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Abstract—The 3D mesh is an important representation of
geometric data. It is widely used in computer graphics and has
attracted more attention in computer vision community recently.
However, in the generation of mesh data, geometric deficiencies
(e.g., duplicate elements, degenerate faces, isolated vertices,
self-intersection, and inner faces) are unavoidable. Geometric
deficiencies may violate the topology structure of an object and
affect the use of 3D meshes. In this paper, we propose an end-
to-end algorithm to eliminate geometric deficiencies effectively
and efficiently for 3D meshes in a specific and reasonable order.
Specifically, duplicate elements can be first eliminated by assessing
appear times of vertices or faces. Then, degenerate faces can be
removed according to the outer product of two edges. Next, since
isolated vertices do not appear in any face vertices, they can be
deleted directly. Afterward, self-intersecting faces are detected
and remeshed by using an AABB tree. Finally, we detect and
remove an inner face according to whether multiple random
rays shooted from a face can reach infinity. Experiments on
ModelNet40 dataset illustrate that our method can eliminate the
deficiencies of 3D meshes thoroughly.

Index Terms—3D Mesh; Geometric deficiencies; Mesh repair.

I. INTRODUCTION

Since 3D meshes have many advantages (e.g., rich topolog-

ical information, lightweight, compact, and easier geometric

transformation), 3D computer vision applications begin to pay

more attention to mesh data, such as object reconstruction [1]

[2], scene reconstruction [3] [4] and object recognition [5] [6]

[7]. However, most meshes have a lot of geometric deficiencies

when they are generated, e.g., ModelNet40 [8] and ShapeNet

[9] datasets. Geometric deficiencies may violate the topology

structure of an object, waste computing and storage resources,

and affect make use of the advantages of 3D meshes. The

common geometric deficiencies are presented in Fig. 1: (a)

Duplicate elements are some vertices or faces that appear

repeatedly. They make some structures of the mesh that should

be topologically connected just overlaid together, i.e., topology

connections erroneous. (b) Isolated/Unreferenced vertices are

not used by any faces, which may affect the normalization

of 3D meshes. If an isolated vertex is very far away from
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(CAS-ITRI201905).

(a) Duplicate elements. (b) Isolated vertices.
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(c) Degenerate faces

(d) Self-intersection. (e) Inner faces.

Fig. 1. The common deficiencies of 3D meshes, which can be eliminated
by the proposed method. (a) Duplicate elements are some vertices or faces
appear repeatedly that marked in red. (b) Isolated vertices are highlighted in
blue, which are not used by any faces. (c) Normal triangular face (left) and
degenerate faces (middle and right) whose three vertices degenerate to a vertex
(i.e., for a face ti, vp1 = vp2 = vp3 , where vp1 , vp2 , and vp3 are three
vertices of a triangular face) or a line segment. (d) Self-intersection means
their intersection is not an edge of the mesh. We visualize them in zoomed
parts. (e) In the cross-section view of a mesh model, the marked faces are
inner faces.

3D meshes, the center of the bounding box is not the center

of 3D meshes after normalization, which causes the mesh far

away from the screen center and may become very small to be

invisible. (c) Degenerate faces consist of three same vertices or

three collinear vertices. Degenerate faces and isolated vertices

can be regarded as noise, which cannot provide any useful

information for describing a shape. In addition, they waste

computing and storage resources. (d) Self-intersecting faces
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are not a realistic representation of geological structures [10],

and the intersections of these faces are not edges of 3D

meshes. (e) Inner surfaces are unnecessary in general computer

graphic and 3D computer vision applications that need the

outer contour of 3D meshes. Although inner surfaces generally

cannot affect the outer contour of 3D meshes, they affect

extract features from the outer contour. Above geometric

deficiencies overwhelm the advantages of meshes and become

obstacles for utilizing meshes.

There are some existing methods to deal with meshes,

such as mesh denoising [11] [12], mesh surface simplification

[13] and inside-outside classification of 3D meshes (e.g., ray

casting-based method [14], winding number [15], and a signed

distance field-based method [16]). These methods only process

one type of many deficiencies and cannot eliminate most

deficiencies in an end-to-end manner. Specially, they cannot

eliminate deficiencies that affect mesh topology.

To address these issues and better make use of advantages

of 3D meshes, we propose an end-to-end mesh processing

algorithm to eliminate five mentioned deficiencies thoroughly.

To be specific, each type of deficiency is eliminated by a

corresponding operation. These key operations are organized

in a specific and reasonable order, i.e., removing duplicate

elements, degenerate faces, isolated vertices, self-intersecting

faces, and inner faces. Experiment results on mesh model

dataset demonstrate the effectiveness of our algorithm.

The main contributions can be summarized as follows:

• An end-to-end algorithm that organizes key operations in

a specific and reasonable order is proposed to eliminate

these mentioned key deficiencies, which can make us

utilize advantages of 3D meshes and reduce storage and

computing resources.

• We propose simple and effective methods to remove

degenerate faces and self-intersecting faces according to

the outer product of any two edges and intersection of

two faces respectively.

• We propose a new method to remove inner faces of 3D

meshes effectively by combining ray-casting and voting

strategies, which simulate shoot multiple random rays

from a face and accumulate the number of rays that can

reach infinity, then decide whether to delete the face.

II. THE PROPOSED METHOD

In this section, we first introduce corresponding operation of

removing each deficiency (i.e., removing duplicate elements,

isolated vertices, self-intersecting faces, and inner faces), then

introduce the overall scheme of our end-to-end geometric

deficiency elimination algorithm.

A 3D mesh model can be regarded as a graph that consists of

vertices, edges and triangular faces, defined as M = {V, T }.

V = {vi}Nv
i represents the aggregation of Nv vertices;

T = {ti}Nt
i=1 represents the aggregation of Nt triangular

faces, each face is represented as a 3-tuple of vertex indices

ti = (p1, p2, p3), 1 ≤ p1, p2, p3 ≤ Nv and consists of three

edges e1i = vp2 − vp1 , e2i = vp3 − vp2 , and e3i = vp3 − vp2 .

Algorithm 1 Correct Face Orientation

Input: M = {V, T }, desired total rays Nmax, minimum rays

Nmin of each face;

Output: A repaired 3D mesh model M′
;

1: Compute area si of per face ti;
2: S =

∑T
i=1 si;

3: for i = 1, ..., T do
4: cifront = 0, ciback = 0;

5: ni = max(si/S ∗Nmax, Nmin);
6: Randomly sample rays {rjfront, r

j
back}ni

j=1 from both

sides of ti. r
j
front and rjback have same origin and shoot

in opposite directions;

7: for j = 1, ..., ni do
8: if rjfront can reach infinity then
9: cifront = cifront + 1;

10: end if
11: if rjback can reach infinity then
12: ciback = ciback + 1;

13: end if
14: end for
15: if cifront < ciback then
16: flip ti;
17: else
18: pass;

19: end if
20: end for

return M′
;

Remove duplicate elements. Duplicate elements are dupli-

cate vertices and duplicate faces. A 3D mesh M may contain

some vertices that satisfy:

vi = vj , i �= j, vi, vj ∈ V, (1)

then vi and Vdup = {vj} are duplicate vertices. The duplicate

faces are different faces ti = (pi1, p
i
2, p

i
3) and tj = (pj1, p

j
2, p

j
3)

which have the same 3-tuple of vertex indices, but the order

may be different, i.e.,

{pi1, pi2, pi3} = {pj1, pj2, pj3}. (2)

After duplicate elements are detected, we leave only one from

the duplicate elements. The corresponding operation is denoted

as fdedup.

New duplicate faces may produce after removing the dupli-

cate vertices, therefore, duplicate vertices should be removed

before detecting and removing duplicate faces. The vertices in-

dices list changes when a vertex is removed, then each 3-tuple

of vertex indices for T needs to be updated simultaneously

when remove each duplicate vertex.

Remove degenerate faces. As illustrated in Fig. 1(c),

degenerate faces are some faces which degenerate into a point

or a line segment. They can be detected according to the

following formula:

eji × eki = 0, ∃ j, k ∈ ti, j �= k, (3)
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(a) Intersection of two faces. (b) Remesh self-intersecting faces.

Fig. 3. Illustration of our method for detecting and remeshing self-intersecting
faces. (a) Detect self-intersecting faces: we get two endpoints (i.e., two red
points) of the intersection line of two faces firstly, then self-intersection faces
satisfy that one of two endpoints is not the vertex of the two faces. (b)
Remesh self-intersecting faces: we take an appropriate number of points in
equal intervals on the intersection line of two faces, then triangulate two faces
separately.

Fig. 4. Simulating rays shooted from a faces. Each orange ray is shooted
from the front side of a face, which has a black opposite ray is shooted from
the another side.

i.e., as for a degenerate face, the outer product of any two

edges is zero. After detecting this deficiency, we remove the 3-

tuple ti and keep the vertices of the degenerate face. Because

these vertices may be used by other faces, and they can be

removed as isolated vertices if they are not used by other

faces. This operation is denoted as fremove deg.

Remove isolated vertices. Isolated vertex is not indexed by

any face, i.e., vertex vi satisfy :

i /∈ ti = (p1, p2, p3), ∀ ti ∈ T . (4)

These vertices can be deleted directly. We denote this oper-

ation as fremove iso. Similar to removing duplicate vertices,

when removing each isolated vertex, each 3-tuple of vertex

indices for T needs to be updated simultaneously.

Remesh self-intersections. The self-intersecting faces can

be repaired by our remeshing method. This method firstly

detects the intersection line of two faces is a common edge

of two faces or not by using an AABB tree. To be specific,

as shown in Fig. 3(a), we get two endpoints (i.e., two red

points) of the intersection line of two faces, then no-common

edge satisfys that one of two endpoints is not the vertex of

the two faces. If it is not a common edge (i.e.,two faces are

self-intersecting), we take an appropriate number of points at

equal intervals on the intersection line and triangulate two

faces separately, as depicted in Fig .3(b). If it is a common

edge of two faces, we detect next pair faces. We denote this

operation as fremesh si.

Remove inner faces. The orientation of some faces are

incorrect after the operation fdedup or are incorrect original,

for instance, the mesh model of Fig. 1(d), where gray indicates

outside and light blue indicates inside. Before removing the

Algorithm 2 Remove Inner Faces

Input: M = {V, T }, desired total rays Nmax, minimum rays

Nmin of each face;

Output: A repaired and 3D mesh model M′
;

1: Compute area si of per face ti;
2: S =

∑T
i=1 si;

3: for i = 1, ..., T do
4: ciinf = 0;

5: ni = max(si/S ∗Nmax, Nmin);
6: Randomly sample rays {rj}ni

j=1 from the outside of ti;
7: for j = 1, ..., ni do
8: if rj can reach infinity then
9: ciinf = ciinf + 1;

10: end if
11: end for
12: if ciinf < 0.05ni then
13: delete ti;
14: end if
15: end for
16: M′

= fremove iso(M);
return M′

;

inner faces of 3D meshes, correcting facets orientation is

necessary and can make visualization better. The method of

[17] can solve it well, which is summarized in Algorithm 1.

Specifically, for each face ti, this method randomly samples

a large number of rays, whose origin and direction are both

random and number proportional to the area of the face.

Then, as shown in Fig. 4, two rays are shooted in opposite

directions for each ray origin, i.e., rjfront and rjback. The

corresponding counter cifront (resp. ciback) is incremented if

a ray shooted from the front side (resp. back) of the face

and does not intersect with any other faces. After shooting

all the rays, the face ti is flipped if cifront < ciback, i.e.,
ti = (p1, p2, p3) → ti = (p1, p3, p2).

For detecting and removing inner faces of 3D meshes, a

method based on ray casting and voting strategies inspired

by [17], which is summarized in Algorithm 2. The main idea

is to judge each face whether visible from the outside or not,

which is decided by randomly shooting many rays from the

outside of the face (i.e., orange rays of Fig. 4). Specifically,

for every face ti, we randomly sample ni (ni ≥ 100) points

proportional to the face’s area from the outside of the face as

the ray origins, and the direction of each ray is also randomly

sampled. If a ray does not intersect with any other faces

in 3D meshes, i.e., it can reach infinity, which indicates the

corresponding face is an outer face, the corresponding score

counter ciinf is incremented. After shooting all rays, the face

can be regarded as an inner face if ciinf < 0.05ni. Then 3-tuple

ti can be removed, while keeping its vertices that may be used

by outer faces. After removing all inner faces, fremove iso is

conducted again to remove those vertices that only used by

inner faces.

Overall Scheme. The overall processing scheme is shown

in Algorithm 3. First, operations fdedup, fremove deg and

Authorized licensed use limited to: TU Delft Library. Downloaded on February 26,2021 at 13:36:34 UTC from IEEE Xplore.  Restrictions apply. 
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(a) Original mesh model. (b) Deduplicate mesh model. (c) Self-intersecting faces. (d) Remeshed self-intersecting faces.

(e) Simplified mesh model. (f) After correcting faces’ orientation. (g) Inner faces. (h) After removing inner faces.

Fig. 2. Visualization of the intermediate processing results for guitar 0205 in ModelNet40 [8] dataset. Gray face indicates outside and light blue face
indicates inside. Processing sequence: (a) Original mesh model ( red part is duplicate elements ). (b) Mesh model processed via fdedup, fremove deg and
fremove iso. Light blue face means its orientation is incorrect. (c) A local patch of self-intersecting faces. (d) Self-intersecting faces are repaired by remeshing
self-intersections algorithm. (e) We simplify the mesh model to speed up the processing of subsequent steps. (f) Mesh model of previous steps exists wrong
face orientation, which is corrected via Algorithm 1. (g) A cross-section view of the model to reveal its inner structure. (h) A cross-section view of the model
after removing inner faces, which proves that we can remove the inner faces thoroughly.

fremove iso are conducted one by one to remove duplicate

elements, degenerate faces, and isolated vertices successively.

Second, we normalize 3D meshes model into a unit sphere

for the convenience of visualization in subsequent steps.

Afterward, fremesh si is conducted to remesh self-intersecting

faces. fremesh si may produce duplicate elements, so operation

fdedup is conducted again. Some mesh models may have a

large number of vertices, which costs much processing time.

Thus 3D meshes are simplified to the expected number of

vertices by a mesh simplification algorithm [13], which can

speed up the processing of subsequent steps and is denoted as

fsimplify(M, Nd), where Nd is the expected number. Finally,

the face orientation is corrected via Algorithm 1 and the

undesired inner faces are removed via Algorithm 2.

III. EXPERIMENT RESULTS

We implement the overall processing scheme in C++ based

on the Libigl library [18], and verify the validity of the

proposed method on ModelNet40 [8] dataset that has 12,311

3D mesh models. The intermediate processing results of

guitar 0205 and airplane 0635 via Algorithm 3 are shown

in Fig. 2 and Fig. 5 respectively.

Then, we introduce the intermediate processing results of

airplane 0635 in detail. The original mesh model has 25,085

Algorithm 3 Eliminate Geometric Deficienciey of a 3D Mesh

Input: M = {V, T }, expected number Nd;
Output: A repaired and simplified 3D mesh M′

;

1: M = fdedup(M);
2: M = fremove deg(M);
3: M = fremove iso(M);
4: Normalize M into a unit sphere;

5: M = fremesh si(M);
6: M = fdedup(M);
7: M = fsimplify(M, Nd);
8: Correct each facet’s orientation Algorithm 1, get M;

9: Remove the inner structure via Algorithm 2, get M′
;

return M′
;

vertices and 31,222 faces and is illustrated in Fig. 5(a), and

the red part is duplicate elements. Fig. 5(b) shows the mesh

model processed via fdedup, fremove deg and fremove iso (i.e.,
step 1-3 of Algorithm 3), and the number of vertices and faces

decrease to 11,492 and 22,528 respectively. Comparing with

the original mesh model, the number of vertices reduces more

than half. The results illustrate that the original mesh may con-

tain massive duplicate elements, degenerate faces and isolated

vertices that waste much storage and computing resources
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(a) Original mesh model. (b) Deduplicate mesh model. (c) Self-intersecting faces. (d) Remeshed self-intersecting faces.

(e) Simplified mesh model. (f) After correcting faces’ orientation. (g) Inner faces. (h) After removing inner faces.

Fig. 5. Visualization of the intermediate processing results for airplane 0635 in ModelNet40 [8] dataset. Gray face indicates outside and light blue face
indicates inside. Processing sequence: (a) Original mesh model (red part is duplicate elements). (b) Mesh model is processed via fdedup, fremove deg and
fremove iso. Light blue face means its orientation is incorrect. (c) A local patch of self-intersecting faces. (d) Self-intersecting faces are repaired by remeshing
self-intersections algorithm. (e) We simplify the mesh model to speed up the processing of subsequent steps. (f) Mesh model of previous steps exists wrong
face orientation, which is corrected via Algorithm 1. (g) A cross-section view of the model to reveal its inner structure. (h) A cross-section view of the model
after removing inner faces, which proves that we can remove the inner faces thoroughly.

when saving it to disk or conduct some computing tasks on

it. Then, self-intersecting faces are remeshed. Comparing Fig.

5(c) and Fig. 5(d), the self-intersecting faces can be remeshed

well, which provides a guarantee for effective removing of

the inner faces. Then we conduct fdedup and fsimplify, and the

result is shown in Fig. 5(e). Contrasting Fig. 5(e) and Fig.

5(d), we can find some small and unimportant faces (e.g., the

windows of the airplane) are simplified/disappeared, which

can speed up subsequent processing steps. In addition, the

orientation of some faces is wrong in Fig. 5(b) - Fig. 5(e)

(i.e., gray indicates outside and light blue indicates inside).

So Algorithm 1 is used to correct the orientation of these

faces, and the result is shown in Fig. 5(f). Then we remove

the inner structure via Algorithm 2. The slices before and

after removing the inner faces are respectively shown in Fig.

5(g) and 5(h), which proves the proposed Algorithm 2 can

effectively remove the inner faces. Specially, the mesh model

owns 10,000 vertices and 23,252 faces before removing inner

faces (i.e., Fig. 5(g)), and owns 8,564 and 16,189 faces after

removing inner faces (i.e., Fig. 5(h)), which indicates remove

inner faces can save resources for other tasks that consume

mesh. In the future, 3D meshes processed by our method could

be efficiently applied into many computer vision applications.

e.g., object recognition [19], [20], domain adaptation [21].

IV. CONCLUSION

In this paper, we propose an end-to-end processing algorith-

m to effectively eliminate key geometric deficiencies of 3D

meshes, then we can reduce storage and computing resources

and utilize advantages of deficiency-free meshes in other tasks

(e.g., object reconstruction, scene reconstruction, and object

recognition). Specifically, we remove degenerate faces and

self-intersecting facessimply and effectively according to the

outer product of any two edges and intersection of two faces

respectively. In addition, we remove inner faces of 3D meshes

effectively by combining ray-casting and voting strategies.

Intermediate processing results demonstrate the effectiveness

of our method. In the future, we plan to research 3D mesh

object recognition and 3D mesh scene understanding, for

which an effective preprocessing algorithm and high quality

3D meshes are necessary.
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