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Exciting Efficient Oscillations in Nonlinear
Mechanical Systems Through

Eigenmanifold Stabilization
Cosimo Della Santina , Member, IEEE and Alin Albu-Schaeffer , Fellow, IEEE

Abstract—Nonlinear modes are a well investigated con-
cept in dynamical systems theory, extending the celebrated
modal analysis of linear mechanical systems to nonlinear
ones. This letter moves a first step in the direction of com-
bining control theory and nonlinear modal analysis towards
the implementation of hyper-efficient oscillatory behaviors
in mechanical systems with non-Euclidean metric. Rather
than forcing a prescribed evolution, we first investigate the
regular behaviors that can be autonomously expressed by
the system, and then we design a controller that excites
them. A first implementation of this concept is proposed,
analyzed, and tested in simulation.

Index Terms—Robotics, stability of nonlinear systems,
PID control, flexible structures, control applications.

I. INTRODUCTION

GENERATING stable periodic evolutions in a robotic
system is a quite challenging task with practically mean-

ingful applications - as for example pick and place, and
locomotion. It is therefore not surprising that it attracted so
much attention from both robotics and control theory fields.
The challenge has been attacked for weakly underactuated
mechanical systems by using virtual holonomic constraints
in [1]. The application of this theory to bipedal locomo-
tion is investigated in [2]. Differential Positivity - extending
Contraction analysis to periodic orbits [3] - is applied in [4]
to study nonlinear oscillations of a pendulum. Immersion and
invariance technique is used in [5] to realize a feedback equiv-
alence of the original system with a low dimensional dynamics
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having a single attractive orbit. Energy shaping of a Mexican
hat field is combined with damping injection in [6], for sta-
bilizing a closed orbit identified by the local minima of the
function.

Motivated by the same premises, the robotics commu-
nity has put substantial effort in developing new kinds of
robotic systems which are more suited for presenting oscilla-
tory behaviors. This is typically done by shaping the potential
field acting on the mechanical system - e.g., though the intro-
duction of carefully designed elastic elements, leading to the
so-called articulated soft robots [7]. Auxiliary springs are opti-
mally tuned to reduce the control effort required for tracking
specific trajectories in [8]–[10]. Several mechanisms to realize
complex and possibly adjustable stiffness characteristics have
been also proposed [11], [12].

Having designed these new robots for efficiency, natu-
rally leads to rethinking control goals. Within this context,
implementing stable periodic motions is not enough anymore.
We want instead to achieve simultaneously stability end effi-
ciency. Numerical [13] and analytical [14] optimization have
been used to implement efficient oscillations in low dimen-
sional robots. In [15] authors propose a controller which
matches the spring loaded inverted pendulum to the hybrid
zero-dynamics of an asymmetric segmented leg. Adaptive
oscillators are also used in this context [16]. Moving to more
general systems, [17] proposes to use model based decoupling
of the joints dynamics. In [18] virtual holonomic constraints
are combined with energy regulation, with the aim of reduc-
ing the extent of direct dynamic cancellation operated by the
controller. Still, a substantial component of dynamics cancel-
lation is envisaged by all these strategies, which results only
in a partial exploitation of the intrinsic dynamics of the robot.

The aim of this letter is to move a step towards reaching
a complete exploitation of robot’s dynamics, possibly at the
cost of reducing the generality of motions that can be real-
ized by the closed loop. We propose to do that by exploiting
modal analysis to characterize nonlinear counterparts of the
linear eigenspaces, called Eigenmanifolds. Stabilizing these
submanifolds of the configuration space by means of feedback
control can be seen as a simple and robust way of excit-
ing hyper-efficient nonlinear oscillations in robotic systems.
We combine this control action with energy regulation to
increase or decrease the amplitude of the oscillations. Fig. 1
presents a sketch of this idea. No model compensation is
involved in this technique, which therefore converges to zero
control action at steady state. We refer to this behavior as
hyper–efficient.
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Fig. 1. We propose to generate efficient cyclic motions in nonlinear
mechanical systems by stabilizing the nonlinear counterpart of the linear
Eigenspace, called Eigenmanifold. These surfaces are built as a collec-
tion of all the regular oscillatory behaviors that the system can present in
open loop, organized per energy levels. A section of the Eigenmanifold
with main quantities highlighted is shown in the picture.

Fig. 2. A picture of the RRR robot with parallel elasticity considered
in this letter. The masses are positioned in the center of each link,
and the link inertia is neglected. Torques (not shown in picture) can be
independently applied at each joint.

Due to space limitations, the goal of this letter is to present
this idea in its most basic form, so to focus on its core princi-
ples rather than on (possibly important) technicalities, which
will be tackled in future work. To this end, we also simplify
the problem by considering conservative and fully actuated
systems. Moreover we focus on the derivation of local (in the
sense of small distances from the manifold) results, rather than
global. We believe that none of these hypotheses is essential,
and we are confident that will be successful in relaxing them
in future work.

II. NONLINEAR MODES OF A MULTI-BODY SYSTEM

Linear modal analysis is a priceless tool in the letter of
linear mechanical systems, allowing to describe regular oscil-
lations in apparently complex and large scale interconnections
of masses and springs. Over the past century, several gen-
eralizations of normal modes to the nonlinear case have
been proposed. We refer to [19] for a survey on the
topic. However, the large part of these works dealt with
interconnections of masses through nonlinear springs, neglect-
ing any configuration-dependent inertia term. This is clearly
not suited for the robotic case. In recent work [20], we
proposed an extension of this theory to the general smooth
conservative case. We showed there that a rich structure of
regular evolutions persist, even when we leave the Euclidean
world.

A. Dynamical Model
Consider the coordinate expression of the dynamics of a

nonlinear mechanical system

M(x)ẍ + C(x, ẋ)ẋ + ∂V(x)

∂x
= τ, (1)

where x ∈ R
n are the joint coordinates of the robot, ẋ, ẍ their

time derivatives, M(x) ∈ R
n×n is the inertia matrix, C(x, ẋ) ∈

R
n×n collects Coriolis and centrifugal terms, V(x) ∈ R is

the potential (for example including gravity and elastic con-
tributions). For the sake of space, we also use the notation
f (x, ẋ) = −M−1(x)(C(x, ẋ)ẋ+ ∂V(x)

∂x ) and g(x) = M−1(x). The
state of (1) is (x, ẋ) ∈ R

2n, and its total energy is

E(x, ẋ) = 1

2
ẋTM(x)ẋ + V(x). (2)

B. Definition
We provide here a simplified coordinate dependent defini-

tion of the Eigenmanifold. We point to [20, Sec. 7] for the
formal coordinate-free definition. We start by assuming that
xeq ∈ R

n exists such that V(xeq) is a minimum - i.e., we
assume the existence of a stable equilibrium configuration
for (1) with τ = 0. We select one eigenspace of dimension two
ES of the linearized system at xeq. Since (1) is conservative,
we can express the eigenspace as follows [20, Sec. 2]

ES = Span{(c, 0), (0, c)}, (3)

where c ∈ R
n is an unit vector pointing the direction of

oscillations. To simplify the notation, we introduce the modal
coordinates xm = cTx and ẋm = cTẋ. Any point in ES can
therefore be unequivocally expressed as a linear combination
of these two variables. We can therefore more concisely say
that (xm, ẋm) ∈ ES � R

2. When the linear system is initialized
in ES, it evolves without ever exiting the eigenspace, follow-
ing the sinusoidal oscillatory pattern xm(t) = A sin(λ2t + φ),
where λ is the eigenvalue associated to ES, and A, φ ∈ R

are two constants with value defined by the initial conditions.
The trajectories (xm, ẋm) span all ES when varying A from 0
to ∞. Eigenspaces can therefore be seen as a collection of all
the regular trajectories that the system can perform. Increasing
values of A are unequivocally associated to increasing values
of energy.

Moving from the linear to the nonlinear case, the plane
ES bends into a surface with the same dimension, that
we call Eigenmanifold. More specifically we say that a
2-dimensional submanifold M of the configuration space R

2n

is an Eigenmanifold, if it is a collection of periodic orbits with
increasing energy levels, i.e., each x(t) such that ẋ(0) = 0 and
(x(0), 0) ∈ M is periodic and it is fully contained in M. Also
we require that (xeq, 0) ∈ M. Finally, we want the trajectories
to be homeomorphic to a segment when projected in config-
uration space. We refer to [20] for a discussion about why
these conditions directly extend the linear case. Therefore, as
for the linear Eigenspaces, the Eigenmanifolds characterize
all the regular oscillatory behaviors - continuously growing
from an equilibrium - that the nonlinear mechanical system
can perform without any (long term) control intervention.

In [20, Sec. 9.4], we show that two functions X : ES → R
n

and Ẋ : ES → R
n can always be found - at least locally - such

that the Eigenmanifold is directly and equivalently defined in
coordinates as

M =
{
(x, ẋ) ∈ R

2n, s.t. X(xm, ẋm) = x, Ẋ(xm, ẋm) = ẋ
}
,

where (xm, ẋm) are the coordinates of ES defined above. Note
that to be coherent with this definition the embeddings should
be such that (cTX, cTẊ) is the identity function. Also, we
assume the Jacobian of (X, Ẋ) − (x, ẋ) to have everywhere
the maximum rank possible. Therefore (X, Ẋ) = (x, ẋ) effec-
tively constraints 2n−2 degrees of freedom out of R

2n. Thus,
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Fig. 3. Two Eigenmanifolds of the considered RRR robot with parallel elasticity, represented as level curves of (X , Ẋ ) = (x , ẋ). The two rows
correspond to 1st and 2nd modes respectively. Each column shows the appropriate level set of a different element of (X , Ẋ ). We also show
examples of modal evolutions depicted by solid lines, with color coded energy level.

Fig. 4. Examples of nonlinear modes extending the first two linear
modes, for a 3-link serial robot. Evolutions of the centers of mass
are shown. A schematic representation of the robot in one of the two
zero velocity configurations is also superimposed - with the black dots
indicating the centers of mass.

this definition of M is coherent with the intrinsic one given
before since the equality constraints define a two dimensional
sub-manifold according to the implicit function theorem. The
function (X, Ẋ) : ES → R

2n is called coordinate expression
of the embedding of M in the state space. Given ES we can
always find an approximation of the functions (X, Ẋ) identi-
fying its nonlinear extension M, as discussed in [20, Sec. 9.1].
This result can be achieved with any level of precision. Thus,
for the sake of conciseness, we will consider the embedding
to be exactly known in the rest of theoretical derivation. This
hypothesis will be removed in the simulations.

C. Example: RRR Robot With Parallel Elasticity
Consider the planar robot in Fig. 2. Its dynamics can be

described as in Section II-A, where x = (x1, x2, x3) are the
joint coordinates. The energy (2) is specified by V(x) = xTx/2
and the inertia matrix M(x) is the usual one for RRR robots
with mass concentrated in the middle of the link. Stiffnesses,
masses, and lengths are chosen unitary. The unique equilib-
rium (global minimum of V) is in (0, 0, 0), i.e., when the robot
is in a straight configuration.

The three eigenspaces of the linearized system
in this equilibrium are identified by c equal to
(i) (0.8781, 0.4604, 0.1306), (ii) (0.4570,−0.7258,−0.5141),
(iii) (0.1419,−0.5111, 0.8477), organized by increasing val-
ues of oscillation frequency. We use the algorithm in [20]
to evaluate the manifold M extending the linear modes.
The third mode extends into an highly numerically unstable
oscillation, which gets not identifiable with our current
algorithms already at low energies. Therefore, we do not
discuss this Eigenmanifold further in this letter.

The Eigenmanifolds extending modes (i) and (ii) are shown
in Fig. 3. Note that the modal variables xm and ẋm are cho-
sen here as the directions pointed by the linear modes of
which the eigenmanifold is an extension. The gray surface
shows the eigenmanifold, as resulting from the parametriza-
tion (X, Ẋ). The first mode extends up to high energies, and
the parametrization can successfully cover all the investigated
area. Also the second mode extends up to high energies. Yet,
the parametrization can reach only up to 0.5J, due to the self
folding of the trajectories when observed through X and Ẋ.
The evolutions of the robot’s centers of mass are shown in
Fig. 4. Although corresponding coordinate evolutions in time
cannot be shown here for the sake of space, examples will be
provided in Section III-E.

III. CONTROL STRATEGY

Suppose to have identified all the Eigenmanifolds of a
mechanical system, and selected among them the one that
implements a desired behavior. Our goal is now to develop
controllers that can excite the nonlinear normal modes con-
tained in this manifold. If we succeed in this task, the result
is the execution of hyper-efficient nonlinear oscillations. We
propose here two feedback loops, one making the selected
Eigenmanifold a local attractor (Sections III-A–III-C), and the
other selecting a single mode within the family of available
ones by means of energy regulation (Section III-D). Once both
the Eigenmanifold and the desired energy level are reached,
we can leave the system free to evolve according to its own
dynamics. Fig. 1 summarizes these ideas.

A. Manifold Stabilization: Goals
Consider an algebraic feedback, function of the state (x, ẋ).

Its goal is to make the system evolutions x(t) converge to the
manifold M. This request can be formalized by asking that
(see coordinate-dependent definition, Section II-B)

lim
t→∞(X(xm, ẋm) − x) = 0, lim

t→∞
(
Ẋ(xm, ẋm) − ẋ

) = 0. (4)
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We define the distances from the manifold in position δ ∈
R

n−1 and in velocity ξ ∈ R
n−1 as part of the following change

of coordinates

(xm, δ) = (
cTx, cT⊥

(
x − X(cTx, cTẋ)

))
,

(ẋm, ξ) = (
cTẋ, cT⊥

(
ẋ − Ẋ(cTx, cTẋ)

))
, (5)

where c⊥ ∈ R
n×n−1 is such that cT⊥c = 0 and cT⊥c⊥ = I. Note

that ξ is not the time derivative of δ. We will further discuss
this point later in this section.

Considering that, as discussed in Section II-B,
cTX(xm, ẋm) = cTx and cTẊ(xm, ẋm) = cTẋ for all
(x, ẋ) ∈ R

2n, and that [c⊥ c] is an orthogonal matrix, yields

X(xm, ẋm) − x = c⊥δ, Ẋ(xm, ẋm) − ẋ = c⊥ξ. (6)

As a consequence we can recast (4) as

lim
t→∞(δ, ξ) = (0, 0). (7)

Finally, the feedback must also be manifold preserving, i.e.,
M is also an Eigenmanifold of the closed loop. This can be
achieved through a feedback that vanishes on the manifold

τ(x, ẋ)|(x,ẋ)∈M = 0. (8)

B. Manifold Stabilization: Tangency Constraints
Whenever possible, we will leverage on the intrinsic prop-

erties of the Eigenmanifold to solve the control problem. A
major characteristics of M is to be invariant, meaning that if
(x(0), ẋ(0)) ∈ M, then (x(t), ẋ(t)) ∈ M for all t. This prop-
erty can be alternatively formulated in terms of variations of
distances from the manifold(

d

dt

(
(x, ẋ) − (

X, Ẋ
)))∣∣∣∣

(x,ẋ)∈M

= 0, (9)

which says that while evolving on the manifold, the distance
from M does not increase in time. We expand separately the
position and velocity parts of (9) by using the chain rule,
obtaining the following equations

Ẋ − ∂X

∂xm
ẋm − ∂X

∂ ẋm
cTf (X, Ẋ) = 0, (10)

f (X, Ẋ) − ∂Ẋ

∂xm
ẋm − ∂Ẋ

∂ ẋm
cTf (X, Ẋ) = 0. (11)

C. Manifold Stabilization: Control Derivation
Output regulation techniques, such as multivariate [21] or

trasverse [22] feedback linearization, could be seen as stabi-
lizing the manifold identified by the level sets of the output -
which in this case would be the zero level set of (X, Ẋ)−(x, ẋ).
The opportunity of using these techniques will be investigated
in future work. Here, we aim at achieving the control goal
by relying very sparsely on model cancellation. More specif-
ically, we wish to see if a simple PD-like action can make
the Eigenmanifold an attractor of the closed loop system.
Therefore, we propose the control candidate

τ(x, ẋ) = +M(x)
(
αP(x − X(xm, ẋm)) + αD

(
ẋ − Ẋ(xm, ẋm)

))
= −M(x)c⊥(αPδ + αDξ), (12)

where αP and αP are two scalar gains. The second step is
yielded by (6).

With the aim of connecting the velocity part of the distance
from the manifold ξ to the derivative of the position part, we

start by evaluating the latter from (5), obtaining δ̇ = cT⊥ẋ −
cT⊥( ∂X

∂xm
ẋm + ∂X

∂ ẋm
cT(f (x, ẋ) + M−1(x)τ )), where we used the

chain rule to express the time derivative of X. Consider now
that

cTM−1(x)τ = cTc⊥(αPδ + αDξ) = 0. (13)

Combining (5), (6), (10), and (13) we obtain

δ̇ = ξ − cT⊥
∂X

∂ ẋm
cT(

f (X + c⊥δ, Ẋ + c⊥ξ) − f (X, Ẋ)
)
, (14)

which for small displacements from the manifold, we can
approximate by means of standard multivariate Taylor first
order expansion

δ̇ � ξ − cT⊥
∂X

∂ ẋm
cT

((
∂f

∂x

)

M

c⊥δ +
(

∂f

∂ ẋ

)

M

c⊥ξ

)
. (15)

where we use the suffix M to say that (x, ẋ) ∈ M, i.e., that
(x, ẋ) = (X, Ẋ). We can now invert the relationship

ξ �
(

I − cT⊥
∂X

∂ ẋm
cT

(
∂f

∂ ẋ

)

M

c⊥
)−1(

δ̇ + cT⊥
∂X

∂ ẋm
cT

(
∂f

∂x

)

M

c⊥δ

)
.

(16)

This assures that if (δ, δ̇) → (0, 0) then our control goal (7) is
fulfilled. We then aim at proving the first part of the log-
ical implication by extracting the second derivative of the
displacement from (14)

δ̈ = cT⊥f (x, ẋ) + cT⊥M−1(x)τ (x, ẋ) − cT⊥
dẊ

dt

− cT⊥
d

dt

(
∂X

∂ ẋm
cT(

f (x, ẋ) − f (X, Ẋ)
))

. (17)

We need now to rewrite everything as function of the new
coordinates (5), i.e., removing any explicit dependency on x, ẋ.
To this end, we start with extracting the time derivative of the
velocity part of the manifold parametrization

dẊ

dt
= ∂Ẋ

∂xm
ẋm + ∂Ẋ

∂ ẋm
cT

(
f (x, ẋ) − M−1(x)τ (x, ẋ)

)

= f (X, Ẋ) + ∂Ẋ

∂ ẋm
cT(

f (x, ẋ) − f (X, Ẋ)
)
, (18)

where in the second step we used (11) and (13). For the sake
of space, we consider here a slowly varying mismatch between
δ̇ and ξ , at least in the directions orthogonal to the eigenspace
- i.e., we neglect the latter term in (17). Note that this hypoth-
esis is imposed for the sake of space, and similar results could
be obtained without imposing it by following the same steps.
Therefore, combining (17) and (18) yields (remember that
cT⊥c⊥ = I) δ̈ � cT⊥(I − ∂Ẋ

∂ ẋm
cT)(f (x, ẋ)− f (X, Ẋ))−αPδ −αDξ .

Applying again the hypothesis of small displacements from
the manifold, the acceleration can be approximated as

δ̈ �
(

cT⊥
(

I − ∂Ẋ

∂ ẋm
cT

)(
∂f

∂x

)

M

c⊥ − αPI

)
δ

+
(

cT⊥
(

I − ∂Ẋ

∂ ẋm
cT

)(
∂f

∂ ẋ

)

M

c⊥ − αDI

)
ξ. (19)

Note that the matrices multiplying δ and ξ are functions of
(xm, ẋm) only. We can now use (16) to get the following second
order dynamics in δ, δ̇, xm, ẋm

δ̈ � κ(xm, ẋm)δ + β(xm, ẋm)δ̇, (21)
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Fig. 5. Sequential excitation of two modes contained in the
Eigenmanifold extending the first (slowest) Eigenspace. The first oscilla-
tion is smaller amplitude and it takes place up to 60s, when higher one
starts.

where κ and β are the matrices in (20) shown at the bottom
of the page. Proving the stability of (21) requires small gain
theorem arguments, which it is beyond the scope of this letter
to discuss. Indeed, the evolution (xm, ẋm) is in turn function
of δ.

Yet, interesting insights can already be taken considering
(∂(cTf )/∂x)M � 0 and (∂(cTf )/∂ ẋ)M � 0, i.e., ẍm �
cTf (X, Ẋ). This condition is always exactly fulfilled in the
linear case. Note that the same hypotheses also sensitively
simplify (20), nullifying the right hand side of both matri-
ces. In this case xm can be seen as a time variance, and (21)
can be analyzed using standard methods in time varying
systems [23]. For example, we can take αD big enough such
that the convergence time of δ is small if compared with the
period T of xm. In this case we can apply averaging technique
[24, Sec. 10], resulting in the following sufficient conditions
for the asymptotic stability of the origin of (21)

αP > max
xm,ẋm

ρ

((
I − ∂Ẋ

∂ ẋm
cT

)(
∂f

∂ ẋ

)

M

)
,

αD > max
xm,ẋm

ρ

((
I − ∂Ẋ

∂ ẋm
cT

)(
∂f

∂ ẋ

)

M

)
, (22)

where ρ extracts the maximum eigenvalue of the symmetric
part of the argument.

D. Energy Regulation
We design a feedback loop such that the energy E(x, ẋ)

converges to a desired level Ē. In this way we can select a
single modal oscillation - i.e., the intersection between the

constant energy manifold and the Eigenmanifold - and we
can increase or decrease the amplitude of the oscillation at
will. We start by evaluating the time derivative of (2), which
through standard manipulations leads to Ė = ẋTM−1(x)τ (x, ẋ).
We can now close the loop so to obtain the desired asymptotic
behavior

τ(x, ẋ) = γ M(x)
(
Ē − E(x, ẋ)

)
ẋ, (23)

where γ > 0 is a gain. This yields the scalar dynamics
Ė = γ ||ẋ||2(Ē − E). To investigate its steady state behavior
we consider the Lyapunov candidate (Ē − E)2/2, with time
derivative −γ ‖ẋ‖2(Ē−E)2 ≤ 0. This assures that Ē−E is not
increasing, which in turn assures that the state is bounded.
Differentiating a second time and applying the Barbalat’s
lemma [24, Sec. 8.3], we discover that (23) converges to either
xeq or to the level set E(x, ẋ) = Ē. Local stability analysis
proves xeq that it is made repulsive by (23). Thus, the manifold
E(x, ẋ) = Ē is attractive.

E. Example: RRR Robot With Parallel Elasticity (Cont’d)
Consider the system discussed in Section II-C. We use

here (12) and (23) to excite the modal oscillations discussed
above. We set the control gains to αP = 0, αD = 1 1

s ,
and γ = 1. The system is always initialized in x(0) =
(−π/16, 0, 0), and ẋ(0) = 0. First, we test the strategy under
nominal conditions, when trying to regulate modes taken from
the first Eigenmanifold. Results are shown in Fig. 5. Two
modes are sequentially regulated, the first with Ē = 0.2J and
the second with Ē = 1.5. In both cases, the steady state is
reached in few seconds, and with zero final error. Most impor-
tantly, the control action drops to zero as soon as the desired
mode is reached. The oscillation sustains itself, without any
need of injecting extra energy to maintaining it. Note, how-
ever, that this is possible only thanks to the non dissipative
nature of the mechanical systems under consideration.

Next we test the robustness of the control strategy against
model uncertainties. Since we want to put the algorithm under
stress, we perturb the only part of (1) appearing explicitly
into (12) and (23), i.e., the inertia matrix. Therefore, we sim-
ulated the system using a perturbed inertia M̃ which is equal
to 0.8M, where M is the inertia matrix that we used for com-
putations. Coriolis forces are influenced accordingly. Note that
(X, Ẋ) is still evaluated with the nominal system. Therefore,
this simulation serves also to further test the robustness of the
proposed method to uncertain embeddings. We perform two
excitations tasks. In the first we excite the mode with Ē = 1J,
part of the first Eigenmanifold. In the second we excite the one
with Ē = 0.2J, and being part of the second Eigenmanifold.
Results of energy regulations are shown in Figs. 6 (a,b). In
both cases the energy converges to a small neighborhood of
the desired behavior. Nominal evolutions of the energy are
shown for comparison. Finally, the remainder of Fig. 6 shows
the joint space evolutions together with the control action. The
steady state behavior is still periodic and very similar to the
ideal one. Also, the control action drops to very small values
after few seconds. The error is not null this time due to the

κ(xm, ẋm) =
(

cT⊥
(

I − ∂Ẋ

∂ ẋm
cT

)(
∂f

∂x

)

M

c⊥ − αPI

)(
I +

(
I − cT⊥

∂X

∂ ẋm
cT

(
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∂ ẋ

)

M
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)−1

cT⊥
∂X

∂ ẋm
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(
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c⊥

)
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(20)
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Fig. 6. Control performance in presence of uncertainties. The system
mass is 80% smaller in simulation than in the model used for control
design. Panels (a,b) show the evolution of the energy in nominal and
perturbed condition, when regulating the first and the second mode
respectively. The reference is shown as a black dashed line. Panels
(c,d) report evolution of joint coordinates. Panels (e,f) reports the control
action. In the latter plots, also the output of a computed torque con-
troller regulating the same mode when V = 0 (i.e., standard approach)
is shown as a comparison. This is a pure rigid body motion, since no
energy can be stored in the springs.

model mismatching. This analysis - even if preliminary - con-
firms the effectiveness of the proposed method under uncertain
conditions.

IV. CONCLUSION AND FUTURE WORK

This letter proposed a method for exciting hyper-efficient
oscillations in multi body mechanical systems, by simulta-
neously regulating Eigenmanifolds and energy levels. Future
work will be devoted to developing a global proof of the
closed loop stability, assessing theoretically the robustness of
the method to non exact embeddings, and dealing with dissi-
pative actions. We believe that differential positivity [3] can
be a viable solution for the first two challenges, possibly
together with the introduction of a covariant set of coordinates.
For what concerns the latter, our preliminary experimental
investigations show that dissipation simplifies the excitation
of regular oscillation by acting as a stabilizing effect. On a
theoretical level dealing with non conservative forces entails
two challenges: generalizing the Eigenmanifold concept itself
[20, Sec. 10], and devising controller that can generalize (23)
so to re-inject the energy lost.
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