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An Automated Detection Framework for Multiple
Highway Bottleneck Activations
Tin T. Nguyen , Simeon C. Calvert , Hai L. Vu, and Hans van Lint

Abstract— Highway bottlenecks are responsible for the major-
ity of traffic congestion. Although the problem of bottleneck
detection is not new, contemporary methods have not solved
the problem thoroughly with regards to bottleneck locations,
activation time, and related congestion tracking. These elements
are essential for identifying and characterizing a bottleneck. This
paper proposes a comprehensive framework for detecting and
extracting these features of highway bottlenecks from traffic data.
We particularly focus on questions (i) whether a bottleneck is
the primary source of congestion or (ii) whether it is activated
due to congestion caused by another downstream bottleneck.
The underlying principles of the proposed method include the
detection of congestion (in spatio-temporal patterns of traffic
congestion), and the detection of speed discontinuities in traffic
data (since this is an important indicator of a bottleneck
activation). The method is data-driven and automatic therefore
can be easily applied to different highways and used to obtain
meaningful statistics of existing bottlenecks. We have tested the
method on simulated data and also demonstrated it on real data
from a busy highway section in the Netherlands. The results
suggest that the method is robust to different implementations,
i.e. locations, of loop-detectors which measure traffic at discrete
locations.

Index Terms— Highway bottleneck, bottleneck detection, con-
gestion detection, active contour, Chan-Vese, adaptive smoothing
method, logistic function.

I. INTRODUCTION

H IGHWAY bottlenecks are activated when traffic demand
exceeds capacity. For example, a high inflow from an

on-ramp can increase the demand on the downstream road
which activates a bottleneck; or the closing of a lane reduces
the road capacity which might not meet its current demand
and trigger a bottleneck. These bottlenecks account for the
majority of congestion that occurs on highways [1], [2].
Detecting and/or understanding the characteristics of bottle-
necks, such as location, duration or delay, play a vital role
in the management and control of mobility. Sensing devices
like inductive loop detectors have been implemented widely to
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provide an essential source of information for studying traffic
flow in general and bottlenecks in particular. Knowing existing
bottleneck locations and their effects on traffic enables traffic
experts to act quickly, albeit manually exploring or search-
ing such data would demand considerable time and effort.
To effectively utilise increasing amounts of collected data,
the development of a new method that automatically analyses
traffic data for bottlenecks information is necessary due to
three reasons. First, by exploring traffic data automatically,
such a method can simply save a lot of time and effort for
network operators. Second, the automation property enables
the study of bottlenecks for long periods, e.g. months or years;
hence, their long-term related statistics can be obtained for
further characterizing and understanding traffic bottlenecks.
Finally, the method can be applied widely to large-scale
freeway networks. In particular, bottlenecks on region-wide or
nation-wide highway networks can be extracted automatically
to study traffic network performances.

Different approaches have been proposed in the literature
to identify and extract highway bottleneck characteristics
automatically. Early approaches focus on pre-identified bot-
tleneck locations, which can be learned from either network
topology or historical observations. Accordingly, traffic infor-
mation such as speeds or flows are obtained from related
detectors (upstream and/or downstream). One can calculate
the changes of speed or flow over time, and define appro-
priate thresholds based on historical statistics to detect the
onsets and dissolves of the corresponding bottlenecks [3]–[5].
Recent research focuses on both the spatial and temporal
evolution of activated bottlenecks. Instead of individual bot-
tleneck locations, data collected from long road segments are
processed for information about multiple existing bottlenecks.
Speeds or flows are normally presented by spatio-temporal
maps, which are essentially matrices. Chen and Rakha [6]
proposed a set of image-processing techniques to classify
traffic states into congested or non-congested. Thereafter,
additional information is incorporated on the related network
topology to eliminate discharging areas from congestion, and,
inherently identify bottleneck locations that present in the
original congestion. However, there are challenges from the
aforementioned methods that still need to be addressed. First,
contemporary approaches in the literature do not distinguish
between stationary bottlenecks (at fixed locations) and tem-
porary bottlenecks that arise when so-called wide moving
jams propagate upstream. This miss-recognition could result
in false alarms of bottlenecks. Second, most (if not all) of
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the existing methods have been verified on rather simple
corridors where existing active bottlenecks are away from
each other, which means that they cause different (isolated)
regions of congestion. Therefore, the problem of bottleneck
identification simplifies to the detection of congestion. A gap
remains for a method that can detect bottlenecks in more
complex road corridors where multiple bottlenecks might be
activated simultaneously and congestion from one of those
propagates to other upstream bottlenecks. This is a relevant
problem since such a method can provide more complete
information about all potential bottlenecks on a road corridors
(or even a network) and dependencies between bottlenecks can
be investigated which is beneficial to traffic management and
control.

This paper aims to develop a comprehensive framework
for automatically detecting bottleneck activations in complex
highway corridors. To do this, we first need to detect if
there is a congestion pattern, which implies detecting its
spatio-temporal extent. Afterwards, we figure out which bot-
tlenecks contribute to the cause of this congestion. As a result,
we develop a methodology (as described in Section III) that
contains two main parts, namely a congestion pattern detection
method and a bottleneck detection method which are described
in detail in Section IV and Section V respectively. Our method
relies solely on the discontinuities of traffic speeds over a
certain time duration at (the small vicinity of) a location.
Therefore, any type of bottlenecks, either due to road topolo-
gies or incidents, that induces congestion with decreasing
traffic speeds at the upstream of bottleneck locations is of
being detected. We verify this framework with simulated data
in Section VI and apply in a real case study in Section VII.
Besides, a relevant literature review is presented in the next
section.

II. LITERATURE REVIEW

In this section, we review related research regarding
the three main objectives, which are mentioned previously:
(1) detecting the activation of a bottleneck, (2) identifying
bottleneck locations and (3) tracking congestion forming
upstream of a bottleneck due to its activation.

Early studies aim to identify the activation and deactivation
of a specific bottleneck, of which the location is known a pri-
ori. Traffic data from e.g. inductive loop detectors are collected
to provide information into traffic at the bottleneck. These data
are time series showing the evolution of traffic variables like
speed or flow. Banks [7] visually inspects time series of traffic
speeds on both individual lanes and aggregated over lanes of
the road segment associated with a bottleneck. The drops in
speeds are used as the indicator of a bottleneck activation at
that location. The method is formulated by defining a speed
threshold (which is derived based on experiments) to filter
30-second-interval speed differentials [4]. Following Bank’s
approach, Hall and Agyemang-Dual [5] derive a threshold of
occupancy-to-flow ratio to identify the formation and dissolve
of a queue. Zhang and Levinson [3], [8] experimentally derive
two thresholds of occupancy to classify traffic into 3 condi-
tions: congested, uncongested, and intermediate. In addition,

a bottleneck only be active under an extra condition that
upstream is congested and downstream is uncongested for at
least a minimal time, e.g. 5 minutes. Das and Levinson [9]
incorporate and analyse both speed and flow information.
In their method, traffic states are categorised into four phases:
free, synchronised, congested and recovered. A decision dia-
gram is introduced (based on various speed-flow conditions)
to illustrate the changes of traffic states. Drops of speeds
and flows are the fundamental metrics in this diagram, based
on which bottleneck activation is identified accordingly. The
authors also take into account upstream and downstream flows
to argue if the onset of congestion at the current location is
prone to the activation of bottleneck downstream. The afore-
mentioned methods require two conditions that make them
unsuitable for a comprehensive bottleneck detection method.
First, bottleneck locations have to be known in advance; hence
it can not locate bottlenecks but to detect activation of known
bottlenecks. Second, they require parameters (thresholds) that
are derived from manually analysing (local) related traffic data.

The second group of research incorporates both the temporal
and spatial dimensions to identify the location and activation
time of bottlenecks observed in data. The most popular method
in this direction was introduced by Chen et al. [10], so-called
Chen’s method. It processes all adjacent pairs of detectors and
defines a set of rules to detect if a bottleneck is activated
between two locations. These rules consist of low speeds at
upstream locations, higher speeds at downstream locations,
and (spatially) monotonic decreases of speeds to a certain
level. Upon detecting locations and activation time of all
bottlenecks on a highway, a speed threshold, which is learned
through analysis of traffic data, is chosen to determine if traffic
is congested. Some important characteristics can be subse-
quently derived such as activation frequency of bottlenecks
or average traffic delay. This method might work well in
processing recurrent bottlenecks and extracting characteristics
for future activations, which most likely require the same
parameters for the detecting method. In line with Chen’s
method, Zhang et al. [11] attempted to formulate the approach
in a systematic way. Specifically, the speed threshold is chosen
as critical speeds, which are at the boundary between free and
congested traffic, on related links. Also, a post-processing step
was proposed to associate relevant activated points (indicating
speed differences) together to form lines representing location
and time of bottleneck activations. Bai et al. [12] proposed
a similar approach to Chen’s method, though they base their
bottleneck activation definition on occupancy instead of speed.
As acknowledged by the authors in the original paper [10], set-
ting parameters for these methods require visually observing
historical data, and different bottlenecks will require different
sets of those. For example, Wieczorek et al. [13] conducted a
sensitivity analysis of three parameters (in Chen’s method) by
testing 125 distinct sets to find the best combination. Although
the Chen’s method and other approaches can be effective,
their parameters are sensitive to local bottlenecks; hence,
extensively applying the method to different bottlenecks will
not be efficient. Recently, Yang et al. [14] have investigated
the problem from a statistical approach. The authors proposed
an optimization algorithm to estimate critical speeds by fitting
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the fundamental diagram (flow-speed plot) with multi-source
traffic data. These critical speeds are used to detect when
traffic is oversaturated. Then, the frequencies of congested
states on various links can be calculated over a long period
(e.g. three months in their case study). Frequent or recurrent
bottlenecks are then identified by setting up a threshold on
such frequencies. Hence, this approach could be suitable
for identifying significantly recurrent bottlenecks instead of
specific bottlenecks on a single pattern of congestion.

Activated bottlenecks cause upstream congestion, which
results in slow traffic and increases travel time. Hence,
to quantify the impact of a bottleneck, it is important to
track the upstream congestion induced by its activation. For
this purpose, traffic information like speeds is evaluated in
both spatial and temporal dimensions, which constitute a 2D
numerical matrix. Different methods have been proposed in the
literature. As a follow-up improvement of Chen’s method [10],
Bertini et al. [15] added two more rules to mark the upstream
congestion on the related spatio-temporal map of traffic state if
and only if (1) downstream detector is labelled as congested,
and (2) the speed at the current detector is below a speed
threshold. The latter condition assures that only congested
(space-time) points associated with bottlenecks are identified,
which means low speeds due to disturbances and not caused
by bottlenecks are ignored. Palmer et al. [16] suggest com-
bining Chen’s method with the FOTO model (Forecasting of
Traffic Objects) and the ASDA model (Automatic tracking of
moving traffic jams) introduced by Kerner [17] to improve
the reliability of the resulted bottleneck detecting system. The
emergence of different patterns of upstream congestion related
to bottlenecks identified by Chen’s method can be detected
and their evolutions can be tracked by Kerner’s methods.
Analysing them can yield further details such as wave speed
and travel time loss, which are relevant information of bottle-
necks. Another direction of research classifies traffic states
into two common states, namely congested and free flow.
Ban et al. [18] use percentile speeds on multiple days of traffic
data to identify regularly recurrent positions of bottlenecks.
Then a speed threshold is chosen to binarize the (percentile-)
speed map. Jin et al. [19] proposed coordinate transforming
of the flow-density diagram into a different feature space
(so-called Uncongested Regime Shift (URS) - Perpendicular
to Uncongested regime Shift (PUS)) and used PUS as the
indicator for congested traffic state. A threshold is determined
experimentally. As a result, a congestion contour map of
a corridor is obtained by calculating congestion frequencies
at all detectors over time. These methods give a statistical
view of which road stretch and how often it is affected by
bottlenecks than specific location and activation time of a
bottleneck. Elhenawy et al. [20] proposed a bottleneck iden-
tification algorithm based on the assumption that traffic states
exist in two different phases, i.e., congested and free flow,
and speeds in these phases follow two Gaussian distributions.
Accordingly, a t-test is conducted on each space-time point to
classify traffic state into one of these phases. The distribution
of speeds can vary significantly between different highways;
hence, their parameters need to be well adjusted before being
further applied. Using the same assumption, Chen et al. [6]

generalize the problem of classifying traffic states into two
categories to image binarization, which is a well-developed
topic in computer vision. The authors proposed using Otsu’s
method which, in essence, minimizes speed variances in
individual categories as well as maximizing their variances
across categories. In addition, road geometry is incorporated
to separate bottlenecks which might be connected in a speed
map, i.e. congested traffic from one bottleneck propagating
upstream and merging to congested traffic of the downstream
one. One of the main drawbacks of this approach is that the
location of a bottleneck is an uncertain quantity. For example,
the activation can occur at any place downstream of an on-
ramp. Hence, although combining different sources of traffic
data is a reasonable approach, further research is required to
enable extending this method to different locations or roads.

Activations of bottleneck dampen vehicular speeds and
the effect is visually strongly observable in speed maps.
In addition, applications of traffic state estimators can result
in satisfactory views of traffic over both the spatial and tem-
poral dimensions with equidistant resolutions. The Adaptive
Smoothing Method [21], [22] is a simple filter yet signif-
icantly effective estimator for filling in traffic information
(e.g., speeds) between detector locations. The resulted speed
maps are, therefore, easily seen/treated as images. Besides,
computer vision is a well-developed field where tools and
techniques are available for wide-range applications. Hence,
image processing techniques have naturally come as a suitable
approach for detecting bottleneck activations.

In summary, the literature offers a range of methods to
classify traffic patterns and determine bottleneck locations
and properties. However, these methods may not work on
road corridors with several bottlenecks in close vicinity.
In this paper, we propose a comprehensive method from an
image-processing approach to (i) automatically detect loca-
tions and activation/deactivation time of highway bottlenecks,
and (ii) track the congestion resulted upstream. Importantly,
the method is able to disentangle different bottlenecks in com-
plicated congestion existences in which multiple bottlenecks
are being activated concurrently and causing joint platoons
of traffic jam. The related upstream congestion is identified to
quantify these bottlenecks’ impacts on traffic. The method can
be easily extended to different highways to efficiently assist
(large-scale) studies of traffic bottlenecks.

III. PROPOSED FRAMEWORK

This section presents our proposed framework for the
problem of bottleneck detection and associated congestion
identification, as illustrated in Fig. 1. Overall, the bottleneck
detection method locates potential bottlenecks from traffic
speeds. The results are validated using other relevant sources
of data, for example, road geometry can be used to evaluate
detected locations whether they are reasonable. The detection
method, which is the core of our framework, consists of four
main modules, namely congestion detection, speed discontinu-
ities detection, activation location and time identification, and
refinement.

The first module classifies speed measurements into
either congested or uncongested states. Given a speed map
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Fig. 1. The overall framework of the proposed methods for bottleneck
detection.

representing traffic on a route over time, this module essen-
tially identifies congested regions which are our main region of
interest. Additionally, this also plays an important role in asso-
ciating relevant (congested) regions to different bottlenecks
that are going to be detected. Hence, together they can provide
a more complete picture of bottlenecks including activations
and consequences. The second module aims to highlight speed
discontinuities in the traffic pattern since these are probably
the first necessary (and easily observable) evidence for the
existence of bottlenecks. This module also takes into account
wide moving jams that introduce speed reductions (although
they are not necessarily static bottlenecks). The embedded
method can reduce their effects on detecting bottleneck-related
discontinuities of traffic speeds. Based on the highlighted
speed disruptions, the next module identifies potential bottle-
neck activations therein. To do so, it needs to gather and cluster
highlighted points by incorporating their spatial and temporal
information. The goal is to separate points associated with
different activations of bottlenecks. Notice that, the previous
modules process data from loop-detectors (so-called raw data);
hence, the outcomes, i.e. activated locations, are locations
of detectors. That means we obtain boundaries of potential
bottlenecks but precise locations of their activations are not
yet determined. This is where the filtered data, which estimate
traffic data on a more fine-grain granularity, will be beneficial.
We applied the Adaptive Smoothing Method (ASM) [21], [22]
which is a well-known method for estimating traffic data
at locations between loop detectors. The refinement method
combines initial detections with ASM data to determine more
precisely the locations where bottleneck congestion saturates.
As a result, the locations and time of bottleneck activations are
detected automatically by the various algorithms developed
in these modules. The following sections will explain these
modules in more detail.

In the proposed framework, raw data and ASM data are
used in different modules to utilize their advantages. Raw
data are direct measurements collected from loop detectors
and ASM data are obtained from applying the Adaptive
Smoothing Method on the raw data. While we only have
traffic measurements at sparse locations where loop detectors
are available, ASM further estimates traffic data at equidistant
locations and provides a more complete view of traffic therein.
In our framework, ASM data are used for detecting congestion

because an image-based representation of a traffic pattern is
more efficiently constructed from ASM data as compared to
raw data; and this inherently increases the precision of the
applied detection method. Since ASM is essentially a low-pass
filter, it smooths out peaks explicitly in raw data. Hence,
we initiate the detection from raw data and use ASM to refine
results afterwards.

IV. CONGESTION DETECTION

This section presents a new approach based on image
processing methods for congestion detection in the first mod-
ule. Given an image representation of a congestion pattern,
the objective is to detect various regions that are associated
with congested traffic. We propose to formulate this as an
image segmentation problem in which the target is to discern
foreground objects from background areas which represent
congestion and uncongested traffic respectively. We first intro-
duce a well-known approach which is the so-called Chan-Vese
model [23] from a general view on object tracking. Afterwards,
we show how the model is used to formulate the congestion
detection problem.

A. The Chan-Vese Model

The Chan-Vese model [23] is an active contour model which
evolves a curve to boundaries of objects in images. The main
principle of the algorithm is to minimize an energy function
F(c1, c2, C) defined as:

F(c1, c2, C) = μ Length(C)+ ν Area(inside(C))

+ λ1

�
inside(C)

|u(x, y)− c1|2dxdy

+ λ2

�
outside(C)

|u(x, y)− c2|2dxdy (1)

where u(x, y) is a given intensity image, C is any variable
curve, c1, c2 are average intensity values of u inside and
outside C respectively, μ ≥ 0, ν ≥ 0, λ1, λ2 > 0 are fixed
parameters. The solution C is at the boundaries of foreground
objects in the image. For details of explanation or justification,
we refer the readers to the original paper [23].

The minimization problem can be solved by using the level
set method [24] which describes all computations on a level
set function φ having the following features⎧⎪⎨

⎪⎩
φ(x, y) = 0, for (x, y) ∈ C

φ(x, y) > 0, for (x, y) ∈ inside(C)

φ(x, y) < 0, for (x, y) ∈ outside(C)

(2)

The energy function is updated as a function of φ (see
Equation 3) instead of C .

F(c1, c2, φ) = μ

�
δ(φ(x, y))|�φ(x, y)|dxdy

+ ν

�
H (φ(x, y))dxdy

+ λ1

�
|u(x, y)− c1|2 H (φ(x, y))dxdy

+ λ2

�
|u(x, y)− c2|2(1− H (φ(x, y)))dxdy

(3)

Authorized licensed use limited to: TU Delft Library. Downloaded on March 01,2021 at 13:44:22 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NGUYEN et al.: AUTOMATED DETECTION FRAMEWORK FOR MULTIPLE HIGHWAY BOTTLENECK ACTIVATIONS 5

where, H is the Heaviside step function and δ is the delta
function; their definitions are shown in Equation 4.

H (z) =
�

1, if z ≥ 0

0, if z < 0

δ(z) = d H (z)

dz
(4)

Consequently, a curve C can be defined implicitly by
the zero-level set of the function φ (i.e. set of points with
φ(x, y) = 0). Accordingly, the motion of a curve can be
represented efficiently and easily by tracking the zero level
set of the function φ. The minimization of F(c1, c2, φ) can
be solved by constructing the Euler-Lagrange equation for φ
(noting that c1, c2 are dependent and easily calculated from φ).
To satisfy the differential condition, a small adjustment is
made to make the Heaviside step function and the delta
function differentiable at around location z = 0. We call these
adjusted versions H� and δ� ; as � → 0 they converge to H and
δ respectively. Now, the evolution of φ (over virtual time t) is
described by the following Euler-Lagrange equation

∂φ

∂ t
= δ�

�
μ∇· �φ

|�φ| − ν − λ1(u − c1)
2 + λ2(u − c2)

2
	

(5)

From Equation 5, the evolution of φ is controlled by two
terms: the curvature κ = ∇· �φ

|�φ| , which preserves its smooth-
ness and the so-called region term −λ1(u−c1)

2+λ2(u−c2)
2

affects the motion of the (zero-level set) curve.

B. The Chan-Vese Model for Traffic Congestion Detection

In traffic congestion detection, we aim to detect the curve C
that surrounds congestion regions presented in spatio-temporal
speeds of a given pattern. This speed pattern is equivalent
to an intensity image u(x, y) where pixel values represent
traffic speeds at corresponding locations x and time y. The
congestion region is the inside(C) and the free flow traf-
fic region is the outside(C). Based on this notation, our
congestion detection problem can be solved by applying the
Chan-Vese method to the equivalent image of traffic speeds.
In Section VI we will elaborate the Chan-Vese method step-
by-step and illustrate these steps with an example traffic data
set (e.g. Fig. 4 and Fig. 5). Before doing so, we first explain
the second key component of our methodology, which is the
bottleneck identification method.

V. BOTTLENECK IDENTIFICATION

In this paper, we aim to detect activations of bottlenecks in
two situations. Specifically we are interested in (i) whether a
bottleneck is the primary source of congestion or (ii) whether it
is activated due to congestion caused by another downstream
bottleneck. We refer to these situations as primary and sec-
ondary bottlenecks. In the activation of the former, there is
no congestion downstream of the corresponding bottleneck,
meaning traffic is moving freely; whereas in the latter case,
downstream of the bottleneck is congested due to another
bottleneck (further downstream). In a dense network where
there are multiple (topologically potential) bottlenecks located
close to each other, congestion due to an activation of a

bottleneck can propagate upstream and trigger other bottle-
necks. Disturbances can emerge and possibly turn into wide
moving jams which can pass through upstream bottlenecks.
These factors might hinder the detection of activation of these
secondary bottlenecks for (at least) two reasons: (1) interrup-
tions of traffic speeds at secondary bottlenecks are normally
less significant as compared to those at primary bottlenecks
since traffic speeds are already low when approaching these
locations, and (2) the speed changes are interfered with wide
moving jam which can be observed more clearly along the
direction of those jams. To avoid (falsely) recognizing the
former phenomenon with any other speed disruptions (which
are not due to bottlenecks), one would need to observe the
disruption on a temporal dimension to test for longevity. Only
if traffic has been congested for a certain long period, a bot-
tleneck can be a possible reason (though another possibility
is incidents). Regarding the second reason, it is generally
accepted (i.e. there is abundant evidence [21], [25]–[27]) that
the dominant congestion wave speed is in the vicinity of
−20km/h (the negative sign indicates opposite direction of
traffic); hence, by introducing a filter along this direction, one
can expect to eliminate the interference of wide moving jam
in the detection of activations of secondary bottlenecks.

Based on the above observations, we have identified and
developed a method for detecting and identifying both loca-
tion and activation time of bottlenecks, especially in dense
networks where there are multiple bottlenecks in close vicinity.

A. Speed Discontinuities Detection

In the spatio-temporal representation of traffic, a bottleneck
activation is observed by (temporally lasting) decreases of
vehicular speeds at a certain location (or a vicinity thereof).
This phenomena holds in bottlenecks caused by either road
topologies or incidents. To identify bottleneck activation,
we first detect speed discontinuities along the direction of
traffic flow under congested condition. In congested traffic
disturbances propagate against the direction of traffic flow.
Accordingly, gradients are calculated in this direction to high-
light the disruptions (if they exist) of traffic speeds. Below
we develop a method to construct and apply an appropriate
gradient kernel for that purpose.

Given a traffic speed pattern represented by intensity
image u, Equation 6 shows the procedure of calculating
gradients, Gc, along congested waves. The kernel Pc is
defined by rotating a longitudinal gradient kernel P , which
calculates speed differentiations on the spatial dimension. The
size of the kernel determines how many related neighbouring
pixels contribute to the speed discontinuity of a central pixel.
Throughout the paper, traffic speeds u is presented in a way
that the driving direction is from bottom to top, and that is the
decreasing order of indices in u.

Gc = u0 ∗ Pc

Pc = rotate(P, wc)

P =
�+1 +1 +1
−1 −1 −1

	
wc = wave speed ≈ −20km/h (6)

Authorized licensed use limited to: TU Delft Library. Downloaded on March 01,2021 at 13:44:22 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 2. A method to approximate the kernel Pc . dx, dy are temporal and
spatial resolution, respectively.

One way to approximate the kernel Pc is to propagate the
top row of the Prewitt kernel P to the bottom row with the
speed of wc, assuming the distance between them is 	y. This
is to mimic the propagation of traffic waves in congestion. Its
translated position is calculated and the corresponding values
in Pc are determined by discretization afterwards. We propose
a procedure as follows (see Fig. 2 for an illustration).
(i) Define a coordinate system to P with left-right and

top-down as positive directions. Pick the top-left pixel
and assign its coordinate as p0 = (x0, y0).

(ii) Translate p0 downward with speed wc and obtain
p1 = (x1, y1). p1 is identified based on the following
equations. (	y is the distance between two consecutive
locations.)

y1 = y0 +	y

x1 = x0 + y1 − y0

wc
= x0 + 	y

wc
(7)

(iii) Now comes the discretization step with the spatial and
temporal resolution (dx, dy). By assuming the distance
between two rows is the unit distance, we get dy = 	y.
We determine which (leftmost) item that p1 sits on and
its Pc value accordingly. This can easily be done by
discretizing x1 by the (temporal) unit dx . Accordingly,
its Pc value is proportional to the intersection of cell p1
and its discretized cell pdis

1 .

pdis
0 = (0, 0), pdis

1 = ([ x1

dx
], 1)

Pc(pdis
0 ) = 1, |Pc(pdis

1 )| = 1− (
x1

dx
− [ x1

dx
]) (8)

(iv) Fill all items on the right of pdis
1 with 1’s and those on

the left with 0’s. Then construct a symmetric Pc with
respect to its central item. Finally, change the sign of all
values in the bottom row to negative.

This procedure can be expanded to determine kernels with
more elements if needed. Note that, the above procedure uses
the direct (mathematical) gradient kernel as the underlying
kernel, one might as well use different kernels such as Prewitt
or Sobel.

B. Activation Location and Time Identification

If a bottleneck is activated for a period, one can observe a
speed disruption during that time. Alternatively, the response

(Gc) of the Pc-based filter presents minimal (negative) values
at related time and locations. Due to various reasons e.g. het-
erogeneity of traffic or disturbances of traffic at bottleneck
location or noises in measurements, these negative values are
not only found at the bottleneck location but also nearby
locations. Besides, these locations also spread horizontally
as long as the related bottleneck is activated. To aim for
a robust method, we group pixels with negative values (in
the response Gc) into rectangular clusters which each of
them represents the speed disruption of a potential bottleneck
spatially and temporally. We refer to them as bold lines.

A mathematical approach for this clustering problem is to
determine rectangular boundaries that minimize intra-distances
of pixels inside the same boundaries, pixels outside bound-
aries and/or maximize intra-distances between pixels inside
boundaries and pixels outside boundaries. Despite that, in this
section, we propose an algorithm to solve the problem with a
simplified yet effective approach. The underlying principle is
to find all minimum and extend the corresponding boundaries
until they reach edges with average values approximately the
same as the background value. The main steps of the algorithm
are as follows (see Algorithm 1 for a summary):
(i) Estimate the background response value by averaging

negative responses outside the congestion area.
(ii) Identify local minima in F by comparing each value with

all eight of its neighbours. We denote this set as M.
(iii) Pick the smallest minimum in M. For each side in

{left, right, top, bottom}, calculate average Gc values.
If it is larger than the estimated background value Gc

bkg ,
expand the boundary to include this edge. Iterate this
procedure until no more expansion is possible. As a result,
a (rectangular) boundary of the region surrounding some
minimal Gc can be determined. Next, remove all the
minima in this region from M and iterate the process
until M is empty.

(iv) Bottleneck locations and activation time: For each one
of the rectangular regions found in the previous step,
the location and activation time of the related (potential)
bottleneck is identified by finding the line with the
strongest sum/average of Gc values. A map of all these
lines, indicating all possible bottlenecks in the given
pattern, is obtained.

(v) Refinement: Relevant rules are applied to clean unnec-
essary lines, for example very short lines due to distur-
bances or noise. One can define the minimum activation
time for bottlenecks of interest and eliminate lines with
shorter lengths accordingly. Also, lines or their parts
that lie outside of the congestion mask, identified in the
previous section, are eliminated.

Analysis of Precise Bottleneck Locations: As previously dis-
cussed, raw traffic (speed) data preserve speed discontinuities
better than ASM-filtered data. However, the detected locations
of bottlenecks from the previous step are bound to detector
locations which are normally sparse. In other words, the pre-
cise locations of the bottlenecks can be anywhere between
upstream and downstream detectors. This section analyses
potential bottleneck locations on the basis of ASM data. The
ASM is based on two major assumptions: (1) free traffic
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Algorithm 1 Identification of Bottleneck Activation Location
and Time
Require:

Response Gc of a speed pattern to kernel Pc

Congestion (image) region indicator, or congestion
mask, Mc

I - Background value estimation
1: Free flow mask M f = Mc

2: Background filter response Gc
bkg =



p∈M f

Gc(p)

|M f |

II - Local minimum
3: M = {m|m ∈ Gc, m is a local minima}

III - Bold lines identification
4: while M �= ∅ do
5: mi ← argmin

m∈M
Gc(m)

6: re ← the rectangular boundary of mi

7: while re is expanding do
8: for each neighbour edge e of re do

9: if



p∈e

Gc(p)

|e| ≥ Gc
bkg then

10: re ← re ∪ e
11: end if
12: end for
13: end while
14: R← R ∪ re

15: M←M \ re

16: end while

IV - Location and time identification
17: for each re ∈ R do
18: s ← vertical projection of Gc(re)
19: Activation location l ← argmin

x∈s
s(x)

20: Activation time t as in re

21: end for

V - Refinement
22: Apply relevant constraints to eliminate unrelated lines

perturbations move in the direction of traffic flow, i.e. moving
forward in the direction of traffic, and (2) congested traffic
propagates upstream of traffic with a constant characteristic
speed (based on experiment, Schreiter et al. [22] suggests a
value of −18 km/h for reasonably good results).

Generally, at the downstream front of congestion, i.e. a bot-
tleneck location in our case, vehicles accelerate according
to increasing space headways. When traffic approaches the
maximal speeds downstream, it will slow down the accelera-
tion rate and gradually synchronize with downstream traffic.
These observations are in line with the use of exponential
smoothing kernel in ASM to smooth out traffic data between
detectors (over one of the appropriate directions). Therefore,
we simulate the traffic speeds profile when passing an acti-
vated bottleneck using a logistic function. The corresponding

Fig. 3. Illustrations of logistic functions with two different sets of parameters.

equation and an illustrated plot are shown in Equation 9 and
Fig. 3. It can be seen that the fast and slow acceleration areas
are represented by the two halves of the curve. Two parameters
defining the logistic function in Equation 9 are β0 and β1.
The former, so-called intercept parameter, indicates spatial
shifts. The latter, so-called growth rate parameter, represents
the slope of the curve, i.e. its changing speeds from 0 to 1.
This β1 parameter, therefore, indicates how fast traffic will
pick up speed at downstream of bottlenecks.

un(x) = 1

1+ e−(β0+β1x)
(9)

where un(x) represents normalized traffic speeds at location x ,
its boundary values, <0, 1>, correspond to upstream and
downstream speeds of at a bottleneck respectively.

We propose two steps for identifying bottleneck activation
and estimating their location more accurately. First, ASM
data are used to reconstruct traffic speeds at around activated
locations. Their normalized values are then fitted to a logistic
curve. Second, the range of distances according to speeds from
un

0 to un
1 is used to predict the possible activated location of

the related bottleneck. In this work, we have chosen un
0 = 0.1

(10% of speed change), un
1 = 0.5 (50% of speed change),

which is associated with the first half of the logistic functions.
After the mid-point, vehicles have generally concluded their
merging manoeuvres, therefore activation points should not
be on this right half of the curve. We also assume a uniform
distribution of the probability of precise bottleneck locations
in this range. Having said that, to make a founded decision,
the middle point of this range is chosen as the activation point
of the related traffic bottleneck.

C. Identification of Associated Congestion

The previous sections have shown how to (1) detect conges-
tion regions in a spatio-temporal speed map, and (2) identify
lines which indicate locations and activation time potential
bottlenecks therein. Based on these two elements, congestion
regions associated with detected bottlenecks can be identified.
There are two underlying principles in this algorithm. First,
a spatio-temporal congestion region is attached to the most
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downstream bottleneck (if it exists). Second, when a bottleneck
is triggered, the activation continues until congestion resolves.

D. Primary or Secondary Bottleneck Determination

In this section, we propose an algorithm to determine if a
bottleneck is primary or secondary. It is based on the congested
regions associating to the detected bottlenecks. By identifying
traffic states downstream of a bottleneck, i.e. their related
congested region, the source of the corresponding conges-
tion can be identified effectively. Particularly, the condition
for a primary bottleneck is that its downstream traffic is
not congested, meanwhile, congestion has already occurred
downstream during the beginning of a secondary bottleneck.
Our proposed procedure for identifying primary or secondary
bottlenecks is shown in Algorithm 2.

Algorithm 2 Primary or Secondary Bottlenecks Classification
Require:

C: includes a separation of related congestion regions of
detected bottleneck activations

Procedure
1: for each bi ∈ B do
2: t i

0 is when bi is triggered/activated (which is associated
with the top-left pixel of ci )

3: d ← downstream regions of ci at time t i
0

4: if d is not congested then
5: bi is a primary bottleneck
6: else
7: bi is a secondary bottleneck
8: end if
9: end for

VI. METHODOLOGY VERIFICATION

In this section, we verify the two main components of
the proposed method, namely traffic congestion detection and
bottleneck identification. The former is compared with the
bimodal-based method, a well-known method for the classi-
fication of traffic into either congested or uncongested states.
For the latter, simulated data is used due to their advantages
over real data.

A. Traffic Congestion Detection

To evaluate the performance of the proposed approach on
classifying traffic states in congestion patterns, we first analyse
the parameters in the Chan-Vese model. Then, we compare
our approach with the bimodal-based method [6], which is
the most popular one found in the literature.

For the Chan-Vese model to converge quickly and precisely
at the boundaries of congestion regions, it is necessary to
initialise the zero-level set curve, φ0, close to the conges-
tion boundaries. We have tested different initializations of
φ0 with various values in this range and have come to the
same (expected) conclusion. Namely, using speed thresholds in
between 30 and 60 km/h increases the reliability of congestion
classification in traffic patterns by the Chan-Vese model.

Fig. 4. Evolution of the zero-level set of φ according to different initializa-
tions (a) initial mask is 40km/h (b) initial mask is 75km/h.

As a demonstration, Fig. 4 shows the final contours with
respect to different initial settings of φ0. The presented traffic
goes through two road stretches with different speed limits
which impose different free speeds, congestion occurs in the
downstream lower speed region and slightly reaches the higher
speed region. The energy function minimization (Equation 3)
has two (local) solutions on this pattern. Different initiali-
sations of φ0 lead to different classification of the pattern.
If a high speed (e.g. 75km/h) is used, φ converges to the
function whose zero-level set is at the boundary with high free
speeds upstream and low speeds downstream (see the line of
φ0 in Fig. 4b). Consequently, the deduced congested region
covers (almost) the whole region with low free speed, which
is not the desired result. On the other hand, by starting with
low congested speeds (e.g. 40km/h), the converged φ is at the
boundary of the congestion that we observe from the pattern
(see Fig. 4a). Hence, by starting φ0 at the speed of 40km/h,
the expected congested region is identified sufficiently by the
Chan-Vese model.

In addition, two different scenarios have been used to
compare the method with the bimodal-based method. In the
first scenario, only one free traffic speed is available in
congestion patterns. Note that, fluctuations of this free speed
are normally observed from traffic data. The second example
has at least two different free speeds in congestion patterns.
Fig. 5 shows two examples of each of these scenarios and
the corresponding outcomes of the two methods. As shown
in the figure, both perform well on the two topmost patterns.
A quantitative comparison indicates that their identified con-
gested regions overlap by more than 99%. This shows that
the proposed method based on the Chan-Vese model delivers
comparable results as that of the bimodal-based method in
simple layouts of road stretch, on which traffic speeds can be
separated into two distributions. On the other hand, the bottom
two patterns are two examples where the assumption of
the bimodal does not hold. The presence of different road
stretches with various speed limits has led to unexpected
results when applying the bimodal method as shown in the
middle figures. The congested regions are over-identified to
include the lower free speed regions of the downstream road
stretch. One might suggest to look for a local optimum of
speed distributions in these patterns and identify the one that
most likely represents expected congestion boundaries. Having
said that, this depends greatly on the histogram of traffic
speeds and such congestion-related optimum are not clearly
shown and/or easily identified. Unlike the results from the
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Fig. 5. Comparison of the Chan-Vese model and the Bimodal-based method
on different congestion patterns: the top two patterns have one speed limit,
while the bottom two have two different speed limits. The congestion detection
results of applying the bimodal method and the Chan-Vese model are shown
in (b) and (c) respectively.

bimodal method, those from the Chan-Vese method do not
cover the entire regions with lower free speed. Qualitatively,
they accurately cover the congested regions in the related
patterns (as can be seen from Fig. 5c). This has shown the
superiority of the Chan-Vese method over the bimodal-based
method in detecting congestion in traffic patterns.

Through experimenting with the proposed approach, using
the Chan-Vese model for the detection of congested regions in
traffic patterns, it is positive to conclude that the Chan-Vese
method is a highly viable method that can perform well on
different congestion patterns.

B. Verification of the Bottleneck Identification Method

1) Verification Approach: For verification of the proposed
method, we aim to analyse: (1) its capability of detecting
bottleneck activations in congestion patterns, (2) how the
setting of loop-detectors affects the method’s outcomes. For
these objectives, we make use of traffic simulation to produce
crisp data that is difficult to find from real traffic flow data.
In particular, a microscopic traffic simulator can provide
granular details into traffic such as vehicle trajectories, traffic
speeds on every short distance interval (by simply setting up
loop-detectors). Note that these cannot be provided by raw
traffic data due to limited numbers of loop detectors. These
features enable us to identify ground-truths of bottleneck
activation locations, which is necessary for evaluating the
accuracy of the proposed method. Additionally, by manip-
ulating loop-detectors (in a simulator), we can test if the
method is capable of detecting activations of bottlenecks in

Fig. 6. The layout of the example (simulated) road stretch.

deduced traffic patterns and analyse how those settings affect
the outcomes. Following are the steps carried out.

- Design a road stretch with possible close bottlenecks that
are activated concurrently with a high traffic demand.
This ensures that a test can be performed with heavy
congestion.

- Set up loop-detectors with short intermittent distances,
i.e. 100 meters, to record traffic data. This provides a
convenient base for changing the loop detector setups
later on. For example, we can eliminate loop detectors
to get coarser traffic patterns.

- Tuning incoming traffic flows to activate one or more of
these bottlenecks.

- Repeatedly apply the proposed method and investigate
the results.

Details of these steps are in the next sections.
a) Simulated example design: In this study, we use

the microscopic simulation tool FOSIM (Freeway Operations
SIMulation) [28] which was developed at Delft University of
Technology. It models traffic dynamics through the simulation
of the behavior of individual vehicles. An artificial road
stretch is designed as shown in Fig. 6. This road stretch has
several potential bottlenecks which are two on-ramps, one
off-ramp and a road split. While the first on-ramp (ON1) is
located further, 2500 meters away, from the next (potential)
bottleneck, the second on-ramp (ON2) is quite close to the
off-ramp (OFF1) which is just 500 meters downstream. This
is expected to create a complicated weaving section which will
trigger congestion. The road split is designed to also create a
bottleneck when vehicles have to change lanes to meet their
desired destinations.

Loop detectors are implemented every 100 meters (along
this 12km road stretch) and record traffic every 60 seconds.
Hence, we can obtain fine simulated traffic data for further
investigation. This is much better than in reality where loop
detectors can be 300 meters to more than 1000 meters apart.

b) Simulated congestion patterns: Fig. 7 shows spatio-
temporal speed maps of congested traffic obtained from the
FOSIM model on the road layout in Fig. 6. As illustrated
in the figure, two bottlenecks have been activated. The first
one (ON2) is at a distance of around 8000-meter from the
Origin 1, and the second one (ON1) is at a distance of
around 5200-meter from the Origin 1 (see Fig. 6 for the
road schematic). For simplicity, from here on we use relative
distances from the Origin 1 to identify different locations
on the simulated road stretch. The congestion triggered by
the downstream bottleneck propagates further upstream and
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Fig. 7. Simulated traffic patterns: (a) the original pattern with detectors
at every 100 meters, and other deduced patterns which are obtained by
eliminating loop detectors to maintain detector spacing distances of 300m
(b), 500m (c), or 1000m (d).

reaches the upstream bottleneck. Hence, we have selected
this as a typical example to verify the proposed method.
We have also varied distances between loop detectors to gen-
erate different levels of details in raw data. Fig. 7 shows three
deduced patterns with spacings of 300, 500, and 1000 meters
between two consecutive detectors. Two activated bottlenecks
can be observed from these patterns clearly, although it is more
difficult with those in the p1000 pattern (Fig. 7d).

2) Verification Results: The proposed method is applied to
all the simulated patterns shown in Fig. 7. Summary of the
results is given in Table I. It is used to answer two questions:
(1) Is the method capable of detecting bottleneck activations,
and (2) Do the locations extracted from different deduced
patterns consistently point to the same locations? The former,
once confirmed, will show the effectiveness of the method,
while the latter will demonstrate its reliability.

The results indicate that the proposed method has success-
fully detected the activations of the two major bottlenecks in
all the simulated patterns. Consequently, this simple exper-
iment has shown the capability of the proposed method in
detecting bottleneck activations or speed discontinuities in
congestion patterns.

The results show that most of the associated detectors
(of detected bottlenecks) are close to the activation points.
In particular, the ON1 bottleneck is detected somewhere
downstream of the 5200m or 5100m detectors, which are very
close to the actual activated location - 5200m. Similarly, those
detectors related to the ON2 bottleneck are located at 7900m,
8000m, 81000m which are also close to the activation point
- 8000m. To correctly interpret these results, notice that raw
data can only give rough estimates of activated bottlenecks,
i.e. the locations of closest upstream and downstream detec-
tors. Therefore, the actual locations might be anywhere in
between. If intermediate locations (between detectors) are used
as predicted activation points, the error that the method on raw
data incurs grows as the detector spacing becomes larger (see

TABLE I

SUMMARY OF DETECTED BOTTLENECK LOCATIONS OBTAINED BY USING
RAW DATA AND ASM DATA RESPECTIVELY. THESE LOCATIONS ARE

SHOWN IN RANGES OF DISTANCES. FOR RAW DATA, THEY ARE

UPSTREAM AND DOWNSTREAM DETECTOR LOCATIONS. FOR

ASM DATA, THEY ARE ACCORDING TO 10% AND 50%
CHANGES IN TRAFFIC SPEEDS. MIDDLE POINTS ARE

CHOSEN AS THE FINAL DECISIONS OF

BOTTLENECK LOCATIONS

the table for details). For strong bottlenecks, like the ON1,
the actual locations (5200m) are in between the detected pairs
of associated detectors. Whilst this is not always the case with
weak bottlenecks like the ON2, for which the detected pair
(8100m-8600m) does not cover the actual activated location
(8000m). There are two causes for explaining this. First, speed
accelerations, i.e. magnitudes of speed discontinuities, change
more sharply with stronger bottlenecks, therefore it is easier
to detect their peaks. Second, since we calculate differences
of speeds at locations of detectors, how those detectors are
implemented also affects the accuracy of the detecting results.
In particular, detection of stronger bottlenecks are more sen-
sitive to this.

3) ASM for Bottleneck Locations: In the previous section,
we provided potential road stretches of bottleneck locations
from raw speeds. This section shows the application of ASM
data in obtaining more precise locations of bottleneck activa-
tions. An ASM filter is configured to construct traffic speeds on
the granularity of 100-meter spacing and 30-second intervals.
Fig. 8 visualises fitted logistic functions to ASM speeds around
bottleneck locations. The two examples in Fig. 8c, 8d show
two sets of original data points and the corresponding fitted
logistic curves. They demonstrate how the ASM data is well
fitted to logistic functions. This also indicates the feasibility
of using logistic functions to formulate traffic speeds in
acceleration areas. Fig. 8a and 8b shows all the fitted curves
of traffic speeds at different activated bottlenecks in all the
patterns (Fig. 7). Strikingly, all the curves on the right figure,
i.e. related to the ON2 bottleneck, are extremely similar (if
not likely the same). Notice that, this is a weak bottleneck
and traffic speeds changing slowly, therefore, requires a long
distance to approach downstream traffic (free) state. The left
figure, which is for the stronger bottleneck - the ON1, does
not show the same result. While the differences between three
fitted curves for patterns p100, p300, and p500 are relatively
small as compared to 100m resolution, the curve associated
with the p1000 deviates clearly from the other curves. Since
traffic accelerations at downstream of a bottleneck are higher
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Fig. 8. Results from fitting ASM (accelerating) speeds to logistic functions
under different setups of loop detectors. The two bottlenecks are (a) on-ramp 1,
and (b) combination of on-ramp 2 and off-ramp 1. The scales of the x-axes
in (a) and (b) are deliberately made the same to highlight the difference in
the changing rates of the curves in two plots. Bottom row are two examples
of fitting ASM data from 300m-apart loop detector data with respects to the
two bottlenecks.

when the bottleneck is stronger, the distance that vehicles
require to conclude their merging to downstream traffic is
shorter. Therefore, detector spacing needs to be short enough
to capture this fast change in speeds. Also, the ASM method
smooths out traffic speeds in between detectors, hence the
p1000 pattern subsequently underestimates the transition of
speeds at downstream of the ON1. In summary, even though
the ASM data can be used to estimate bottleneck locations
more accurately, the improvement depends on bottleneck
strengths and locations of related loop detectors.

The refinement results using ASM data are given in the
right part of Table I. Apart from the finest configuration of loop
detectors, i.e. 100m spacing, bottleneck locations are estimated
more accurately with the application of ASM method. For the
bottleneck ON2, the highest offset of 50 meters shows a high
level of accuracy, especially with 1000m- detector spacing.
For the stronger bottleneck, the ON1, the best results are on
the p300 or p500 patterns. Therefore, it can be expected that
ASM data improve the identifications of bottleneck activation
locations.

From the verification using simulated data, we have come
to two conclusions. First, the proposed method can detect
activated bottlenecks in various implementations of loop-
detectors. Notice that, the maximum tested distance is 1000m;
however, as long as speed discontinuities can be observed,
the method should be capable of detecting bottleneck activa-
tions. Second, traffic speed profiles can be constructed and
analysed by using ASM-based filtering data to emphasize
the precise locations of activations. Ideally, strong bottlenecks
require more close detectors.

C. Time Complexity

The method for traffic congestion detection is based on
the Chan-Vese model. The numerical solution proposed in

the original paper [23] evolves the initial zero-level set over
a predefined number of iterations, η. With a limited η, this
method of detecting congestion has a time complexity of
O(|E | × |T |), where, |E |, |T | are the sizes of spatial length
and temporal duration of the (ASM-based filtering) speed map,
respectively.

The time complexities of the three main components of
the bottleneck identification method are as follow. Speed
discontinuities are detected by filtering through all pixels in
the speed map, hence, it has a complexity of O(|E | × |T |).
Activation location and time are identified from raw data with
the complexity of O(|Er | × |T r |), where, |Er |, |T r | are the
sizes of spatial length and temporal duration of the raw speed
map, respectively. Observe that this is (greatly) dominated by
O(|E | × |T |) as filtered data generally has higher resolutions
than raw data. Here, we potentially can ignore the complexity
of the refinement of activation location using ASM data since
the amount of related computation is minor.

By combining all the components complexities, it is
expected that the complexity of our proposed framework is
linear to the size of ASM-based filtering speed map. It is also
worth to note that actual processing time also depends on the
selection of parameters, e.g. the number of iterations in the
Chan-Vese model.

VII. CASE STUDY

This section demonstrates an application of the proposed
method. Given a route with multiple topological disruptions,
like on-ramp or off-ramp, the objective is to study (1) which
are the most frequently triggered bottlenecks and (2) are they
the primary source of congestion, i.e primary or secondary
bottlenecks. Also, we aim to have the answer over a long
period, e.g. one year long, so that derived statistics can
give more general overview on the road stretch. For that,
an automatic method like the proposed one is highly relevant.

We have selected a corridor on the ring of Rotterdam,
the Netherlands, to study (see Fig. 9a for a snapshot from
OpenStreetMap). There are several potential bottlenecks on
this stretch due to existing topological structures, namely an
end of a plus lane (EoPL) – a (left) lane dedicated for fast
vehicles – at around 330m-380m, an on-ramp (ON1) at around
1000m-1280m, an on-ramp (ON2) at around 2750m-3000m,
and an off-ramp (OFF) at 3510m-3965m. The numbers are
relative distances from the chosen route’s origin which is
the first detector (d1). Fig. 9b presents a simple schematic
of the road stretch. Regarding data, one year (2018) of 1-
minute-aggregated speeds had been collected for the whole
ring road. The data are provided by the National Data
Warehouse (NDW), the Netherlands [29]. We have identified
1591 traffic patterns that have congestion propagating to the
selected corridor.

A. Detection of Bottlenecks on a Field-Data Pattern

One example pattern of traffic on the selected corridor is
given in Fig. 10a. The objective is to detect the three activated
bottlenecks. The top row shows the results with respect to
the speed discontinuities detection. It can be seen that the
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Fig. 9. The studied corridor is on the ring road of Rotterdam, the Netherlands.
The relative distances of the detectors are shown next to the detector symbols.
Estimated distances of road topologies are shown in pairs of (begin, end)
distances.

Fig. 10. Intermediate results when applying our proposed framework to
a traffic pattern. Top row - a pattern of traffic speed and its responses to
different kernels (with respect to the detection of speed discontinuities in
Sec. V-A): (a) An example of traffic speed, (b) Response to the vertical
kernel P , (c) Response to the inclined kernel Pc. Second row - identifying
locations and activation time of (potential) bottlenecks (with respect to
the proposed algorithm in Sec. V-B): (d) rectangular regions, or bold
lines, the corresponding locations and activation time before (e) and after
(f) refinement. Bottom figure: (g) tracking congestion regions associating with
different bottlenecks. (For better visualisation of these plots, we refer the
reader to the web version.).

response to the inclined kernel Pc (Fig. 10c) better highlights
the locations and activation time of the three bottlenecks as
compared to the response to the vertical kernel P (Fig. 10b).
Notice that this advantage is more significant in cases that
bottlenecks have high frequencies of disturbances (due to the
direction on which we calculate the gradient). The second row
shows the results obtaining from identifying bottleneck activa-
tion locations and time. Although different rectangles (i.e. bold

Fig. 11. Activation locations of bottlenecks on the studied corridor during
2018: (a) Bottleneck locations are associated with the most upstream detec-
tors, with detector annotations are shown in Fig. 9b, (b) The ASM-based
refinements of those raw estimations.

lines) can be detected (see Fig. 10d), their representative lines
lie on the corresponding bottleneck locations. By removing
the lines or parts that lie outside of the congestion region as
well as those that are too short, we obtain the final result
as shown in Fig. 10f. This detection result is, qualitatively,
the expected outcome given the speed pattern in Fig. 10a. Also,
related congestion regions are sufficiently identified for each of
the detected bottlenecks as shown in Fig. 10g. This example
and many others in our experiment have further confirmed
the efficiency of our proposed method in detecting relevant
features of activated bottlenecks from traffic data.

B. Derived Insights Into the Selected Corridor

Fig. 11 illustrates the outcomes of applying the proposed
method to the collected data. There are several interest-
ing findings from the left figure, which is from raw data.
First, the detectors d2, d9, and d8 are the most frequently
detected activation locations. Their annual counts are more
than 400 times which indicate on average they are activated
every day. By associating with the topology information
in Fig. 9, these locations are located near three topological
disruptions. Particularly, d2 is just upstream of the end of the
plus lane (EoPL) on the road stretch, d8 is at the end of the
ON2’s shoulder lane, and d9 is at the beginning of the weaving
lane before the off-ramp (OFF). Notice that, the combination
of ON2 and OFF potentially creates a weaving section which
causes traffic congestion. The results also provide an overview
of the variance of bottleneck activated locations. While almost
all the activations are determined to trigger downstream of
d2 in case of the EoPL bottleneck, there are more varieties with
the ON2-OFF bottleneck. This might be expected as the EoPL
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is a kind of the lane drop bottleneck, and congestion usually
occurs at the vicinity of the ending of the lane. Additionally,
the next detectors - d1 and d3 - are quite far away from
the EoPL which might explain the dominant detections of
discontinuities at d2. In the case of ON2-OFF, the weaving
traffic, namely trying to merge from the on-ramp and to
leave the highway to the off-ramp, can create a lot of dis-
turbances and trigger congestion when traffic is getting dense.
Besides, congestion can also occur due to a high demand of
ON2 merging traffic. Hence, traffic speed disruptions detected
at d8 and d9 are understandable. Fig. 11a also shows much
fewer amounts of potential bottleneck activations downstream
of detectors d10, d6, and d1. This can be expected as there
are no topologically potential bottlenecks downstream of these
detectors. The detector d10 is the closest one to a physical
disruption, however, it is located downstream of the off-ramp
which seems to fall into the discharging areas. There are also
noticeable amounts of activations at detector d4 which is just
at the end of the first on-ramp’s shoulder lane. The results
suggest that this one does activate multiple times, although it
is not as considerable as the downstream one.

Regarding the originality of these bottleneck activations,
we have two remarkable cases to discuss here. First,
the on/off-ramp bottleneck were mostly the primary bottle-
neck. Approximately 90% of the detected activations originate
at this location. The story is opposite in the case of the
end-of-plus-lane bottleneck. Nearly 90% of the occurrences,
it reacts to propagations of downstream congestion. The
activation intervals of all detected bottlenecks are aggregated
and depicted in Fig. 12c. The plot indicates strongly the
two most outstanding bottlenecks on this corridor, namely
the EoPL and ON2-OFF. The heat map is also in line with
the significant correlation of these two, i.e. whenever the
downstream is activated, most likely the upstream will be
triggered. Their specific activation time is shown in Fig. 12a
and Fig. 12b, respectively. These two bottlenecks active fairly
often during morning and afternoon peak-hours, although the
peaks are in the morning (in both bottlenecks). The primary
activation counts (over time) are also depicted to reveal if
there is any correlation with activation time. In this case
study, the figures suggest no indication that the chance of
getting primary activations differs with respect to morning or
afternoon peak hours.

For an insight into more precise locations of these bottle-
neck activations, the proposed method is also applied on ASM
data and the results are given in Fig. 11b. First of all, there
is a general trend on the road stretch, with two peaks over
the corridor. Interestingly, the distributions of the activation
points of the two main bottlenecks form two bell shapes.
There is a difference in the widths of these shapes. The one
associated with the EoPL is more concentrated in the middle,
while the other one is more spread out. This is in line with
the relative strengths of these bottlenecks and also with the
interpretation of results from raw data. Regarding the precise
locations, there are shifts in activated locations as compared
to the raw data. In the case of the EoPL, the middle point is at
around 375m. This is approximately at the end of the plus lane
(see Fig. 9b). Although no ground truth is available (except the

Fig. 12. Activation time of bottlenecks on the studied corridor during 2018.
Counts are aggregated over hours.

raw data which is at sparse detector locations), this finding is
highly relevant to the type of EoPL bottlenecks. The ON2 was
triggered mostly around the location 3100m which is just
downstream of the end of the ON2’s shoulder lane, although
a noticeable extent is well presented. By combining with the
results from the raw data, this finding seems to explain that
this ON2-OFF had caused disturbances in traffic which usually
saturate at the ON2 location. As a conclusion, by analysing
the results with given topology, there is a confidence in ASM’s
capability of delivering precise bottleneck activation locations.

In conclusion, by automatically processing one year of
traffic speeds, the proposed bottleneck detection method has
found two most frequent bottleneck locations on the selected
corridor, which is the EoPL and ON2-OFF. In addition, most
of the time, the ON2-OFF bottleneck causes congestion and it,
later on, triggers the EoPL. These findings suggest the majority
of attention should be on the downstream location in order to
mitigate the impacts of congestion and improve the quality of
traffic on this corridor.

C. Time Complexity

Fig. 13 shows the realised processing time of the pro-
posed method. The complexity of a pattern is represented
by the number of measurements from related loop-detectors.
It appears that there is a linear correlation between processing
time and pattern sizes, which is in line with the theoretical
analysis in Section VI-C. In addition, the majority of patterns
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Fig. 13. Processing time for detecting bottleneck activations.

possess up to approximately 1.5×104 measurements and took
less than 6 seconds to be processed. Hence, we can conclude
that the method is efficient for offline processing bottleneck
activations as well as potential for online applications.

VIII. CONCLUSION

This paper has presented a method to automatically detect
highway bottleneck activations in congested traffic patterns
using image processing techniques. First, congestion regions
are identified using the Chan-Vese model, which is the active
contour model without using edges. Second, the filtering ker-
nel is constructed to detect speed discontinuities in raw traffic
data, which subsequently gives approximate locations of bot-
tlenecks. By calculating speed gradients along the direction of
congestion waves, speed disruptions are efficiently highlighted.
This applies to secondary bottleneck where their downstream
traffic is congested; hence, assuring the detection thereof.
In addition, information on the temporal dimension is incorpo-
rated to associate individual activating points at (the vicinity
of) a location, which subsequently generate a comprehensive
detection (represented as bold lines) of location and time of
the related bottleneck. Precise activation points are inferred
by fitting ASM data at those locations to logistic curves.
Third, congestion associated with the detected bottleneck is
identified based on the results (overall congestion regions and
bottleneck activation location and time) from the first two
steps. Based on that, characteristics of associated bottlenecks
can be calculated such as originality of congestion, i.e. primary
or secondary source. The proposed method is investigated
using both simulated data and real loop-detector data, based
on which we have come to the following conclusions:

- By combing both raw and ASM-filtered data, bottleneck
activation locations can be determined efficiently. Raw
data preserve speed discontinuities well, and ASM data
support the determination of precise activated locations.

- The accuracy of detected locations (by loop-detector data,
and perhaps generally fixed-location data) depends on
both bottleneck strengths and locations of loop detectors.
The stronger a bottleneck is, the finer detector spacing is
so as to determine precisely where congestion saturates.

- Inherently from the above point, activated locations of
weak bottlenecks, i.e. those with long accelerating dis-
tances, can be sufficiently determined under sparse spatial
setting (500m to 1000m) of detectors.

- Logistic functions can be used to model traffic speeds at
accelerating areas (downstream of bottlenecks). In addi-
tion, the growth rate parameter can be used as an indicator
of bottleneck strengths.

For future studies, there are some opportunities for improv-
ing the method as following.

- The speed discontinuity kernel can be improved to not
only account for congested waves but also incorporate
free traffic and deceleration/acceleration area. Given that
every (spatio-temporal) traffic state is classified into con-
gested or uncongested class, this is directly feasible from
the proposed method.

- A more systematic method to the identification of bot-
tleneck activation locations from fitted logistic curves is
necessary to complete the proposed method.

Since the proposed method is automatic, it can process
traffic patterns and extract bottleneck-related characteristics
systematically. Hence, one can easily apply the method to
large-amount of highway traffic data, which is increasing
quickly over time, for conveniently mining relevant informa-
tion. In addition, the association of congested traffic regions
to the corresponding bottlenecks provides a precise way to
measure or evaluate consequences of individual bottlenecks or
combinations thereof on traffic flow. In practice, the automa-
tion and advanced consequence detection bring comprehensive
tools for stakeholders such as traffic manager or policymakers
to get valuable insights for important tasks such as bottlenecks
evaluation and strategy assessment. As a result, the impacts of
highway bottlenecks can be reduced or prevented to improve
mobility on highways.
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