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a b s t r a c t 

In the last decade, pseudospectral methods have become popular for solving optimal control problems. 

Pseudospectral methods do not need prior knowledge about the optimal control structure and are thus 

very flexible for problems with complex path constraints, which are common in optimal train control, or 

train trajectory optimization. Practical optimal train control problems are nonsmooth with discontinuities 

in the dynamic equations and path constraints corresponding to gradients and speed limits varying along 

the track. Moreover, optimal train control problems typically include singular solutions with a vanish- 

ing Hessian of the associated Hamiltonian. These characteristics make these problems hard to solve and 

also lead to convergence issues in pseudospectral methods. We propose a computational framework that 

connects pseudospectral methods with Pontryagin’s Maximum Principle allowing flexible computations, 

verification and validation of the numerical approximations, and improvements of the continuous solu- 

tion accuracy. We apply the framework to two basic problems in optimal train control: minimum-time 

train control and energy-efficient train control, and consider cases with short-distance regional trains and 

long-distance intercity trains for various scenarios including varying gradients, speed limits, and sched- 

uled running time supplements. The framework confirms the flexibility of the pseudospectral method 

with regards to state, control and mixed algebraic inequality path constraints, and is able to identify 

conditions that lead to inconsistencies between the necessary optimality conditions and the numerical 

approximations of the states, costates, and controls. A new approach is proposed to correct the discrete 

approximations by incorporating implicit equations from the optimality conditions. In particular, the is- 

sue of oscillations in the singular solution for energy-efficient driving as computed by the pseudospectral 

method has been solved. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Optimal control theory is widely applied in different fields to 

nd the controls that minimize a cost functional subject to dy- 

amic constraints, path constraints and boundary conditions. One 

f the applications of optimal control theory is minimum-time train 

ontrol ( MTTC ) with the aim to compute the minimum time be- 

ween two train stops. Another important application is energy- 

fficient train control ( EETC ) or also referred to as energy-efficient 

rain trajectory optimization , with the aim to minimize total traction 

nergy. The train controls consist of traction and braking. These 

ptimal train control problems are highly complex in practice with 

iscontinuous dynamic equations, pure state and control algebraic 

nequality constraints, and mixed state-control algebraic inequal- 
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ty constraints. Moreover, the solution to the EETC problem gen- 

rally contains singular arcs. Hence, solving optimal train control 

roblems is quite challenging, and specifically EETC problems. Most 

esearch on optimal train control has focused on the application 

f Pontryagin’s Maximum Principle ( PMP ) ( Pontryagin, Boltyanskii, 

amkrelidze, & Mishchenko, 1962 ). The application of this theory 

eads to the optimal driving regimes consisting of maximum ac- 

eleration, cruising, coasting and maximum braking. The challenge 

s to determine the optimal switching structure with the exact 

witching points as well as the optimal sequence of the driving 

egimes. Scheepmaker, Goverde, and Kroon (2017) provided a re- 

ent extensive literature review on EETC. One of the conclusions 

as that the pseudospectral method was a promising approach 

o solve generic EETC problems with varying track gradients and 

peed limits. In this paper, we further explore the Radau pseu- 

ospectral method to optimal train control based on structured 

umerical experiments that are assessed on consistency with the 

ptimality conditions obtained by the PMP. We identify numerical 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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naccuracies due to convergence issues, discretization and oscillat- 

ng singular control, and propose a new approach based on com- 

ining underdetermined implicit equations from the PMP with the 

seudospectral approximate solutions to get accurate continuous 

ptimal control solutions. 

Optimal control problems can be solved by indirect and direct 

ethods ( Betts, 2010; Rao, 2014 ). An indirect method derives the 

ecessary optimality conditions based on PMP, which leads to a 

wo-point boundary value problem (BVP) in the states and ad- 

oint costates that needs to be solved by numerical methods ( Ross, 

005 ). These methods thus indirectly solve the original optimal 

ontrol problem by solving an associated BVP. In general, however, 

he BVP is hard to solve, as it is very sensitive to the initial guesses

or the unknown (costate) boundary conditions and a priori knowl- 

dge of the switching structure of the inequality path constraints 

s required. Therefore, most indirect methods use (heuristic) con- 

tructive methods to find (sub)optimal driving strategies based on 

he PMP optimality conditions, with (linearity) simplifications or 

ssumptions on driving regimes (e.g. no coasting, no cruising be- 

ow the speed limit). Most papers on optimal train control used 

ndirect methods based on PMP optimality conditions ( Albrecht, 

owlett, Pudney, Vu, & Zhou, 2016a; 2016b; Howlett & Pudney, 

995; Khmelnitsky, 20 0 0; Liu & Golovitcher, 2003 ). For the energy- 

fficient train control problem, algebraic formulae for the costate 

long sections with constant gradient can be derived, which led 

o efficient real-time algorithms ( Albrecht et al., 2016a; 2016b; 

owlett, Pudney, & Vu, 2009; Liu & Golovitcher, 2003 ). In addition, 

any heuristic methods have been applied using implicit knowl- 

dge of the optimal control structure, for example Chevrier, Pelle- 

rini, and Rodriguez (2013) , Sicre, Cucala, and Fernández-Cardador 

2014) and Haahr, Pisinger, and Sabbaghian (2017) . For more details 

nd references, see Scheepmaker et al. (2017) . 

On the other hand, direct solution methods transcribe 

he infinite-dimensional optimal control problem into a finite- 

imensional nonlinear programming (NLP) problem using colloca- 

ion of the differential equations and the integral objective func- 

ional. The resulting NLP problem is then solved using efficient 

onlinear optimization algorithms ( Betts, 2010 ). This direct ap- 

roach can be used for highly complex problems, since there is no 

eed to derive the first-order necessary optimality conditions, they 

re less sensitive to initial solutions, and no a priory knowledge is 

eeded of the active and inactive inequality path constraints. In the 

ptimal train control literature direct methods have been used only 

ecently. Most approaches are based on pseudospectral methods 

 Scheepmaker & Goverde, 2016; Wang & Goverde, 2016a; 2016b; 

017; 2019; Wang, De secondchutter, Van den Boom, & Ning, 

013; Ye & Liu, 2016; 2017 ). Wang et al. (2013) ; Wang, DeSchut-

er, Van den Boom, and Ning (2014) also applied a mixed-integer 

inear programming (MILP) approach using piecewise affine func- 

ions. At this stage the computation times for the direct method 

re not competitive with the computation times for the indirect 

ethods that are currently used for on-board calculations. 

Over the past two decades, pseudospectral methods have be- 

ome popular for solving optimal control problems within partic- 

lar the aerospace domain ( Garg et al., 2010; Ross & Karpenko, 

012 ). A pseudospectral method discretizes the state and control 

nd then transcribes the continuous-time optimal control prob- 

em to a finite-dimensional NLP that is solved using established 

LP solvers. In a pseudospectral method the state and control are 

pproximated by global polynomials at collocation points using 

 basis of Lagrange (or Chebyshev) polynomials. Typical colloca- 

ion points are Legendre-Gauss (LG), Legendre-Gauss-Lobatto (LGL), 

nd Legendre-Gauss-Radau (LGR) points ( Garg et al., 2010; Ross & 

arpenko, 2012 ). These points are obtained from the roots of a Leg- 

ndre polynomial and/or its derivatives. They are all defined on the 

omain [ −1 , 1] but differ in that the LG points include neither of
354 
he endpoints, the LGR points include one endpoint, and the LGL 

oints include both endpoints. Different pseudospectral methods 

ave been developed based on the collocation points: the Gauss 

LG) pseudospectral methods ( Benson, Huntington, Thorvaldsen, & 

ao, 2006; Rao et al., 2010 ), the Legendre (LGL) pseudospectral 

ethods ( Elnagar, Kazemi, & Razzaghi, 1995; Fahroo & Ross, 2001; 

ong, Fahroo, & Ross, 2008a; Ross & Fahroo, 2004 ), and the Radau 

LGR) speudospectral methods ( Garg et al., 2011 ). The differences 

etween the methods lie in the the degree of the Lagrange poly- 

omial, the boundary condition and the typical problem horizon 

 Garg et al., 2009; Ross & Karpenko, 2012 ). The use of global poly-

omials together with Gaussian quadrature collocation points pro- 

ides accurate approximations that converge exponentially fast for 

mooth problems ( Garg et al., 2010 ). For optimal control problems 

ith discontinuities in the constraints the problem can be par- 

itioned into multiple phases, where the phase boundaries (also 

alled mesh points or knots) can be chosen at the points of dis- 

ontinuities ( Betts, 2010 ). In these multiple-phase optimal control 

roblems, each phase is solved with a separate set of collocation 

oints, while additional linking conditions glue the variables of the 

djacent phases together ( Darby, Garg, & Rao, 2011a; Darby, Hager, 

 Rao, 2011b; Patterson, Hager, & Rao, 2015; Patterson & Rao, 2014; 

ao et al., 2010; Ross & Fahroo, 2004 ). Hence, with multiple phases 

he state is approximated by multiple polynomials that are linked 

t the phase boundaries. 

The pseudospectral methods can also compute estimations of 

he continuous costates based on the associated Lagrange multipli- 

rs computed for the discretized NLP problem ( Darby et al., 2011a; 

ahroo & Ross, 2001; Garg et al., 2011; 2010 ). For the Gauss and

adau pseudospectral methods the discrete approximations are ob- 

ained directly by a transformation of the Lagrange mutipliers us- 

ng the quadrature weights of the collocation points. For the Legen- 

re pseudospectral methods the discrete costates are not uniquely 

etermined and need a closure condition related to the transver- 

ality conditions of the necessary optimality conditions for the 

ontinuous optimal control problem ( Fahroo & Ross, 2001; Garg 

t al., 2010; Gong, Ross, Kang, & Fahroo, 2008b ). The covector 

apping principle for the Legendre Pseudospectral method then 

tates that these multipliers of the discretized NLP problem con- 

erge to the costates of the discretized necessary optimality con- 

itions ( Gong et al., 2008a; Gong et al., 2008b; Ross & Karpenko, 

012 ). Comparative studies showed that the Radau pseudospectral 

ethod provides the most accurate results, including the costates, 

ith a fast convergence rate ( Garg, 2011; Garg et al., 2009; Hunt- 

ngton, 2007 ). Moreover, the LGR collocation points are most suit- 

ble for multiple-phase optimal control problems since they in- 

lude one endpoint per phase, and thus all phase boundaries are 

ollocation points corresponding to discontinuities in the input 

ata. Together, the LGR collocation points thus cover all phases and 

heir boundaries except the terminal point which is however esti- 

ated well by the state approximations. The Radau pseudospectral 

ethod is implemented in the MATLAB toolbox GPOPS (General 

seudospectral OPtimal Control Software) ( Rao et al., 2010 ), which 

e used in this paper for the experiments. 

The pseudospectral method works well for smooth problems, 

ut the optimal train control problems may be nonsmooth in prac- 

ice due to infrastructural constraints. In particular, the varying 

lopes of the railway tracks are usually modelled as piecewise con- 

tant gradients resulting in a discontinuous dynamic equation, and 

arying speed limits along the track result in discontinuous state 

nequality path constraints that may lead to discontinuous costate 

unctions ( Bryson & Ho, 1975 ). Moreover, the optimal train con- 

rol problems have a Hamiltionian that is linear in the control and 

hus has a zero Hessian. This may cause singular arcs for which 

o explicit analytical expressions can be derived from the neces- 

ary optimality conditions and for which the pseudospectral so- 
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utions show oscillating control and state behaviour. Furthermore, 

top distances may be very long with possibly many fluctuations 

n gradients and speed limits leading to many phases of the re- 

ulting multiple-phase optimal control problem with as many inte- 

ior state equality constraints. The literature on optimal train con- 

rol using pseudospectral methods indeed shows irregularities in 

he control and/or state profile plots that need to be understood 

efore these methods can be used in practice ( Wang & Goverde, 

016a; 2019; Ye & Liu, 2016; 2017 ). Ye and Liu (2017) compared the

seudospectral method with a heuristic solution method consisting 

f an NLP problem formulation based on closed-form expressions 

or each driving regime obtained with some simplifying assump- 

ions. For one case the pseudospectral method found the same en- 

rgy consumption, despite some fluctuations in the singular cruis- 

ng regime. In a second case study the heuristic method found a 

olution with less energy consumption and they concluded that it 

s quite difficult to choose appropriate parameters of GPOPS to en- 

ure convergence within acceptable tolerances. Wang et al. (2013 , 

014) compared a pseudospectral method with an MILP method. 

he pseudospectral method provided solutions with the least en- 

rgy but was much slower than the MILP method. However, the 

ILP model showed a rough approximation while the pseudospec- 

ral method gave smooth results, which raises the question how 

ccurate the pseudospectral must be: with less collocation points 

he pseudospectral method is faster and may still perform bet- 

er, or the other way around, enforcing a higher accuracy of the 

ILP model will increase its computation time. Wang and Goverde 

2016a) and Ye and Liu (2016, 2017) observed strong oscillating be- 

aviour in both the control and state for the singular solution cor- 

esponding to a nonsmooth approximation of the cruising regime. 

hong, Lin, Loxton, and Teo (2019) modelled the optimal train con- 

rol problem as an optimal switching control problem. They divide 

he track into a finite number of segments of constant gradient and 

peed limit similar to a multi-phase optimal control problem, and 

hen use control parametrization and time-scaling to obtain an ap- 

roximate finite-dimensional nonlinear programming problem. The 

raction and braking control are approximated as piecewise con- 

tant functions where the switching times and jumps are the deci- 

ion variables. They compared their algorithm with a pseudospec- 

ral method using GPOPS. The computation times are comparable 

nd their solution does not show singular control oscillations, al- 

hough the traction and braking control are now approximate step 

unctions. Instead, the pseudospectral method shows accurate con- 

inuous traction control except for the singular control oscillations. 

hen and Biegler (2016) proposed a nested direct transcription 

ptimization method for solving singular optimal control prob- 

ems. The nonlinear programming problem resulting from the di- 

ect transcription is decomposed into an inner and outer problem. 

n the inner problem moving finite elements are used to find accu- 

ate switching times and additional monotonic control constraints 

n each finite element guarantee a low-order control. ‘Pseudomul- 

ipliers are introduced that reconstruct the necessary optimality 

onditions for the singular optimal control in the outer problem. 

In this paper, we propose a computational evaluation frame- 

ork where the PMP is applied to verify, validate and improve 

seudospectral solutions to optimal train control problems. It 

s based on the costate approximations that the pseudospectral 

ethods provide next to the controls and states. This can be ex- 

loited to analyse the pseudospectral results using the necessary 

ptimality conditions of the original continuous optimal control 

roblem. It is shown that there are inconsistencies due to the 

iscretization of the continuous problem. The solutions can how- 

ver be corrected using analytical results from the PMP analysis 

n a postprocessing step resulting in feasible continuous solutions 

atisfying the optimality conditions. We consider both the MTTC 

nd EETC problems as examples, and exclude regenerative brak- 
355 
ng. However, the proposed approach can be applied to any op- 

imal train control problem formulation. The paper thereby gives 

he following contributions to the literature: 

1. A computational framework connects the pseudospectral 

method with Pontryagin’s Maximum Principle. 

2. The framework is applied to compute, validate and improve so- 

lutions to optimal train control problems. 

3. Structured experiments illustrate the impact of stop distances, 

varying speed limits and gradients, and running time supple- 

ments. 

4. Convergence issues are identified for discontinuous state con- 

straints (speed limits) and dynamic equations (gradients) with 

big jumps. 

5. Known computational issues of the pseudospectral method re- 

garding singular solutions are solved by a hybrid approach us- 

ing Pontryagin’s Maximum Principle. 

The paper is structured as follows. Section 2 defines the MTTC 

nd EETC problems and derives their necessary optimality condi- 

ions by application of the PMP. This reflects the traditional indi- 

ect optimal train control solution approach. Then, the numerical 

seudospectral method is introduced in Section 3 . Section 4 pro- 

oses the computational evaluation framework that combines PMP 

nd the pseudospectral method to verify and validate the solu- 

ions obtained from the pseudospectral methods. Section 5 ap- 

lies the computational framework to the MTTC and EETC prob- 

ems for various structured scenarios and identifies the incon- 

tistencies of the approximated pseudospectral solutions with the 

MP. Section 6 then discusses the numerical challenges of the dis- 

retized pseudospectral solutions and proposes a postprocessing 

tep to obtain feasible continuous solutions by exploiting knowl- 

dge from the PMP. Section 7 ends the paper with the conclusions. 

. The optimal train control problems and necessary optimality 

onditions 

This section gives the problem formulations of the optimal con- 

rol problem for both the EETC and MTTC, and derives necessary 

onditions for optimality by application of the PMP ( Lewis, Vrabie, 

 Syrmos, 2012; Pontryagin et al., 1962; Ross, 2015 ). First, the EETC 

roblem is discussed and afterwards the MTTC problem. The prob- 

em formulations consider distance as independent variable rather 

han time, because discontinuity points associated with changes in 

radients and speed limit are naturally given in terms of distance 

 Scheepmaker & Goverde, 2015; Scheepmaker et al., 2017; Wang & 

overde, 2016a ). To focus on the essence of the optimal control 

roblems, we do not consider the effect of regenerative braking 

nd we model the train without loss of generality as a point mass 

 Brünger & Dahlhaus, 2014; Howlett & Pudney, 1995 ). The applica- 

ion of the PMP to optimal train control problems is not new, but is 

ncluded here to make the paper self-contained. The derived equa- 

ions from the necessary optimality conditions will be used in the 

est of the paper. Other papers that also give in-depth derivations 

f the optimality conditions by applying PMP consider slightly dif- 

erent problem formulations, such as energy and time as state 

ariables ( Khmelnitsky, 20 0 0 ), normalized control variables ( Liu 

 Golovitcher, 2003 ), and a different objective function including 

egenerative braking ( Albrecht et al., 2016a; 2016b ). Howlett and 

udney (1995) considers various problem formulations with exten- 

ive derivations. Obviously the optimal control structure is always 

he same but the algebraic expressions of the optimality conditions 

epend on the specific problem formulation, and these are used 

ater in the paper in connection to the pseudospectral solutions. 

In our problem formulation we model a typical maximum trac- 

ion force as function of speed using a pure control constraint and 

 mixed state-control constraint. In addition, static speed limits are 
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Fig. 1. Typical traction force-speed diagram with a constant and hyperbolic part. 
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ormulated as pure state constraints. The problem formulation thus 

ncludes all types of algebraic path constraints (state, control, and 

ixed constraints), which will be used later to analyse their im- 

act on the pseudospectral solution method. 

.1. Energy-efficient train control 

We consider the problem of finding the optimal control for a 

rain run between two stops in a given scheduled time T such that 

he total traction energy ( J [m 

2 /s 2 ]) is minimized. This can be for-

ulated as the following constrained optimal control problem: 

inimize J = 

∫ s f 

s 0 

u 

+ (s ) ds, (1) 

ubject to the constraints 

˙ 
 (s ) = 

1 

v (s ) 
(2) 

˙ 
 (s ) = 

u (s ) − r(v ) − g(s ) 

v ( s ) 
(3) 

 

+ (s ) v (s ) ≤ p max (4) 

 ≤ v (s ) ≤ v max (s ) (5) 

− u min ≤ u (s ) ≤ u max (6) 

(s 0 ) = 0 , t(s f ) = T , v (s 0 ) = 0 , v (s f ) = 0 , s 0 = 0 , s f = S, (7) 

here the independent variable is distance s [m], the state vari- 

bles are time t [s] and speed v [m/s], ˙ t = d t/d s and 

˙ v = d v /d s

enote the derivatives of the state variables with respect to the 

ndependent variable s, and the control variable u [m/s 2 ] is the 

ass-specific applied force u (s ) = F (s ) / (ρm ) , i.e., the applied force

ivided by total mass including a rotating-mass factor ρ [-], con- 

isting of a traction part u + (s ) and a braking part u −(s ) . The

ontrol is bounded between a maximum specific braking rate 

u min = −F min / (ρm ) and a maximum specific traction force u max =
 max / (ρm ) . Moreover, the mass-specific traction power p = u + v
m 

2 /s 3 ] is limited by a maximum mass-specific power p max . Hence, 

he maximum traction force is a function of speed consisting of a 

onstant and hyperbolic part which is illustrated in the traction- 

peed diagram of Fig. 1 . It follows that the control variable is 

ounded by u ∈ U(v ) = [ −u min , min (u max , p max / v )] . We assumed a

onstant maximum braking force as this was the only braking data 
356 
vailable. Note that based on the definition of the control vari- 

ble, traction and braking control cannot be used at the same 

ime. We use the notation u + (s ) = max (u (s ) , 0) ≥ 0 and u −(s ) =
in (u (s ) , 0) ≤ 0 so that u (s ) = u + (s ) + u −(s ) . The resistance forces

onsist of a mass-specific train resistance r(v ) = R (v ) / (ρm ) [m/s 2 ]

nd a mass-specific line resistance g(s ) = G (s ) / (ρm ) [m/s 2 ]. The

rain resistance is defined by the Davis equation r(v ) = r 0 + r 1 v +
 2 v 2 , with non-negative coefficients r 0 , r 1 ≥ 0 and r 2 > 0 ( Davis,

926 ). The line resistance g(s ) is defined as the specific gravity 

orce due to track gradients. It is assumed that tracks have piece- 

ise constant gradients. Note that on uphill slopes g(s ) > 0 and on 

ownhill slopes g(s ) < 0 . In addition, line resistance may have an 

dditional nonnegative term due to curvature which also depends 

n the location of the curves. Finally, the speed is bounded above 

y a speed limit v max (s ) , which is assumed piecewise constant. 

Next, we derive the necessary optimality conditions using the 

MP. For this, define the Hamiltonian H [m/s 2 ] as 

(t, v , λ1 , λ2 , u, s ) = −u 

+ + 

λ1 

v 
+ 

λ2 (u − r(v ) − g(s )) 

v 
, (8) 

here λ1 [m 

2 /s 3 ] and λ2 [m/s] are the costate variables, which are 

lso functions of the independent variable s . Note that the Hamil- 

onian depends on distance s via the line resistance g(s ) , which 

s a piecewise constant function of distance. For sections of con- 

tant gradient the Hamiltonian is independent on s and thus con- 

tant over distance, i.e. ∂ H/∂ s = 0 , although the Hamiltonian may 

ave jumps at the points where the gradient changes and thus 

ecome piecewise constant. Also jumps in the costate may lead 

o jumps in the Hamiltonian. To take into account the additional 

mixed) state and control path constraints (4) –(6) , we define the 

ugmented Hamiltonian H̄ [m/s 2 ] as the Lagrangian of the Hamil- 

onian as follows: 

¯
 (t, v , λ1 , λ2 , μ, u, s ) = H + μ1 (u max − u ) + μ2 (u + u min ) 

+ μ3 (p max − u 

+ v ) + μ4 (v max − v ) , (9) 

here μ1 [-], μ2 [-], μ3 [s/m] and μ4 [1/s] are the Lagrange multi- 

liers, with μi ≥ 0 ( i = 1 , . . . , 4 ). The costates λ1 and λ2 satisfy the

ifferential equations ˙ λ1 (s ) = −∂ H̄ /∂t and 

˙ λ2 (s ) = −∂ H̄ /∂v , which

ives 

˙ 
1 (s ) = 0 (10) 

˙ 
2 (s ) = 

λ1 + v λ2 r 
′ (v ) + λ2 (u − r(v ) − g(s )) 

v 2 
+ μ3 u 

+ + μ4 . (11) 

rom the first equation follows immediately that λ1 (s ) ≡ λ1 is con- 

tant. Note that these dynamic equations (10),(11) together with 

he state equations (2),(3) define a BVP with four differential equa- 

ions in the states and costates and four fixed (begin and final) 

ndpoints for the states given in (7) . Therefore, the endpoints for 

he costates are free. 

According to the PMP the optimal control maximizes the Hamil- 

onian ( Pontryagin et al., 1962 ). Therefore, the optimal control is 

efined by 

ˆ 
 (s ) = arg max 

u ∈ U 
H( ̂ t (s ) , ̂  v (s ) , ̂  λ1 (s ) , ̂  λ2 (s ) , u, s ) , (12)

here ( ̂ t , ˆ v ) and ( ̂ λ1 , 
ˆ λ2 ) are the state and costate trajectories cor-

esponding to the optimal control trajectory ˆ u . Moreover, the max- 

mized Hamiltonian is independent on u and thus constant when it 

s also independent on s . In our case the Hamiltonian depends on 

istance s through the piecewise constant gradient g(s ) , and also 

he control, state and costate trajectories may depend on s through 

he state constraint (5) if the speed limit v max (s ) is not constant. 

ence, on intervals with constant g(s ) ≡ g r and v max (s ) ≡ v max ,r ,

here exists a constant ϕ such that 

( ̂ t (s ) , ̂  v (s ) , ̂  λ1 (s ) , ̂  λ2 (s ) , ˆ u (s )) = ϕ. (13)
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ote that the Hamiltonian (8) is piecewise linear in the control u, 

nd can be split into traction and braking parts as 

(t, v , λ1 , λ2 , u, s ) = 

{
( λ2 

v − 1) u + 

λ1 −λ2 r(v ) −λ2 g(s ) 
v if u ≥ 0 

λ2 

v u + 

λ1 −λ2 r(v ) −λ2 g(s ) 
v if u < 0 . 

(14) 

he optimal control u that maximizes the Hamiltonian thus de- 

ends on the sign of u and the relative value of speed v and the

ostate λ2 , which gives five cases: 

1. If λ2 > v then u must be maximal. 

2. If λ2 = v then u ∈ [0 , u max ] is undetermined (1st singular solu-

tion). 

3. If 0 < λ2 < v then u = 0 . 

4. If λ2 = 0 then [ −u min , 0] is undetermined (2nd singular solu- 

tion). 

5. If λ2 < 0 then u must be minimal. 

To find a full characterization of the optimal control and asso- 

iated state and costate trajectories, we apply the Karush–Kuhn–

ucker (KKT) conditions on the augmented Hamiltonian (9) . These 

onditions consist of the stationary and complementary conditions 

ssociated to H̄ ( Bertsekas, 1999 ). The complementary slackness 

onditions on the path constraints are μi ≥ 0 , i = 1 , . . . , 4 , and 

μ1 (u max − u ) = 0 , μ2 (u + u min ) = 0 , 

3 (p max − u 

+ v ) = 0 , μ4 (v max − v ) = 0 . (15) 

ote that μ2 = 0 if u ≥ 0 , and likewise μ1 = μ3 = 0 if u < 0 .

he stationary condition states that ∂ H̄ /∂u = 0 , where the partial 

erivative of the augmented Hamiltonian can be split in two ac- 

ording to the sign of the control variable and does not exist at 

 = 0 due to the discontinuity of H at u = 0 . The stationary condi-

ion can then be derived as 

−1 + 

λ2 

v − μ1 − μ3 v = 0 if u > 0 

λ2 

v + μ2 = 0 if u < 0 , 
(16) 

nd it is undefined for u = 0 . 

Based on the PMP and KKT conditions we can now characterize 

ach of the five driving regimes depending on the costate λ2 as 

ollows: 

1. Maximum acceleration (MA) . The first case is λ2 > v with u 

maximal. In this case, the stationary condition (16) gives μ1 + 

μ3 v = −1 + λ2 / v > 0 and thus μ1 > 0 or μ3 > 0 . Therefore, ei-

ther u = u max or u = p max / v . Note that u = u max and u = p max / v
cannot hold both at the same time except at one point v 1 = 

p max /u max since the hyperbolic function is decreasing in v . 
Hence, u = u max (v ) = min (u max , p max / v ) , which specifies max-

imum traction, and μ1 and μ3 can be expressed in terms of v 
and λ2 using the stationary condition (16) with either μ3 = 0 

or μ1 = 0 . In addition, during this maximal acceleration regime 

the speed bound v = v max cannot be maintained except at a 

single point, so μ4 = 0 . This completely defines the costate 

equation (11) . 

2. Cruising by partial traction (CR1) . The second case is the singu- 

lar solution with λ2 = v and u ∈ [0 , u max ] . In this case, the sta-

tionary condition (16) reads μ1 + μ3 v = 0 and therefore μ1 = 

μ3 = 0 . Moreover, since λ2 (s ) = v (s ) on a nontrivial interval,

we must have ˙ λ2 (s ) = 

˙ v (s ) . From (3) and (11) , we can then

derive v 2 (μ4 + r ′ (v )) + λ1 = 0 . This equation has a unique so-

lution v c which can be proved as follows. If we view the 

left-hand side as a function h (v ) , and recalling that r(v ) 
is a quadratic function of speed with in particular r ′ (v ) = 

r 1 + 2 r 2 v ≥ 0 , r ′′ (v ) = 2 r 2 > 0 , and third derivative r (3) (v ) = 0 ,

then h ′ (v ) = 2 v μ + 2 v r ′ (v ) + v 2 r ′′ (v ) ≥ 0 and h ′′ (v ) = 2 μ +
4 4 

357 
2 r ′ (v ) + 4 v r ′′ (v ) > 0 . Hence, h (v ) is an increasing convex func-

tion, which has a unique root h (v c ) = 0 for v c > 0 , if any. Now

assume that v c < v max and so μ4 = 0 . Then the cruising speed

must satisfy 

v 2 c r 
′ (v c ) + λ1 = 0 , (17) 

which has a unique solution v c if λ1 < 0 . Moreover, the maxi- 

mized Hamiltonian value condition (13) applied to this case for 

an interval with constant g(s ) ≡ g then gives 

v c r ′ (v c ) + r(v c ) + g + ϕ = 0 (18)

with ϕ piecewise constant negative in congruence to g(s ) , and 

thus the Hamiltonian is negative ( H = ϕ < 0 ). If on the other

hand v (s ) = v max on a nontrivial interval then μ4 is determined 

as μ4 = −λ1 / v 2 max − r ′ (v max ) which gives cruising at the maxi- 

mal speed v max as the unique solution. Note that also in this 

case λ1 < 0 must hold. In conclusion, this case corresponds to 

a constant cruising speed v (s ) = min (v c , v max ) with v c the so-

lution to (17) . This implies that ˙ v (s ) = 0 and thus u (s ) = r(v ) +
g(s ) , i.e., the traction force equals the total resistance force to 

maintain the cruising speed. This case thus reduces to finding 

a solution v c and λ1 to (17) . 

3. Coasting (CO) . In the third case λ2 ∈ (0 , v ) and u = 0 . Since

u (s ) = 0 the complementary slackness conditions give μ1 = 

μ2 = μ3 = 0 and also μ4 = 0 since speed changes without trac- 

tion effort due to the resistance, and, therefore, will not stay 

at the speed limit for a nontrivial interval. This completely de- 

fines the costate equation (11) . Note that the rare case of r(v ) =
−g(s ) for some interval reduces to case 2 or 4 with cruising at 

zero traction u (s ) = 0 . 

4. Cruising by partial braking (CR2) . The fourth case is the sec- 

ond singular solution with λ2 = 0 and u ∈ [ −u min , 0] . The sta-

tionary condition (16) now gives μ2 = 0 , and also μ1 = μ3 = 0 

since u < 0 . For the nontrival case that λ2 = 0 on some interval,

we must have ˙ λ2 = 0 . Thus from (11) we get λ1 / v 2 + μ4 = 0 .

If μ4 = 0 then also λ1 = 0 and by (8) also ϕ = 0 . However,

both λ1 and ϕ should be negative otherwise other regimes 

would be prohibited, so μ4 > 0 . Therefore, v (s ) = v max with

μ4 = −λ1 / v 2 max . Hence, partial braking is optimal only when 

cruising at the speed limit with u (s ) = r(v max ) + g(s ) , which

can occur only on downward slopes with −u min − r(v max ) < 

g(s ) < −r(v max ) . 

5. Maximum braking (MB) In the final case λ2 < 0 with u minimal. 

The stationary condition (16) now gives μ2 = −λ2 / v > 0 and, 

therefore, u = −u min . The special case that v = v max over a non-

trivial interval, i.e., g(s ) = −u min − r(v max ) is part of the fourth 

case (with full braking). Hence, the costate equation (11) ap- 

plies with μ4 = 0 , and also μ3 = 0 since u < 0 . 

The above analysis thus leads to the following optimal control 

tructure: 

ˆ  (s ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

u max (v (s )) if λ2 (s ) > v (s ) (MA) 

r(v (s )) + g(s ) ∈ [0 , u max ] if λ2 (s ) = v (s ) (CR1) 

0 0 < λ2 (s ) < v (s ) (CO) 

r(v max (s )) + g(s ) ∈ [ −u min , 0] if λ2 (s ) = 0 (CR2) 

−u min if λ2 (s ) < 0 (MB) . 

(19) 

he optimal energy-efficient train control thus consists of maxi- 

um traction force u max (v ) for maximum acceleration (MA), par- 

ial traction to counterbalance the resistance forces and cruise at 

n optimal cruising speed min (v c , v max ) (CR1), zero traction u = 0 

or coasting (CO) (i.e., rolling without using the engine or brakes 

f the train), partial braking to cruise at the maximum speed on 

 sufficiently downward slope (CR2), and full braking force for 

aximum braking (MB). The key challenge is to find the optimal 
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witching points between the different driving regimes and the or- 

er of the regimes to determine the optimal driving strategy. For a 

imple flat track (zero gradient), no speed limit, and sufficient run- 

ing time supplement, the optimal driving strategy is given by the 

equence MA-CR1-CO-MB or MA-CO-MB if the speed limit cannot 

e reached within the given time. Note that running time supple- 

ents are the extra running times above the technical minimum 

unning time included in the timetable to deal with variations 

n the running time or to recover from small delays. If the train 

uns punctual, they can be used for energy-efficient train driving 

 Scheepmaker & Goverde, 2015 ). 

Note that the dynamic equations (2) and (3) are not defined 

t zero speed. In practice, we use slightly positive speeds at the 

nd points to avoid the divide by zero issue and correct the total 

istance and time accordingly. From Pontryagins Maximum Prin- 

iple it is known that a train starts with maximum acceleration 

nd ends with maximum braking, so this control can be simply 

xtrapolated from/to zero. For our case studies the error is less 

han 25 cm or 1 s at the start and end point. In this paper, we

gnored this error, which is well within the practical stopping ac- 

uracy. Likewise, for the minimum-time train control of the next 

ubsection. 

.2. Minimum-time train control 

The aim of the MTTC problem is to minimize the total running 

ime of a train, so the train should arrive as early as possible at 

he next station at the minimized time t(s f ) . This objective J [s] 

an be formulated as 

inimize J = t(s f ) , (20) 

ubject to the constraints (2) –(6) and the endpoint conditions 

t(s 0 ) = 0 , v (s 0 ) = 0 , v (s f ) = 0 , s 0 = 0 , s f = S, (21) 

hile the final time t(s f ) is free. 

The PMP analysis is similar to Section 2.1 and, therefore, we 

ocus on the main points here only. The Hamiltonian H [s/m] and 

ugmented Hamiltonian H̄ [s/m] are defined as 

(t, v , λ1 , λ2 , u, s ) = 

λ1 

v 
+ 

λ2 (u − r(v ) − g(s )) 

v 
, (22) 

¯
 (t, v , λ1 , λ2 , μ, u, s ) = H + μ1 (u max − u ) + μ2 (u + u min ) 

+ μ3 (p max − u 

+ v ) + μ4 (v max − v ) , (23) 

here λ1 [-] and λ2 [s 2 /m] are the costate functions of the inde- 

endent variable s, and μ1 [s 3 /m 

2 ], μ2 [s 3 /m 

2 ], μ3 [s 4 /m 

3 ] and

4 [s 2 /m 

2 ], μi ≥ 0 (i = 1 . . . , 4) , are the Lagrange multipliers as-

ociated to the path constraints. Again the Hamiltonian is piece- 

ise constant with possible jumps at the distances s where the 

radient g(s ) or speed limit v max (s ) change, and (13) also holds

or this Hamiltonian. The costates λ1 and λ2 satisfy the differen- 

ial equations ˙ λ1 (s ) = −∂ H̄ /∂t and 

˙ λ2 (s ) = −∂ H̄ /∂v , which gives
˙ 

1 = 0 and thus λ1 (s ) ≡ λ1 as in the EETC case, and 

˙ 
2 (s ) = 

λ1 + v λ2 r 
′ (v ) + λ2 (u − r(v ) − g(s )) 

v 2 
+ μ3 u 

+ + μ4 . (24) 

owever, different from the EETC case, the final conditions for the 

tates are not all fixed now, since the final time t(s f ) is free. The

ransversality conditions now specify a fixed value for the final 

ime of the associated costate λ1 . This can be found by considering 

he endpoint Lagrangian Ē [s] defined as 

¯
 (t(s f ) , v (s f ) , s f ) = −t(s f ) + γ1 v (s f ) + γ2 (s f − S) , (25)

here γ1 and γ2 are Lagrange multipliers, with the complementary 

lackness conditions γ1 v (s f ) = 0 and γ2 (s f − S) = 0 . The transver-

ality conditions state that λ1 (s f ) = ∂ ̄E /∂t(s f ) = −1 and therefore
358 
e now obtain λ1 ≡ −1 . Likewise, λ2 (s f ) = ∂ ̄E /∂v (s f ) = γ1 and for

he value of the maximized Hamiltonian at the endpoint s f , we get 

[ s f ] = −∂ ̄E /∂s f = −γ2 , which however does not give any new in-

ormation. 

The Hamiltonian is again linear in the control u with coeffi- 

ient λ2 / v . The optimal control u that maximizes this Hamilto- 

ian therefore depends on the sign of the costate λ2 , and must 

e maximal for λ2 > 0 , is undetermined for λ2 = 0 , and is mini-

al for λ2 < 0 . The KKT conditions for the augmented Hamiltonian 

23) give the same complementary slackness conditions (15) on the 

ath constraints with μi ≥ 0 , i = 1 , . . . , 4 , as the EETC case, while

he stationary conditions with ∂ H̄ /∂u = 0 now become 

λ2 

v − μ1 − μ3 v = 0 if u > 0 

λ2 

v + μ2 = 0 if u < 0 , 
(26) 

nd is undefined for u = 0 . Like the EETC case, we have μ2 = 0

or u ≥ 0 , and μ1 = μ3 = 0 for u < 0 . We can now characterize the

hree driving regimes depending on the sign of the costate λ2 us- 

ng the results of the PMP and KKT conditions. 

1. Maximum acceleration (MA) . In the first case, λ2 > 0 and u > 

0 . Then (26) gives μ1 + μ3 v = 

λ2 
v > 0 and thus μ1 > 0 or

μ3 > 0 . So either u = u max or u = p max / v , and therefore u =
u max (v ) = min (u max , p max / v ) , which specifies that maximum

traction needs to be applied. In addition, during a maximal ac- 

celeration regime the speed bound v = v max cannot be main- 

tained except at a single point, so μ4 = 0 . The multiplier μ3 is 

either zero or equal to μ3 = λ2 / v 2 using (26) with μ1 = 0 . This

completely defines the costate equation (24) . 

2. Cruising (CR) . The second case is the singular solution with λ2 = 

0 and u ∈ [ −u min , u max ] . With λ2 = 0 , (26) specifies μ1 = μ2 =
μ3 = 0 for both u > 0 and u < 0 . The Hamiltonian (22) now be-

comes H = λ1 / v (s ) = −1 / v (s ) . Moreover, ˙ λ2 = 0 on a nontrivial

interval and then μ4 = 1 / v 2 using (24) . In particular, this im- 

plies that μ4 > 0 and therefore, v = v max . Hence, this case cor- 

responds to cruising at the maximum speed v max with control 

u (s ) = r(v max ) + g(s ) ∈ [ −u min , u max ] to maintain the maximum

speed. The control can be anything from full to partial trac- 

tion or braking depending on the value of the resistance and 

gradient at v max . Moreover, the Hamiltonian value is fixed at 

H = −1 / v max < 0 . 

3. Maximum braking (MB) In the final case, λ2 < 0 and u < 0 . Now

(26) gives μ2 = −λ2 / v > 0 and therefore u = −u min . The special

case that v = v max over a nontrivial interval is part of the 2nd

case (with full braking). Hence, μ4 = 0 , and also μ3 = 0 since 

u < 0 , which completely defines the costate equation (24) . Fi- 

nally, from (22) follows that H = ϕ < 0 since both costates are

smaller than zero. 

The above analysis thus leads to the optimal control structure 

ˆ 
 (s ) = 

⎧ ⎨ 

⎩ 

u max (v (s )) if λ2 (s ) > 0 (MA) 

r(v max (s )) + g(s ) if λ2 (s ) = 0 (CR) 

−u min if λ2 (s ) < 0 (MB) . 

(27) 

o, the traction and braking effort s are as high as possible to keep 

he train at its maximum speeds as long as possible, which indeed 

enerates the minimal running time. No time is wasted on coasting 

n this case. 

. Pseudospectral method 

In this section, the train trajectory optimization is formulated 

s a multiple-phase optimal control problem ( Betts, 2010; Darby 

t al., 2011a ) and then discretized according to the Radau pseu- 

ospectral method ( Garg, 2011; Garg et al., 2009; Rao et al., 2010 ).
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Fig. 2. Illustration of phases in the multiple-phase optimal control problem. 
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he Radau pseudospecral method is implemented in the MATLAB 

oolbox GPOPS, which we use as solver for the MTTC and EETC 

roblems. 

A multiple-phase optimal control problem is one where the tra- 

ectory consists of a collection of phases. Simply speaking, a phase 

s any segment of the complete trajectory. In general, any particular 

hase of an optimal control problem has a cost functional, dynamic 

onstraints, path constraints, and boundary conditions. However, 

he models used to quantitatively describe the trajectory may be 

ifferent in different phases of the trajectory. The complete tra- 

ectory is then obtained by properly linking adjacent phases via 

inkage conditions. Similarly, the total cost functional is the sum of 

he cost functionals over each phase. The optimal trajectory is then 

ound by minimizing the total cost functional subject to the con- 

traints within each phase and the linkage constraints connecting 

djacent phases. 

The multiple-phase optimal control problem described in the 

revious section is now transcribed to a discrete NLP via an ex- 

ension of the single-phase Radau pseudospectral method. Pseu- 

ospectral methods are orthogonal collocation methods using 

lobal poynomials. A collocation method can be used for the nu- 

erical solution of ordinary differential equations and integral 

quations. The idea is to choose a finite-dimensional space of can- 

idate solutions (here polynomials) and a number of points in 

he domain (called collocation points), and to select that solu- 

ion which satisfies the given equation at the collocation points. 

he Radau pseudospectral method uses the Legendre–Gauss–Radau 

LGR) points plus additionally the final point. The resulting NLP can 

hen be solved by one of the many well developed nonlinear opti- 

ization algorithms. 

.1. Multiple-phase optimal control problem formulation 

The optimal train control problems can be formulated as 

nite-horizon multiple-phase optimal control problems ( Wang & 

overde, 2016a ). The running section from the departure point to 

he arrival point is then divided into a finite number of segments 

y the critical points of speed limits, gradients and curves, and 

ach of these segments is called a “phase”. Fig. 2 gives an illustra- 

ion, where the running section is divided into six phases. Within 

ach phase, the gradient and speed limit are constant, but their 

alues may be different over the various phases. 

Assume that the running section is divided into phases 

 s (r) 
0 

, s (r) 
f 

] , with s (r) 
0 

and s (r) 
f 

, s (r) 
0 

< s (r) 
f 

, denoting the initial and
359 
erminal location of phase r ∈ { 1 , . . . , R } . The train departs from

he initial point s (1) 
0 

of phase 1, and arrives at the terminal point 

 

(R ) 
f 

of phase R . Within phase r, the state vector consists of time 

nd speed x (r) (s ) = [ t (r) (s ) , v (r) (s )] ′ , and the control vector is the

ass-specific applied force u (r) (s ) . Moreover, denote the boundary 

oints of a phase r as x (r) 
0 

= x (r) (s (r) 
0 

) and x (r) 
f 

= x (r) (s (r) 
f 

) . 

The multiple-phase optimal control problem can now be formu- 

ated as minimizing the cost functional 

inimize J = 

R ∑ 

r=1 

E (r) 
(
x (r) 

0 
, s (r) 

0 
, x (r) 

f 
, s (r) 

f 

)

+ 

∫ s (r) 
f 

s (r) 
0 

F (r) 
(
x (r) (s ) , u 

(r) (s ) , s 
)

ds, (28) 

ubject to the dynamic constraints 

˙ 
 

(r) (s ) = f (r) 
(
x (r) (s ) , u 

(r) (s ) , s 
)
, r = 1 , . . . , R, (29) 

he path constraints 

 

(r) 
(
x (r) (s ) , u 

(r) (s ) , s 
)

≥ 0 , r = 1 , . . . , R, (30) 

he linkage conditions 

 

(r) (x (r) 
f 

, s (r) 
f 

, x (r+1) 
0 

, s (r+1) 
0 

) = 0 , r = 1 , . . . , R − 1 , (31)

nd the boundary (or endpoint) conditions 

 

(
x (1) 

0 
, s (1) 

0 
, x (R ) 

f 
, s (R ) 

f 

)
= 0 . (32) 

ote that the path constraints are inequalities over the phases 

nd the linkage conditions are equality constraints on the phase 

oundaries. 

For the EETC problem the cost functional is given by E = 0 and 

 

(r) (u (r) ) = u +(r) with u +(r) = max (u (r) , 0) , and for the MTTC prob-

em these are E (r) (x (r) 
0 

, x (r) 
f 

) = t (r) 
f 

− t (r) 
0 

and F (r) = 0 . The dynamic

nd path constraints are given for both problems by (2) –(6) , i.e., 

f (r) 
(
x (r) (s ) , u 

(r) (s ) , s 
)

= 

[
1 

v (r) (s ) 
, 

u 

(r) (s ) − r (r) (v (r) (s )) − g (r) 

v (r) (s ) 

]′ 

nd 

 

(r) 
(
x (r) (s ) , u 

(r) (s ) , s 
)

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

p max − u 

+(r) (s ) v (r) (s ) 

v (r) (s ) 

v (r) 
max − v (r) (s ) 

u 

(r) (s ) + u min 

u max − u 

(r) (s ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 
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here g (r) represents the line resistance due to the constant gra- 

ient within phase r, and v (r) 
max is the constant speed limit within 

hase r. The linkage conditions are 

 

(r) (x (r) 
f 

, s (r) 
f 

, x (r+1) 
0 

, s (r+1) 
0 

) = 

[
t (r) 

f 
− t (r+1) 

0 
, v (r) 

f 
− v (r+1) 

0 
, s (r) 

f 
− s (r+1) 

0 

]
hich make sure that the speed profile over the entire running 

ection is continuous. The boundary conditions for the EETC prob- 

em are e (x (1) 
0 

, s (1) 
0 

, x (R ) 
f 

, s (R ) 
f 

) = [ t (1) 
0 

, v (1) 
0 

, s (1) 
0 

, t (R ) 
f 

− T , v (R ) 
f 

, s (R ) 
f 

−
] ′ and for the MTTC problem they are e (x (1) 

0 
, s (1) 

0 
, x (R ) 

f 
, s (R ) 

f 
) =

 t (1) 
0 

, v (1) 
0 

, s (1) 
0 

, v (R ) 
f 

, s (R ) 
f 

− S] ′ with final time t (R ) 
f 

free. 

.2. Legendre–Gauss–Radau discretization 

The Radau pseudospectral method is a pseudospectral method 

ith the Legendre–Gauss–Radau points as collocation points ( Garg, 

011; Garg et al., 2009 ). Pseudospectral methods are defined on 

he domain [ −1 , 1] . Therefore, the first step in a pseudospectral

ethod is to map the physical domain [ s 0 , s f ] to the computational

omain [ −1 , 1] . For a multiple-phase optimal control problem, the 

hysical variable s ∈ [ s (r) 
0 

, s (r) 
f 

] in each phase is transformed to the

omputational variable σ (r) ∈ [ −1 , 1] by means of the affine trans- 

ormation 

(r) (s ) = 

2 s − (s (r) 
f 

+ s (r) 
0 

) 

s (r) 
f 

− s (r) 
0 

. (33) 

ote this implies d σ (r) /d s = 2 / (s (r) 
f 

− s (r) 
0 

) for r = 1 , . . . , R . Con-

ersely, we obtain s (σ (r) ) = 

s 
(r) 
f 

+ s (r) 
0 

2 + 

s 
(r) 
f 

−s 
(r) 
0 

2 σ (r) . 

Next, the state vector function x (r) (s (σ )) is approximated 

y a polynomial X (r) (σ ) with a basis of global Lagrange in- 

erpolating polynomials L (r) 
i 

(σ ) over N r + 1 discretization points 

σ (r) 
1 

, σ (r) 
2 

, . . . , σ (r) 
N r +1 

) in each phase r in terms of σ as 

 

(r) (s (σ )) ≈ X 

(r) (σ ) = 

N r +1 ∑ 

i =1 

X 

(r) 
i 

L (r) 
i 

(σ ) , (34) 

here X (r) 
i 

= X (r) (σ (r) 
i 

) and 

 

(r) 
i 

(σ ) = 

N r +1 ∏ 

j =1 , j 	 = i 

σ − σ (r) 
j 

σ (r) 
i 

− σ (r) 
j 

. 

or the Radau pseudospectral method, the discretization points are 

he LGR collocation points (σ (r) 
1 

, σ (r) 
2 

, . . . , σ (r) 
N r 

) and the additional 

oint σ (r) 
N r +1 

= 1 , where N r is the number of LGR points within 

hase r. The LGR points are defined as the N r zeros of the sum

f the Legendre polynomials of degree N r and N r − 1 . It includes 

he initial point σ (r) 
1 

= −1 , but not the final point. Therefore, for 

he state approximation at the final point, the additional point 
(r) 
N r +1 

= 1 is added. Note that L (r) 
i 

(σ (r) 
k 

) satisfy the Kronecker delta 

ondition L (r) 
i 

(σ (r) 
k 

) = δik for k = 1 , . . . , N r + 1 , with δik = 1 if i = k

nd δik = 0 if i 	 = k . Hence, at the discretization points σ (r) 
k 

, we

ave x (r) (s (σ (r) 
k 

)) = X (r) 
k 

. Moreover, we define U 

(r) 
k 

as the approxi-

ation of the control at each point σ (r) 
k 

, for k = 1 , . . . , N r . 

The derivative of x (r) (s ) is approximated by the derivative of the 

olynomial approximation, which gives in each phase r, 

˙ 
 

(r) (s (σ )) ≈ ˙ X 

(r) (σ ) = 

N r +1 ∑ 

i =1 

X 

(r) 
i 

˙ L (r) 
i 

(σ ) . 

ow define the non-square N r × (N r + 1) Radau pseudospectral dif- 

erentiation matrix in phase r, 

 

(r) 
ki 

= 

˙ L (r) 
i 

(σ (r) 
k 

) , k = 1 , . . . , N r , i = 1 , . . . , N r + 1 , 
360 
ith the derivatives of L (r) 
i 

(σ ) evaluated at the LGR points σ = 

(r) 
k 

. Then the dynamic constraint (29) is approximated at the LGR 

oints σ (r) 
k 

by the algebraic equations 

 r +1 ∑ 

i =1 

D 

(r) 
ki 

X 

(r) 
i 

−
s (r) 

f 
− s (r) 

0 

2 

f (r) 
(
X 

(r) 
k 

, U 

(r) 
k 

, σ (r) 
k 

)
= 0 , (35) 

or k = 1 , . . . , N r , r = 1 , . . . , R . 

The cost function is approximated using the LGR quadrature as 

 = 

R ∑ 

r=1 

( 

E (r) 
(
X 

(r) 
1 

, X 

(r) 
N r +1 

)
+ 

N r ∑ 

k =1 

s (r) 
f 

− s (r) 
0 

2 

w 

(r) 
k 

F (r) 
k 

) 

, (36) 

here F (r) 
k 

= F (r) (X (r) 
k 

, U 

(r) 
k 

, σ (r) 
k 

) is the cost evaluated at the k th

ollocation point in phase r, w 

(r) 
k 

is the quadrature weight asso- 

iated with the k th LGR collocation point of phase r, and for the 

TTC problem E (r) (X (r) 
1 

, X (r) 
N r +1 

) = X (r) 
N r +1 , 1 

− X (r) 
1 , 1 

with X (r) 
k, 1 

the 1st

time) component of X (r) 
k 

= (T (r) 
k 

, V (r) 
k 

) . Note that for the optimal

rain control problem X (r) is a matrix with rows X (r) 
i 

correspond- 

ng to the discretization points and thus the columns correspond 

o the approximation vectors of the state variables. 

Furthermore, the path constraints, linkage conditions and 

oundary conditions are discretized at the LGR points as 

 

(r) 
(
X 

(r) 
k 

, U 

(r) 
k 

, σ (r) 
k 

)
≥ 0 , k = 1 , . . . , N r , r = 1 , . . . , R, (37) 

 

(r) (X 

(r) 
N r +1 

, σ (r) 
N r +1 

, X 

(r+1) 
1 

, σ (r+1) 
1 

) = 0 , r = 1 , . . . , R − 1 , (38) 

 

(
X 

(1) 
1 

, σ (1) 
1 

, X 

(R ) 
N r +1 

, σ (R ) 
N r +1 

)
= 0 . (39) 

The multiple-phase optimal control problem is now converted 

o the discrete nonlinear programming problem to minimize 

36) subject to (35), (37) –(39) , where the decision variables are 

X (r) 
1 

, . . . , X (r) 
N r +1 

) and (U 

(r) 
1 

, . . . , U 

(r) 
N r 

) , r = 1 , . . . , R . Necessary opti-

ality conditions for the NLP problem (35) –(39) can be obtained 

y the associated KKT conditions including the corresponding La- 

rangian multipliers. Let 	(r) denote the Lagrange multipliers as- 

ociated to the discretized dynamic equation (35) , i.e., 	(r) is an 

 r × 2 matrix whose columns correspond to the Lagrange multi- 

lier vectors of the two columns in X (r) representing the state ap- 

roximations. Then the approximation of the costate vector λ(r) in 

he discretization point σ (r) 
k 

is given as ( Garg et al., 2011 ) 

(r) (s (σ (r) 
k 

)) = 

{
	(r) 

k 
/w 

(r) 
k 

, k = 1 , . . . , N r 

D 


 
N r +1 	

(r) , k = N r + 1 , 
(40) 

here D 


 
N r +1 denotes the transposed last column of the differentia- 

ion matrix D, which can be shown to be equal to the (transposed) 

egative sum of the first N r columns of D ( Garg et al., 2011 ). 

Note that s (σ (r) 
N r +1 

) = s (σ (r+1) 
1 

) for r = 1 , . . . , R − 1 in the dis-

retized multiple-phase optimal control problem using LGR col- 

ocation points, and the linking conditions take care that the as- 

ociated state and control variables are consistent. Hence, the 

ultiple-phase Radau pseudospectral method computes in essence 

he state, costate and control values at N = 

∑ R 
r=1 N r different 

oints, along with the state and costate values at the final point. 

he value of the control at the final point U 

(R ) 
N r +1 

must be ex- 

rapolated separately, which is also implemented in GPOPS. Thus, 

he multiple-phase Radau pseudospectral method computes state, 

ostate and control vectors of dimension N + 1 corresponding to 

he values (X (r) 
k 

, 	(r) 
k 

, U 

(r) 
k 

) at the N + 1 successive points s (σ (r) 
k 

) ,

 = 1 , . . . , N r , r = 1 . . . , R, and s (σ (R ) 
N r +1 

) , with s 0 = s (σ (1) 
1 

) and s f =
 (σ (R ) 

N r +1 
) . Thus, over the physical domain the discretized solution 

an be denoted as { (X , 	 , U ) = (x (s ) , λ(s ) , u (s ) | i = 0 , . . . , N} . 
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Fig. 3. Computational evaluation framework for pseudospectral optimal control with Pontryagin’s Maximum Principle. 
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. The pseudospectral computational evaluation framework 

In this section, we propose a computational evaluation frame- 

ork to verify, validate and improve pseudospectral solutions for 

ptimal train control problems. It is based on the costate approxi- 

ations that the pseudospectral methods provide next to the con- 

rols and states. These can be exploited to analyse the results using 

he necessary optimality conditions of the original continuous op- 

imal control problem. 

Fig. 3 illustrates the approach, which was inspired by Ross and 

arpenko (2012) . Here, (x, u, λ) represent the continuous state, 

ontrol and costate functions, respectively, and (X, U, 	) the dis- 

rete approximations. The indirect method is clockwise: the origi- 

al optimal control problem P (x, u ) (lower-left box) is dualized to 

 BVP P (x, u, λ) (upper-left box) with the adjoint dynamic equa- 

ion of the costate λ by application of the PMP (and additional 

arush–Kuhn–Tucker conditions for the path constraints). This pro- 

edure was demonstrated in Section 2 . The resulting BVP P (x, u, λ)

an then be discretized by collocation of the dynamic equations 

nd additional path and control constraints enforced on the N dis- 

retization points, which is indicated as indirect collocation in the 

gure (upper-horizontal arcs). However, such algorithms are very 

ensitive to the initial guesses of the (costate) variables. Moreover, 

he implicit control function, discontinuities, and the a priori un- 

nown switching structure of the inequality path constraints make 

hese problems very hard to solve by generic BVP solvers. Still, 

edicated algorithms have been developed for the EETC problem 

xpoiting algebraic formulae for the costate along sections with 

onstant gradient, which led to very fast algorithms ( Albrecht et al., 

016a; 2016b; Howlett et al., 2009; Liu & Golovitcher, 2003 ). In ad- 

ition, an MTTC algorithm is straightforward with the knowledge 

f the optimal control structure without the need for solving the 

ostate dynamic equations. 

On the other hand, counterclockwise is the direct pseudospec- 

ral method as described in Section 3 : the original optimal control 

roblem P (x, u ) is transcribed into a discrete NLP problem P N (X, U)

sing the LGR collocation points, where N denotes the total num- 

er of collocation points (lower-right box). This NLP problem is 

hen solved by an NLP algorithm, which gives the optimal state 

nd control vectors that can be transformed back to approximate 

olutions of the continuous optimal control problem. The higher 

he number of discretization points N the more accurate is the ap- 

roximation of the continuous functions (x, u ) , although the high- 

rder global polynomials already generate good approximations for 

maller grid sizes to smooth problems. The NLP algorithms also 

ompute the associated Lagrange multipliers 	 and thus actu- 

lly solve the discrete primal-dual problem P N (X, U, 	) with both 

iscrete state and costate vectors (upper-right box). This solution 
s

361 
X, U, 	) can then be transformed to approximations of the solu- 

ion to the continuous BVP P (x, u, λ) . Then the optimality condi- 

ions represented by P (x, u, λ) (upper-left box) can be checked to 

onfirm convergence of the optimal state and control of the orig- 

nal optimal control problem P (x, u ) . Identified issues of the solu- 

ion (x, u, λ) could be improved by increasing the number of collo- 

ation points N but this increases the computation time. Alterna- 

ively, the discrete approximation (X, U, 	) could be corrected to 

 feasible continuous solution (x, u, λ) using information from the 

ontinuous PMP combined with additional computed values by the 

seudospectral method, such as λ1 and ϕ. This leads to a postpro- 

essing step to the pseudospectral method, which we will explore 

n Section 6 . 

In Section 2 , we derived necessary optimality conditions in 

erms of costate variables by application of the PMP (left-upwards 

rrow). This PMP analysis provides important generic knowledge 

hat can be used to evaluate a solution found by any method. For 

he EETC problem the main results can be summarized as follows: 

1. The Hamiltonian is negative and constant on phases with con- 

stant gradient and speed limit, ϕ < 0 . 

2. The costate associated with time is a negative constant, λ1 < 0 . 

3. The optimal control structure depends on the relative values of 

speed v and costate λ2 according to (19) . 

4. The singular solutions correspond to a constant cruising speed, 

with either v = λ2 (CR1) or λ2 = 0 (CR2). 

5. In the singular solution CR1, the optimal cruising speed v c can 

be determined from either λ1 or ϕ using (17) or (18) , while the 

(constrained) cruising speed is v (s ) = min (v c , v max (s )) . 

6. In the singular solution CR2, the cruising speed is v max . 

Likewise, for the MTTC problem the main PMP results can be 

ummarized as: 

1. The Hamiltonian is negative and constant on phases with con- 

stant gradient and speed limit, ϕ < 0 . 

2. The costate associated with time is constant and fixed, λ1 = −1 . 

3. The optimal control structure depends on the sign of cospeed 

λ2 according to (27) . 

4. The singular solutions correspond to a cruising speed v max and 

λ2 = 0 . 

In Section 5 , we will apply the pseudospectral method to solve 

he optimal train control problems MTTC and ETTC for various sce- 

arios and verify consistency with the necessary optimality condi- 

ions as summarized above. Then in Section 6 we use the analyti- 

al results from the PMP analysis to correct the inconsistencies in 

he discrete pseudospectral solutions to obtain feasible continuous 

olutions that satisfy the optimality conditions. 
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Table 1 

Basic parameters of the Intercity and Sprinter trains ( NS, 2017 ). 

Characteristic Intercity Sprinter 

Train mass m [t] 391 198 

Rotating mass factor ρ [-] 1.06 1.06 

Maximum traction power P max [kW] 2157 1918 

Maximum traction force F max [kN] 214 170 

Maximum braking deceleration −u min [m/s 2 ] −0.66 −0.8 

Maximum speed limit v max [km/h] 140 140 

Train resistance R (v ) [kN] (v: [km/h]) 5 . 8584 + 0 . 0206 v + 0 . 001 v 2 1 . 3961 + 0 . 0145 v + 0 . 0 0 07 v 2 
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. Computational results 

This section applies the pseudospectral computational frame- 

ork of Fig. 3 in a structured experimental study considering a 

ange of operational scenarios of the optimal train control prob- 

ems. In particular, we will apply the pseudospectral method to 

umerically compute the optimal train control problems directly, 

ia the right loop P (x, u ) − P N (X, U) − P N (X, U, 	) − P (x, u, λ) , and

hen compare the computed solutions with the optimality condi- 

ions obtained via the straight arc P (x, u ) − P (x, u, λ) . The purpose

f these experiments is both practical and theoretical. On the prac- 

ical side, we consider the following research question: how do 

he optimal driving strategies change depending on varying oper- 

tional parameters, such as gradients, speed limits, and running 

ime supplements? On the theoretical side, we want to answer 

he research question: how does the performance of the pseu- 

ospectral method depend on varying operational parameters, in 

erms of accuracy of the (state, costate and control) trajectories 

nd computation time? Moreover, to improve the identified ac- 

uracy problems we consider a third research question: how can 

he computational framework improve the solution quality of the 

ptimal train control problems? Section 5.1 introduces the case 

tudy and scenarios. Sections 5.2 –5.5 consider the various struc- 

ured experiments varying one operational parameter at a time, 

hile Section 5.6 considers the real-life case. A solution approach 

o the identified issues of the discrete approximations is provided 

n Section 6 . 

.1. Description of case study and scenarios 

The case studies are based on the Dutch railway line from 

trecht Central (Ut) station to ’s-Hertogenbosch (Ht) station with 

rains from the Netherlands Railways (NS). We consider an Inter- 

ity (IC) train running over the entire distance of 50 km from Ut- 

t, and a regional or Sprinter (SPR) train running over the last 

0 km distance from the last short stop Zaltbommel (Zbm) to Ht. 

he IC trains use a composition of VIRM-6 rolling stock and the 

printer trains use an SLT-6 train composition. The static parame- 

ers of the two train types are listed in Table 1 . The mass-specific

rain related parameters in Eqs. (3) –(6) , i.e., p max , u max and r(v ) ,
re computed by dividing the corresponding values in Table 1 by 

he total mass, including rotating mass factor. We consider various 

cenarios in order to investigate the effect of varying speed lim- 

ts, gradients, and running time on the driving strategy and the 

seudospectral convergence. The reference scenario is a level track 

ith a single speed limit of 140 km/h (38.89 m/s), and 15% run- 

ing time supplement for the EETC cases. The varying parameters 

f the scenarios are carefully selected to analyse a wide range of 

onditions and thus include gradients with steep uphill and down- 

ill sections, slight to severe speed restrictions, and running time 

upplements ranging from zero to relative big allowances. The 15% 

unning time supplement is relatively high but it refers to flat track 

ithout speed restrictions, while speed restrictions and some gra- 
362 
ients lead to increased running times. With this choice all scenar- 

os have feasible scheduled running times. 

We consider the following scenarios with a mix of MTTC and 

ETC problems and IC and SPR trains: 

1. Reference scenarios: fixed speed limit (140 km/h), flat track, 

and 15% running time supplement for EETC. 

2. Varying speed limits: 10 km segment with a restricted speed of 

120, 110, 100 km/h (EETC for IC only). 

3. Varying (steep) gradients: 10 km segment with gradient of 10%, 

5%, 0%, −5%, −10% (EETC for IC only). 

4. Varying running time supplements: 0%, 2%, 5%, 10%, 15%, 20% 

(EETC only). 

5. Real-life cases: actual varying speed limits and gradients for 

SPR and IC, and 10% supplement for EETC. 

Note that the running time supplements only apply to the EETC 

roblem. The results of varying speed limits and gradients are sim- 

lar for the IC and SPR trains, so we only present the IC trains. In

otal, we analyse 25 scenarios. From a theoretical perspective, the 

eference scenarios focus on the main optimal train control prob- 

em with smooth state, control and mixed state-control path con- 

traints. The 2nd class of scenarios considers discontinuous state 

onstraints and the 3rd class of scenarios considers discontinuities 

n the dynamic equation. The 4th class of scenarios focuses on the 

nteraction between regimes when more or less time is available 

or energy-efficient driving. The real-life cases combine the first 

hree scenarios with the real varying gradient profile and speed 

imits. 

We use the MATLAB toolbox GPOPS version 4.1 as the pseu- 

ospectral solver ( Rao et al., 2010 ). GPOPS approximates the states, 

ontrols, and costates as functions of distance, as well as the 

amiltonian values, and thus closes the numerical solution loop 

ia the discrete approximation from P (x, u ) to P (x, u, λ) . We aimed

t using the same fixed number of collocation points for each 

hase in all structured scenarios. By trial and error, we found 

 = 200 to be a good trade-off between computation time and so- 

ution quality. In one case (SPR MTTC), we increased this number 

to N = 235 ) to get a better solution accuracy while the compu- 

ation time was still fast (within 2 s). For the real-life cases, the 

umber of phases is very high (78 and 38 for the IC and SPR, re-

pectively), so in these scenarios we let GPOPS decide on the opti- 

al number of collocation points per phase by exploiting the hp- 

daptive pseudospectral method functionality with 1 or 3 mesh it- 

rations, which then adjusts the number of collocation points in 

ach phase to improve the solution quality. This resulted in 9 to 

4 collocation points per phase. As initial guesses, we provide the 

nown parameters such as the initial and final position, and the 

ower and upper bounds on time, speed and control. 

Table 2 summarizes the results for all 25 scenarios. A first in- 

pection of the optimality conditions confirms negative Hamilto- 

ian values ϕ < 0 and a constant negative costate λ1 < 0 in all

ases. Moreover, for the MTTC scenarios λ1 = −1 . In the scenar- 

os with the varying speed limits and/or gradients the Hamiltonian 

s piecewise constant over the phases, which is also as expected. 
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Table 2 

Main pseudospectral results of the various scenarios (energy saving w.r.t. MTTC, speed limit reference scenario is 38.89 m/s). 

Scenario Fig Trip Energy Energy Max R N Costate Hamiltonian Comp 

time usage saving speed λ1 ϕ time 

[s] [kWh] [ % ] [m/s] [s] 

Reference IC MTTC 4 1340 447.21 – 38.89 1 200 −1 −0.026 0.82 

Reference IC EETC 5 1541 323.98 27.56 35.12 1 200 −2.93 −0.142 21.36 

Reference SPR MTTC 6 278 75.09 – 38.89 1 235 −1 −0.025 1.22 

Reference SPR EETC 7 320 42.96 42.79 36.03 1 200 −6.09 −0.241 14.23 

Var. speed limit IC (120 km/h) 8 a 1541 324.04 27.54 35.68 3 3 ×200 −3.06 −0.146 129.62 

Var. speed limit IC (110 km/h) 8 b 1541 327.32 26.81 37.07 3 3 ×200 −3.43 −0.156, −0.161, −0.156 117.43 

Var. speed limit IC (100 km/h) 8 c 1541 338.16 24.38 38.89 3 3 ×200 −4.75 −0.191, −0.214, −0.191 90.23 

Var. gradient IC ( −0 . 01 ) 9 a 1541 218.81 51.07 38.89 3 3 ×200 −3.47 −0.157, −0.101, −0.157 136.40 

Var. gradient IC ( −0 . 005 ) 9 b 1541 269.64 39.70 35.14 3 3 ×200 −2.93 −0.142, −0.093, −0.142 336.43 

Var. gradient IC ( +0 . 005 ) 9 c 1541 382.23 14.53 35.13 3 3 ×200 −2.93 −0.142, −0.191, −0.142 135.35 

Var. gradient IC ( +0 . 01 ) 9 d 1541 437.16 2.24 35.06 3 3 ×200 −2.91 −0.142, −0.240, −0.142 163.41 

Var. running time IC (2%) 10 1367 411.84 7.91 38.89 1 200 −10.38 −0.334 10.50 

Var. running time IC (5%) 10 1407 380.27 14.97 38.89 1 200 −4.55 −0.184 14.11 

Var. running time IC (10%) 10 1474 352.06 21.28 37.20 1 200 −3.46 −0.157 17.68 

Var. running time IC (15%) 10 1541 323.98 27.56 35.12 1 200 −2.93 −0.142 21.36 

Var. running time IC (20%) 10 1608 303.05 32.24 33.32 1 200 −2.51 −0.130 17.29 

Var. running time SPR (2%) 11 284 63.14 15.91 38.89 1 200 −18.96 −0.568 15.87 

Var. running time SPR (5%) 11 292 56.15 25.22 38.89 1 200 −11.43 −0.375 16.89 

Var. running time SPR (10%) 11 306 48.63 35.24 37.85 1 200 −7.83 −0.285 18.76 

Var. running time SPR (15%) 11 320 42.96 42.79 36.03 1 200 −6.09 −0.241 14.23 

Var. running time SPR (20%) 11 334 39.12 47.90 34.69 1 200 −5.08 −0.214 16.85 

Real-life MTTC IC Ut-Ht 12 1619 325.68 – 38.89 78 9–24 −1 pwc < 0 57.09 

Real-life EETC IC Ut-Ht 13 1781 188.79 42.03 37.89 78 9–20 −3.02 pwc < 0 202.53 

Real-life MTTC SPR Zbm-Ht 14 529 65.51 – 38.89 38 9–20 −1 pwc < 0 35.42 

Real-life EETC SPR Zbm-Ht 15 582 36.76 43.89 35.26 38 9–20 −4.33 pwc < 0 63.24 

Legend: pwc = piecewise constant, R = Number of phases, N = Number of collocation points per phase 
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n the next sections, we consider each set of scenarios with the 

ocus on the optimal control structure and the singular solutions 

epending on the value of the costate λ2 relative to speed and/or 

ero. 

.2. Reference scenario 

This subsection describes the results of the reference scenario 

or both the Intercity and the Sprinter train. The reference is a flat 

rack with a fixed speed limit of 140 km/h and for the EETC case 

5% running time supplement with respect to the computed min- 

mum running time. With the reference scenario we analyse the 

onsistency of the driving behavior of both trains with the nec- 

ssary optimality conditions for the MTTC and EETC problems de- 

ived in Section 2 . Table 2 summarizes the quantitative results. The 

esulting diagrams of the IC train can be found in Fig. 4 (MTTC) 

nd Fig. 5 (EETC), and the results of the SPR train are shown in

ig. 6 (MTTC) and Fig. 7 (EETC). 

The MTTC driving strategy for the IC leads to the fastest run- 

ing time of 1340 s, but also to the highest energy consumption 

f 447 kWh (see Table 2 ). The computation time is 0.82 s for this

cenario. If we have a closer look at the results of the MTTC driv- 

ng strategy for the IC train of Fig. 4 , we can see that the optimal

riving strategy consists of maximum acceleration, cruising at the 

peed limit, and maximum braking. The costate λ2 behaves accord- 

ng to the optimal control structure (27) . During maximum acceler- 

tion, the costate variable λ2 is bigger than zero, during the cruis- 

ng phase it is equal to zero, and during maximum braking it is 

maller than zero. The Hamiltonian remains constant as required, 

xcept at the endpoints where it deviates. The control, state and 

ostate are continuous at the end points, which implies that the 

amiltonian should also be continuous. The deviations are at the 

evel of the 3rd decimal so they can be caused by numerical er- 

ors. We observe the same errors at the endpoints of the Hamil- 

onian in the other scenarios, so we indeed believe that these are 

aused by numerical errors rather than the solutions of the state, 
363 
ontrol or costate variables. This holds for all scenarios below as 

ell, so in the remainder we will discard these discontinuities at 

he endpoints. 

The EETC driving strategy for the IC generates an energy sav- 

ng of about 28% compared to the MTTC driving strategy. The run- 

ing time exploits the full 15% running time supplement. The re- 

ults are computed in 22 s. Fig. 5 shows that the Hamiltonian is 

onstant, and the optimal driving strategy consists of maximum 

cceleration, cruising below the speed limit, coasting, and maxi- 

um braking, although also a partial acceleration can be observed 

t the end of the maximum acceleration regime where the speed 

rofile is still slightly increasing towards the cruising speed. Also 

he braking regime at the end shows some oscillations rather than 

ull braking. The Hamiltonian shows here also some more devia- 

ions, which might indicate that these oscillations are not optimal. 

he costate variable λ2 behaves according to the derived control 

tructure (19) , since λ2 is bigger than speed v during maximum 

cceleration, equal to the speed v during cruising, between zero 

nd speed v during coasting, and smaller than zero during maxi- 

um braking. The costate λ2 also equals speed during the ‘partial 

cceleration’, which thus should correspond to the singular cruis- 

ng regime. The effect of partial acceleration on the total energy 

onsumption is less than 2% compared to full maximum acceler- 

tion. The control plot shows oscillations during cruising below 

he speed limit, in which the partial traction is approximated by 

lternating between zero and some positive traction. It is known 

rom the literature that the pseudospectral methods suffer from 

his oscillating behavior for singular solutions in the interior of 

he state inequality path constraints, i.e., cruising below the speed 

imit ( Scheepmaker & Goverde, 2016; Wang & Goverde, 2016a; Ye 

 Liu, 2016 ), since the control solution is here not uniquely deter- 

ined. Howlett and Pudney (1995) proved that an optimal cruis- 

ng speed can be approximated by (short) sequences of maximum 

raction and coasting with the same energy consumption as cruis- 

ng at the optimal cruising speed. However, the pseudospectral 

ethod switches at successive collocation points using an appro- 
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Fig. 4. Trajectories for the Intercity train with the minimum-time driving strategy. 

Fig. 5. Trajectories for the Intercity train with the energy-efficient driving strategy. 
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riate traction rather than finding the optimal switching points 

nd switching between zero and maximum traction. A closer look 

t the control plot shows that the initial oscillating behaviour cor- 

esponding to the ‘partial acceleration’ part has a slightly higher 

mplitude in agreement with a higher maximum traction for lower 

peeds. So GPOPS has difficulties with the convergence of the con- 

rol approximation at the beginning of the singular solution. Note 

hat this oscillating control behaviour did not occur in the MTTC 

ase. The essential difference is that in the MTTC case the singu- 

ar solution occurred at an active state inequality path constraint, 

.e., where the optimal cruising speed equals the maximum speed 

imit. This is a much easier case since the optimal cruising speed 

s then fixed. 

The MTTC driving strategy of the SPR train consist of maximum 

cceleration, cruising at the speed limit and maximum braking (see 

ig. 6 ), like the IC train. The total distance of cruising is shorter 

or the SPR train, due to the shorter total distance between the 

wo stops. The results are in line with the necessary optimality 

onditions. The costate variable λ2 behaves according to optimal 

ontrol structure (27) although the control shows some unstable 
364 
ehaviour around the switching point from maximum acceleration 

o cruising. The Hamiltonian remains constant except for a small 

nterval at the start. The same is observed in the Hamiltonian of 

he Sprinter EETC case. Experiments showed that slight changes to 

he scheduled running time T resulted in different deviations in 

he Hamiltonian in this interval suggesting that GPOPS has small 

umerical precision errors in computing the Hamiltonian in this 

egion. In contrast, the states and costates are smooth while the 

ontrol is also continuous. Table 2 indicates that the total amount 

f traction energy for this scenario is about 75 kWh. The results 

re computed within 2 s. 

Finally, the EETC driving strategy for the SPR train with 15% 

unning time supplements leads to a driving strategy without 

ruising, since the distance between the stops is too short to reach 

he optimal cruising speed, see Fig. 7 . Therefore, only maximum 

cceleration, coasting and maximum braking are applied. Indeed, 

he EETC driving strategy for short distances with sufficient run- 

ing time supplements consists of one acceleration to the opti- 

al coasting speed after which the train coasts until a final brak- 

ng regime to come to a standstill just in time. This is a gen- 
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Fig. 6. Trajectories for the Sprinter train with the minimum-time driving strategy. 

Fig. 7. Trajectories for the Sprinter train with the energy-efficient driving strategy. 
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ral energy-efficient driving strategy for urban trains ( Scheepmaker 

t al., 2017 ). The costate λ2 exceeds speed v if the train applies 

aximum acceleration, is between speed v and zero if the train 

s coasting, and below zero if the train applies maximum braking. 

hese conditions are in line with the optimal control structure (19) . 

inally, the Hamiltonian remains constant. The total energy con- 

umption of the EETC driving strategy of the SPR train is about 43% 

ower compared to the MTTC driving strategy (see Table 2 ). Finally, 

he results are generated in 15 s. 

In summary, the results of the reference scenario are largely 

onsistent with the necessary optimality conditions, except for the 

ingular solution of the long distance IC train with an oscillating 

ontrol approximating cruising by partial traction-coasting pairs, 

nd some oscillation in the braking regime. The singular solution 

lso starts a little bit too early where the speed still gradually in- 

reases until it oscillates around the optimal cruising speed. Al- 

ernating maximum acceleration and coasting is the optimal driv- 

ng strategy for diesel-electric trains with finite discrete throttle 

ettings ( Howlett, 1996; 20 0 0; Howlett & Pudney, 1995 ). For elec-

ric trains with continuous traction settings a constant traction ac- 
365 
ording to the resistance forces is preferred from the viewpoint of 

river workload and comfort, or an approximation with maximum 

raction-coast bang-bang control. The oscillating control computed 

y the pseudospectral method therefore must be understood as an 

pproximation of the cruising speed only and not as the optimal 

ontrol. This is discussed in more detail in Section 6 . Finally, the 

TTC problem is solved within seconds while the EETC problem 

akes more time. Clearly, the EETC problem is more involved as it 

eeds to find the optimal cruising speed and coasting point. 

.3. Varying speed limits 

This section considers the scenarios with varying speed limits 

ausing discontinuous state path constraints (5) . We only consider 

he EETC driving strategy with 15% running time supplements, and 

nly the IC train since the results of the IC and SPR train are simi-

ar. In these scenarios we insert a speed restriction over the stretch 

etween 25 km and 35 km. We gradually decrease the speed limit 

etween these points from 140 to 120, 110 and 100 km/h. The 

esulting diagrams of the speed, costate, control and Hamiltonian 



R.M.P. Goverde, G.M. Scheepmaker and P. Wang European Journal of Operational Research 292 (2021) 353–375 

Fig. 8. Trajectories for the Intercity train with varying speed limits. 
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an be found in Fig. 8 . The quantitative results are summarized in 

able 2 . 

Fig. 8 a shows the case where the speed limit between 25 km 

nd 35 km is reduced to 120 km/h. The train applies maximum 

cceleration followed by cruising at an optimal speed below the 

peed limit, and then coasts before the speed restriction until the 

estricted speed is reached, which is then maintained until the end 

f the speed restriction after which the train accelerates maximally 

gain to the optimal cruising speed, followed by coasting, and fi- 

ally maximum braking. In the singular solutions, again an oscil- 

ating control is observed that approximates an optimal ‘free’ cruis- 

ng speed below the speed limit, and also the singular solution at 

he restricted speed limit shows oscillating control to cruise below 

he restricted speed. Note that the cruising speeds before and af- 

er the speed restriction are the same, which is in line with the 

ETC theory that the optimal cruising speed is equal for each sec- 

ion ( Howlett, 2016 ). The beginning of the singular solutions start 

gain a bit too early with the oscillating speed creeping towards 

he optimal cruising speed, as we have observed in the IC EETC ref- 

rence case. The costate λ2 is consistent with the optimal control 

tructure (19) , however, it has now a jump at the begin and end

f the speed restriction (this is more pronounced with the lower 

peed restrictions). Hence, the discontinuities in the pure state in- 

quality path constraint for speed v , where the upper limit jumps 

rom 140 km/h down to 120 km/h and back to 140 km/h, cause 

iscontinuities to the costate λ2 . The value of the Hamiltonian re- 

ains constant over the complete trajectory. Table 2 shows that 

he speed restriction requires slightly more energy compared with 

he EETC reference case for the IC. The computation time increases 

o 130 s. 

When the speed of the restriction is further reduced to 

10 km/h and 100 km/h, the singular solution at the restricted 

peed limit consists of the optimal traction to cruise at the re- 
366 
tricted speed, see Fig. 8 b and 8 c. The reduced speed leads to 

 longer running time over the speed restriction, which absorbs 

ome of the running time supplement and less time is available 

efore and after the speed restriction. As a result the optimal 

ruising speed goes up and coasting starts a bit earlier. In the 

00 km/h scenario the cruising regime after the speed restriction 

akes longer before coasting can start since more time is wasted 

t the speed restriction. The cruising speeds before and after the 

peed restriction increase to the speed limit for lower restricted 

peeds, although the control plot of the 100 km/h case still shows 

scillating control, so the computed cruising speed is here actu- 

lly a bit below the speed limit and is approximated by oscil- 

ations. The jumps in the costate λ2 at the speed limit changes 

re now clearly visible. Now also the Hamiltonians are discontinu- 

us with a different value during the speed restriction, and equal 

nes for the first and third phase (see the values in Table 2 ). This

s in line with the necessary optimality conditions described in 

ection 2.1 . For big jumps in state constraints the costate approx- 

mation of λ2 may no longer be accurate around the discontinu- 

ty ( Darby et al., 2011a ). For bigger speed drops (not shown here),

2 actually drops below zero although the train is coasting and 

ot braking, so in these cases the KKT multiplier of the NLP solver 

o longer converges to the continuous costate around the speed 

umps. Table 2 shows that more energy is required for decreasing 

peed restrictions. The computation time for these scenarios are 

bout 117 and 90 s. 

In summary, discontinuous state path constraints (varying 

peed limits) may cause discontinuities in the costate λ2 and 

he Hamiltonian value at the positions of the state jumps (speed 

hanges). This is in line with the necessary optimality conditions 

escribed in Section 2.1 . However, the approximation λ2 may no 

onger converge for big jumps in the state path constraints, and 

ven become negative which could lead to erroneous conclusions 
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bout the driving regime. Nevertheless, the state approximation 

ehaved well around the nonsmooth state inequality constraints, 

nd is not affected by the unstable control approximation at the 

ump points. Moreover, we observe that the oscillations of the sin- 

ular control disappear when the speed restriction is further from 

he optimal cruising speed. Therefore, we hypothesize that the nu- 

erical issues of the singular control depend on the gap between 

he optimal cruising speed and the (local) speed limit for given 

ollocation points. In Fig. 8 a this gap is apparently not big enough 

or the speed restriction, while in Fig. 8 b it is. 

.4. Varying gradients 

This section considers varying gradients instead of a flat track, 

ausing a discontinuous state equation (3) . Since the results of IC 

nd SPR train are similar, we only consider scenarios with the IC 

rain, because these include the more complex regime of cruising 

t an optimal cruising speed below the speed limit in the EETC 

riving strategy. In these scenarios we consider a (steep) downhill 

lope or (steep) uphill slope between the distance from 25 km to 

5 km. We will analyse them from less to more steep in the or- 

er -5%, -10%, 5% and 10%. The results can be found in Table 2 and

ig. 9 . Note that in the figure the scenarios are ordered by increas-

ng gradient. 

Fig. 9 b shows the results of a slight negative (downhill) gra- 

ient of −5% (0.005) between 25 km and 35 km. Because of the 

egative gradient, the train can apply cruising with less traction 

orce to remain at the optimal cruising speed. The costate and con- 

rol behave according to the optimal control structure, besides the 

light increasing speed phenomenon at the beginning of the singu- 

ar cruising, and the oscillating control approximating the cruising 

egime. The state and costate also show a small bump at the gradi- 

nt jumps. The Hamiltonian is piecewise constant with a jump at 

he gradient (less negative), which is as expected from Eq. (8) of 

he Hamiltonian which includes the gradient. The energy savings 

re higher than the reference scenario, due to the downhill slope. 

inally, the computation time is quite long with about 336 s so 

POPS has difficulties to find the optimal control that smoothes 

he effect of the gradient. 

The scenario of the steep negative gradient of −10% (0.01) is 

hown in Fig. 9 a. Here the section is so steep that the speed of

he train increases, although it is coasting (zero traction). There- 

ore, the train starts to coast well before the downhill section to 

ecrease speed before reaching the downhill slope and be able 

o stay below the speed limit on the negative slope where the 

peed gradually increases by the gravity forces. The coasting point 

as been optimized such that the train reaches the speed limit 

ust at the bottom of the downhill section, and then continues 

ith coasting until the optimal cruising speed is reached again. 

he optimal cruising speeds before and after the slope are in- 

reased to deal with the time loss during the long coasting regime 

efore the slope. The costate λ2 is in accordance with the opti- 

al control structure (19) , except around the gradient area. The 

pproximated costate starts decreasing at the coasting point and 

eeps decreasing until a big discontinuity at the end of the slope 

here it jumps up to the speed limit to start cruising at the speed

imit. But the costate even decreases below zero over a long dis- 

ance, which would suggest maximum braking although the con- 

rol shows coasting (zero traction). So the discontinuity of the dy- 

amic equation causes an inaccurate approximation of the real op- 

imal continuous costate λ2 . Nevertheless, the control and state 

how a correct behaviour. The Hamiltonian is piecewise constant 

ith a less negative value on the slope, which is also as expected. 

inally, a strange braking behaviour is observed at the end where 

he control shows a bang-bang control with maximum braking- 

oasting on a small distance although the costate is negative, so 
367 
POPS has a difficulty here with determining the control. Under 

he optimal control the train should start braking a bit later and 

hen maintain maximum braking until standstill, which means that 

he coasting should also start a bit later to arrive on time. The 

rid from the collocation points however limits the position of the 

witching points. From the state approximation, we can derive the 

nergy consumption, which might be a bit too optimistic since 

oasting starts a bit too early. The steep downhill slope leads to 

ore energy savings compared to the EETC reference scenario and 

he less steep slope scenario of the IC train. Table 2 indicates that 

he energy savings increased considerably to 51%. The computation 

ime of this scenario is 136 s. 

The effect of a slight positive (uphill) gradient of 5% (0.005) can 

e seen in Fig. 9 c. The train maintains its optimal cruising speed 

ver the uphill slope by applying more traction with oscillating 

ontrol between two positive values to counter the higher resis- 

ance forces. The train already applies more traction slightly before 

he uphill slope, which causes a short peak in the speed. At the 

nd of the section the speed drops shortly below the optimal cruis- 

ng speed, which is caused by decreasing the traction again. The 

ostate λ2 behaves in accordance to the optimal control structure. 

he Hamiltonian is piecewise constant with discontinuities where 

he gradient changes. The Hamiltonian value is a bit lower over the 

phill slope. The energy saving is less compared to the EETC ref- 

rence scenario, due to the extra traction on the uphill slope (see 

able 2 ). The computation time of this scenario is 135 s. 

On the steep positive gradient of 10% (0.01), we see in Fig. 9 d

hat the train has to apply maximum acceleration and still loses 

peed. Therefore, the train increases traction just before the slope 

nd keeps at the maximum traction until after the slope when it 

as accelerated again to the optimal cruising speed. The costate 

2 and the control are perfectly in line with the optimal control 

tructure (19) . The Hamiltonian is again piecewise constant with 

umps at the changes of the gradient. By applying the EETC driving 

trategy the total energy is slightly smaller than the MTTC driv- 

ng strategy of the IC reference scenario (see Table 2 ). The model 

esults are computed within 163 s. 

In summary, the experiments of the varying gradients (with 

umps in the dynamic constraint) indicate that the EETC anticipates 

y adapting the control before the change of gradients. For a steep 

ownhill slope where the gravity force exceeds the train resistance 

nd the train accelerates despite zero traction, the optimal con- 

rol starts coasting in advance such that the speed at the end of 

he slope is exactly the speed limit and then continuous coasting 

ntil the optimal cruising speed is reached again. For a steep up- 

ill slope where the maximum traction is not sufficient to avoid 

lowing down, the train starts maximum acceleration before the 

lope and keeps this regime until after the slope when it is back 

o its optimal cruising speed. The Hamiltonian is piecewise con- 

tant with discontinuities at the gradient jumps. For steep negative 

radients the costate λ2 is not accurately approximated before the 

radient jump, and also the control has difficulties to converge to 

he optimal control in the final braking regime. This may lead to 

n early coasting point that is corrected by additional coasting in 

he braking regime to arrive on time. Downhill slopes result in ad- 

itional energy savings, while uphill slopes consume more energy. 

he varying gradients (discontinuous dynamic constraint) lead to 

igher computation times than the varying speed limits (discon- 

inuous state path constraints). 

.5. Varying running time supplements 

This subsection considers the effect of different running times 

 on the optimal EETC driving strategies by varying the amount 

f running time supplement, both for the IC and SPR train. The 

unning time supplements are varied over 0%, 2%, 5%, 10%, 15% 
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Fig. 9. Trajectories for the Intercity train with varying gradients (remark: gradients are indicative). 
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nd 20%. The results are summarized in Table 2 , and illustrated 

n Figs. 10 and 11 for the IC train and SPR train, respectively. The

elation between energy consumption and total running time is 

lso visualized in an energy-time diagram, which is shown on the 

ight in the figures. The energy-time curve gives a Pareto frontier, 

hich can be used to evaluate the solutions of a multiple-objective 

imetable problem ( Domínguez, Fernández, Cucala, & Lukaszewicz, 

011 ). 

The results for the IC train in Fig. 10 show two phenomena. 

irst, for small supplements the optimal cruising speed equals the 

peed limit and a little supplement reduces the cruising regime 
368 
uickly with an earlier switching point to coasting. Then from 

ome sufficient supplement the optimal cruising speed starts de- 

reasing below the speed limit and the switch to coasting starts 

ater again. More supplement also leads to a later switch to braking 

t a lower speed. The energy savings increase up to 32% for 20% 

unning time supplements compared to zero supplement. From the 

nergy-time diagram, we see that the relative energy savings de- 

rease for increasing supplement, i.e., adding supplement in the 

eginning leads to more energy savings than further increasing the 

upplement by the same amount later (convex curve). The approxi- 

ations are consistent with the EETC optimal control structure, ex- 
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Fig. 10. Speed trajectories for the Intercity train with varying running times (left) and energy-time diagram (right). 

Fig. 11. Speed trajectories for the Sprinter train with varying running times (left) and energy-time diagram (right). 
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ept for the early start of the singular solution with the oscillating 

ontrol similar to the EETC IC reference case with 15% supplement. 

he computation times vary between 10 s and 22 s. 

The results for the SPR train in Fig. 11 show that with more 

unning time supplement the coasting point is earlier, and with 

ufficient supplement the speed limit is no longer reached and the 

ruising regime is dismissed. In those cases, the optimal control 

witches from maximum acceleration to coasting, as was also seen 

n the SPR EETC reference case corresponding to the 15% supple- 

ent. The braking also starts later from a lower speed when more 

upplement is added. This behavior is in line with the optimal 

trategy for short distance trains consisting of maximum acceler- 

tion, coasting, and maximum braking ( Scheepmaker et al., 2017 ). 

gain, the energy-time curve is convex with decreasing energy sav- 

ngs for increasing running time supplements. The energy savings 

ncrease up to 48% for 20% running time supplement compared to 

ero supplement. The computations are perfectly consistent with 

he EETC optimal control structure, similar to the EETC SPR refer- 

nce case with 15% supplement. The computation time of the SPR 

rain scenarios range between 15 s and 19 s. 

In conclusion, increasing running times lead to extra energy 

avings for the EETC driving strategy with decreasing relative sav- 

ngs for increasing supplements as can be shown in an energy-time 

urve. The initial savings are very steep which reduces for higher 

upplements. When the optimal cruising speed is restricted by the 

peed limit for small supplements, coasting starts earlier for in- 

reasing supplements. Then for long distances and sufficient sup- 

lement (IC), the optimal cruising speed drops below the speed 

imit and coasting starts later again. For short distances and suf- 

cient supplement (SPR), the optimal cruising speed is no longer 

eached and the optimal control switches from maximum acceler- 

tion to coasting directly. In all cases, more supplement leads to 

 later switch to braking from a lower speed. The pseudospectral 

ethod does not experience additional difficulties with respect to 
he EETC reference scenarios. d

369 
.6. Real-life scenarios 

The final scenarios are real-life cases of the IC and SPR trains. 

hese cases include multiple speed limit changes as well as varying 

radients caused by for example bridges, fly-overs and dive-unders. 

he applied running time supplement for the EETC scenarios is 10% 

f the computed minimum running time. 

The results for the IC train between Ut and Ht are shown in 

ig. 12 (MTTC) and Fig. 13 (EETC), and are summarized in Table 2 .

hese figures indicate that the driving strategies behave according 

o the necessary optimality conditions. The minimum-time opti- 

al control consists of maximum acceleration and cruising at the 

peed limit with partial traction or braking following the vary- 

ng gradient resistances. Where a speed limit drops, the train uses 

aximum braking, cruising at the restricted speed limit, and maxi- 

um acceleration again after the speed limit increases. At the end, 

he train applies maximum braking in order to stop. The costate 

2 also behaves according to the optimal control structure. Note 

hat we did not include λ2 in the real-life speed-distance profiles 

or clarity of the pictures. The Hamiltonian is piecewise constant 

ith jumps where a speed limit or gradient changes. The costate 

1 = −1 . The computation time is 57 s. 

The EETC driving strategy for the IC includes coasting regimes 

efore speed limit reductions, which shortens the cruising and the 

raking regimes, and looks reasonable. The Hamiltonian is piece- 

ise constant and the costate λ1 is constant. The costate λ2 also 

ehaves according to the control structure. The EETC driving strat- 

gy with 10% running time supplements saves 42% in energy con- 

umption compared to the MTTC driving strategy. The computation 

ime of 203 s is quite high, due to the increased complexity of the 

arying speed limits and gradients. 

The SPR real-life scenarios are shown in Fig. 14 (MTTC) and 

ig. 15 (EETC), and are summarized in Table 2 . The results corre- 

pond largely with the necessary optimality conditions. The MTTC 

riving strategy follows mainly the fastest running profile, with 
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Fig. 12. Trajectories for the Intercity train with the minimum-time driving strategy on Ut-Ht (gradients indicative). 

Fig. 13. Trajectories for the Intercity train with the energy-efficient driving strategy on Ut-Ht (gradients indicative). 

Fig. 14. Trajectories for the Sprinter train with the minimum-time driving strategy on Zbm-Ht (gradients indicative). 

370 
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Fig. 15. Trajectories for the Sprinter train with the energy-efficient driving strategy on Zbm-Ht (gradients indicative). 
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aximum acceleration, cruising at the speed limit, maximum brak- 

ng to decrease to the speed restriction, then an odd small coast- 

ng regime followed by cruising at the restricted speed, and max- 

mum braking to standstill. The small coasting regime occurs at 

 flat track just before the speed restriction between two nega- 

ive gradient sections. GPOPS thus has difficulties with the linkage 

onditions between these phases to brake correctly just before the 

peed restriction. The costate λ1 = −1 . The control in the cruising 

hases follows correctly the gradient resistance profile. The Hamil- 

onian is also piecewise constant following the discontinuities. The 

omputation time is 36 s. 

The SPR EETC driving strategy shows maximum acceleration 

ollowed by a short cruising regime and then a long coasting 

egime where the speed is influenced by the gradient profile. Then 

he control shows some unstable behaviour before the big speed 

estriction where the braking is interrupted with a coasting regime 

n the flat track part, similar to the MTTC. Note that the en- 

rgy consumption is zero for both coasting and braking. Finally, 

he train cruises at the restricted speed, followed by coasting and 

aximum braking. The Hamiltonian is piecewise constant and the 

ostate λ1 is constant. The energy saving of the 10% running time 

upplement is computed as 44%. The computation time of the EETC 

odel is about 63 s. 

Based on the real-life case study it can be concluded that 

onvergence issues may occur near big jumps in the state path 

onstraints (speed restrictions) and dynamic equations (gradients), 

ausing nonoptimal correcting behaviour of the control approxi- 

ations (see Section 6 ). This coincides with the conclusions from 

ections 5.3 and 5.4 . 

. Solution to the singular oscillations 

The previous section presented the results of the pseudospec- 

ral computations and compared them with the expectations from 

he PMP necessary optimality conditions. The computational re- 

ults of the MTTC problems showed a good agreement with the 

MP analysis and the computations were also very fast. In these 

ases, the optimal control structure is quite simple with running 

s fast as posssible where always an inequality constraint is ac- 

ive: either maximum traction force, maximum speed, or maxi- 

um braking. Also the EETC scenarios for the short-distance SPR 

rain were in agreement with the PMP analysis without any major 

ssues. In these cases, the maximum speed was either restricted 
u

371 
y the speed limit or the train had to start coasting already before 

eaching the speed limit. The computational results for the EETC 

cenarios of the long-distance IC train, however, showed some dis- 

greements with the PMP analysis, and therefore a larger range of 

cenarios were presented to analyse the impact of additional con- 

raints to the computational results. The main difficulty of the IC 

ETC scenarios is the singular solution. Section 2.1 proved from the 

MP conditions that the singular solution should correspond to a 

ruising regime in which an optimal cruising speed is maintained 

y partial traction. The pseudospectral method, however, computed 

n oscillating (discretized) control where the control jumps be- 

ween two values over the successive collocation points, result- 

ng also in oscillating behaviour of the state and costate trajecto- 

ies. In this section, we analyse this behaviour in more detail and 

how that the oscillations should be understood as a discrete ap- 

roximation of high-order global polynomials over the correspond- 

ng phases. Chen and Biegler (2016) added monotonic constraints 

o the control discretization to force low-order control profiles of 

he discrete approximation. A similar approach could also been 

one here, but this would mean an add-on to the pseudospectral 

ethod and, therefore, it would loose its appeal as a generic solver. 

hus, we propose a new hybrid approach that combines the pseu- 

ospectral method and the PMP to compute accurate singular con- 

rol solutions. 

The pseudospectral method approximates the partial traction 

orce corresponding to the optimal cruising speed by switching 

etween two alternating values around the optimal traction over 

he successive collocation points. As can be observed from Figs. 5, 

 and 9 , the lower value is mostly 0 m/s 2 and the upper value

 (slightly varying) positive value. The only exception is the sce- 

ario of Fig. 9 c, where the control oscillates between two pos- 

tive values, including the upper bound on the control. In this 

ase, the traction is more than half the control upper bound and 

an thus not be approximated by an oscillating control including 

ero traction. Note that the energy consumption is computed as 

 weighted sum over the (positive) control values at the colloca- 

ion points. Hence, on a singular arc the oscillations approximate 

he cost by a weighted mean over successive collocation points. In 

ther words, the discretized control values are not uniquely deter- 

ined for the singular solution. When increasing the number of 

ollocation points the magnitude of the jumps stay approximately 

he same, which makes sense when one of any two successive val- 

es is fixed to either the lower or upper bound. However, when 
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Fig. 16. Optimal cruising speeds as function of λ1 and φ. 

Fig. 17. Trajectories for the Intercity train with the energy-efficient driving strategy using the hybrid approach. 
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ncreasing the number of collocation points N → ∞ , it becomes 

lear that this is not a realistic traction control since the trac- 

ion can not switch this fast between two values. The oscillating 

ontrol should therefore be replaced by a low-order control rep- 

esentation corresponding to a feasible optimal traction with the 

ame energy consumption as the discrete control approximation 

omputed by the pseudospectral method. Likewise, the state and 

ostate should be replaced by a low-order representation in the 

ingular solution. In fact, from the PMP we know that the singu- 

ar solution corresponds to a cruising regime with constant cruis- 

ng speed and equal costate λ2 , so on the corresponding colloca- 

ion points we must have v (s ) = λ2 (s ) ≡ v c with associated opti-

al control u (s ) = r(v c ) + g(s ) . 

The optimal cruising speed can be computed from (17) and 

18) depending implicitly on λ1 and ϕ, respectively. Fig. 16 shows 

he analytical cruising speed as functions of λ1 and ϕ for both 

he SPR and IC trains. Note that the PMP analysis does not pro- 

ide a closed-form analytical expression for either λ or ϕ, and 
1 

372 
n fact, the implicit equations are underdetermined, i.e., there are 

wo nonlinear equations in three unknowns λ1 , ϕ and v c . However, 

hen one of the unknowns is given, the other two can also be 

etermined. The pseudospectral method computes both λ1 and ϕ, 

nd thus we can also compute the corresponding optimal cruising 

peed using the implicit equations (17) and (18) . In Fig. 16 , the cir-

les correspond to the resulting cruising speed v c for the computed 

1 and ϕ for the eight IC EETC scenarios where the cruising speed 

tayed below the speed limit, while the black stars correspond to 

he real-life IC EETC scenario. For each scenario, the values of λ1 

nd ϕ computed by the pseudospectral method show a good fit 

o the analytical optimal cruising speed curves. Note also that the 

alues of λ1 and ϕ in Table 2 for the SPR EETC scenarios all cor- 

espond to optimal cruising speeds above the speed limit so that 

hey indeed were never reached. Fig. 16 indicates that the optimal 

ruising speed is a decreasing concave function of either λ1 or ϕ, 

ith more negative values of λ1 and ϕ corresponding to higher 

ruising speeds. The sensitivity of the cruising speed increases for 
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Fig. 18. Trajectories for the Intercity train with the energy-efficient driving strategy on a partial steep downhill track using the hybrid approach. 
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mall absolute values of λ1 and ϕ, which however correspond to 

xtremely high running time supplements. For example, the exces- 

ive running time supplement of 20% in the IC and SPR case stud- 

es correspond to a cruising speed of 33.32 m/s and 34.69 m/s, re- 

pectively, which are far away from the sensitive area. Since λ1 is 

 constant, it is recommended to use (17) for computing the op- 

imal cruising speed based on the computed value of λ1 by the 

seudospectral method. The computed value of ϕ can be used for 

hecking the accuracy together with the gradient profile. 

The singular solution can thus be obtained by a combination 

f the PMP and the pseudospectral method using the following 

lgorithm. 

1. Apply the multiple-phase pseudospectral method to 

find the optimal value λ1 , and the discretized solution 

{ (t(s i ) , v (s i ) , λ2 (s i ) , u (s i )) | i ∈ { 0 , . . . , N}} with N = 

∑ R 
r=1 N r . 

2. Find the optimal cruising speed v c by solving the implicit equa- 

tion (17) for given λ1 using any root-finding algorithm (e.g. the 

MATLAB function fzero). 

3. Detect singular solutions associated to discretization points s i 
with | v (s i ) − λ2 (s i ) | < ε for some small ε (e.g. ε = 0 . 01 ). 

4. On the singular points set v (s i ) = min (v c , v max (s i )) , λ2 (s i ) =
min (v c , v max (s i )) , u (s i ) = r( min (v c , v max (s i ))) + g(s i ) . 

Fig. 17 shows the trajectories of the reference IC EETC sce- 

ario using the hybrid approach, cf. Fig. 5 for the original pseu- 

ospectral solution. Note that the solution satisfies the PMP op- 

imality conditions as can be observed from the plots. For the IC 

ETC reference scenario the cruising speed computed by the pseu- 

ospectral method is approximately 35.12 m/s, i.e., the discrete 

ontrol approximation fluctuates around this value, while the an- 

lytical optimal cruising speed for the computed λ1 = −2 . 9256 is 

 c = 35 . 10 m/s 2 . For this speed ϕ = −0 . 1423 using (18) , while the

seudospectral method computed an approximation of −0 . 1422 

with some slight fluctuations around the fourth decimal). This 

1 = −2 . 9256 corresponds to 15% running time supplement over 

he minimum running time. In Table 2 , we can see that decreasing 

he supplement leads to more negative λ1 (larger absolute value) 

orresponding to a higher cruising speed. This makes sense as less 

ime is available to reach the destination and so the train must 

un faster. When reducing the speed restriction, we also observe 

n increasing | λ1 | indicating that less supplement is available and 

he optimal cruising speed thus increases where possible. A speed 

estriction of 110 km/h reduces the running time supplement to 
373 
bout 10% and a lower speed limit of 100 km/h further reduces 

he supplement to less than 5%. The steep negative gradient of 

10 % also leads to a more negative λ1 = −3 . 4671 . In this case,

he cruising speed increases to compensate for the long coasting 

efore, over and after the downhill slope. Fig. 18 shows the cor- 

ected trajectories for this scenario using the hybrid method, cf. 

ig. 9 a for the original pseudospectral solution. For the real-life 

C EETC scenario λ1 = −3 . 0222 , which corresponds to an optimal 

ruising speed of v c = 35 . 50 m/s (127.8 km/h), and ϕ = −0 . 1450 on

at track, see the black stars in Fig. 16 . 

Replacing the pseudospectral solution of the trajectories in the 

ruising regime by the analytical solution from the implict equa- 

ion (17) for the computed λ1 also solves the ‘partial acceleration’ 

ssue at the beginning of the cruising regime. The exact switch- 

ng point from the acceleration regime to the cruising regime 

an be computed as the point where the maximum acceleration 

urve reaches the analytical cruising speed. The braking regime 

lso shows some oscillations between zero and maximum brak- 

ng. These inaccuracies can be explained from the discretization. 

he distribution of LGR collocation points over the total distance 

s fixed for each N. The optimal switching point from maximum 

cceleration to cruising (or coasting) is usually not located exactly 

t a collocation point, which thus generates an approximation er- 

or. Likewise for the other switching points from cruising to coast- 

ng and from coasting to braking. Since the total running time is 

xed and included as a hard condition, the pseudospectral method 

ompensates the imprecision of the discretization by a nonoptimal 

artial traction regime over a number of collocation points before 

eaching the real optimal cruising speed regime. And likewise, a 

artial braking regime at the end compensates for the imprecision 

f the switching point from coasting to braking. This inaccuracy 

an be solved by increasing the number of collocation points but 

his increases the computation time. An alternative is to add ex- 

ra phases around the switching points in a second iteration of 

he pseudospectral method, which thus gives a finer collocation 

rid to better determine the optimal switching points. For a maxi- 

um braking regime also another postprocessing approach can be 

sed based on the PMP. The exact switching point to the maximum 

raking regime can be computed as the point where the coasting 

peed curve reaches the maximum braking curve (calculated back- 

ards), and thus removing any partial braking within the braking 

hase. Any accuracy error due to the collocation grid for the coast- 
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ng and braking points can be corrected by optimizing the switch- 

ng point from cruising to coasting such that the total running time 

quals the scheduled running time T . The main challenge of find- 

ng the optimal cruising speed v c is however solved by the pseu- 

ospectral method via the computed value of the costate λ1 . 

. Conclusions 

In this paper we applied the pseudospectral method to two op- 

imal train control problems with speed and time as state func- 

ions of distance. We proposed a framework connecting the pseu- 

ospectral method with the PMP and showed that the pseudospec- 

ral solutions were in general consistent with the necessary opti- 

ality conditions but also identified some convergence issues. The 

ain advantage of using the pseudospectral method is that no a 

riori knowledge is needed about the optimal control structure. We 

rst applied the PMP to both the EETC and MTTC problem, provid- 

ng the necessary optimality conditions. The necessary conditions 

rovide information about the optimal control structure in terms 

f speed and the costate λ2 associated to speed, as well as charac- 

eristics of the costate λ1 associated to time and the Hamiltonian 

alue. These were used to validate and correct the solutions com- 

uted by the pseudospectral method. 

We used the MATLAB toolbox GPOPS where the Radau pseu- 

ospectral method with multiple-phases is implemented to solve 

he optimal control problems. Within each phase the gradients 

nd speed limits remain constant. We applied our framework to 

arious scenarios for both Intercity and Sprinter trains. The pseu- 

ospectral method works well for the MTTC problem, and also for 

he EETC problem when either (1) the cruising regime is absent 

ue to a short distance or sufficient time supplement in which 

ases the optimal control switches from acceleration directly to 

oasting before reaching the optimal cruising speed; or (2) the 

peed limit becomes active before reaching the theoretical opti- 

al cruising speed. However, the pseudospectral method has nu- 

erical issues with singular cruising solutions when the optimal 

ruising speed is below the speed limit or close above the speed 

imit depending on the number of collocation points. These cruis- 

ng regimes are approximated by oscillations over the successive 

ollocation points with alternating partial-zero traction or partial- 

ull traction regimes and may start a bit too early before reach- 

ng the cruising speed. Also the final maximum baking regime 

ay start with partial braking before full braking and likewise the 

witch from cruising to coasting may suffer from a small section 

f inaccurate partial traction. In these cases, the optimal switching 

oints are located between the collocation points and therefore the 

ffset of the optimal switching point needs to be corrected by a 

mall regime of some appropriate non-optimal control values. In- 

reasing the number of collocation points can correct this at the 

ost of higher computation time. Furthermore, discontinuities in 

he dynamic equation (gradients) or state path constraint (speed 

imits) lead to a discontinuous costate λ2 with jumps at the points 

f discontinuities. For big negative jumps in the dynamic equation 

r state path constraint the costate λ2 may not always be approx- 

mated correctly and the optimal control structure is violated be- 

ore the discontinuities, while also the control may have difficulties 

o converge. So care has to be taken in using the costate and con- 

rol around serious discontinuities. 

The approximate oscillating singular solutions can be corrected 

n a postprocessing step using an implicit nonlinear equation from 

ontryagin’s Maximum Principle. This implicit equation is under- 

etermined but the unknown λ1 is computed as part of the pseu- 

ospectral solution. With this value of λ1 , the optimal cruising 

peed can be computed numerically from the implicit nonlinear 

quation using a root-finding algorithm. Possibly corrected by an 

ctive speed limit, the constant cruising speed can replace the nu- 
374 
erical approximations of the state v and costate λ2 at the collo- 

ation points in the singular solution directly. The optimal control 

an then also be derived analytically from the cruising speed using 

he dynamic equation in equilibrium. 

In the optimal control structure, the optimal cruising control 

ould have to adjust at each gradient change which may result 

n some time delay unless the gradient profile is perfectly known 

nd the control acts perfectly in line with it. In practice, the driver 

r an automatic speed control system will adaptively control the 

raction to hold the cruising speed and thus respond to changes in 

esistance, such as changes in gradients, curves and wind speed. 

he optimal control structure (19) is thus an open-loop control 

hat provides a feedforward reference train trajectory. More impor- 

ant are the associated speed trajectory and driving regimes that a 

river or speed control system can use as target. So rather than im- 

lementing the theoretical control (19) , the actual maximum trac- 

ion and maximum (service) braking should be used, as well as 

he proper traction control that maintains the cruising speed and 

n essence equals the actual resistance forces. 

We conclude that the Radau pseudospectral method provides 

 direct general and flexible means to solve optimal train con- 

rol problems, especially when the optimal control structure is 

ot known beforehand (more complex situations with many con- 

traints). Combining the pseudospectral solution with key equa- 

ions from the necessary optimality conditions of Pontryagin’s 

aximum Principle improves the solution inaccuracy due to the 

iscretization. Our paper also advocates solid verification and vali- 

ation. A lot of literature on optimal train control applies heuristics 

ithout proper verification or validation of the resulting solutions. 

 comparison to the PMP necessary optimality conditions as done 

n this paper is highly recommendable. However, this is mathemat- 

cally demanding and is also less powerful when the costates are 

ot computed. An alternative approach is to use the pseudospec- 

ral method with available software like GPOPS to compare the so- 

utions and improve algorithms. This paper can then be used as a 

uideline where to be careful in the interpretation of the results of 

he pseudospectral method. 
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