𝑝 (the line connecting point 𝑝 and medial 

axis point 𝑐𝑝) and line 𝑞 − 𝑐𝑝  (the line connecting point 𝑞 and medial axis point 𝑐𝑝).  

𝑐𝑜𝑠𝛼 = 
𝑐𝑝𝑝⃗⃗ ⃗⃗ ⃗⃗  ⃗  .  𝑐𝑝𝑞⃗⃗⃗⃗ ⃗⃗  ⃗

|𝑐𝑝𝑝⃗⃗ ⃗⃗ ⃗⃗  ⃗| .  |𝑐𝑝𝑞⃗⃗⃗⃗ ⃗⃗  ⃗|
     (5.6)

        

The denoising heuristics technique presented by Peters (2018) is used to select the 

so-called good circle that is often computed during the above described shrinking 

approach. The good circle is defined as the last circle in the shrinking approach with a 

separation angle 𝛼𝑘 bigger than the separation angle threshold 𝛼𝑚𝑖𝑛. 

After this step, every medial axis point 𝒄𝒑comes with a number of attributes. 

Attributes of each MAT point 𝒎𝒑 are medial axis point 𝑐𝑝coordinate, radius 𝜌, 

separation angle 𝛼, indices of surface point 𝑝 and 𝑞, and normal vector 𝑁𝑝  or −𝑁𝑝. 

Theoretically, using these MAT attributes, the geometry of S can be reconstructed 

completely. 

5.3.4 MAT point segmentation 

MAT attributes provide rich information that can be used to group MAT points into 

different medial segments or branches. In our case, segmenting the points into different 

branches is used for detecting the corner points. One issue when obtaining a skeleton 

from a point cloud with the shrinking circle algorithm is that the point cloud provides 

an unstructured point sampling of S. Also for the MAT points resulting from steps 1 

to 4 in Section 5.3.3, adjacency relations are initially not known. For further application 

of the MAT, two useful observations to identify MAT point connectivity are as follows: 

 MAT points heading towards the same turning point or corner are considered as 

one segment. Fine sampled surface points of a square shape S in Figure 5.6.a 

result in fine MAT points in which some of the MAT points gradually approach 

a specific turning point. In this sense, each MAT point created from a maximally 

inscribed circle, touching at surface point 𝑝 and 𝑞 appoint to a turning point that 

is equally located between surface point 𝑝 and 𝑞. As illustrated in Figure 5.6.b, 

the median value of two surface points 𝑝 and 𝑞 (in red text) is similar to the 

corner’s index (76). 

 MAT points are expected to have a separation angle 𝛼 close to 90°.  As shown 

in Figure 5.6.c, MAT points of a rectangular shape have separation angles that 

are distributed around 90°. 

In practice, surface points are not perfectly distributed and noise-free and are not as 

regular as shown in Figure 5.6.a. Small perturbations on the surface boundary create so-

called skeletal noise (Reniers et al., 2008; Giesen et al., 2009). When detecting shape 

corners, skeletal noise may induce false segments, which then results in false corners. 

5.3 Methodology 
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(a) (b) (c) 

Figure 5.6 Characteristics of skeletal points used for segmentation in case of uniform edge point 
spacing. (a) MAT points (red) heading to the same turning point of the edge are considered as one 

segment. Turning points of this shape are: 0, 47, 76, and 123; (b) Median of the corresponding (𝑝, 𝑞) 
of MAT point (red) is the same as the turning point index (76); (c) Distribution of MAT points (red) 
angle that are close to 90°. 

Our segmentation criterion relies on the proximity of the turning point location of 

the boundary point. Intuitively, MAT points that lie close to each other and have similar 

features values are grouped together. Moreover, we expect that the radius 𝜌 will 

gradually change along a segment branch.  

Based on aforementioned observations, we use three global thresholds and four 

MAT-derived features for segmenting the MAT points. The global thresholds are not 

related to MAT and are defined to increase the segmentation accuracy. The global 

thresholds are: 

G.1. A buffer distance bf from the object surface S. Only a MAT point located within 

the specified buffer will be considered for segmentation. This threshold is used 

to exclude unusable outer MAT points resulting from the maximal circle of two 

edge points with outward normal. These MAT points are typical noise located 

far from the surface points.  

G.2. Minimum number of points for each segment minPts. Any segment having less 

points than the given minPts is considered as segment noise.  

G.3. Point index interval ∆𝑝𝑡 sets the minimum distance between two candidate 

corner points, as expressed below: 

∆𝑝𝑡 ≥
𝑙

𝑟
− 2                  (5.7) 

In Equation 5.7, l is the minimum required edge length and 𝑟 is the point cloud 

interval. The point index interval ∆𝑝𝑡 criterion is designed to avoid having false 

or extra corners at a certain minimum determined edge length in case of short 

and noisy boundaries. For example, given a set of points with 0.5 m point cloud 

interval 𝑟, we require to extract building edges of minimum length l = 2.5 m, 

thus, ∆𝑝𝑡 is set to 3. Imagine that point 13 in Figure 5.7 has the same medial 

properties as point 11, 16, and 20. Point 13 will not be considered as a corner 

point as it has less than 3 point difference to point 11. 
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Figure 5.7 Noisy point edge may indicate a false corner like point 13. By applying point index interval 

∆𝑝𝑡 = 3, point 13 will not be detected as a corner.  

The customized features derived from the MAT attributes, or MAT-derived features 

are described as follows: 

F.1. A MAT point 𝒎𝒑 having a separation angle 𝛼 close to 90° is considered for 

segmentation. Here ‘close’ is specified by the separation angle difference 

threshold, 𝜕𝛼. MAT points outside the given 𝜕𝛼 threshold are considered as 

skeletal noise. This means, a MAT point 𝒎𝒑 will be considered for segmentation 

if it has a separation angle 𝛼𝒑 between 90° + 𝜕𝛼 and 90° − 𝜕𝛼. 

90° − 𝜕𝛼 ≤ 𝛼𝒑 ≤  90° + 𝜕𝛼                   (5.8) 

F.2. Each edge point 𝑝 ∈ 𝑺 is assigned a unique index. For the corner-aware 

segmentation, MAT points 𝒎𝒑 of similar characteristics are expected to belong 

to the same cluster. This is assessed by considering the point indices of the 

surface points of  𝑺. Assume 𝑝, 𝑞 ∈ 𝑺. Let 𝑝𝑖𝑑𝑥 and 𝑞𝑖𝑑𝑥 denote the point indices 

of p and q, respectively. The median value 𝑚𝑒𝑑𝑝𝑞 is obtained by Equation 5.9.  

𝑚𝑒𝑑𝑝𝑞 = 𝑝𝑖𝑑𝑥 +
𝑞𝑖𝑑𝑥− 𝑝𝑖𝑑𝑥

2
                              (5.9) 

For example, pidx=13 and qidx=19 in Figure 5.7 results in 𝑚𝑒𝑑𝑝𝑞= 16. Different 

MAT points with similar 𝑚𝑒𝑑𝑝𝑞 value likely belong to the same MAT segment. 

F.3. The normal angle differences 𝛿𝑁 between the normal of point 𝑝𝑖 and the normal 

of the previous point 𝑝𝑖−1 and the normal of the next point 𝑝𝑖+1 defined by 

(|𝑁𝑝 − 𝑁𝑝𝑖−1|)  and (|𝑁𝑝 − 𝑁𝑝𝑖+1|), respectively. 

The normal angle differences 𝛿𝑁 between 2 consecutive edge points is used to 

determine candidate corners 𝐾𝑝 for 𝑝 ∈ S. Detection of candidate corners 𝐾𝑝 is 

used to obtain first estimate of the number of building corners which is later 

used to remove false segments in case of noisy edges. At noisy edges, segments 

with small median difference may be formed which later may result in false 

corners. Consider two adjacent normal vectors 𝑁𝑝𝑖  and 𝑁𝑝𝑖−1
 of point 𝑝 and 

𝑝𝑖−1 respectively, compare Figure 5.8. The angle 𝛿𝑁 between the two normal 

vectors 𝑁𝑝𝑖  and 𝑁𝑝𝑖−1
 is obtained via Equation 5.10.  

5.3 Methodology 
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cos(𝛿𝑁𝑝𝑖𝑝𝑖−1
) =

𝑁𝑝𝑖
 .  𝑁𝑝𝑖−1

|𝑁𝑝𝑖
|.|𝑁𝑝𝑖−1

|
         (5.10) 

A surface point 𝑝 initiates a candidate corner point 𝐾𝑝 if the angular differences 

𝛿𝑁 to its two adjacent points (𝑝𝑖−1 and 𝑝𝑖+1) are above the given angle threshold 

𝛿𝑁. That is expressed in Equation 5.11.  

 (𝛿𝑁𝑝𝑖𝑝𝑖−1
, 𝛿𝑁𝑝𝑖𝑝𝑖+1

)  ≥ 𝛿𝑁.             (5.11) 

For example: for 𝛿𝑁 =  20°, if  𝛿𝑁𝑝𝑖𝑝𝑖−1
≥ 20°, and  𝛿𝑁𝑝𝑖𝑝𝑖+1

≥ 20°, then 

the surface point 𝑝 is a candidate corner.  

 
Figure 5.8 Normal vectors (grey lines) of edge points (black points), where 𝑝𝑖 is the turning point 

and 𝑁𝑝𝑖
 is the corresponding normal vector. 

F.4. The maximum median index difference threshold 𝜕𝐾𝑝. This feature is used to 

avoid false corners and additional segments caused by perturbation or noise on 

the surface particularly near to the corners. 

Given a set of MAT points 𝑀 = {(𝑐𝑝, 𝜌, 𝛼, 𝑝, 𝑞, 𝑁)} with 6 features 𝜌, 𝛼, 𝑝, 𝑞, 𝑁 per 

medial axis point 𝑐𝑝, the MAT point segmentation works as follows: 

1. Select MAT points 𝒎𝒑 located within a certain buffer distance of bf from the 

object surface S using global threshold G.1. For most of our buildings, a buffer 

distance bf = 35 meter is sufficient. 

2. Select only MAT points 𝒎𝒑 having an acceptable separation angle 𝛼𝑝 as 

specified by the MAT-derived feature F.1. This step eliminates skeletal noise that 

typically has a separation angle value away from 90°.  In our case, a separation 

angle difference 𝜕𝛼 =  20° is sufficient for the medial segmentation. 

3. Compute the median value 𝑚𝑒𝑑𝑝𝑞of the filtered MAT points from step 2 using 

the MAT-derived feature F.2.  

4. Identify all possible candidate corners 𝐾𝑟 and put them in a list 𝐾1, 𝐾2 … ,𝐾𝑖 . 

Candidate corner 𝐾𝑟 is added to the list if it satisfies all the MAT-derived criteria 

specified in F.3, F.4, and global feature G.3. We use threshold values 𝜕𝐾𝑟= 3, 

𝛿𝑁 = 15°and ∆𝑝𝑡= 2, respectively. 

5. Given a candidate corner 𝐾𝑟 from step 3, the algorithm searches for MAT points 

with median value 𝑚𝑒𝑑𝑝𝑞similar to 𝑟𝑖𝑑𝑥. 
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6. If |𝑚𝑒𝑑𝑝𝑞 − 𝑟𝑖𝑑𝑥| ≤  ∆𝑝𝑡, then MAT point 𝒎𝒑 is assigned to medial segment 

𝑴𝒔𝒆𝒈(𝑟). 

7. Any medial segment 𝑴𝒔𝒆𝒈 having less member points than minPts, as defined 

in G.2, will be removed. This step will eliminate false segments that may be 

formed in case of flaws on the edges. 

 

Medial segments are used next to estimate real corners where one medial segment 

corresponds to one corner. 

5.3.5 Corner point estimation 

Instead of appointing edge points as corners, we rather estimate the position of corners 

based on the medial axis point positions and their corresponding radius. The radius 𝜌 

of the maximally inscribed circles of MAT points will gradually decrease towards 

corners. Each medial segment ideally contains a set of MAT points with gradually 

decreasing radii. The location where the radius will become zero (𝑐𝜌=0), typically 

identifies the location of the corner point corresponding to a medial segment is 

estimated as follows. Figure 5.9 shows how the radius 𝜌 of the MAT point depends 

linearly on the 𝑥-coordinate. Therefore, a line is fitted by PCA (Principle Component 

Analysis) through the (𝑥, 𝜌) points of the segment at hand. The 𝑥- coordinate 

corresponding to zero radius (𝜌 = 0) of the fitted line 𝐿𝑟 (as indicated by the blue line 

in Figure 5.9) is reported as the 𝑥 coordinate of the corner point. The 𝑦-coordinate of 

the corner point is obtained in a similar way. 

 
Figure 5.9 Estimating the 𝑥-coordinate of the corner (blue point) by predicting where radius  𝜌𝒑

𝒌 =

𝟎 on 𝐿𝑟 (represented by a blue line). 

In case of an edge with heavy noise, false segment may remain. A spatial filtering 

step is necessary as final filter to remove any spurious estimated corner 𝑐. This spatial 

filtering step preserves any corner point that is within a specified radius from the surface 

points 𝑝 ∈ S. In our case, we use 1 meter as we require building outline result to have 

positional accuracy at least 1 meter. As final step, a closed building polygon is obtained 

by connecting all corner points consecutively referring to the point indices. 

5.3 Methodology 
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5.3.6 Building outline evaluation metrics 

Two different evaluation metrics are applied for evaluating the performance of the 

proposed workflow in fulfilling the required building outline specification: corner 

geometric accuracy and corner detection accuracy. To evaluate the geometric accuracy, 

we compared the position of corners coordinates of the building outline results to the 

reference (Zheng et al., 2013). Positional accuracy, also known as geometric position 

accuracy or location accuracy, is used as main indicator to measure how well the building 

polygons are positioned with respect to its true position within an absolute 

georeferenced system. We use the RMSE (Root Mean Square Error) to measure the 

average of the squared differences between building corner positions (X and Y 

coordinate) in the reference and in the result. The RMSE of a complete building is 

calculated for all detected building corners with respect to the position of corresponding 

reference corners. 

𝑅𝑀𝑆𝐸𝑥 =
√∑(𝑋𝑟𝑒𝑠− 𝑋𝑟𝑒𝑓)2

𝑛
                      (5.12) 

 

𝑅𝑀𝑆𝐸𝑦 =
√∑(𝑌𝑟𝑒𝑠− 𝑌𝑟𝑒𝑓)2

𝑛
                           (5.13) 

 

𝑅𝑀𝑆𝐸𝑟 =  √𝑅𝑀𝑆𝐸𝑥2 + 𝑅𝑀𝑆𝐸𝑦2           (5.14) 

Where: 

 𝑋𝑟𝑒𝑠, 𝑌𝑟𝑒𝑠      = Coordinates of resulting corner points 

 𝑋𝑟𝑒𝑓, 𝑌𝑟𝑒𝑓     = Coordinates of corner points in the ground truth    

n                    = total number of corner points 

 

Due to the complexity of some building, not all corners may be detected completely. 

Therefore, we evaluate the corner detection accuracy by means of three retrieval 

measurements: recall, precision and F1-score (Makhoul et al., 1999). Precision is used 

to measure the exactness or fidelity, whereas recall is used to measure the completeness. 

The F1-score is the weighted mean of precision and recall.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
                               (5.15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
                                              (5.16) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 .𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                          (5.17) 

For this purpose, a corner point is considered a True Positive (TP) if it is located 

within 1-meter radius from the corresponding corner reference, while any undetected 

corner including corners with an offset of more than 1 meter from the corresponding 
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reference corner is considered a False Negative (FN). Any corner in the result that does 

not exist in the reference is considered as False Positive (FP). 

In the building polygon in Figure 5.10, the number of correct corners (TP) is 4, 

while the number of false corners FP (inside the green ellipse) is 1, and the number FN 

of undetected corners or corners with an offset of more than one meter (as indicated 

by the blue circles) is 2. This configuration gives Precision = 0.8, Recall = 0.67, and its 

F1-score is 0.73. 

 
Figure 5.10 Illustration of building corner detection accuracy based on the number of correctly 
detected corners within 1-meter radius from the corner reference. Red crosses indicate building 
corner results. In blue, two 1-meter circles around an undetected reference corner are indicated. 
The green ellipse indicates a corner that does not exist in the reference. 

 

Figure 5.11 summarizes the proposed method to detect building corners from a 

given cluster of building points (Figure 5.11.d). The parameter thresholds, as discussed 

above, are set empirically depending on the point density and the required specification.  

Additional pre-processing is necessary in case clustered building points are not 

available. In this case, an initial classification and/or semantic segmentation processing 

step is required. We use a classified ALS point cloud whose points are labelled according 

to their object class (building, ground, and unclassified). To group points belonging to 

one building, points are clustered by applying the DBSCAN algorithm (Ester et al., 

1996). As a result, different buildings will have different cluster number and theirs 

points are labelled according to the corresponding cluster number. Once the clustered 

building points (as presented in Figure 5.11.d) are available, boundary points need to be 

extracted (Figure 5.11.e), for which we use the alpha-shape algorithm. The resulting 

building boundary points are then used as input for the MAT shrinking circle algorithm 

(blue points Figure 5.11.f). MAT points filtering and segmentation is applied based on 

their separation angle and median index value (Figure 5.11.g). Each medial segment 

generates a different corner candidate. Positions of the corners are extrapolated linearly 

using PCA (Figure 5.11.h). 

5.3 Methodology 
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(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

 
Figure 5.11 Overview of the proposed corner detection method using MAT descriptors. (a) Aerial 
photos of the building; (b) ALS point cloud of the building; (c) Classified building points; (d) 
Clustered building points; (e) Building boundary points; (f) Skeleton (MAT points) of building edge 
points (blue); (g) Segmented MAT points. Different colors mark different segments; (h) Linear 
extrapolation to estimate corner point positions; (i) Detected corner points. 

5.4 Results and discussion 

5.4.1 Experiments of the study areas 

For the experiment, we use three study areas with different landscape characteristics 

and airborne LiDAR point cloud specifications. The first dataset represents a sub-urban 

area of the city of Makassar, Indonesia. The point cloud data was captured in 2012 by 

a Leica ALS70 instrument and has 7-11 ppm (point per meter) point density. 
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The second dataset is a Dutch national AHN3 point cloud sampling the area of 

EYE-Amsterdam, the Netherlands. The AHN3 data has a point density of at least 10 

ppm and was acquired in 2014. Most buildings in this area have a public or business 

function. This test set is selected as many of the buildings in this area are considered to 

have a high complexity in terms of shape and size. 

Building points of the Makassar dataset, as presented in Figure 5.12.a. in orange, 

were classified using LAStools. For EYE-Amsterdam, we used the provided building 

classification of the AHN3 dataset (shown as orange points in Figure 5.12). The alpha-

shape algorithm is then applied to derive the outline of each building. We do not discuss 

the details of the pre-processing steps further as it combines well-known methods in 

the field of GIS and remote sensing. 

For the Makassar area, the topographic base map scale 1:10.000 is used as ground 

truth data. The topographic base map is generated from manual 3D delineation from 

stereo-images with the same acquisition time as the Makassar airborne point cloud data. 

For validating the Eye-Amsterdam results, the Dutch building registration dataset BAG 

(Basisregistratie Adressen en Gebouwen) of the 2019 building dataset is used. However, we 

noticed that several BAG buildings have different shape and size compared to the 

AHN3 buildings due to different data acquisition time. Thus, the RMSE of the corners 

is calculated for unchanged building.  

In this research, the required positional accuracy for the outline result is at least 1-

meter. For the Makassar dataset, the average RMSE for 36 buildings in the study area 

is ̴ 65 cm, which meets our requirements. There is an exception for one incomplete 

building (indicated by a red circle in Figure 5.11.b), that has a RMSE of more than one 

meter. In this case, the building roof is partially covered by dense trees resulting in poor 

building segmentation. Based on the number of corners from the reference data, the 

precision, recall and F1-score of the Makassar test set are 0.99, 0.95, and 0.97 

respectively.  

Building outline results for the EYE-Amsterdam dataset, as shown in Figure 5.12.d, 

are also good at 0.7 meter RMSE on average. For this dataset, there are no classification 

issues as we use available building points provided by the AHN3. In this case, one of 

the biggest factors that influences the accuracy of the result is the definition of building 

roof, in case an overhanging roof exist. This means that the overhanging roof is likely 

included in a building in AHN-3 data but not in the BAG data, which results in 

discrepancies. Figure 5.13.b shows overhanging roofs on one building in the EYE-

Amsterdam area (marked as A in Figure 5.13.a).  Another issue is found on a building 

with a curved building outline. The algorithm could not detect points on a curved line, 

as the normal angle differences 𝛿𝑁 between edge points is small (less than five degrees). 

Decreasing the normal angle differences 𝛿𝑁 threshold would not always mitigate this 

problem, as it will increase the number of false corners due to noise of the edge points.  
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(a) (b) 

  

(c) (d) 

Figure 5.12 Study areas and building outline results. (a) Classified point cloud of the Makassar dataset 
consists of buildings (orange), ground (pink), and vegetation (green); (b) Comparison of the Makassar 
outline result (black line) to the Digital Surface Model (DSM) image; (c) Classified AHN3 point cloud 
of the EYE – Amsterdam dataset consists of buildings (orange), ground (pink), water (blue), and 
unclassified  points (gray); (d) Comparison of the EYE-Amsterdam outline result (black line) to the 
Digital Surface Model (DSM) image. 
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(a) (b) 

Figure 5.13 Comparison of Bag building polygon (red) and the AHN3 building points (grey) in case 
of overhanging roof. (a) Top view building definition of BAG polygon (red) and the AHN3 building 
points (grey); (b) Building “A” has overhanging roof (red circle) ©GoogleStreetView. 

5.4.2 General overview 

Compared to our previous study on building outline extraction using ordered points 

aided Hough transform (Widyaningrum et al., 2018), the MAT approach has higher 

sensitivity to noisy edge points and variations in point density. Small bumps on the 

edges affect the normal direction of the corresponding point, which later affects the 

corner detection result. However, the MAT approach has a similar accuracy as our 

previous work at 0.7 meter RMSE for the MAT-based method and 0.57 for the OHT 

method. Our proposed method is able to handle one of the shrinking ball algorithm 

limitations that requires the surface normal for each sample point (Ma et al., 2012).  

The use of the alpha-shape algorithm makes it possible to orient the normals of 

each edge point automatically when performing inner and outer MAT computation. 

Inner and outer MAT points together effectively detect all building corners.  

Figure 5.14 shows the ability of our method to detect corners of various building 

shapes with different point density. Figure 5.14 row 1 demonstrates how our algorithm 

works on sparse building edge points that later result in false segments. The red circle 

in Figure 5.14.b row 1 shows three medial segments around a corner. Two of them are 

considered as false segments. However, the algorithm delivers the correct corner points 

only (inside the red circle in Figure 5.14.c row 1) even though false segments exist. The 

method also works in case small perturbations exist on the boundary e.g. due to trees 

(see orange circles in Figure 5.14.a row 3). There is one MAT point (the red point inside 

the yellow ellipse in Figure 5.14.a row 3) resulting from a noisy edge part, that is 

correctly ignored by the medial segmentation procedure. On the other hand, the 

algorithm may fail to extract non-linear shapes like rounded edges (see blue circles in 

Figure 5.14. row 2) as the algorithm cannot detect significant normal change for 

boundary points on the rounded edge. In this case, the algorithm can only detect two 

candidate corners from two medial segments, positioned at both ends of the rounded 

edge.  

5.4 Results and discussion 



5. Building outlines using Medial Axis Transform descriptors 

124 

    5 

 

 

1 

 

 

 

2 

 

 

3 

(a) (b) (c) 

Figure 5.14 Outline results for different building shapes. (a) The MAT points (red) of the edge points 
(gray); (b) Segmented MAT point; (c) Resulting corner points (red). 

As shown in figure 5.15.a, our method is able to obtain building corners (yellow 

points) that are close to the reference building polygon (green) even when there is a 

perturbation in the boundary (inside the yellow ellipse). The proposed method, 

particularly, improves the alpha-shape outline (red). Figure 5.15.b compares between 

corners from our method, the alpha-shape outline result, and the building outline 

reference. 

In addition, we found out that several MAT properties have not been investigated 

yet, particularly for the outline extraction, e.g. the curvature of consecutive MAT points 

indicating an asymmetric shape of two edges of different length, may be used for 

locating but also characterizing corners accurately.  
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(a) (b) 

Figure 5.15 Corner identification comparison between our proposed method and the reference and 
the alpha-shape outline in Makassar study area. (a) Corners extracted from our method (yellow) 
compare to alpha-shape outline (red line) and the building map polygon (green polygon); (b) 
Zoomed-in of the blue rectangle in Figure 5.15.a. 

5.4.3 Comparison analysis 

In this section, we compare results of our proposed method to those of existing 

methods on building outline extraction. For this purpose, a small subset of the AHN3 

airborne point cloud of Amsterdam is used. The two other building outline extraction 

methods applied to this test area are: the Ordered Hough Transform (OHT) method 

proposed by Widyaningrum et al. (2018) and a RanSAC-based segmentation and 

regularization method by Lucas and Van Tilburg (2019). All these methods use an alpha-

shape algorithm to select boundary points, which later result in building corners. The 

RanSAC-based segmentation and regularization method requires primary building 

orientations as it regularizes all boundary lines with respect to these orientations and its 

perpendicular orientations. Another regularization approach, OHT, applies the so-

called extended Hough transform on a list of ordered boundary points that enable to 

detect arbitrary building directions and extract different boundary segments.  

The comparison metrics considered are the building corners geometric accuracy 

(RMSE), the computation time of building outline extraction after the boundary points 

are selected, and the corner detection accuracy in terms of recall, precision, and F1-

score.  

As shown in Table 5.1, our proposed method has the highest geometric accuracy 

as well as F-1 score. The RanSAC-based method has higher Recall value as our 

proposed method, but is likely to have more undetected corners. However, the 

proposed method has the lowest number of false positive corners. The average 

computation time for the three methods is considered comparable, although in fact the 

proposed method is the fastest. However, each method may have different strengths 

and weaknesses when it is applied on a complex building roof shape.  
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Table 5.1 Evaluation of different building outline extraction methods 

Approach 
RMSE  

(m) 

Corners Detection Accuracy Avg comp 

time  

(sec) 

Precision 

(%) 

Recall  

(%) 

F1-score  

(%) 

Hough-based  

(Widyaningrum et al., 2018) 

0.434 89.48% 95.15% 91.91% 2.10 

RanSAC-based  

(Lucas & Van Tilburg, 2019) 

0.548 91.89% 96.14% 93.65% 1.90 

MAT-based  

(the proposed method) 

0.414 94.17% 94.55% 93.82% 1.71 

 

Using the building shown in Figure 5.16 as one example, a reference corner inside 

the brown circle is detected by OHT, but not by the proposed method. The RanSAC-

based method results in two corners with an offset close to 1-meter from the reference. 

The proposed method fails to detect one building corner (inside the brown circle) due 

to a wide angle between two consecutive building outline segments that is close to 180°. 

In this case, the shrinking circle failed to produce a separation angle 𝛼 close to 90° 

needed for corner detection.        

   

 

(a) (b) (c) 

Figure 5.16 Building corners resulting from three different methods compared to building reference 
(gray polygon). Results notably vary within the brown circle and blue ellipse. (a) Corners extracted by 
the RanSAC-based method (green crosses); (b) Corners extracted by the OHT method (red crosses); 
(c) Corners extracted by the proposed method (blue crosses). 
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Another difference in the results in Figure 5.16 is indicated by the blue circles. The 

OHT method fails to detect two corners of a short building edge of one meter length, 

while the RanSAC-based method as well as our proposed method successfully detect 

both corners. All methods produce false corners but the proposed method has the 

smallest number of false corners.     

5.4.4 Computational and complexity analysis 

We implemented our method in Python2.7 on an Intel Core 2Duo CPU with 2.4 GHz 

processors. The computation time for our corner detector algorithm varies from 0.28 

to 0.99 second per building, depending on the building size, shape and point density.  

Recall that the proposed method has four main steps: boundary point selection by 

an alpha-shape algorithm, MAT extraction by a shrinking circle approach, MAT points 

segmentation, and estimation of corners by PCA. However, in case building points are 

not yet available, an additional classification and segmentation step is required. One of 

the most common method for 3D point cloud segmentation is seeded region growing. 

This type of algorithms selects a seed point and adds a point from the neighborhood if 

it meets a certain criterion. As reported by Shih and Cheng (2005), and Deschaud and 

Goulette (2010), the computational complexity of seeded-based region growing for 

partitioning a point cloud consisting of 𝑛 3D points into N segments is 𝑂(𝑛 𝑙𝑜𝑔 𝑛). 

Rabbani et al. (2006) improved plane detection using a smoothness constraint based on 

the normal angle difference between neighboring points and reported a time complexity 

of 𝑂(𝑛 + 𝑁 𝑙𝑜𝑔 𝑛). 

The proposed algorithm works on individual building segments. Suppose a segment 

contains 𝑢 number of building points, the computational complexity of our four main 

steps are as follows: 

1. The alpha-shape algorithm for selecting boundary points using Delaunay 

triangulation, as reported by (Varytimidis, 2016), has a time complexity of 

𝑂(𝑢 𝑙𝑜𝑔 𝑢). 

2. Given 𝑣 boundary points extracted by, e.g. the alpha-shape algorithm, the 

shrinking circle algorithm used a KD-Tree to search its nearest point with time 

complexity of 𝑂(𝑣 𝑙𝑜𝑔 𝑣). The shrinking circle algorithm has a computational 

complexity of  𝑂(𝑣2) because the algorithm may have to visit all medial axis 

points 𝑐𝑝 for every boundary point (Ma et al., 2012). 

3. Medial axis points segmentation has a time complexity of 𝑂(𝑣2), but 

performance in practice is close to 𝑂(𝑣). Each MAT point 𝑚 is checked for its 

median value based on its corresponding boundary points (𝑝𝑖𝑑𝑥 , 𝑞𝑖𝑑𝑥) which 

takes 𝑂(𝑣) time. The selection of candidate corner points based on the angular 

differences between two neighboring boundary points (𝑝, 𝑞) takes 𝑂(𝑣) as well. 

The selection of MAT points 𝑚 belonging to the same segment based on the 

similarity of median value of two boundary points (𝑝, 𝑞) and corner point indices 

5.4 Results and discussion 



5. Building outlines using Medial Axis Transform descriptors 

128 

    5 

also has a time complexity of 𝑂(𝑣²), which leads to an overall time complexity 

of 𝑂(𝑣²).   

4. The overall time complexity of PCA is  𝑂(𝑑3 + 𝑑²𝑚) where m is the number 

of sample points and 𝑑 is the number of features (Makhoul et al., 1999). Here, 

𝑑 = 2. For estimating the corner position corresponding to zero radius on a line 

fitted by the PCA, the time complexity is therefore linear in the number of 

sample points. 

 

If all points of a building segment were boundary points, the computational 

complexity would be 𝑂(𝑣²) time. This computational complexity for the total 

procedure of medial axis segmentation is not a problem because the algorithm works 

just on the boundary points of a single building. Point cloud segmentation is in practice 

the heaviest computation as it involves the complete 3D point cloud data. For example, 

in our Makassar test area, the building segmentation step considered all 464.191 points, 

while the medial axis segmentation considers 43 individual buildings. The number of 

points per-building in the Makassar test area varies from 96 to 3185 points, that later 

results in a number of building boundary points varying from 23 to 156 points. Note 

that the processing of individual buildings can also be parallelized easily. 

5.5 Conclusion and future works 

In this research, we have presented a procedure for automatically extracting building 

outlines from airborne point clouds based on the MAT descriptors generated by the 2D 

shrinking circle method. Our approach takes advantage of MAT invertibility with its 

medial axis and the corresponding radius function that allows reconstructing the exact 

object shape. Building classification is conducted first. A set of building boundary points 

is then extracted using an alpha-shape algorithm. After applying a shrinking circle 

algorithm to the input boundary points, MAT points are obtained. To identify corners, 

we introduce a corner-aware segmentation to group MAT points to their corresponding 

medial branch. The segmentation combines both global thresholds and several MAT-

derived features. Next, the algorithm fits a line to all MAT points of a segment. Based 

on the corresponding radii of the MAT points, the corner point location is estimated 

by extrapolating the position where the radius is zero on the fitted line. 

The positional accuracy results of the estimated corner points indicate that our 

method provides a completely new and promising tool for reconstructing the geometric 

shape of building roofs from scattered airborne point clouds by using the MAT 

approach. The proposed method performance is highlighted on a number of complex 

building shapes in and around the EYE building in Amsterdam, The Netherlands. The 

ability of the proposed method to obtain accurate corners and complete shapes 

indicates the robustness of our method to small perturbations on the building edge. In 

case of sparse point intervals, densification of edge points may help to increase the 
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accuracy of the MAT result. Meanwhile, our method has limitations to obtain outlines 

of an object with a curved or circular shape. In comparison to state-of-the-art methods 

on building roof outline extraction, our proposed method shows a promising result in 

acquiring accurate building corners geometrically. Compare to RanSAC and Hough 

transform based methods, our method is a primitives-free approach that does not 

require orientation initialization. 

Though current skeletonization methods show a progressive development, 

deployment for wider applications is still challenging. Different applications may require 

different skeletonization methods and/or MAT descriptors. For future work, we will 

consider extending the MAT technique for reconstructing other digital map objects, 

such as road networks, ridges, or streamlines. The application of the proposed workflow 

for extracting curved lines and for a larger area is also interesting to be investigated 

further. 
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6 
Conclusions and 
Recommendations 
 

The main objective of this research is to develop automatic methods to extract object 

outlines for digital mapping using ALS (Airborne Laser Scanning) point cloud data in 

possible combination with aerial images. In this chapter, we present the key conclusions 

(Section 6.1), list the main contributions (Section 6.2), and recommendations for further 

research (Section 6.3). 

6.1 Conclusions 
This research presents methodology to automatically extract the outlines of two types 

of urban man-made objects, buildings and roads. To accelerate map production and 

minimize human assistance, automatic delineation of topographic objects is found to 

be the key challenge to overcome. Airborne laser scanning point clouds in combination 

with RGB color from aerial images are used to increase the degree of automation as 

well as to maintain the accuracy of the results. 

This research concludes that building and road outlines can be automatically 

extracted directly from point cloud data by combining and developing state of the art 

techniques from machine learning, remote sensing, computer vision, and computational 

geometry. Our workflow consists of point cloud classification, segmentation, and 

outline extraction. For classification, we implement a point-wise deep learning 

technique and use additional RGB information to increase the accuracy of the results. 

Tests demonstrate that we are able to obtain high classification accuracy results in terms 

of precision and recall. Object extraction is then performed starting from the previously 

classified points to obtain smooth building and road outlines. In point clouds, object 

boundaries are unstructured and not as straight as seen in aerial images. To mitigate the 

effect of jaggy and imperfect building edges, we introduce two novel methods for line 

regularization, ordered Hough transform and medial axis transform-based method, 

both resulting in straight and smooth polygon outlines. We propose skeleton-based 

methodology for automatic road outline extraction completed by a novel gap filling 

method to provide a complete and continuous road network. This research is practical 
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in its contribution to automatic object delineation resulting in cheaper and faster map 

production. 

To answer the main objective, we defined three research questions specified by sub-

questions as listed in Chapter 1. Discussions answering the research questions are 

presented in the following. 

 

Research question 1 – How to accurately classify huge point cloud data into 

several classes in a way feasible for routine map production using deep learning? 

Classification partitions a point cloud into several predefined object classes. This step 

is a prerequisite for object outline extraction. Routine map production involves huge 

amount of input data and therefore requires effective scene classification. Current most 

quickly developing classification approach, deep learning, shows promising results in 

handling large amount of data. Given an ALS point cloud enriched by an aerial 

orthophoto dataset, the third research question is specified in the following two sub-

questions. 

Sub question 1.1 – How to effectively utilize additional features from aerial images to increase the 

accuracy of ALS point cloud classification? 

ALS point clouds and aerial images are two complementary data sources for detailed 

and accurate mapping. Aerial images are rich with spectral features, while ALS point 

clouds directly provide 3D geometric features. Optimal feature combination for 

airborne point cloud classification using a deep learning approach incorporating RGB 

color information from remote sensing images has not yet been discussed and tested 

thoroughly, because deep learning parameters are not intuitive to implement for real 

world applications. 

We investigate four different input combinations of input features from ALS point 

clouds and aerial orthophotos to evaluate each feature contribution to the point cloud 

classification. Input features used in this research include a combination of off-the-shelf 

LiDAR (3D coordinates, intensity value, return number and number of returns) and 

image features (RGB color) as well as tailored features (normalized 3D coordinates). 

The feature combinations considered are: (i) 3D coordinates, RGB, and normalized 

coordinates; (ii) 3D coordinates, LiDAR features, and normalized coordinates; (iii) 3D 

coordinates, two color channels (Red and Green) and LiDAR intensity; and (iv) 3D 

coordinates, RGB and LiDAR features, excluding normalized coordinates. Based on 

the evaluation metrics, we found that combination (iv), combining LiDAR and RGB 

color, achieves the highest overall accuracy (92%) as well as F1 score for all classes. 

Other feature sets obtain an overall accuracy within the range of 84% – 86%. The use 

of full RGB orthophoto colors in combination with the LiDAR point cloud significantly 

improves the classification results. 
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Sub-question 1.2 - How to provide good and cheap training samples for ALS point cloud 

classification? 

Deep learning requires a large amount of high quality training samples. The generation 

of training samples for accurate classification results, especially for airborne point cloud 

data, is a non-trivial task. In Chapter 3, we provide a method for creating high-quality 

free training samples for 3D semantic segmentation of new airborne point cloud data 

using an existing 2D vector base map for four land cover classes: bare land, buildings, 

trees, and roads. 

An existing base map is a useful source of information to label training data. 

However, there are several challenges to extract free 3D training samples using a 2D 

base map. First, the base map data used to label the point cloud may not fully provide 

all required object polygons, especially for trees. Second, as we use base map polygons 

to label points, the labeled building and road points may include many mislabeled 

points, as there are trees covering buildings or roads.  

In this study, the labeling procedure is started with point cloud filtering to separate 

ground and non-ground points. From the non-ground points, building points are 

labelled using building polygons of the base map. Using the same method, road points 

are labelled from the ground points, and remaining points are labelled as bare land. 

Next, tree points are identified by surface roughness and height filtering. As several 

building polygons may contain tree points, we apply roughness filtering to eliminate tree 

points labelled as building.  

The proposed point cloud labeling procedure delivers good classification results of 

84% up to 94% overall accuracy depending on the feature combination. The detection 

rate for buildings has the highest F1-score (between 87% and 95%), while the detection 

rate for roads gives the lowest F1-score (between 75% and 84%). Roads have the 

smallest detection rate probably because roads cover less area compared to the other 

classes. The labeling procedure is considered cheap, and fast as it required less than 

eight hours to label all points in our study area of size ±5 km².  

Research question 2 – How to accurately extract complete and smooth road 

networks from given road points? 

On maps, road networks are usually represented by centerlines or outlines or both. A 

road network is characterised by a connected line arrangement, enabling people to move 

from one location to another. Such connectivity is known as network topology. 

Therefore, it is important that a road extraction method preserves topology and the 

local connectivity of a road network. Another challenging task in road network 

extraction is to extract a network completely, which is difficult, as roads are often 

6.1 Conclusions 
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occluded by cars or dense trees. Given the road extraction challenges, the second 

research question is addressed by the following two sub-questions. 

Sub-question 2.1 - How to obtain a complete and accurate road network from given segmented 

road points, where these road points may be affected by gaps and noise?  

Several existing road extraction methods are susceptible to introduce wrong road 

branches due to road gaps and noise. Therefore, in Chapter 3, we introduce a practical 

gap-free approach for extracting complete road networks from segmented road points 

using a skeletonization approach. Skeletonization provides an effective and compact 

representation of objects by reducing their dimensionality to a skeleton or centerline 

while preserving objects topology and geometric properties. On the classified road 

points, DBSCAN clustering is applied to remove noise and outliers. Next, we convert 

road points into a binary image using a kernel density estimator. We found that such a 

kernel density estimator is useful to partly fill small gaps on the road caused by cars. To 

extract road centerlines, an existing fast parallel thinning algorithm is used. Parallel 

thinning captures the centerline of a road while its so-called deletion rule accommodates 

topology preservation. Hence, the topological correctness of the centreline result is 

guaranteed. 

As ALS point clouds provide bird’s eye view of objects, road points can be occluded 

by dense trees or cars which cause unwanted gaps on the road. Such gaps may cause 

incomplete road extraction results that disrupt and disconnect the network. In our case, 

most disruptions are caused by dense trees. Therefore, we propose a novel road 

completion method based on a tree-constrained approach. To fill road gaps, tree 

polygons need to be extracted first. Dangle point identification is performed to detect 

road gaps. A dangle point is defined as the end-point of a line which is not connected 

to any other line. The algorithm adds lines to any road gap based on the intersection of 

the dangle points and tree polygons within a specified distance. Our road completion 

technique effectively fills in most road gaps in our study area. The results demonstrate 

that the procedure is applicable in obtaining complete coverage of the road network 

while maintaining its topology. 

Sub-question 2.2 - How to obtain outlines representing the actual road borders?  

Road outlines are obtained, based on the actual road width estimated by the medial axis 

approach sketched above. Width-based buffering is applied to obtain road polygons. 

The road width is estimated by an Euclidean distance transform of the skeleton to the 

boundary. The distance transform finds the minimum distance between any road pixel 

and the closest non-road pixel of the binary road image. Such method results in another 

type of skeleton that encodes the maximum distance between any skeleton pixel and its 

corresponding edge pixel. The estimated width is assigned to the smoothed centerline 

by a spatial join. Finally, the smoothed centerline segment is buffered according to the 
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estimated width. The results show that the method is efficient and easy to implement 

in providing road borders according to its actual width. Although road width deviations 

of up to two meter happen at a specific highway example, in general, the boundaries of 

our road polygons have less than one meter difference from the reference.  

Research question 3 – How to accurately extract straight and smooth building 

outlines from given building points? 

Buildings, in most cases, have planar surfaces bounded by smooth boundaries. The first 

research question is related to the methodology for extracting building outlines from 

unstructured point cloud data whereas specific issues are addressed by the following 

two sub-questions. 

Sub-question 3.1 - How to mitigate the effect of noise and flaws on the building edges?  

LiDAR points on building edges are in general irregular and noisy. Existing bounding 

hull methods have limitations to deal with noisy edges of buildings of complex shape. 

For example, the concave hull or alpha-shape results in jagged building outlines while 

the convex hull is not suitable to represent edge points of a building of concave shape. 

Trees near buildings sometimes heavily affect the detection of building roofs, leading 

to disrupted building edges and non-smooth outlines.  

To overcome the effect of noise and flaws on building edges, in Chapter 4, we 

proposed an outline extraction method to obtain straight and smooth building outlines 

that preserve the original building shape and size. The ordered Hough transform (OHT) 

method is developed as an extension of the classical Hough transform by exploiting the 

order of points forming the building outline. From given building edge points obtained 

by a k-nn concave hull method, a Hough accumulator matrix is constructed to store the 

number of edge points voting for the same parametric model. Dominant building 

directions are estimated by the variance of angles. Hierarchical filtering and clustering 

is performed to detect parameters having most votes (hotspots). A matrix containing a 

list of ordered edge points enables the detection of line segments of arbitrary direction, 

resulting in straight and smooth building roof polygons.  

In case noise and small flaws exist in the building outline data, the voting scheme of 

the Hough transform enables the preserving of the actual building shape and size. We 

applied the OHT method in three different urban areas of different characteristics: 

Makassar - Indonesia, Vaihingen - Germany, and Amsterdam - the Netherlands. We 

compared the proposed method to other building outline extraction methods, also 

using ALS point clouds as input, on the Vaihingen benchmark dataset. Comparison 

shows that our OHT method has best correctness (99.4%) and quality (89.6%) metrics 

on the given test set. The higher quality metric indicates that our method delivers 

complete and accurate building polygon results. 

6.1 Conclusions 
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Sub-question 3.2 - How to accurately acquire complex building outlines of arbitrary shape? 

Buildings are ubiquitous man-made objects which sometimes have arbitrary shape and 

size. Existing methods have limitations in extracting short edges or in correctly 

detecting multiple building orientations which lead to inaccurate outline results. 

Therefore, there is a need for a simple and primitive-free approach to extract building 

outlines. A reliable skeleton-based shape descriptor, the medial axis transform (MAT), 

has been used for various shape analysis tasks, such as the approximation, recognition 

and retrieval of shapes as well as topology representation and data reduction of complex 

geometric models.  

In Chapter 5, we introduced a MAT-based building outline extraction method that 

works directly on point clouds. Medial axis-based shape descriptors have strong 

advantages for the efficient and invariant geometrical representation of shapes and 

perform well in object reconstruction because they preserve the complete boundary 

information of a given shape. To obtain MAT skeleton points, a shrinking circle 

algorithm is applied to the building boundary points. To identify corners, we propose a 

corner-aware skeleton segmentation method to group MAT points belonging to the 

same medial skeleton branch. Next, the algorithm fits a line to all MAT points of a 

skeleton segment. Based on the corresponding radii of the MAT points, the corner 

point location is estimated by extrapolating the position where the MAT radius is zero, 

which in theory coincides with the corner of a shape.  

We evaluate our MAT-based method by comparing it to other building outline 

extraction methods, one RANSAC-based method and one Hough transform-based 

method (Chapter 4). For this purpose, classified AHN3 airborne point clouds of 

Amsterdam are used. Three comparison metrics considered are the building corners 

geometric accuracy (root mean square error), the computation time, and the corner 

detection accuracy in terms of recall, precision, and F1-score. The MAT-based 

approach has the highest geometric accuracy (RMSE = 0.4 m) and F-1 score (93.8%) 

which demonstrates the robustness of our MAT-based method in predicting the 

building corners. The average computation time for the three considered methods is 

comparable, although in fact the proposed method is the fastest. Compare to the 

RANSAC and the Hough-based methods, the MAT method is a primitive-free 

approach that does not require orientation initialization. Thus, the MAT-based method 

shows a promising result in acquiring building corners for complex roof structures of 

arbitrary shape. 
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6.2 Main contributions 

The four main contributions of this research are summarized as follows. 

1. We prove that the use of RGB color from aerial orthophotos can significantly 

increase the overall accuracy of airborne point cloud classification which at the 

same time shows the robustness of point-wise deep learning approaches to the 

effect of false RGB color due to relief displacement, see Section 3.5.1 and 

Section 3.5.3. 

2. We introduce and validate an efficient procedure to provide good and cheap 

training samples for ALS point cloud classification using deep learning. 

3. We propose the first skeleton-based road centerline extraction method which 

provides a complete procedure to fill road gaps and to extract road boundaries 

using corresponding estimated road width, see Section 3.4.2. 

4. We propose new methods on 2D building outline extraction from ALS point 

clouds based on two different approaches, Hough-based and skeleton-based, as 

presented in Section 4.3 and Section 5.3, respectively. These methods are 

evaluated and were shown to outperform existing state-of-the-art building 

outline extraction methods in several aspects, in particularly, in terms of 

correctness and quality. 
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6.3  Recommendations for future work 

The work for automatic object outline extraction from airborne laser scanning point 

clouds data provides insights on new developments and research. Recommendations 

are presented as follows.  

First, we recommend an extension of the present outline extraction work that should 

consider the implementation and performance evaluation of the proposed method for 

a larger area with multiple map scales (varioscale). The application of the proposed 

workflow for extracting curved or circular outlines should also be investigated further. 

Furthermore, automatic 3D models generation should also be considered as future 

development of this study. 

For road extraction, to smooth all centerlines at once is still problematic as curvy 

roads require different thresholds than straight roads. A more efficient line smoothing 

method or procedure requires further study.  Through current skeletonization methods 

show progressive development, deployment for wider applications is still challenging. 

Different applications may require different skeletonization methods. For future work, 

we propose to extend the MAT technique for extracting and reconstructing other 

topographical objects, such as tree crowns, mountain ridges, or river channels. 

Our research indicates that 3D deep learning matured so much that it is now actually 

able to extract geometric information as required for digital maps at near-operational 

quality, but in a much shorter time than traditional workflows. To increase applicability, 

research on the usability of a model trained for a specific task as the starting point for a 

model for another task (transfer learning) needs to be investigated further. The same 

holds for the reuse of a trained model at another study area (domain shifting) of 

different characteristics.  

We have demonstrated the use of point-wise semantic segmentation to classify ALS 

point clouds followed by a post-processing step to obtain object outlines. Specific 

methods for application on ALS point clouds which can directly detect, segment and 

delineate individual objects, also referred to as instance and panoptic segmentation are 

expected to be designed in coming years.  

In chapter 3, our evaluation results confirm that the use of RGB information from 

co-temporal aerial orthophotos significantly improves ALS point cloud classification. 

However, it is still worth to study the combination of ALS point clouds with very high 

resolution satellite images as an alternative, in case airborne orthophotos are not 

available. In addition, we recommend further investigation on the combination of ALS 

point clouds with airborne or spaceborne images acquired at different times. 

Finally, any automation process is unlikely to deliver 100% correctness and 

completeness. Therefore it is still required to perform data checking and editing. For 

routine production, it is worth the effort to provide methods or tools to facilitate and 

accelerate such editing task. In addition, it is necessary to study which completeness and 

correctness values are sufficient for automatic acceptance of processing results. 

6.3 Recommendations for future work 
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